KR100723833B1 - 분포귀환형 반도체 레이저 및 그 제조방법 - Google Patents
분포귀환형 반도체 레이저 및 그 제조방법 Download PDFInfo
- Publication number
- KR100723833B1 KR100723833B1 KR1020050052575A KR20050052575A KR100723833B1 KR 100723833 B1 KR100723833 B1 KR 100723833B1 KR 1020050052575 A KR1020050052575 A KR 1020050052575A KR 20050052575 A KR20050052575 A KR 20050052575A KR 100723833 B1 KR100723833 B1 KR 100723833B1
- Authority
- KR
- South Korea
- Prior art keywords
- layer
- ridge
- active layer
- grating
- semiconductor laser
- Prior art date
Links
Images
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
- Geometry (AREA)
Abstract
분포귀환형 반도체 레이저를 제공한다. 본 발명은 기판 상에 형성된 하부 클래드층과, 상기 하부 클래드층 상에 활성층 및 상부 클래드층이 순차적으로 형성되어 구성된 리지를 포함한다. 상기 활성층을 포함하는 상기 리지의 일측벽 또는 양측벽에는 상기 활성층 및 공진축의 수직방향으로 형성되어 단일 가로 모드 발진을 가능하게 하는 그레이팅이 형성되어 있다. 상기 그레이팅은 발진 파장(λ)의 1/2의 정수배(nλ/2, n=1,2,3..)에 해당하는 주기로 형성되어 있다. 상기 리지를 구성하는 상부 클래드층의 일측벽에 수직 가로 모드(transverse electromagnetic mode)를 조절할 수 있는 산화층이 형성되어 있다.
Description
도 1은 종래 기술에 의해 활성층의 위쪽에 그레이팅을 형성한 분포귀환형 반도체 레이저를 도시한 도면이다.
도 2는 종래 기술에 의해 활성층의 아래쪽에 그레이팅을 형성한 분포귀환형 반도체 레이저를 도시한 도면이다.
도 3 내지 도 9는 본 발명의 제1 실시예에 의한 분포귀환형 반도체 레이저 및 그 제조방법을 설명하기 위하여 도시한 도면들이다.
도 10 내지 도 15는 본 발명의 제2 실시예에 의한 분포귀환형 반도체 레이저 및 그 제조방법을 설명하기 위하여 도시한 도면들이다.
본 발명은 반도체 레이저 및 그 제조방법에 관한 것으로, 보다 상세하게는 분포귀환형 반도체 레이저 및 그 제조방법에 관한 것이다.
일반적으로, 분포귀환형 반도체 레이저는 광통신 시스템이나 광 측정기기에 사용되는 소자이다. 이러한 분포귀환형 반도체 레이저를 제조하기 위해서는 발진 파장(λ)의 1/2의 정수 배(nλ/2 , n=1,2,3..)에 해당하는 그레이팅을 활성층의 위쪽이나 아래쪽에 만들어 주게 된다. 상기 그레이팅으로 인하여 단일 가로 모드(single longitudinal mode), 즉 단일 종 모드(single axial mode) 발진이 가능하게 된다.
도 1은 종래 기술에 의해 활성층의 위쪽에 그레이팅을 형성한 분포귀환형 반도체 레이저를 도시한 도면이다.
구체적으로, 도 1에 도시한 분포귀환형 반도체 레이저는 1999년 11월 9일자로, 미합중국 특허 제5,982,804호에 "Non-regrowth distributed feedback ridge semiconductor laser and method of manufacturing the same"이라는 명칭으로 등록되어 있다. 종래의 분포귀환형 반도체 레이저는 n+-InP 기판(9) 상에 n-InP 클래드층(10) 및 SCH(separate confinement hetrostructure) 활성층(11)이 적층되어 있다. 상기 SCH 활성층(11) 상의 중앙 부분에 p-InP 클래드층으로 이루어진 리지(15) 및 콘택층(13)이 형성되어 있고, 상기 SCH 활성층(11) 상의 리지(15) 양측에 그레이팅(20)이 형성되어 있다.
그런데, 도 1에 도시한 분포귀환형 반도체 레이저는 그레이팅(20)을 만들기 위해 추가적인 사진식각공정을 수행하여야 한다. 또한, 도 1에 도시한 분포귀환형 반도체 레이저는 n-InP 클래드층(10), SCH 활성층(11), 리지(15) 및 콘택층(13)을 형성한 후에 그레이팅(20)을 제조한다. 따라서, 그레이팅(20)을 만들기 위해 포토레지스트 패턴 형성 공정 및 식각 공정을 정밀하게 수행하여야 한다.
도 2는 종래 기술에 의해 활성층의 아래쪽에 그레이팅을 형성한 분포귀환형 반도체 레이저를 도시한 도면이다.
구체적으로, 도 2에 도시한 분포귀환형 반도체 레이저는 2004년 8월 5일자로 미합중국 공개특허 제0151224호에 "Distributed feedback semiconductor laser oscillating at longer wavelength mode and its manufacture method"라는 명칭으로 공개되어 있다. 종래의 분포귀환형 반도체 레이저는 n형 기판(51) 상에 n형 클래드층(52), 그레이팅을 갖는 높은 굴절률의 n형 가이드층(53), 낮은 굴절률을 갖는 층(54), 활성층(55), p형 가이드층(56) 및 p형 클래드층(63)이 순차적으로 형성되어 있다. 상기 p형 클래드층(63) 상에는 p+ 콘택층(64), 절연층(65) 및 p형 전극(20)이 형성되어 있다. 도 2에서, 참조번호 61 및 62는 각각 p형 매몰층 및 n형 매몰층을 나타낸다.
그런데, 도 2에 도시한 분포귀환형 반도체 레이저는 그레이팅을 만들기 위해 추가적인 사진식각공정을 수행하여야 한다. 또한, 도 2의 분포귀환형 반도체 레이저는 그레이팅을 만들기 위해서 성장 장비에서 시료를 꺼내야 하기 때문에 공기 중에 노출되어 오염이 되거나, 원치 않는 자연 산화가 일어난다. 이에 따라, 도 2의 분포귀환형 반도체 레이저는 후속공정에서 어려운 산화막 제거 공정이 필요하게 된다. 또한, 도 2의 분포귀환형 반도체 레이저는 n형 가이드층(53)에 그레이팅을 형성하기 위한 포토레지스트 패턴 형성 공정 및 식각 공정을 정밀하게 수행하여야 한다.
한편, 도 1 및 도 2에 도시한 분포귀환형 반도체 레이저는 그레이팅이 활성층의 위쪽이나 아래쪽 한쪽에만 있기 때문에 원하는 한 파장만이 레이징되는 것이 아니라 경우에 따라서 선택법칙(selection rule)에 따라 2개 이상의 파장이 나오게 된다. 이를 보정하기 위해서 그레이팅을 만들 때 중간에 λ/4 변위(shift)를 일으킬 수 있는 시프터를 삽입하는 고도의 공정기술을 적용해야 하는 불편함이 있다.
또한, 도 1 및 도 2에 도시한 분포귀환형 반도체 레이저는 레이저빔을 공진 축(Z축)의 수직(X축 방향), 즉 공진폭으로 구속(confinement)시키기 위해서 활성층의 수평길이를 제약하는 매몰구조(buried heterostructure)를 추가하여 단일 파장의 레이저광을 얻으려는 복잡한 공정이 시도되기도 한다.
따라서, 본 발명이 이루고자 하는 기술적 과제는 단일 파장을 레이징할 수 있고 활성층의 수평길이를 조절하여 수직 가로 모드(transverse electromagnetic mode)를 제어할 수 있는 분포귀환형 반도체 레이저를 제공하는 데 있다.
또한, 본 발명이 이루고자 하는 다른 기술적 과제는 추가적인 사진식각공정을 수행하지 않고, 공정을 단순화하여 제조비용을 절감할 수 있는 분포귀환형 반도체 레이저의 제조방법을 제공하는 데 있다.
상기 기술적 과제를 달성하기 위하여, 본 발명에 의한 분포귀환형 반도체 레이저는 기판 상에 형성된 하부 클래드층과, 상기 하부 클래드층 상에 활성층 및 상부 클래드층이 순차적으로 형성되어 구성된 리지와, 상기 활성층을 포함하는 상기 리지의 일측벽 또는 양측벽에 상기 활성층 및 공진축의 수직방향으로 형성되어 단일 가로 모드 발진을 가능하게 하는 그레이팅과, 상기 리지를 구성하는 상부 클래드층의 일측벽에 수직 가로 모드(transverse electromagnetic mode)를 조절할 수 있는 산화층을 포함하여 이루어진다.
상기 활성층은 SCH 활성층일 수 있다. 상기 SCH 활성층은 하부 광도파로, 양자점을 포함하는 활성층 및 상부 광도파로로 구성될 수 있다. 상기 그레이팅은 발진 파장(λ)의 1/2의 정수배(nλ/2, n=1,2,3..)에 해당하는 주기로 형성될 수 있다. 상기 그레이팅이 상기 리지의 양측벽에 형성될 경우에는 상기 그레이팅은 좌우 대칭 또는 좌우 비대칭으로 형성하여도 무방하다.
상기 활성층은 SCH 활성층일 수 있다. 상기 SCH 활성층은 하부 광도파로, 양자점을 포함하는 활성층 및 상부 광도파로로 구성될 수 있다. 상기 그레이팅은 발진 파장(λ)의 1/2의 정수배(nλ/2, n=1,2,3..)에 해당하는 주기로 형성될 수 있다. 상기 그레이팅이 상기 리지의 양측벽에 형성될 경우에는 상기 그레이팅은 좌우 대칭 또는 좌우 비대칭으로 형성하여도 무방하다.
삭제
상기 다른 기술적 과제를 달성하기 위하여, 본 발명의 일 예에 의한 분포귀환형 반도체 레이저의 제조방법은 기판 상에 하부 클래드층을 형성하는 것을 포함한다. 상기 하부 클래드층 상에 활성층 및 상부 클래드층이 순차적으로 적층된 리지를 형성한다. 상기 활성층을 포함하는 상기 리지의 일측벽 또는 양측벽에 상기 활성층 및 공진축의 수직방향으로 단일 가로 모드 발진을 가능하게 하는 그레이팅을 형성한다.
상기 그레이팅은 발진 파장(λ)의 1/2의 정수배(nλ/2, n=1,2,3..)에 해당하는 주기로 형성할 수 있다. 상기 그레이팅이 상기 리지의 양측벽에 형성될 경우에는 상기 그레이팅은 좌우 대칭 또는 좌우 비대칭으로 형성하여도 무방하다. 상기 리지를 구성하는 상부 클래드층의 일측벽에 수직 가로 모드를 조절할 수 있는 산화층을 형성한다.
상기 그레이팅은 발진 파장(λ)의 1/2의 정수배(nλ/2, n=1,2,3..)에 해당하는 주기로 형성할 수 있다. 상기 그레이팅이 상기 리지의 양측벽에 형성될 경우에는 상기 그레이팅은 좌우 대칭 또는 좌우 비대칭으로 형성하여도 무방하다. 상기 리지를 구성하는 상부 클래드층의 일측벽에 수직 가로 모드를 조절할 수 있는 산화층을 형성한다.
삭제
삭제
또한, 본 발명의 다른 예에 의한 분포귀환형 반도체 레이저의 제조방법은 기판 상에 하부 클래드층을 형성하고, 상기 하부 클래드층 상에 활성층, 상부 클래드층, 오믹 접합층 및 하드 마스크층을 순차적으로 형성하는 것을 포함한다.
상기 하드 마스크층 상에 상기 활성층의 수평 방향으로 그레이팅 형성을 위한 포토레지스트 패턴을 형성한 후, 상기 포토레지스트 패턴을 마스크로 상기 하드 마스크층, 오믹 접합층, 상부 클래드층 및 활성층을 식각하여 공진축과 활성층의 수직 방향으로 단일 가로 모드 발진을 가능하게 하는 그레이팅을 갖는 리지를 형성한다. 상기 그레이팅은 발진 파장(λ)의 1/2의 정수배(nλ/2, n=1,2,3..)에 해당하는 주기로 형성할 수 있다. 상기 그레이팅은 상기 활성층을 포함하는 상기 리지의 일측벽 또는 양측벽에 상기 활성층 및 공진축의 수직방향으로 형성할 수 있다.
상기 리지를 구성하는 상부 클래드층의 양측벽을 산화시켜 수직 가로 모드를 조절할 수 있는 산화층을 형성한다. 상기 리지의 양측벽에 보호 스페이서를 형성한 후, 하드 마스크층을 제거한다. 상기 오믹 접합층 및 기판 배면에 오믹 금속층을 형성한다.
이상과 같이 본 발명의 분포귀환형 반도체 레이저는 단순한 공정을 이용하여 활성층을 포함하는 리지의 일측벽 또는 양측벽에 공진축의 수직방향으로 그레이팅을 형성함으로써 분포귀환 효과를 얻는다.
이하, 첨부도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다. 그러나, 다음에 예시하는 본 발명의 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 상술하는 실시예에 한정되는 것은 아니고, 서로 다른 다양한 형태로 구현될 수 있다. 본 발명의 실시예는 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위하여 제공되어지는 것이다. 도면에서 막 또는 영역들의 크기 또는 두께는 명세서의 명확성을 위하여 과장되어진 것이다. 본 명세서에서, ( )로 표시된 물질은 포함될 수 도 있고, 포함되지 않을 수도 있는 것을 의미한다. 예컨대, In(Ga)As층이라고 표현되어 있을 경우, InAs층일수도 있고, InGaAs층일 수도 있다.
제1 실시예
도 3 내지 도 9는 본 발명의 제1 실시예에 의한 분포귀환형 반도체 레이저 및 그 제조방법을 설명하기 위하여 도시한 도면들이다.
도 3을 참조하면, 기판, 예컨대 InP 기판(101) 상에 하부 클래드층(103)을 형성한다. 상기 하부 클래드층(103)은 InAlAs층으로 형성한다. 상기 하부 클래드층(103) 상에 SCH 활성층(113)을 형성한다. 상기 SCH 활성층(113)은 하부 광도파로(105), 양자점(107)이 포함된 활성층(109) 및 상부 광도파로(111)로 구성된다. 상기 하부 광도파로(105) 및 상부 광도파로(111)는 InAlAs층으로 형성한다. 상기 양자점(107)은 In(Ga)As층으로 형성하고, 상기 활성층(109)은 InAl(Ga)As층으로 형성한다.
상기 활성층(109) 내에 양자점(107)이 포함되면, 800nm에서 1600nm에 이르는 넓은 대역의 통신 파장을 구현할 수 있고, 광변조 특성 또한 초당 20기가비트(Gbps) 이상의 고속 신호를 전달할 수 있다.
상기 SCH 활성층(113)을 구성하는 상부 광도파로(111) 상에 상부 클래드층(115)을 형성한다. 상기 상부 클래드층(115)은 InAlAs층으로 형성한다. 상기 상부 클래드층(115) 상에 오믹 접합층(117)을 형성한다. 상기 오믹 접합층(117)은 InGaAs층으로 형성한다. 상기 오믹 접합층(117) 상에 하드 마스크층(119)을 형성한다. 상기 하드 마스크층(119)은 SiONx층으로 형성한다.
도 4를 참조하면, 상기 하드 마스크층(119) 상에 사진식각공정을 이용하여 그레이팅 마스크로 포토레지스트 패턴(121)을 형성한다. 상기 포토레지스트 패턴(121)은 그레이팅 마스크를 이용하여 사진식각공정으로 형성한다.
상기 포토레지스트 패턴(121)은 공진축(z축)과 수평 방향, 다시 말해 활성층(109)과 수평한 방향으로 양단부에 요철구조가 형성된다. 상기 요철 구조는 후에 그레이팅을 구현하는데 이용된다.
도 5를 참조하면, 상기 포토레지스트 패턴(121)을 마스크로 상기 하드 마스크층(119), 오믹 접합층(117), 상부 클래드층(115) 및 SCH 활성층(113)을 이방성 건식식각하여 그레이팅(123)을 갖는 리지(125)를 형성한다. 상기 그레이팅(123)은 상기 활성층(109)을 포함하는 상기 리지(125)의 양측벽에서 상기 활성층(109) 및 공진축(z축 방향)의 수직방향으로 형성되어 있다.
상기 리지(125)의 양측벽에 형성된 그레이팅(123)은 발진 파장(λ)의 1/2의 정수 배(nλ/2 , n=1,2,3..)의 주기(P)로 형성되어 분포귀환 효과를 얻어 단일 가로 모드 발진을 가능하게 하는 역할을 수행한다. 다시 말해, 상기 그레이팅(123)으로 인하여 단일 파장의 레이저를 발진시킬 수 있다. 상기 리지(125)의 양측벽에 형성된 그레이팅(123)은 X축 방향으로 좌우 대칭 또는 좌우 비대칭으로 형성되어도 무방하다. 상기 그레이팅(123)을 갖는 리지(125)를 형성한 후, 상기 포토레지스트 패턴(121)을 제거한다.
도 6을 참조하면, 도 6은 편의상 사시도로 표시하지 않고 단면도로 표시하였다. 상기 상부 클래드층(115) 및 하부 클래드층(103)을 건식 또는 습식 산화에 의하여 선택적으로 산화시켜 산화층(127)을 형성한다. 상기 건식 산화시에는 산소(O2)를 이용하고, 습식 산화시에는 수증기(H2O)를 이용한다. 상기 산화층(127)은 InAlOx층으로 형성된다.
상기 산화층(127)은 상기 리지를 구성하는 상부 클래드층(115)의 양측벽과, 상기 리지(125)에 의하여 노출된 하부 클래드층(103)의 표면에 형성된다. 상기 리지(125)를 구성하는 상부 클래드층(115)의 양측벽에 형성되는 산화층(127)의 산화 정도를 조절하면 X축 방향의 활성층(109)의 수평길이를 조절할 수 있다. 이에 따라, 발진되는 레이저의 수직 가로 모드를 제어할 수 있다.
도 7 및 도 8을 참조하면, 상기 SCH 활성층(113), 상부 클래드층(115), 오믹 접합층(117), 하드 마스크층(119) 및 산화층(127)을 포함하는 리지(125)의 양측벽과, 하부 클래드층(103) 상의 산화층(127)의 표면을 덮도록 보호층(129)을 형성한다. 상기 보호층(129)은 SCH 활성층(113)을 보호하기 위하여 형성한다.
이어서, 도 8에 도시한 바와 같이 상기 보호층(129)을 이방성식각하여 상기 리지(125)의 양측벽에 보호 스페이서(131)를 형성한다. 상기 보호 스페이서(131) 형성과 동시에 오믹 접합층(117)의 표면은 노출된다. 이어서, 상기 하드 마스크층(119)을 제거한다.
도 9를 참조하면, 상기 오믹 접합층(117)의 표면 및 기판(101)의 배면에 각각 오믹 전극(133, 135)을 형성하여 분포귀환형 반도체 레이저를 완성한다. 상기 오믹 전극(133, 135)을 통하여 전류를 인가함으로써 반도체 레이저의 활성층(109)에서 레이저가 발진한다.
제2 실시예
도 10 내지 도 15는 본 발명의 제2 실시예에 의한 분포귀환형 반도체 레이저 및 그 제조방법을 설명하기 위하여 도시한 도면들이다.
구체적으로, 본 발명의 제2 실시예에 의한 분포귀환형 반도체 레이저는 제1 실시예와 비교하여 리지의 일측벽에만 그레이팅이 형성되는 것을 제외하고는 동일하다. 도 10 내지 도 15에서, 도 2 내지 도 9와 동일한 참조번호는 동일한 부재를 나타낸다.
도 10을 참조하면, 제1 실시예의 도 3의 공정을 진행한다. 이어서, 상기 하드 마스크층(119) 상에 사진식각공정을 이용하여 그레이팅 마스크로 포토레지스트 패턴(121a)을 형성한다. 즉, 상기 포토레지스트 패턴(121a)은 후에 형성되는 그레이팅이 포함된 그레이팅 마스크를 이용하여 사진식각공정으로 형성한다. 상기 포토 레지스트 패턴(121a)은 공진축(z축)과 수평 방향, 다시 말해 활성층(109)과 수평한 방향으로 제1 실시예와는 다르게 일단부에만 요철구조가 형성된다. 상기 요철 구조는 후에 그레이팅을 구현하는데 이용된다.
도 11을 참조하면, 상기 포토레지스트 패턴(121a)을 마스크로 상기 하드 마스크층(119), 오믹 접합층(117), 상부 클래드층(115) 및 SCH 활성층(111)을 이방성 건식식각하여 그레이팅(123a)을 갖는 리지(125a)를 형성한다. 상기 그레이팅(123a)은 상기 활성층(109)을 포함하는 상기 리지(125)의 일측벽에서 상기 활성층(109) 및 공진축(z축 방향)의 수직방향으로 형성되어 있다.
상기 리지(125a)의 일측벽에 형성된 그레이팅(123a)은 발진 파장(λ)의 1/2의 정수 배(nλ/2 , n=1,2,3..)의 주기(P)로 형성되어 분포귀환 효과를 얻어 단일 가로 모드 발진을 가능하게 하는 역할을 수행한다. 다시 말해, 상기 그레이팅(123a)으로 인하여 단일 파장의 레이저를 발진시킬 수 있다. 상기 그레이팅(123a)을 갖는 리지(125a)를 형성한 후, 상기 포토레지스트 패턴(121a)을 제거한다.
도 12를 참조하면, 도 12는 편의상 사시도로 표시하지 않고 단면도로 표시하였다. 상기 상부 클래드층(115) 및 하부 클래드층(103)을 건식 또는 습식 산화에 의하여 선택적으로 산화시켜 산화층(127a)을 형성한다. 상기 건식 산화시에는 산소(O2)를 이용하고, 습식 산화시에는 수증기(H2O)를 이용한다. 상기 산화층(127a)은 InAlOx층으로 형성된다.
상기 산화층(127a)은 제1 실시예와는 동일하게 상기 리지를 구성하는 상부 클래드층(115)의 양측벽과, 상기 리지(125)에 의하여 노출된 하부 클래드층(103)의 표면에 형성된다. 상기 리지(125)를 구성하는 상부 클래드층(115)의 일측벽에 형성되는 산화층(127a)의 산화 정도를 조절하면 X축 방향의 활성층(109)의 수평길이를 조절할 수 있다. 이에 따라, 발진되는 레이저의 수직 가로 모드를 제어할 수 있다.
도 13 및 도 14를 참조하면, 상기 SCH 활성층(113), 상부 클래드층(115), 오믹 접합층(117), 하드 마스크층(119) 및 산화층(127a)을 포함하는 리지(125a)의 일측벽과, 하부 클래드층(103) 상의 산화층(127a)의 표면을 덮도록 보호층(129)을 형성한다. 상기 보호층(129a)은 SCH 활성층(113)을 보호하기 위하여 형성한다.
이어서, 도 14에 도시한 바와 같이 상기 보호층(129)을 이방성식각하여 상기 리지(125a)의 양측벽에 보호 스페이서(131)를 형성한다. 상기 보호 스페이서(131) 형성과 동시에 오믹 접합층(117)의 표면은 노출된다. 이어서, 상기 하드 마스크층(119)을 제거한다.
도 15를 참조하면, 상기 오믹 접합층(117)의 표면 및 기판(101)의 배면에 각각 오믹 전극(133, 135)을 형성하여 분포귀환형 반도체 레이저를 완성한다. 상기 오믹 전극(133, 135)을 통하여 전류를 인가함으로써 반도체 레이저의 활성층(109)에서 레이저가 발진한다.
상술한 바와 같이 본 발명의 분포귀환형 반도체 레이저는 활성층을 포함하는 리지의 일측벽 또는 양측벽에 상기 활성층 및 공진축의 수직방향으로 형성되어 단일 가로 모드 발진을 가능하게 하는 그레이팅을 구비한다.
본 발명의 분포귀환형 반도체 레이저는 상부 클래드층의 선택적 산화를 통하 여 활성층의 수평길이를 조절하여 수직 가로 모드를 제어할 수 있다.
또한, 본 발명의 분포귀환형 반도체 레이저의 제조방법은 종래와 같이 활성층의 위쪽 또는 아래쪽에 그레이팅을 삽입하는 공정을 구비하지 않기 때문에 추가적인 사진식각공정을 수행하지 않고, 제조공정도 단순화하여 제조비용을 절감할 수 있다.
Claims (23)
- 기판 상에 형성된 하부 클래드층;상기 하부 클래드층 상에 활성층 및 상부 클래드층이 순차적으로 형성되어 구성된 리지;상기 활성층을 포함하는 상기 리지의 일측벽에 상기 활성층 및 공진축의 수직방향으로 형성되어 단일 가로 모드 발진을 가능하게 하는 그레이팅; 및상기 리지를 구성하는 상부 클래드층의 일측벽에 수직 가로 모드를 조절할 수 있는 산화층을 포함하여 이루어지는 것을 특징으로 하는 분포귀환형 반도체 레이저.
- 제1항에 있어서, 상기 그레이팅은 발진 파장(λ)의 1/2의 정수배(nλ/2, n=1,2,3..)에 해당하는 주기로 형성되어 있는 것을 특징으로 하는 분포귀환형 반도체 레이저.
- 제1항에 있어서, 상기 활성층은 SCH 활성층인 것을 특징으로 하는 분포귀환형 반도체 레이저.
- 제3항에 있어서, 상기 SCH 활성층은 하부 광도파로, 양자점을 포함하는 활성층 및 상부 광도파로로 구성되는 것을 특징으로 하는 분포귀환형 반도체 레이저.
- 삭제
- 제1항에 있어서, 상기 그레이팅은 상기 활성층을 포함하는 상기 리지의 양측벽 모두에 상기 활성층 및 공진축의 수직방향으로 형성되어 있는 것을 특징으로 하는 분포귀환형 반도체 레이저.
- 제6항에 있어서, 상기 리지의 양측벽에 형성되어 있는 그레이팅은 좌우 대칭 또는 좌우 비대칭인 것을 특징으로 하는 분포귀환형 반도체 레이저.
- 제1항에 있어서, 상기 상부 클래드층 상에 오믹 접합층이 더 형성되어 상기 리지를 구성하는 것을 특징으로 하는 분포귀환형 반도체 레이저.
- 삭제
- 삭제
- 삭제
- 삭제
- 기판 상에 하부 클래드층을 형성하는 단계;상기 하부 클래드층 상에 활성층 및 상부 클래드층이 순차적으로 적층된 리지를 형성하는 단계;상기 활성층을 포함하는 상기 리지의 일측벽에 상기 활성층 및 공진축의 수직방향으로 단일 가로 모드 발진을 가능하게 하는 그레이팅을 형성하는 단계; 및상기 리지를 구성하는 상부 클래드층의 일측벽에 수직 가로 모드를 조절할 수 있는 산화층을 형성하는 단계를 포함하여 이루어지는 것을 특징으로 하는 분포귀환형 반도체 레이저의 제조방법.
- 제13항에 있어서, 상기 그레이팅은 발진 파장(λ)의 1/2의 정수배(nλ/2, n=1,2,3..)에 해당하는 주기로 형성하는 것을 특징으로 하는 분포귀환형 반도체 레이저의 제조방법.
- 제13항에 있어서, 상기 그레이팅은 상기 활성층을 포함하는 상기 리지의 양측벽 모두에 상기 활성층 및 공진축의 수직방향으로 형성하는 것을 특징으로 하는 분포귀환형 반도체 레이저의 제조방법.
- 제15항에 있어서, 상기 그레이팅은 좌우 대칭 또는 좌우 비대칭으로 형성하는 것을 특징으로 하는 분포귀환형 반도체 레이저의 제조방법.
- 제13항에 있어서, 상기 상부 클래드층 상에 오믹 접합층을 더 형성하여 상기 리지를 구성하는 것을 특징으로 하는 분포귀환형 반도체 레이저의 제조방법.
- 기판 상에 하부 클래드층을 형성하는 단계;상기 하부 클래드층 상에 활성층, 상부 클래드층, 오믹 접합층 및 하드 마스크층을 순차적으로 형성하는 단계;상기 하드 마스크층 상에 상기 활성층의 수평 방향으로 그레이팅 형성을 위한 포토레지스트 패턴을 형성하는 단계;상기 포토레지스트 패턴을 마스크로 상기 하드 마스크층, 오믹 접합층, 상부 클래드층 및 활성층을 식각하여 공진축과 활성층의 수직 방향으로 단일 가로 모드 발진을 가능하게 하는 그레이팅을 갖는 리지를 형성하는 단계;상기 리지를 구성하는 상부 클래드층의 양측벽을 산화시켜 수직 가로 모드를 조절할 수 있는 산화층을 형성하는 단계;상기 리지의 양측벽에 보호 스페이서를 형성하는 단계;상기 하드 마스크층을 제거하는 단계; 및상기 오믹 접합층 및 기판 배면에 오믹 금속층을 형성하는 단계를 포함하여 이루어지는 것을 특징으로 하는 분포귀환형 반도체 레이저의 제조방법.
- 제18항에 있어서, 상기 리지를 구성하는 상부 클래드층을 산화할 때 하부 클래드층의 표면에도 산화층이 형성되는 것을 특징으로 하는 분포귀환형 반도체 레이저의 제조방법.
- 제18항에 있어서, 상기 그레이팅은 발진 파장(λ)의 1/2의 정수배(nλ/2, n=1,2,3..)에 해당하는 주기로 형성하는 것을 특징으로 하는 분포귀환형 반도체 레이저의 제조방법.
- 제18항에 있어서, 상기 그레이팅은 상기 활성층을 포함하는 상기 리지의 일측벽 또는 양측벽에 상기 활성층 및 공진축의 수직방향으로 형성하는 것을 특징으로 하는 분포귀환형 반도체 레이저의 제조방법.
- 제21항에 있어서, 상기 그레이팅이 리지의 양측벽에 형성할 경우, 상기 그레이팅은 좌우 대칭 또는 좌우 비대칭으로 형성하는 것을 특징으로 하는 분포귀환형 반도체 레이저의 제조방법.
- 제18항에 있어서, 상기 활성층은 In(Ga)As 양자점을 포함한 SCH층으로 형성하는 것을 특징으로 하는 분포귀환형 반도체 레이저의 제조방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/272,611 US20060120428A1 (en) | 2004-12-08 | 2005-11-14 | Distributed feedback (DFB) semiconductor laser and fabrication method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040103066 | 2004-12-08 | ||
KR20040103066 | 2004-12-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20060064476A KR20060064476A (ko) | 2006-06-13 |
KR100723833B1 true KR100723833B1 (ko) | 2007-05-31 |
Family
ID=37160028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020050052575A KR100723833B1 (ko) | 2004-12-08 | 2005-06-17 | 분포귀환형 반도체 레이저 및 그 제조방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100723833B1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7606284B2 (en) | 2005-12-05 | 2009-10-20 | Electronics And Telecommunications Research Institute | Semiconductor laser structure including quantum dot |
KR100766084B1 (ko) * | 2005-12-05 | 2007-10-12 | 한국전자통신연구원 | 양자점을 포함하는 반도체 레이저 구조물 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61279192A (ja) | 1985-06-04 | 1986-12-09 | Mitsubishi Electric Corp | 半導体レ−ザ |
JPH01206681A (ja) * | 1988-02-15 | 1989-08-18 | Canon Inc | 半導体レーザおよびその製造方法 |
JP2003152273A (ja) | 2001-11-08 | 2003-05-23 | Furukawa Electric Co Ltd:The | 半導体レーザ素子 |
-
2005
- 2005-06-17 KR KR1020050052575A patent/KR100723833B1/ko not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61279192A (ja) | 1985-06-04 | 1986-12-09 | Mitsubishi Electric Corp | 半導体レ−ザ |
JPH01206681A (ja) * | 1988-02-15 | 1989-08-18 | Canon Inc | 半導体レーザおよびその製造方法 |
JP2003152273A (ja) | 2001-11-08 | 2003-05-23 | Furukawa Electric Co Ltd:The | 半導体レーザ素子 |
Also Published As
Publication number | Publication date |
---|---|
KR20060064476A (ko) | 2006-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6928223B2 (en) | Stab-coupled optical waveguide laser and amplifier | |
US8319229B2 (en) | Optical semiconductor device and method for manufacturing the same | |
US5436195A (en) | Method of fabricating an integrated semiconductor light modulator and laser | |
JP5365510B2 (ja) | 半導体集積素子 | |
JP2982422B2 (ja) | 半導体レーザおよびその製造方法 | |
JP4909159B2 (ja) | 半導体導波路素子およびその作製方法ならびに半導体レーザ | |
JP5051054B2 (ja) | 半導体レーザおよび半導体レーザを作製する方法 | |
US20060120428A1 (en) | Distributed feedback (DFB) semiconductor laser and fabrication method thereof | |
JP2000269587A (ja) | 光半導体装置及びその製造方法 | |
US6498889B2 (en) | Waveguide optical device and method of fabricating the same | |
KR100723833B1 (ko) | 분포귀환형 반도체 레이저 및 그 제조방법 | |
JP2009054721A (ja) | 半導体素子及び半導体素子の製造方法 | |
US12027818B2 (en) | Semiconductor laser | |
JP4825150B2 (ja) | 光半導体集積素子及びその製造方法 | |
JP4842983B2 (ja) | 半導体光集積素子及びその作製方法 | |
US6307989B1 (en) | Optically functional device | |
JP2002043688A (ja) | リッジ型分布帰還半導体レーザ素子 | |
JP5163355B2 (ja) | 半導体レーザ装置 | |
CN115280609A (zh) | 光学器件 | |
JP2002057405A (ja) | 半導体レーザ装置及びその製造方法 | |
JP3455404B2 (ja) | 半導体光素子とその作製方法 | |
JP2004128372A (ja) | 分布帰還型半導体レーザ素子 | |
JP2019091806A (ja) | 半導体レーザ | |
JP3251191B2 (ja) | 光通信に用いる半導体光素子 | |
JP4457000B2 (ja) | 光増幅装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
G170 | Publication of correction | ||
FPAY | Annual fee payment |
Payment date: 20120509 Year of fee payment: 6 |
|
LAPS | Lapse due to unpaid annual fee |