KR100637363B1 - 3차원화상 표시방법, 3차원화상 촬상방법 및 3차원화상표시장치 - Google Patents

3차원화상 표시방법, 3차원화상 촬상방법 및 3차원화상표시장치 Download PDF

Info

Publication number
KR100637363B1
KR100637363B1 KR1020050042046A KR20050042046A KR100637363B1 KR 100637363 B1 KR100637363 B1 KR 100637363B1 KR 1020050042046 A KR1020050042046 A KR 1020050042046A KR 20050042046 A KR20050042046 A KR 20050042046A KR 100637363 B1 KR100637363 B1 KR 100637363B1
Authority
KR
South Korea
Prior art keywords
image
display
parallax
dimensional image
projection
Prior art date
Application number
KR1020050042046A
Other languages
English (en)
Other versions
KR20060048022A (ko
Inventor
다츠오 사이수
유조 히라야마
가즈키 다이라
리에코 후쿠시마
Original Assignee
가부시끼가이샤 도시바
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시끼가이샤 도시바 filed Critical 가부시끼가이샤 도시바
Publication of KR20060048022A publication Critical patent/KR20060048022A/ko
Application granted granted Critical
Publication of KR100637363B1 publication Critical patent/KR100637363B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/111Transformation of image signals corresponding to virtual viewpoints, e.g. spatial image interpolation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Stereoscopic And Panoramic Photography (AREA)

Abstract

표시장치에서는, 표시부의 전면에 시차배리어가 배치되고서, 이 시차배리어에는 수평 피치가 표시부의 화소폭의 정수 배와 같은 폭의 광학적 개구부가 배열되어 있다. 표시면은, 관찰기준 시거리에 의해 폭이 정해지는 요소화상으로 분할되어 있다. 통상 화상 표시모드에서는, 수직방향이 시거리에 대응하는 투시투영이고, 수평방향이 평행투영인 시차성분 화상이 시차삽입화상의 화소열 마다 분할배치되어 있다. 또, 압축ㆍ강조표시모드에서는, 수직 및 수평방향 모두 투시투영인 시차성분 화상이 시차삽입화상의 화소열 마다 분할배치되어 있다. 다관찰 호환 표시모드에서는, 수직방향 및 수평방향 모두 투시투영인 시차성분 화상이, 시차삽입화상의 인접하는 복수의 화소열에 동일한 시차성분 화상을 부여함으로써 시차삽입화상의 화소열 마다 분할배치되게 된다. 이들 3가지의 모드는 상호간 절환될 수가 있다.

Description

3차원화상 표시방법, 3차원화상 촬상방법 및 3차원화상 표시장치{METHOD FOR DISPLAYING THREE DIMENSIONAL IMAGE, METHOD FOR CAPTURING THREE DIMENSIONAL IMAGE, AND THREE DIMENSIONAL DISPLAY APPARATUS}
도 1은, 본 발명의 1실시예에 따른 3차원화상 표시장치에서의 모드절환처리를 나타낸 플로우차트,
도 2는, 본 발명의 1실시예에 따른 3차원화상 표시장치에서의 모드절환처리를 나타낸 블럭도,
도 3은, 도 1 및 도 2에 도시된 3차원화상 표시장치에서의 각 모드의 비교를 나타낸 표,
도 4는, 도 3에 도시된 3차원화상 표시장치에서의 시차화상 배치테이블 및 비교예 3차원화상 표시장치에서의 시차화상 배치테이블의 비교를 나타낸 표,
도 5a 및 도 5b는, 각각 본 발명의 1실시예에 따른 3차원화상 표시장치 및 화상 표시방법에서의 시차성분 화상의 투영방법을 나타낸 사시도,
도 6a, 도 6b 및 도 6c는, 각각 본 발명의 1실시예에 따른 3차원화상 표시장치 및 화상 표시방법에서의 시차성분 화상의 투영방법 및, 투영방법에 관련된 3차원화상 촬상방법을 나타낸 평면도,
도 7은, 본 발명의 1실시예에 따른 3차원화상 촬상방법에서의 카메라 사이의 기준으로 되는 간격을 설명하기 위한 평면도,
도 8a 및 도 8b는, 본 발명의 1실시예에 따른 3차원화상 표시장치, 3차원화상 촬상방법 및 화상 표시방법에서의 튀어나옴ㆍ들어감 방향의 압축율과 적정한 카메라 사이의 간격 계수와의 관계를 나타낸 그래프,
도 9a 및 도 9b는, 본 발명의 1실시예에 따른 3차원화상 표시장치, 3차원화상 촬상방법 및 화상 표시방법에서의 통상모드와 압축ㆍ강조모드와의 연속적인 절환방법을 개략적으로 나타낸 그래프,
도 10a 및 도 lOb는, 각각 본 발명의 1실시예에 따른 3차원화상 표시장치 및 화상 표시방법에서의 쌍안ㆍ다관찰 호환모드의 시차화상 배치를 나타낸 표,
도 11a 및 도 11b는, 각각 본 발명의 1실시예에 따른 3차원화상 표시장치가 구비한 시차배리어의 예를 개략적으로 나타낸 사시도,
도 12는, 본 발명의 1실시예에 따른 3차원화상 표시장치를 개략적으로 나타낸 사시도,
도 13a, 도 13b 및 도 13c는, 도 12에 도시된 3차원화상 표시장치에서의 요소화상 피치(Pe), 시차배리어 피치(Ps), 시차배리어 갭(d), 시거리(L) 및 시역폭(W)의 관계를 나타낸 모식도,
도 14a, 도 14b 및 도 14c는, 도 12에 도시된 3차원화상 표시장치의 통상표시모드에서의 시차성분 화상의 투영방법 및 시차삽입화상 내로의 배치 배분방법을 개략적으로 나타낸 모식도,
도 15는, 도 12에 도시된 3차원화상 표시장치의 통상표시모드 및 압축ㆍ강조표시모드에서의 시차성분 화상의, 시차삽입화상 내로의 배치 배분의 1례를 나타낸 표,
도 16는, 도 15에 도시된 3차원화상 표시장치에서의 시차성분 화상 1개에 대해, 필요데이터 범위와 시차삽입화상 내로의 배치 배분범위의 1례를 나타낸 표,
도 17은, 비교예로서, 도 12에 도시된 3차원화상 표시장치와 같은 시차 수인 표준적인 다관찰식 3차원표시장치에서의 시차성분 화상의, 시차삽입화상 내로의 배치 배분의 일례를 나타낸 표,
도 18은, 도 12에 도시된 3차원화상 표시장치의 일부분에서의 평행광선 1차원 인테그랄 이미징 방식의 화소와 요소화상과 시차배리어의 위치관계를 개략적으로 나타낸 사시도,
도 19는, 도 18에 도시된 3차원화상 표시장치의 일부분의 통상표시모드 및 압축강조표시모드에서의 화소배열 및 시차화상 배치를 개략적으로 나타낸 정면도,
도 20은, 도 18에 도시된 3차원화상 표시장치의 도 19와는 다른 일부분의 통상표시모드 및 압축ㆍ강조표시모드에서의 화소배열 및 시차화상 배치를 개략적으로 나타낸 정면도,
도 21은, 도 18에 도시된 3차원화상 표시장치의 도 19와 동일한 일부분의 쌍안ㆍ다관찰 호환 표시모드에서의 화소배열 및 시차화상 배치를 개략적으로 나타낸 정면도,
도 22는, 도 18에 도시된 3차원화상 표시장치의 도 20과 동일한 일부분의 쌍안ㆍ다관찰 호환 표시모드에서의 화소배열 및 시차화상 배치를 개략적으로 나타낸 정면도,
도 23은, 도 12에 도시된 3차원화상 표시장치에서의 평행광선 1차원 인테그랄이미징 방식의 화소와 요소화상과 시차배리어의 위치관계를 나타낸 모식도,
도 24는, 도 12에 도시된 3차원화상 표시장치에서의 평행광선 1차원 인테그랄이미징 방식의 화소와 요소화상과 시차배리어의 위치관계를 나타낸 모식도,
도 25는, 도 12에 도시된 3차원화상 표시장치에서의 평행광선 1차원 인테그랄 이이징 방식의 3차원화상 표시장치의 시차삽입화상(표시면) 내의, 시차성분 화상의 배치방법을 개략적으로 나타낸 모식도,
도 26은, 본 발명의 1실시예에 따른 3차원화상 촬상방법과 투영면 및 피사체와의 위치관계를 개략적으로 나타낸 평면도,
도 27a 및 도 27b는, 본 발명의 1실시예에 따른 3차원화상 촬상방법에서의 촬영에 이르는 사이에서의 처리를 나타낸 플로우차트이다.
본 발명은, 3차원화상을 표시하는 방법, 3차원화상을 촬상하는 방법 및 3차원화상을 표시하는 장치에 관한 것이다.
동영상표시가 될 수 있는 3차원화상, 예컨대 입체화상을 표시하는 장치인 이른바 3차원디스플레이에는 여러 가지 방식이 알려져 있다. 근래에 들어 특히 플랫패널 형식으로, 또 전용의 안경 등을 필요로 하지 않고 3차원화상을 표시하는 방식의 요망이 높아지고 있다. 이 형식의 입체동영상 표시장치에는 홀로그래피의 원리를 이용한 것도 있으나 실용화가 어렵고, 직시형 또는 투영형 표시장치, 예컨대 액정표시장치 또는 플라즈마 표시장치와 같이 화소위치가 고정되어 있는 표시패널(표시장치)의 바로 앞에 표시패널로부터의 광선을 제어해서 관찰자에게 광선을 향하게 하는 시차배리어(광선제어소자라고도 함)를 설치하는 방식이 비교적 쉽게 3차원화상을 표시할 수 있는 방식으로 알려져 있다.
시차배리어(parallax barrier)는 광선을 제어해서 시차배리어 상의 동일 위치에서도 각도에 따라 다른 화상을 볼 수 있도록 하고 있다. 즉, 좌우시차(수평시차)만을 부여하는 경우에는 슬릿이나 렌티큘러시트(실린드리컬 렌즈어레이)가 쓰이고, 상하시차(수직시차)도 포함하는 경우에는 핀홀(pinhole)어레이나 렌즈어레이가 쓰이게 된다. 시차배리어를 이용하는 방식에도, 다시 쌍안방식, 다관찰방식, 초다관찰방식(다관찰방식에 초다관찰조건이 붙여진 방식), 인테그랄 이미징 방식(integral imaging system)(이하, II방식이라 함)으로 분류된다. 이들의 기본적인 원리는 100년 정도 전에 발명되어 입체사진에 쓰이고 있는 방식과 실질상 동일하다.
한편, 인테그랄이미징방식(II방식)은 입체사진의 용어를 써서 표현하고 있기 때문에, 문헌에 따라서는 인테그랄포토그래피(이하, IP라고도 함)라 불려지는 경우도 있다.
II방식에서는, 시점위치의 자유도가 높아 쉽게 입체로 볼 수가 있는 특징을 갖고 있는바, 특히 수평시차 만으로서 수직시차를 갖고 있지 않은 II방식(이하, 1차원 II방식, 1D-II방식이라 약칭함)에서는 해상도가 높은 표시장치를 비교적 쉽게 실현할 수가 있다. 이에 대해, 쌍안방식이나 다관찰방식에서는, 입체로 볼 수 있는 시점위치의 범위, 즉 시역(視域)이 좁아 보기가 나쁘다고 하는 문제가 있다. 그러나, 쌍안방식이나 다관찰방식(multi-view system)은, 3차원화상 표시장치로서의 구성으로는 가장 단순하고 표시화상도 간단히 작성할 수 있는 이점이 있다.
일반적으로, II방식과 LS(렌티큘러시트) 방식은 화소가 상면(image plan)에 있는지 초점평면(focal plane)에 있는지에 차이가 있는 것으로 되어 있다. 그러나, 현실적인 설계, 특히 화소 수가 많은 경우에는, 상면(像面)과 초점평면의 차이는 수차(收差)가 없다고 하더라도 0.1mm 이하가 된다. 따라서, 정밀도의 한계로 말미암아 구별하기가 어렵다. 또, 시거리에서 광선이 수속(收束)되어 있는지 여부도 마찬가지로 정밀도의 한계로 말미암아 구별하기가 어렵게 된다. 본 발명의 명세서에 기재되어 있는 II방식은, 상면 및 초점평면 상의 화소위치에서는 구별할 수가 없고, 시거리에서는 정상적인 3차원화상을 볼 수가 있는 가로방향(대략 수평방향)의 시점위치가 임의(연속적)인 방식인 것을 의미한다. 또, 다관찰방식은, LS방식과는 등가가 아니고(광선의 수속유무는 묻지 않음), 시거리에서 정상적인 3차원화상을 볼 수 있는 가로방향 시점위치가 안간거리(interocular distance)를 기초로 정해져 있는 방식을 의미한다.
II방식에서도 다관찰방식에서도 통상적으로는 시거리가 유한하게 되어 있다. 따라서, 그 시거리에서의 투시투영화상이 실제로 보여질 수 있도록 표시화상을 작성하도록 되어 있다. 수평시차만 주어지고 수직시차가 주어지지 않는 II방식에서는, 시차배리어의 수평방향 피치가 화소의 수평방향 피치의 정수 배인 경우에는 평행광선의 조(set)가 생기게 된다(이하, 평행광선 II라고 칭함). 또, 이 평행광선 II방식에서는, 수직방향이 어느 일정 시거리에서의 투시투영이고, 수평방향이 평행투영인 시차성분 화상을 화소열 마다 분할배치한 시차삽입화상을 표시면에 표시함으로써, 올바른 투영의 3차원화상이 얻어지게 된다. 또한, 다관찰방식에서는, 단순한 투시투영에 의한 시차성분 화상을 분할배치한 시차삽입화상(parallax interleaved image)을 표시면에 표시함으로써 올바른 투영의 3차원화상이 얻어지게 된다.
한편, 수직방향과 수평방향으로 투영방법 및 투영중심거리를 달리해서 촬영 하는 촬상장치는, 특히 평행투영인 경우에 피사체와 같은 사이즈의 카메라나 렌즈가 필요하기 때문에 실현하기가 어렵게 된다. 따라서, 촬상에 의해 평행투영 데이터를 얻기 위해서는, 투시투영의 촬상 데이터로부터 분할배치되는 화상데이터로 변환하는 방법이 현실적으로서, EPI(epi-polar plane)를 써서 화상데이터를 보간(補間)하는 방법 등이 알려져 있다.
II방식에서는, J. Opt. Soc.am.a vol.15, p. 2059(1998)에 기재되어 있듯이, 3차원화상 표시장치의 튀어나옴ㆍ들어감의 재현가능범위가 비교적 좁아, 전후 각각 10cm 정도가 전형적인 값으로 되어 있다. 그러나, 표시하고 싶은 물체의 위치에 제약을 없게 해서 다양한 컨텐츠에 대응하기 위해, 3차원화상 표시장치의 튀어나옴 들어감의 재현가능범위의 자유도를 높일 필요가 있게 된다. 투시투영화상을 합성해서 3차원화상을 만드는 다관찰방식에서는, 튀어나옴ㆍ들어감이 강조되는 투시투영 3차원화상(깊이방향으로 압축되어 소실점(消失点)이 가까운 3차원화상)을 표시하고 있는 예가 있으나, 평행투영의 화상에서 3차원화상을 만드는 평행광선 II에서는, 마찬가지 3차원화상의 작성예는 없고, 작성수법도 찾아낼 수가 없었다.
평행광선 II방식은, 쌍안방식에 비해 보기가 쉬운 장점은 있으나, 투영방법이나 분할배치방법의 점에서 화상포맷이 복잡하다. 쌍안 및 다관찰은 가장 단순한 3차원화상의 표시이기 때문에 화상포맷도 단순하고, 실사(실제 촬영)의 경우는 수평방향으로 배열된 2대의 카메라에서 촬상된 시차성분 화상을 그대로 조합하여도 좋다. 쌍안을 전제로 작성되어 있는 입체 컨텐츠도 있기 때문에, 평행광선 II방식용 표시장치에서도, 투시투영된 쌍안의 화상포맷에도 상위 호환(上位互換)으로 해서 대응할 수 있게 하는 것이 바람직하다. 대응방법으로서, 쌍안의 데이터를 보간해서 II방식으로 보기 쉽게 표시하는 방법도 있다. 그러나, 쌍안용의 적은 2개의 시차성분 화상에서 다수의 시차성분 화상을 내삽 또는 외삽하는 것은 곤란이 따른다. 평행광선 II방식용 표시장치에 쌍안의 데이터를 쌍안으로 해서 거의 그대로 표시하는 방법은 종래에는 알려져 있지 않다.
이상 설명한 바와 같이, 종래의 평행광선 II방식의 3차원화상 표시장치에 있어서는, 다양한 화상포맷의 입체 컨텐츠, 특히 투시투영에서 얻어진 컨텐츠에 대한 대응에 문제가 있는 것으로 되어 있다.
본 발명의 목적은, 이상과 같은 문제를 해결하기 위해 발명된 것으로, 평행광선 II방식에서, 쌍안ㆍ다관찰방식용 등의 투시투영의 화상을 표시할 수 있음과 더불어 깊이방향으로 압축된 3차원화상이나 튀어나옴ㆍ들어감에 대한 종횡방향으로 강조된 3차원화상의 표시를 할 수 있는 3차원화상 표시장치를 제공함에 있다.
이상과 같은 목적을 달성하기 위한 본 발명에 따른 3차원화상 표시장치는,
소정의 폭을 가진 각 화소가 수직방향 및 수평방향을 가진 표시면 내에 행렬형상으로 배열된 표시부와;
이 표시부 전면에 설치되고, 각각이 대략 직선모양으로 연장되면서 상기 화소의 소정폭의 정수 배에 상당하는 수평피치로 배치되고 관찰기준 시거리에 따라 정해진 폭을 갖는 각 요소화상을 상기 표시면 상에서 화소로부터의 광선을 제어해서 정의하는 광학적 개구를 갖는 시차배리어와;
수직방향의 시거리에 의해 실질적으로 정해진 투시투영과 수평방향의 평행투영을 피사체에 대해 행함으로써 얻어진 시차성분 화상을 통상표시모드에서 각 화소열에 대응하는 부분으로 분할하도록 구성되고, 연속시점의 3차원화상을 생성하기 위해 요소화상의 각 소정 범위가 하나의 화소열에 배분됨과 더불어 표시부에 표시되도록 하는 제1처리부 및;
수직 및 수평방향 양쪽의 시거리에 의해 실질적으로 정해진 투시투영을 피사체에 대해 행함으로써 얻어진 시차성분 화상을 압축ㆍ강조모드에서 각 화소열에 대응하는 부분으로 분할하도록 구성되고, 피사체화상이 깊이방향으로 압축됨과 더불어 수직 및 수평방향으로 강조되는 연속시점의 3차원화상을 생성하기 위해 각 요소화상의 소정 범위가 하나의 화소열에 대해 배분됨과 더불어 표시부에 표시되도록 하는 제2처리부를 구비한 구조로 되어 있다.
삭제
또, 본 발명에 따른 3차원화상 표시방법은,
소정의 폭을 가진 각 화소가 수직방향 및 수평방향을 가진 표시면 내에 행렬형상으로 배열된 표시부와;
이 표시부 전면에 설치되고, 각각이 대략 직선모양으로 연장되면서 상기 화소의 소정폭의 정수 배에 상당하는 수평피치로 배치되고 관찰기준 시거리에 따라 정해진 폭을 갖는 각 요소화상을 상기 표시면 상에서 화소로부터의 광선을 제어해서 정의하는 광학적 개구를 갖는 시차배리어와;
수직방향의 시거리에 의해 실질적으로 정해진 투시투영과 수평방향의 평행투영을 피사체에 대해 행함으로써 얻어진 시차성분 화상을 통상표시모드에서 각 화소열에 대응하는 부분으로 분할하도록 구성되고, 연속시점의 3차원화상을 생성하기 위해 요소화상의 각 소정 범위가 하나의 화소열에 배분됨과 더불어 표시부에 표시되도록 하는 제1처리부를 구비한 3차원화상 표시장치에 3차원화상을 표시하는 3차원화상 표시방법으로서,
상기 3차원화상 표시방법이,
수직 및 수평방향 양쪽의 시거리에 의해 실질적으로 정해진 투시투영을 피사체에 대해 행함으로써 얻어진 시차성분 화상을 각 화소열에 대응하는 부분으로 분할하고, 상기 요소화상의 대응하는 소정 범위에 각 화소열을 배분하며, 압축ㆍ강조 표시모드를 이용해서 피사체화상이 깊이 방향으로 압축됨과 더불어 수직방향으로 강조되는 연속시점의 3차원화상을 표시하도록 표시부에 화소열을 표시해서 이루어지고;
상기 시거리에서의 상기 시차배리어를 개입시키는 상기 화소의 투영위치의 수평간격에 의존해서 시차성분 마다 투시투영 촬영의 수평간격이 정해지는 촬영기준조건을 기초로 해서, 시거리가 기준조건을 기초로 하는 한 촬영위치와 투영면 사이의 거리를 q배로 설정하고, 피사체를 깊이방향으로 b배로 압축하도록 각 시차성분의 투시투영 촬영의 수평간격을 기준조건의 q/b 이하로 설정함으로써 광각적 투영처리가 실시되는 것을 특징으로 한다.
또한, 본 발명에 따른 3차원화상 표시방법은,
소정의 폭을 가진 각 화소가 수직방향 및 수평방향을 가진 표시면 내에 행렬형상으로 배열된 표시부와;
이 표시부 전면에 설치되고, 각각이 대략 직선모양으로 연장되면서 상기 화소의 소정폭의 정수 배에 상당하는 수평피치로 배치되고 관찰기준 시거리에 따라 정해진 폭을 갖는 각 요소화상을 상기 표시면 상에서 화소로부터의 광선을 제어해서 정의하는 광학적 개구를 갖는 시차배리어와;
수직방향의 시거리에 의해 실질적으로 정해진 투시투영과 수평방향의 평행투 영을 피사체에 대해 행함으로써 얻어진 시차성분 화상을 통상표시모드에서 각 화소열에 대응하는 부분으로 분할하도록 구성되고, 연속시점의 3차원화상을 생성하기 위해 요소화상의 각 소정 범위가 하나의 화소열에 배분됨과 더불어 표시부에 표시되도록 하는 제1처리부를 구비한 3차원화상 표시장치에 3차원화상을 촬상하는 3차원화상 촬상방법으로서,
상기 3차원화상 촬상방법이,
수직 및 수평방향 양쪽의 시거리에 의해 실질적으로 정해진 투시투영을 피사체에 대해 행함으로써 얻어진 시차성분 화상을 각 화소열에 대응하는 부분으로 분할하고, 상기 요소화상의 대응하는 소정 범위에 각 화소열을 배분하며, 압축ㆍ강조 표시모드를 이용해서 피사체화상이 깊이 방향으로 압축됨과 더불어 수직방향으로 강조되는 연속시점의 3차원화상을 표시하도록 3차원화상 표시장치의 표시부에 화소열을 표시해서 이루어지고;
상기 시거리에서의 상기 시차배리어를 개입시키는 상기 화소의 투영위치의 수평간격에 의존해서 시차성분 마다 투시투영 촬영의 수평간격이 정해지는 촬영기준조건을 기초로 해서, 시거리가 기준조건을 기초로 하는 한 촬영위치와 피사체 주시점 사이의 거리를 q배로 설정하고, 피사체를 깊이방향으로 b배로 압축하도록 각 시차성분의 투시투영 촬영의 수평간격을 기준조건의 q/b 이하로 설정함으로써 광각적 투영처리가 실시되는 것을 특징으로 한다.
더욱이, 본 발명의 다른 측면에 따르면, 소정의 폭을 가진 각 화소가 수직방향 및 수평방향을 가진 표시면 내에 행렬형상으로 배열된 표시부와;
이 표시부 전면에 설치되고, 각각이 대략 직선모양으로 연장되면서 상기 화소의 소정폭의 정수 배에 상당하는 수평피치로 배치되고 관찰기준 시거리에 따라 정해진 폭을 갖는 각 요소화상을 상기 표시면 상에서 화소로부터의 광선을 제어해서 정의하는 광학적 개구를 갖는 시차배리어와;
수직방향의 시거리에 의해 실질적으로 정해진 투시투영과 수평방향의 평행투영을 피사체에 대해 행함으로써 얻어진 시차성분 화상을 통상표시모드에서 각 화소열에 대응하는 부분으로 분할하도록 구성되고, 연속시점의 3차원화상을 생성하기 위해 요소화상의 각 소정 범위가 하나의 화소열에 배분됨과 더불어 표시부에 표시되도록 하는 제1처리부 및;
수직 및 수평방향 양쪽의 시거리에 의해 실질적으로 정해진 투시투영을 피사체에 대해 행함으로써 얻어진 시차성분 화상을 다관찰 호환모드에서 각 화소열에 대응하는 부분으로 분할하도록 구성되고, 다시점의 3차원화상을 생성하기 위해 각 요소화상의 소정 범위가 동일한 시차정보로서 복수의 인접하는 화소열에 대해 배분되도록 하는 제2처리부를 구비하여 구성된 3차원화상 표시장치가 제공된다.
(실시예)
이하, 도면을 참조해서 본 발명의 실시예에 따른 3차원화상 표시장치 및 그 표시방법을 상세히 설명한다.
한편, 본 명세서 중에 사용되는 「화소열(column)」이라 함은, 수평방향의 최소단위 화소의 열(列)을 말하는 것으로, 화소가 수평방향으로 배열되는 3색(RGB)의 서브화소로 나누어져 있는 통상의 액정표시장치에서는 서브화소열을 가리킨다.
먼저 도 1 및 도 2를 참조해서 본 발명의 실시예에 따른 3차원화상 표시장치에서의 3가지 모드에서의 3차원화상의 표시순서를 설명한다. 여기서, 도 1 및 도 2는, 본 발명의 실시예에 따른 3차원화상 표시장치 및 그 화상 표시방법에 적용되는 플로우차트 및 블럭도를 나타낸 것이다.
도 1에 도시된 플로우차트는, 평행광선 II방식의 표시부(display module)(디스플레이)에서, (a) 통상표시모드, (b) 압축ㆍ강조표시모드 및 (c) 쌍안ㆍ다관찰 호환 표시모드의 어느 한 모드에서도 3차원화상을 표시할 수가 있는 공정을 나타내고 있다.
또, 도 2로 도시된 블럭도는, 도 1의 플로우차트에 대응하고, 평행광선 II방식의 표시부(디스플레이)에서, (a) 통상표시모드, (b) 압축ㆍ강조표시모드 및 (c) 쌍안ㆍ다관찰 호환 표시모드의 어느 한 모드에서도 3차원화상을 표시할 수가 있는 표시장치의 구성을 나타내고 있다.
여기서, 도 3 및 도 4의 표에 도시된 것과 같이, 통상표시모드라 함은, II용 화상데이터(평행광선 II방식에 근거해서 작성된, 수평방향이 평행투영이고 수직방향이 투시투영인 시차성분 화상데이터)를 II방식의 표시부에 II용 시차화상 배치테이블에 따라 배분해서 3차원화상을 표시하는 모드이고, 압축ㆍ강조표시모드라 함은, 시차수가 많은 다관찰데이터 또는 수평방향 및 수직방향이 모두 투시투영의 시차성분 화상데이터를 II방식의 표시부에 II용 시차화상 배치테이블에 따라 배분해서, 튀어나옴ㆍ들어감이 압축되어 종횡방향이 강조된 3차원화상(소실점이 가까운 3차원화상)을 표시하는 모드이고, 쌍안ㆍ다관찰 호환 표시모드라 함은, 시차수가 적은 다관찰데이터를 II방식 표시부에 다관찰 호환용 시차화상 배치테이블에 따라 배분해서 3차원화상을 표시하도록 하는 모드이다. 또, 이미 설명한 바와 같이, 본 명세서에서는, II방식은, 시거리에서 정상적인 3차원화상을 볼 수가 있는 가로방향(대략 수평방향)의 시점위치가 임의(연속적)인 것을 의미하고, 쌍안ㆍ다관찰방식은, 시거리에서 정상적인 3차원화상을 볼 수 있는 가로방향 시점위치가 안간거리에 기해 정해져 있음(다시점ㆍ이산적임)을 의미한다.
시차배치테이블은, 표시면에 표시되는 시차삽입화상(다수의 요소화상으로 된)의 각 요소화상 내에 각 시차성분 화상이 어떻게 배치되는 지를 나타낸 배치표이다. II용 및 다관찰 호환용 시차화상 배치테이블과는 도 4에 도시된 것과 같이, 동일 시차데이터(시차성분 화상, 즉 1개의 카메라 위치에서 투영된 화상)가 표시면 상에서 배치되는 범위ㆍ간격이나 각 요소화상 내에서 점하는 화소열 수가 다르다. 단, II용 및 다관찰 호환용 시차화상 배치에서는, 요소화상의 위치나 폭은(관찰기준 시거리가 일정한 한은) 공통이고, 요소화상 내의 시차성분 화상의 배치방법만 다르게 되어 있다. 슬릿이나 렌즈의 광학적 개구가 수직으로 스트라이프 모양으로 된 경우는, 각 행(行)(row)이 같은 시차배치(단, 행에 의해 컬러필터배열이 다른 경우는 색성분만 다름)로 되기 때문에, 「시차성분 화상을 화소열마다 분할해서 시차삽입화상에 배치하는」이라고 하는 순서는, 1화소열정리로(전행분정리로) 실행할 수 있다. 광학적 개구가 경사지거나 기타 복잡한 형상으로 되어 있는 경우 또는 표시면의 화소배열이 델타배열 등인 경우는 행에 의해 다른 시차배치로 되지만, 광학적 개구의 수평위치와 화소위치가 모두 같은 수직위치관계에 있는 행끼리는 같은 시차배치로 되기 때문에「시차성분 화상을 화소열 마다 분할해서 시차삽입화상에 배치하는」이라고 하는 순서는 같은 수직위치관계의 행에 대해 종합해서 실행되도록 할 수가 있다. 이와 같이 해서 시차배치테이블에 의해, 표시부(331)의 수직방향에 대해서는 배치해야 할 화소행이 정해지고, 표시부(331)의 수평방향에 대해서는 배치해야 할 화소열이 정해져, 이들 정해진 화소행 및 화소열에 각 시차성분 화상데이터가 배분되어 배치되게 된다.
도 4에는, 비교예로서 일반적인 다관찰방식 입체표시장치의 시차배치테이블에 대해서도 기재되어 있으나, 이는 이미 설명한 것처럼 하드웨어구성(시차배리어 피치와 화소폭의 관계) 및 요소화상의 위치나 폭도 본 발명과 다르게 되어 있다.
도 1의 플로우차트 및 도 2의 블럭도에 도시된 것과 같이, 3차원화상의 화상신호(3D 화상신호)가 신호원(101)으로부터 단계 S11로 도시된 것과 같이 입력되면, 처음에 이 화상신호에 포함된 화상데이터가 시차수가 적은 쌍안이나 다관찰의 화상데이터인지가 판별된다(판별부(102) 및 단계 S12). 이 3D 화상신호라 함은, 표시화상 1프레임을 구성하는 각 시차성분 화상이 어떤 형식으로 합성되어 있는가에 관한 것으로서, 그 포맷에 의해 판별이 가능해지게 된다. 만일, 시차수가 적은 쌍안이나 다관찰의 화상데이터라면, 다관찰화상처리부(105)에서 화상데이터가 처리되어(단계 S13) 시차성분 화상이 다관찰 호환용 배치테이블에 기해 배분되고(단계 S13c), 표시부(331)에 표시된다(단계 S21). 즉, 뒤에 상세히 설명되듯이, 복수의 화소열군(畵素列群)에 동일 시차성분 화상이 주어지고, 이렇게 동일 시차성분 화상이 주어진 화소열군 사이의 화소열에 흑색 또는 소정 색의 표시가 표시된다. 또, 슬릿이나 렌즈의 수평피치로 정해지는 수평해상도와 표시부의 수직화소 피치로 정해지는 수직 최고해상도가 다르게 되어 있는 II표시장치인 경우 등에서, 입력된 쌍안이나 다관찰데이터의 수평수직 해상도가 II표시장치의 수평수직 해상도와 다를 경우에는, 필요에 따라 해상도가 변환되게 된다(단계 S13a, S13b). 이 시차성분 화상데이터의 배치에 따라 표시부(331)에는 시차삽입화상이 평면적으로 표시되어 시차배리어를 통과함으로써 장치 전면(前面)에 다관찰방식의 3차원화상이 관찰자에게 관찰되게 된다.
여기서, 다관찰데이터의 시차수가 많은지 적은지의 기준은, 본래 II표시용으로 설계되어 있는 입체표시장치의 II표시에서의 시차수(시차배리어 수평피치/서브 화소 수평피치)의 1/2 정도의 시차수가 있는지 없는지 하는 점에 있다. 시차수가 있는 경우는, 시차보간(視差補間)을 이용함으로써 시점을 증가시키는 것이 비교적 용이하기 때문에, 보간을 실시한 다음 II용 시차배치테이블의 압축ㆍ강조 표시모드를 사용하는 것이 좋고, 반대로 쌍안ㆍ다관찰 호환 표시모드를 사용하면 세로방향 대상영역의 분활이 눈에 띄는 경우가 있기 때문에 적합하지 않다. 시차수가 없는 경우는, 시차보간을 이용함으로써 시점을 증가시키는 것이 어렵기 때문에 쌍안ㆍ다관찰 호환 표시모드가 적합하다.
단계 S12에서, 시차수가 많은 다관찰의 화상데이터나 II방식 화상데이터인 경우에는, 다시 판별부(102) 내의 단계 S16에서 압축ㆍ강조표시로 표시될 필요가 있을지 또는 투시투영의 다관찰데이터인지가 판단되게 된다. 어느 경우도 아닌 경우, 예컨대 화상데이터가 II방식의 데이터이고, II방식으로 통상의 표시가 되는 경우에는, 통상처리부(103)에서는 단계 S17에서 통상처리가 실행되고, II방식의 화상데이터는 단계 S17a에서 보간이 필요할지 여부가 판단된다. 평행광선 1D-II방식 표시장치의 구성(시차배리어 수평피치가 화소열 피치의 몇 배일까) 및 관찰 기준 시거리에 의해 필요한 시차수가 정해지지만, 입력된 데이터의 시차수가 본래 필요한 시차수 보다 적은 경우 등 보간이나 리사이즈(resize)가 필요하게 되는 경우에는, 인접한 시차로부터 그 사이(내삽보간) 또는 바깥쪽(외삽보간)의 시차성분 화상정보가 요구되어 시차성분이 보간된 화상데이터가 작성되게 된다(단계 S17b). 또, 슬릿이나 렌즈의 수평피치로 정해지는 수평해상도와, 표시부의 수직화소피치로 정해지는 수직 최고해상도에 차이가 나는 II표시장치의 경우 등에는, 입력된 II 데이터의 수평ㆍ수직 해상도가 II표시장치의 수평ㆍ수직 해상도와 다른 경우, 필요에 따라 해상도가 변환되게 된다(단계 S17c, S17d). 계속해서 1D-II용 배치테이블에 의해 각 시차성분 화상이 배분되어(단계 S17e) 시차삽입화상이 표시부(331)에 표시된다(단계 S21). 그 결과 시차배리어를 매개로 3차원화상이 장치의 튀어나옴방향(장치의 관찰자측 영역)에서 깊이방향(관찰자와는 반대측 장치의 배면영역)까지 연속시점으로 되도록 형성되어 관찰자에게 관찰되게 된다.
단계 S16에서 압축ㆍ강조표시가 필요하게 되는 경우이거나 투시투영의 다관찰데이터인 경우에는, 단계 S18에 도시된 것과 같이 강조처리부(104)에서 압축ㆍ강조 표시처리가 이루어지게 된다. 여기서, 압축ㆍ강조표시가 필요하게 되는 경우라 함은, 뒤에 설명되듯이 장치 전방 또는 장치 뒤쪽의 공간에 실제로 촬영에 의해 얻어진 피사체화상을 명료하게 표시할 수가 없을 정도로 피사체의 튀어나옴ㆍ들어감이 있는 경우가 그에 해당한다. 이와 같은 경우에는, 뒤에 설명되듯이 피사체화상에 상당하는 투시투영의 시차성분 화상데이터를, 카메라 간격(촬영간격)이 기준조건 보다 좁은 광각렌즈적인 촬영이 되도록 시차성분 화상데이터가 필요에 따라 보간 및 해상도변환처리되어, 압촉ㆍ강조표시에 적합한 화상데이터로 변환되게 된다(단계 S18a ~ S18e). 이 변환된 각 시차성분 화상이 lD-II용 배치테이블에 의해 배분되어(단계 S18f), 시차삽입화상이 표시부(331)에 표시되고(단계 S21), 그 결과 장치의 전후방향으로 튀어나옴ㆍ들어감의 한도거리 내의 공간에 압축되어 종횡방향으로 강조된 3차원화상이 명료하게 관찰될 수 있게 된다. 한편, 이 압축ㆍ강조처리로 압축율을 최대가 되도록 하면, 화상데이터는 피사체의 깊이방향을 표시하지 않는 평면적인 데이터(2차원 데이터)로 변환되게 된다. 이와 같이 변환처리된 화상데이터가 표시부(331)에 주어지는 경우에는, 3차원화상은 표시되지 않고, 단순한 평면적인 상(평면 투영상)으로 표시되는데 지나지 않는다. 그러한 의미에서, 압축ㆍ강조처리에는 피사체상의 길이방향을 압축하는 경우에 한하지 않고 평면상으로 변환하는 경우가 포함된다. 이 변환에서는 실질적으로 1개의 시차성분 화상을 모든 시차성분 화상으로 사용하는 것으로 된다.
장치로 입력되는 화상데이터는, 단계 S11에 도시된 3차원화상신호에 그 피사체의 오브젝트데이터나 위치데이터가 부수해서 참조될 수 있는 경우도 있다(단계 S19). 이 경우는, 표시해야 할 방향에 대응해서 그 오브젝트의 범위가 검출되고 그 데이터가 추출되어, 그 존재범위정보가 단계 S16 및 S18에서의 처리로 향하게 된다(단계 S20).
앞에서 설명한 처리에서, 단계 S12에서의 쌍안ㆍ다관찰데이터의 판단은 그 데이터의 속성이나 포맷형식에 기해 판단되고 있으나, 이 판단결과를 모드절환스위치(111)에 의한 모드선택지시(단계 S22)로 미리 정해지도록 하여도 좋다. 그 1례로는, 실제로 촬영하면서 표시하는 경우에 촬영자가 쌍안ㆍ다관찰데이터임을 지정하도록 하여도 좋다. 또는, 3차원화상데이터가 미디어에 격납되어 있는 경우에 이 미디어의 드라이브장치에 장전할 때 모드절환신호가 발생하도록 해서 단계 S12에서의 판단을 필요치 않도록 하여도 좋다.
또, 단계 S16에서의 판단은, 마찬가지로 모드절환스위치(111)에 의한 모드 선택지시(단계 S22)로 미리 정해지도록 하여도 좋다. 또, 장치에다 관찰자가 조작할 수 있는 절환스위치(111)를 설치해서 이 절환스위치로 수동으로 절환하도록 하여도 좋다.
한편, 표시장치의 일부로서 이와 같은 모드절환수단을 설치하지 않고 표시장치와는 별도로 설치된 화상작성장치에서 이와 같은 처리를 실행하도록 할 수도 있다.
도 5a 및 5b는 본 발명의 1실시예에 따른 화상 표시방법에 적용되는 투영방법을 개략적으로 설명하기 위한 사시도이다. 또, 도 6a, 도 6b 및 도 6c는, 도 5a 및 도 5b에 도시된 화상표시방법에 적용되는 3차원화상 촬상ㆍ투영방법을 개략적으로 설명하기 위한 평면도이다. 도 5a는 통상표시모드(평행광선 1D-II방식 본래의 표시모드)에 의한 3차원화상의 형성을 위한, 수직방향에서는 투시투영되고 수평방향에서는 평행투영되는 각 시차성분 화상을 투영하는 방법을 나타내고, 도 5b는 압축ㆍ강조표시모드(II용 또는 다관찰용 화상데이터에서의 압축ㆍ강조표시모드) 또는 쌍안ㆍ다관찰 호환모드에 의한 3차원화상의 형성을 위한, 수직방향 및 수평방향으로도 투시투영되는 각 시차성분 화상을 투영하는 방법을 나타낸다. 도 6a는, 통상표시모드에서의 각 시차성분 화상의 수평방향이 평행투영으로 촬영ㆍ투영되는 촬상ㆍ투영방법(수직방향은 투시투영으로 촬영ㆍ투영)을 나타내고, 도 6b는 압축ㆍ강조표시모드에서의 카메라(429) 이동간격을 본래 장치구성에서 결정되는 간격(P; 이하, 정규 혹은 기준조건의 카메라(429) 위치간격이라고도 함) 보다 작은 P'로 설정한 광각투시투영으로 촬영ㆍ투영되는 각 시차성분 화상의 촬상ㆍ투영방법을 나타내고, 도 6c는 쌍안ㆍ다관찰 호환모드에서의 카메라(429) 이동간격을 정규의 카메라 간격(P) 보다도 넓은 안간거리간격(Pm)으로 촬영ㆍ투영하게 되는 각 시차성분 화상의 촬상ㆍ투영방법을 나타낸다.
도 5a 및 도 5b에서, 부호 421은 촬영대상으로 되는 피사체(표시되는 물체이기도 함)를 나타낸다.
통상표시모드에서는, 도 5a에 도시된 것과 같이 투영면(422; 시차배리어면에 상당)에 투영된 피사체(421)의 투영상(424)이 1개의 시차성분 화상으로 되고, 이렇게 해서 얻어진 각 시차성분 화상을 시차삽입화상에 배치해서 표시면에다 표시하고서, 시거리에 정해진 투영중심선(423; 기준선)에서 피사체(421)의 상을 관찰하면, 장치의 배면에 피사체(421)의 3차원화상이 관찰되게 된다. 여기서, 통상표시모드에서는, 투영상(424)은 피사체(421)에 관해 수직방향에 대해 투시투영된 평면상(平面像) 및 수평방향에 대해 평행투영된 평면상에 상당하게 된다. 따라서, 투영상(424)의 투영선(425)은 모두 투영중심선(423)에 수속(收束)되게 된다.
이에 대해 쌍안ㆍ다관찰 호환모드에서는, 마찬가지로 도 5b에 도시된 것과 같이 투영면(422; 시차배리어면에 상당하는)에 투영된 피사체(421)의 투영상(424)이 1개의 시차성분 화상으로 되고, 이렇게 해서 얻어진 각 시차성분 화상을 시차삽입화상에다 배치해서 표시면에 표시하고, 시거리에 정해진 투영중심선(423; 기준선, 각 시차성분의 투영중심점이 나란히 형성하는 직선)에서 피사체(421)의 상을 관찰하면, 장치의 배면에 피사체(421)의 3차원화상이 관찰된다. 쌍안ㆍ다관찰 호환모드에서는, 수직 및 수평방향이 투시투영이기 때문에, 투영중심선(423; 기준선) 상에 있는 투영중심점에서 투영선(425)이 모두 수속되게 된다. 쌍안ㆍ다관찰 호환모드에서는, 관찰자의 한쪽 눈동자가 투영중심선(423) 상의 그 투영중심점에 위치하게 되고, 또 관찰자의 다른쪽 눈동자가 투영중심선(423) 상의 다른 투영중심점에 위치하게 되면, 양쪽 눈으로 한쌍의 투영상(424)을 관찰할 수가 있게 되고, 그 결과 장치의 배면에서 피사체(421)의 3차원화상이 관찰되게 된다. 단, II표시용 3차원표시장치에서 적절히 다관찰표시를 실행하고 있기 때문에, 표시될 때의 광선은 투영중심점근방에 모이지만 엄밀히는 1점에 수속되지는 않는다.
압축ㆍ강조표시모드에서도, 마찬가지로 도 5b에 도시된 것과 같이, 투영면(422; 시차배리어면에 상당하는)에 투영된 피사체(421)의 투영상(424)이 1개의 시차성분 화상으로 되지만, 표시할 때의 각 시차성분 화상의 배치는 도 5a와 같은 투영법으로 투영한 경우와 같게 해서 표시하여, 시거리에 정해진 투영중심선(423; 기준선)에서 피사체(421)의 상을 관찰하면, 장치의 배면에 피사체(421)의 깊이방향으로 압축 종횡방향으로 강조되어 조금 왜곡된 3차원화상이 관찰되게 된다. 압축ㆍ강조표시모드에서는, 투영할 때는 수직 및 수평방향이 투시투영이기 때문에, 투영중 심선(423; 기준선) 상에 있는 투영중심점에서 투영선(425)이 모두 수속되지만, 표시할 때는 도 5a와 같이 투영상(424)의 투영선(425)이 모두 투영중심선(423)에 수속되어 도 5b와 같은 투영중심점에는 수속되지 않게 된다.
도 5a에 도시된 투영상(投影像)은 도 6a에, 도 5b에 도시된 투영상은 도 6b 또는 도 6c에 도시된 촬영방법으로 획득하게 된다. 즉, 평행광선 1D - II방식의 통상표시모드에 상당하는 도 6a에 도시된 촬영방법에서는, 피사체가 수직방향이 투시투영으로 촬영되고, 수평방향은 평행투영으로 촬영된다. 또, 압축ㆍ강조표시모드에 상당하는 도 6b에 도시된 촬영방법 및 쌍안ㆍ다관찰 호환모드에 상당하는 도 6c에 도시된 촬영방법에서는, 피사체는 수직 및 수평방향이 함께 투시투영으로 촬영된다.
도 7은, 본래의 장치구성에서 결정되는 정규(기준조건)의 카메라 간격(P)의 설명도이다. 정규(기준조건)의 카메라 거리(투영면과 그 정면의 카메라와의 거리)는 관찰기준 시거리(L)와 같은 것이다. 정규(기준조건)의 카메라 간격(P)은, 투영면(422)에 대한 표시화면 상의 화소피치(Pp)와 관찰기준 시거리(L), 표시면과 시차배리어의 광학적 개구와의 갭(d)으로 결정된다. 한편, 도 7d는 매질이 모두 공기이고 주광선의 굴절이 없는 것으로 되어 있으나, 유리기판이나 렌즈를 사용하는 경우에는 그 굴절률에 의한 주광선의 굴절이 있기 때문에 실제의 치수(d)는 환산된 값으로 된다. 관찰기준 시거리(L)는, 뒤에 설명되듯이 요소화상의 폭(시차성분 화상의 분할배치테이블)을 결정하게 된다. 한편, 표시부의 화면 사이즈와 실제의 촬영면(투영면) 범위의 사이즈가 다른 경우에는, 그 비에 비례해서 L 및 P를 확대ㆍ축소시킨 것이 실제의 촬영시에서의 기준카메라 거리 및 간격으로 된다. 뒤에 설명되 는 튀어나옴ㆍ패어듬 한계거리(zn, zf)에 대해서도 마찬가지로서, 표시부의 화면사이즈와 실제의 촬영면 범위의 사이즈가 다른 경우는, 그 비에 비례해서 zn 및 zf를 확대ㆍ축소시킨 것이 실제 촬영시의 한계거리로 된다. 이와 같이, 관찰기준 시거리에서의 시차배리어를 매개로 하는 화소의 투영위치의 수평간격에 의존해서, 시차마다의 투영ㆍ촬영 수평간격이 촬영 기준조건으로 정해지게 된다.
압축ㆍ강조표시모드의 광각투시투영에서 깊이방향으로 b배 압축되도록 설정하는 경우에는 다음과 같은 조건이 필요하다. (1) 수직수평방향 모두 투시투영으로 촬영한다. 즉, 도 6b에 도시된 것과 같이 통상의 투시투영 카메라(429)를 가지고 투시투영으로 촬영한다. (2) 관찰기준 시거리(기준카메라 거리; L)에 비해 q배(많은 경우 q < l 이지만 q >= l 이어도 좋음)로 카메라 거리(L')를 짧게 설정한다(L' = Lㆍq). 즉, 도 6b에 도시된 것과 같이, 광각렌즈적으로 피사체(421)가 촬영되게 된다. (3) 1시차성분 마다 카메라 간격(P')을 기준 카메라 간격(P)의 q/b 이하로 좁게 한다(P' <= Pㆍq/b). 이러한 처리에 의해, 표시되는 3차원화상의 흐림ㆍ왜곡이 줄어들게 된다. (4) 표시면에 시차성분 화상을 배치하는 테이블은, 관찰기준 시거리(L)로 계산된 요소화상 폭을 기초로 해서 작성한다.
여기서, 이들 조건에 기초한 조건식의 도출에 대해 간단히 설명한다. 식의 형태를 간단히 하기 위해, 관찰기준 시거리(기준 카메라 거리)를 1로 하고, 정면의 카메라 위치는 (0, 0, 1), 투영면은 xy 면으로 해서 조건식을 도출한다. 이러한 가정 하에서도 이 조건식의 일반성은 잃지 않는다. 피사체의 좌표(xl, yl, zl)는, 2개의 투시투영 카메라(429)에 의해 본래는 투영면상의 (xrl, yrl, 0), (xI1, yI1, 0)에 투영되지만, 강조시에는 카메라 간격을 a배로 또 카메라 거리를 q배(a < q <= l)로 함으로써 (xr2, yr2, 0), (xI2, yI2, 0)에 투영되도록 하고, 이들이 원래의 카메라 간격(P)과 카메라 거리(1)에서 투영된 것으로 해서 재생되기 때문에, 3차원화상으로는 (x2, y2, z2)에 있는 것으로 보여질 수 있게 된다. 변환식은, 투시투영 카메라(429)용 광선에서의 재생(다관찰)인 경우에는,
z2 =az1/(q - z1 +az1)
x2 = qx1/(q - z1 +az1)
y2 = qyl/(q - zl +azl)
평행투영 카메라(429)용 광선에서의 재생(수평시차 만의 평행광선 II방식 : 1D - II)인 경우는,
z2 =azl/(q - zl)
x2 = qxl/(q - zl)
y2 = qyl(q - zl -azl)/(q - zl) - 2
로 된다. 여기서, II방식에서의 본래의 튀어나옴ㆍ들어감 재현역(再現域)은, 화소피치, 렌즈피치 및 광학적 개구와 화소 사이의 실효갭에 의해 정해진다(J. Opt. Soc.am.a vol.15, p.2059(1998). 튀어나옴 한계의 z좌표를 zn, 들어감 한계의 z좌표를 zf로 해서, 본래의 튀어나옴 들어감 재현역의 b배의 범위에 있는 오브젝트를 z방향으로 압축해서 밀어넣는 경우에는, 시거리 1에 대한 카메라 거리 q (<= 1)로 튀어나옴 재현역 znO(= zn/L)을 b(> 1)배로 하기 위해 카메라 간격을 a(< 1) 배로 하면 좋고, zl = bznO, z2 <= znO로 하면, 투시투영 카메라(429)용 광선으로 재생(다관찰)하는 경우는
a <= (q - bznO)/(b - bznO),
평행투영 카메라(429)용 광선으로 재생(평행광선 1D - II)하는 경우는
a = (q - bznO)/b
로 된다. 이들이 근사하다면 이들은 a <= q/b로 간주될 수 있다. 즉, 카메라 간격 p'의 P에 대한 비(a)를 q/b 이하로 하면, 왜곡이나 흐림이 없는 3차원화상으로 표시될 수 있게 된다. 여기서, 카메라 간격(p')이 본래의 간격(P) 보다 작아져, p'의 P에 대한 비(a)를 q/b에서 다시 더 작아지게 해서 0에 가까워지도록 하면 평면상에 가까워짐을 의미하고, a를 q/b에 가까운 값이 되도록 해 두면 입체감이 있는 상을 표시할 수가 있음을 의미한다.
도 8a 및 도 8b는, 상기의 계산에 기해 a, b, q, zn 및 zf(깊이재현역)의 관계를 나타낸 그래프이다. 도 8a 및 도 8b에서, 가로축은 깊이방향 압축율(b)을, 세로축은 카메라 간격의 계수(a)를 나타내고, 굵은 실선은 a = q/b를 나타내고, 실선 (1D-IP(near))은 튀어나옴 영역에서의 곡선을 나타내고, 파선(1D-IP(far))는 깊이 영역에서의 곡선을 나타낸다. 도 8a는 zn/L = O.05, q = 0.3의 경우를, 도 8b는 zn/L = O.05, q = l.0의 경우을 나타낸다. 도 8a 및 도 8b에서 알 수 있듯이, 카메라 간격을 좁게(계수 a를 작게)하면, 튀어나옴 한계의 z좌표(zn)보다 들어감 한계의 z좌표(zf)의 편이 보다 넓음을 알 수 있다. 예컨대, 관찰기준 시거리 O.7m(= L), 카메라 거리 O.21m(= Lq), 튀어나옴 재현역 O.035m(= zn = LznO)인 경우, q = O.3, znO = +O.05, b = 2(튀어나옴량 + 0.07m 인 것을 압축표시하려는 경우)로 설정하면, 도 8a의 파선화살표와 같이, a <= q/b = O.15의 범위로 카메라 간격을 설정하면 되고, 실선화살표와 같이 a = 0.1 로 하면, 보다 확실하게 튀어나옴 영역에서의 흐림이나 왜곡을 억제할 수 있어 입체 효과도 해치지 않음을 알 수 있다. 이때 들어감방향은 b = 3 즉 -0.105m의 범위의 깊이영역까지 흐림 없이 표시될 수 있게 된다. 다른 예로서, 관찰기준 시거리 O.7 m(= L), 카메라 거리 0.7m(= Lq), 튀어나옴 재현역 O.035m(= zn = LznO)인 경우, q = l, znO = +O.05, b = 3(튀어나옴량 + 0.105m 인 것을 압축표시하고싶은 경우)로 설정하면, 도 8b의 파선화살표와 같이, a <= q/b = O.33의 범위에 카메라 간격을 설정하면 좋고, 실선화살표와 같이 a = O.29로 하면 보다 확실히 뒤어나옴 영역에서 흐림이나 왜곡을 억제할 수 있어 입체 효과도 해치지 않고 있음을 알 수 있다. 이때 깊이방향은 b = 4 즉 ―O.14m 범위의 들어감 영역까지 흐리지 않게 표시될 수 있게 된다.
관찰기준 시거리(L)에 대한 실제의 카메라 거리는 임의이고, 카메라 거리의 거리(L)에 대한 비(q)는 1 또는 1 이상이어도 좋다. 한편, 카메라 간격(P')을 0으로 한 경우도 이 조건에 포함되지만, 이는 시차 없이 투시투영화상을 배치한 2D 표시모드(q 임의,b 무한대)에 상당한다.
이상의 방법으로, II방식 디스플레이에서, 투시투영화상 데이터의 수평방향을 평행투영으로 변환하지 않고 직접 표시해서, 왜곡이나 흐려짐이 거의 느껴지지 않는 3차원화상 또는 입체감이 강조된 3차원화상을 표시할 수가 있게 된다. 투시투영 데이터를 그대로 이용할 수 있다는 점에서, 실사화상의 표시, 특히 리얼타임표시 등에 고속처리가 가능하다고 하는 점에서 적합하다. 따라서, 실사데이터를 표시 하는 경우에 항상 압축ㆍ강조표시모드를 이용한다고 하는 형태도 가능하다.
이 압축ㆍ강조표시모드에서는, 튀어나온 부분은 종횡방향이 보다 크게, 들어간 부분은 종횡방향이 보다 작아져 입체감이 강조될 수 있게 된다. 세로방향과 가로방향의 확대ㆍ축소율은 대략 같지만, 엄밀하게는 튀어나온 부분에서는 가로방향쪽이 조금에 크게, 들어간 부분에서는 세로방향 쪽이 조금 커지게 된다. 따라서, 튀어나온 물체가 많은 경우는 수 % ~수 10% 정도 세로로 늘여진 시차삽입화상을 표시하고, 들어간 물체만인 경우는 수 % 정도 세로로 줄여진 시차삽입화상을 표시함으로써 왜곡을 보정할 수도 있다. 세로방향으로 확대ㆍ축소된 시차삽입화상은, 시차성분 화상 작성단계의 투영면사이즈 조정 등에 의한 확대ㆍ축소로 실시하여도 좋고, 도 1의 S18(압축ㆍ강조표시처리)의 해상도 변환과 함께 실시하여도 좋다. 기준카메라 간격은 II입체방식 표시장치의 광선 간격(광학적 개구형상이 수직 스트라이프인 경우는 수평 인접 화소로부터의 2광선의 간격)에도 상당하지만, 이 광선 간격이 좁은 편이 왜곡을 방지하기 쉽게 된다. 관찰기준 시거리를 짧게 하더라도, 광선 간격이 조밀하게 되기 때문에 마찬가지로 왜곡을 방지하기가 쉬워지게 된다. 단, 광선 간격이 좁은 또는 조밀한 경우는, 관찰자가 정상적인 3차원화상을 관찰할 수 있는 시역 폭(광선 간격과 시차수의 적)은 좁아지기 때문에, 안간거리 보다 어느 정도 넓은 100 ~ 200mm 정도(크로스토크가 많은 경우는 그 보다 약간 넓은 폭)는 최저한 시역을 확보할 필요가 있고, 그 이하로 광선 간격을 좁게 할 수는 없다. 한편, 용도에 따라서는, 튀어나옴 한계위치의 투영면(전방 투영면)이 항상 동일한 사이즈 또는 동일한 폭이 되도록 투영면의 사이즈를 가변적으로 하는 방법도 있다. 이 경우는, 피사체가 튀어나오더라도 화면에서는 보여지지 않게 된다는 효과가 있는바, 튀어나오더라도 크기가 변하지 않게 된다.
도 9a 및 도 9b는, 압축ㆍ강조표시모드에서 통상표시모드로 연속적으로 절환하는 경우의 카메라 간격(P), 카메라 거리(L; Lx는 수평방향, Ly는 수직방향), 피사계 심도(Df)를 변화시키는 방법을 나타낸 예이다. 파선(破線)의 왼쪽이 압축ㆍ강조표시모드, 오른쪽이 통상표시모드이고, 화살표는 연속절환의 시간 단계(역방향도 가능)를 나타내고 있다. 모드절환시에 카메라 간격(P)을 바꾸지 않는 경우는, 상의 변화(외관 좌표의 움직임)가 약간 크기 때문에, 그것을 억제하기 위해 카메라 간격(P)을 보다 좁힌 압축ㆍ강조표시모드(도 9a의 파선의 왼쪽근방 영역)를 사이에 넣으면, 그 때에만 해상도가 올라가게 되어 약간 부자연스럽게 된다. 따라서, 이때에만 카메라(429)의 피사계심도(Df)를 얕게 함으로써 화상을 흐리게 하면, 연속적이고 자연스러운 완전한 절환이 실현될 수 있게 된다. 이 방법의 예는 도 9a에 나타내어져 있는바, 실사의 경우에 적합하다. 다른 방법은, 수평방향을 평행투영(시거리 무한의 투시투영)에서 투시투영(시거리 유한의 투시투영)으로 연속적으로(수직방향과는 독립적으로) 변화시키는 카메라(429)로 투영하는 방법으로서, 이는 도 9b에 도시되어 있는 CG의 경우에 적합하다.
도 10a는, II방식 디스플레이에서의 쌍안ㆍ다관찰 호환 표시모드에서, 요소화상 내의 쌍안데이터 배치폭 간격을 배분한 예를 나타낸 표이다. 이 배분은 인접 화소(광학적 개구형상이 수직스트라이프인 경우는 수평 인접 화소, 경사인 경우는 인접 시차에 상당하는 화소)로부터의 광선의 간격과 안간거리를 고려해서 결정된다. 그러나, II방식의 경우는, 인접 화소 사이의 크로스토크(1개의 실린드리컬렌즈 내에서의 인접 화소의 광선의 혼합)가 있기 때문에, 쌍안ㆍ다관찰 호환 표시에서는 최저한 3 이상의 화소열에 동일한 시차성분 데이터를 주어야만 한다. 도 10a에 도시된 표 중의 예 2-1에서부터 2-13까지에는 18시차, 관찰기준 시거리 700mm, 관찰기준 시거리에서의 인접 시차광선 간격 17mm의 경우를 상정하고, 각각 3 ~ 9 화소열에 동일한 시차성분 데이터를 부여하도록 되어 있다. 또, 좌우의 시차성분 화상의 크로스토크를 방지하기 위해, 중앙에 흑색(혹은 단색)의 화소열을 넣는 것이 바람직한 경우가 있다. 쌍안의 경우는 특히 요소화상 경계의 불필요한 양단 부분의 화소열이 흑색으로 되면, 거꾸로 된 3차원(의사시)시[three-dimensional(pseudoscopic) viewing]를 방지하게 되어 시역에서 벗어난 것을 알기가 쉽게 되는 등의 이점이 있다. 이 흑색 화소열의 폭은, 원래의 II방식에서의 요소화상 폭이 2가지(1화소열 많은 요소화상이 일부 있음)이기 때문에, 거기에 맞춰 2가지 폭으로 하였다. II방식 입체표시장치의 설계를 함으로써, 광선 간격이 좁은 편이 쌍안 표시를 할 때의 좌우 시차간 크로스토크를 방지하기가 쉽게 된다. 관찰기준 시거리를 짧게 하더라도, 광선 간격이 조밀하게 되기 때문에, 마찬가지로 크로스토크를 방지하기가 쉽게 된다. 도 10a에서 흑색 표시부로 되어 있는 부분은 흑색이 아니어도 좋은바, 원래 흑색이 기조인 화상이라면 백색이 바람직하고, 화상 전체의 기조로 되어 있는 색(평균적인 색)에 대한 보색이어도 좋다. 도 10b에는, 다관찰 호환의 예로서 4안인 경우의 요소화상 내의 화소열 수 배분예가 나타나 있다.
도 10a 및 도 10b는 시차배치테이블의 일종으로서, 여기에 요소화상 폭의 데이터를 부여하면 다관찰 호환용 배치테이블로서 충분한 정보량으로 된다. 즉, 이를 기초로 해서 모든 시차성분을 전 표시면에 배치할 수가 있게 된다. 뒤에 설명되듯이 II용 시차배치테이블은 배치의 규칙성이 다르기 때문에 도 15와 같이 다른 형식의 시차배치테이블로 된다.
렌티큘러시트의 실린드리컬렌즈의 뻗은 방향이 비스듬하게 배치되어 있는 경우에도, 각 행 단위로 도 10a 및 도 10b와 마찬가지 방법을 택하면 쌍안ㆍ다관찰 호환 표시모드가 실현될 수 있다. 경사 렌티큘러시트에서는 처리가 복잡하지만, 세로해상도를 떨어뜨린 정도 만큼 가로해상도를 세로로 할당할 수 있게 된다. 렌티큘러시트의 실린드리칼렌즈의 뻗은 방향이 수직이고 화소배열이 델타배열인 경우도, 각 행 단위에서 마찬가지 방법을 택하면 쌍안ㆍ다관찰 호환 표시모드에 적응할 수 있게 된다. 델타배열에서는 좌우 시차 사이에 흑색(혹은 단색)의 화소열을 넣는 것이 특히 바람직하다.
이상의 방법으로 II방식디스플레이에서, 쌍안ㆍ다관찰의 데이터를 호환모드로 표시할 수 있게 된다. 수평해상도는 II방식의 통상모드와 같다. II방식디스플레이를 쌍안ㆍ다관찰디스플레이의 상위 호환 디스플레이로 사용할 수가 있게 된다.
다음, II방식 시차화상배치에 따른 3차원화상 표시에 대해 도 11a ~ 도 25를 참조해서 설명한다. 이 도 11 ~ 도 25에 도시된 3차원화상 표시는, 도 1 ~ 도 10b를 참조해서 설명한 표시장치 및 표시방법과 조합되어 실현될 수 있게 된다.
II방식에서도, 또 다관찰방식에서도, 통상적으로는 시거리가 유한하기 때문에, 관찰기준 시거리에서의 투시투영화상이 실제로 보이도록 표시화상 즉 시차삽입화상이 작성된다. 일반적으로 화소와 슬릿을 잇는 직선이 관찰기준 시거리면상의 수평선(시점높이 위치)을 통과하는 교차점 마다 화상처리(컴퓨터그래픽의 경우 렌더링)를 해서 투시투영화상이 작성된다. 여기서, 화소 대신 화소열과 슬릿을 잇는 면이 관찰기준 시거리면 상의 수평선에 교차하는 교차점(시점)과 화소마다 투시투영화상이 작성되어도 좋다.
도 11a는, 광학적 개구를 가진 시차배리어(광선제어소자)의 1례로서의 렌티큘러시트(334)의 사시도를 나타낸 것이다. 또, 도 11b는, 광학적 개구를 가진 시차배리어(광선제어소자)의 1례로서의 슬릿(333)의 사시도을 나타낸 것이다.
도 12는, 3차원화상 표시장치의 전체를 개략적으로 나타낸 사시도이다. 이 도 12에 도시된 3차원화상 표시장치에서는, 독립된 확산시트(301)가 평면화상을 표시하는 표시부(331)와 시차배리어(332)와의 사이에 설치되어 있다. 이 확산시트(301)는, 3차원화상 표시장치에 있어 반드시 필요한 것은 아니고, 설치되지 않아도 좋다. 또, 평면화상 표시부(331)가 액정표시유니트인 경우에는, 확산시트(301) 대신 그 유니트의 편광판(偏光板) 표면에 설치된 확산층이 대용되어도 좋다. 그리고, 시차배리어(332)로서 렌티큘러시트가 쓰이게 되는 경우에는, 렌티큘러시트 이면이 광선을 확산시키는 확산특성을 갖도록 하여도 좋다.
도 13a, 13b 및 13c는, 도 12에 도시된 3차원화상 표시장치의 표시부를 기준으로 해서 수직면 내 및 수평면 내에서의 위치관계를 개략적으로 나타낸 전개도면이다. 도 13a에는 평면화상 표시부(331) 및 시차배리어(332)의 정면도가 도시되고, 도 13b에는 3차원화상 표시장치의 요소화상배치를 나타낸 평면도가 도시되고, 도 13c에는 3차원화상 표시장치의 측면도가 도시되어 있다. 도 12 및 도 13a ~ 13c에 도시된 것과 같이, 3차원화상 표시장치는 액정표시소자 등의 평면화상 표시부(331) 및 광학적 개구를 가진 시차배리어(332)를 갖도록 되어 있다. 시차배리어(332)는, 도 13a 및 도 13b에 도시된 것과 같은 예컨대 수직방향으로 광학적 개구가 직선모양으로 뻗고서 수평방향으로 주기적으로 배열되는 형상의 렌티큘러시트(334)나 슬릿(333)으로 구성되어 있다. 이 3차원화상 표시장치에서는 도 12에 도시된 것과 같이 수평방향의 시각(視角; 341) 및 수직방향의 시각(342)의 범위 내에서, 눈 위치에서 시차배리어(332)를 매개로 표시장치를 관찰하여 평면화상 표시부(331)의 전면(관찰자측) 및 배면의 공간에서 3차원화상을 관찰할 수가 있게 된다.
여기서는, 평면화상 표시부(331)의 화소 수는 정사각형으로 된 최소단위의 화소 군(픽셀)을 세었을 경우, 1례로 가로방향(수평방향)이 1920이고, 세로방향(수직방향)이 1200이며, 각 최소단위의 화소군은, 적(R), 록(G), 청(8)의 화소(서브픽셀)를 포함하고 있는 것으로 한다.
도 13b에서, 시차배리어(332)와 관찰기준 시거리면(343) 사이의 시거리(L), 시차배리어피치(Ps), 시차배리어갭(d)이 정해지면, 요소화상의 피치(Pe)가 시거리면(343) 상의 시점에서 광학적 개구(관통구멍, 사출동자, 슬릿 또는 렌즈)의 중심을 표시면 상에 투영시킨 간격에 의해 결정되게 된다. 참조부호 346은 관찰기준 시거리(L) 상의 시점위치와 각 관통구멍 중심을 잇는 직선을 나타내고, 시역폭 W는, 표시장치의 표시면 상에서 요소화상이 상호 겹쳐지지 않는다고 하는 조건으로부터 결정되게 된다. 시차배리어나 표시장치의 매질(媒質)의 굴절률에 따라 광선이 굴절 하는 경우도, 직선(346)을 광선으로 보아 굴절을 고려해서, Pe, W가 마찬가지로 결정되게 된다. 물론, W를 먼저 결정한 다음 d를 결정하여도 좋다.
한편, 1차원 II방식에 있어서는, 이 직선(346)이 표시장치의 표시면 상에서는 각 화소의 중심을 통과하는 것에 한하지 않음을 주의해야 한다. 이에 대해, 다관찰방식에서는, 시점위치와 각 관통구멍의 중심을 잇는 선이 각 화소중심을 통해 광선궤적과 일치하도록 되어 있다. 관통구멍의 수평피치(Ps)가 화소의 수평피치(Pp)의 정수 배인 경우에는, 요소화상의 피치(Pe) 화소피치(Pp)의 정수 배에서 크게 벗어난 단수(端數)를 수반하게 된다. 관통구멍의 수평피치(Ps)가 화소피치(Pp)의 정수 배가 아니어도, 일반적으로 1차원 II에서는, 요소화상의 피치(Pe)가 화소피치(Pp)의 정수 배에서 벗어난 단수를 수반하게 된다. 이에 대해, 다관찰에서는 요소화상의 피치(Pe)는 화소피치(Pp)의 정수 배로 되는 관계가 있다.
도 14a ~ 14c는, 도 12에 도시된 표시장치에서의 평행광선의 조(組)를 가진 조건 하의 1차원 II방식의 시차성분 화상과 시차삽입화상의 구성방법을 나타내고 있다. 도 14a에 도시된 것과 같이 표시되어야 할 물체(피사체; 421)는, 3차원화상 표시장치의 시차배리어(332)가 놓여지는 면과 같은 위치에 있는 투영면(422)에 투영되게 된다. 이때, 통상모드에서는, 물체(421)가 수직방향에서는 투시투영(perspective projection: 도면 중에는 단지 pers로 기재됨)되고, 수평방향에서는 평행투영(orthographic projection: 도면에서는 단지 ortho로 기재됨)되게 된다. 따라서, 투영면(422) 상에 수직방향으로 투시투영되고, 수평방향으로 평행투영된 피사체(421)의 상(424)이 작성된다. 여기서, 투영선(425)은, 수평방향에서는 상호 교차하지 않고, 수직방향에서는 관찰기준 시거리면 내에 있는 투영중심선(423)에서 교차하고, 또 투영중심선(423)은 그 투영방법에서 알 수 있듯이 투영면(422)을 따라 평행하게 연장되어 원칙으로 투영면(422)의 상하방향 중앙과 마주보게 된다. 이 투영방법은, 수직방향과 수평방향으로 투영방법이 다르다고 하는 점 이외에는 시판의 3차원 컴퓨터그래픽작성용 소프트웨어에서의 래스터라이징(rasterizng) 및 렌더링조작과 마찬가지이다. 한편, 투영면(422)의 중앙에 위치하는 법선(法線)은 통상적으로는 투영중심선(423)과 교차하지만, 예컨대 최종 3차원 화상의 투영면(422)을 바닥면과 수직으로 위치되도록 해서 바닥면과 그 위의 피사체(421)를 내려다 볼 수 있는 경우 등에는 반드시 교차하지 않아도 된다.
투영면(422) 상에 수직방향으로 투시투영되어 수평방향으로 평행투영된 한쪽 방향분의 화상(시차성분 화상; 426)은 도 14b에 도시된 것과 같이 수직방향으로 연장된 화소열 마다 분할되어 도 14c에 도시된 것과 같이 표시장치의 표시면(427; 시차삽입화상)에 광학적 개구의 피치(관통구멍; Ps)의 간격(일정 수의 화소열 간격)이 띄워져 분할되도록 배치된다.
이상의 투영 및 화상의 분배조작을 도 14a에 도시된 다른 투영방향(428)에 대해서도 각각 반복되도록 하면 표시면(427)에 표시되는 전체화상(시차삽입화상)이 완성되게 된다. 투영방향(428)은 이 도 14a에서는 -4, -3, -2, -1, 1, 2, 3, 4의 8방향만 나타내어져 있으나, 시거리에 따라 수 10방향을 필요로 하게 되는바, 도 15에는 34방향의 예가 나타내어져 있다. 한편, 투영된 화상(426)은 각각 필요한 범위의 열 만 작성하면 되고, 그에 필요한 범위는 도 15의 표에 나타내어져 있다. 도 15의 표에는, 34방향의 투영방향(428)에 대응하는 -17 ~ -1 및 +1 ~ +17의 시차번호가 첨부되어 있다. 도 16a 및 16b에는, 그 중 -17번의 시차성분 화상의 필요최소한의 투영범위(슬릿 또는 렌즈번호와, 3D 화소번호) 및 그 시차성분 화상의 시차삽입화상에서의 배치범위(LCD 화소번호와 LCD 서브화소번호)를 사선으로 나타내었다. 한편, 각 방향(428)은 등각도가 아니고, 시거리면(투영중심선(423)) 상에서 등간격이 되도록 설정된다. 즉, 카메라(429)가 투영중심선상에서 등간격으로 평행이동(방향은 일정)해서 각 시차성분 화상이 촬영되게 된다. 또, 투영방향에 의하지 않고, 투영면(422)의 방향이나 위치는 일정하다.
도 17은, 본 발명에서의 실시예가 아닌 비교예로서, 본 발명과 같은 시차번호의 전형적인 다관찰표시장치로서, 요소화상피치를 화소피치의 정수 배로 하는 일반적인 구성으로 된 경우의 시차배치테이블의 1례를 나타낸 것이다. 이와 같이, 각 시차성분 화상은 표시면(시차삽입화상 전체)에 걸쳐 균등하게 배치된다. 이에 대해, 본 발명의 쌍안ㆍ다관찰 호환 표시모드용 시차화상 배치테이블은 도 4에 도시된 것과 같이 이와는 다르게 되어 있다.
도 18은, 도 12 ~ 도 16에 도시된 3차원화상 표시장치의 시차배리어(이 경우 렌티큘러시트(334))의 배치를 부분확대도로 개략적으로 나타낸 것이다. 이 도 18에 도시된 것과 같이, 액정패널과 같은 평면상에 시차화상을 표시하는 표시면의 전면에는, 광학적 개구를 가진 시차배리어로서 그 장축이 수직방향으로 뻗은 다수의 실린드리컬렌즈를 포함하는 렌티큘러시트(334)가 배치되어 있다. 한편, 광학적 개구는 경사방향으로 연장되어도 좋고, 또 계단모양으로 형성되어도 좋다. 표시면에는, 종횡비가 3 : 1인 화소(32)가 가로방향 및 세로방향을 따라 매트릭스 형상으로 배치되고, 각 화소는 동일 화소행 및 화소열 내에서 적, 록, 청이 교대로 배열되어 있다. 이 화소(통상의 액정표시장치에서의 서브화소)의 배열은 일반적으로 모자이크 배열이라 불려지고 있다. 한편, 참조부호 43은 3차원화상 표시시에 18시차성분 화상을 분배하는 단위로 되는 실효화소(이 1실효화소(43)는, 도 18에서 흑색프레임으로 나타내어져 있다)를 나타낸다. 한편, 이 예와 같이 정사각형의 실효화소로 되어도 좋고, 세로해상도를 최소 세로주기(RGB의 주기)에 맞추어 2배로 한 직사각형 실효화소(43의 정방형을 세로로 2분할한 것)로 되어도 좋다.
도 19는, 도 18에 도시된 실효화소(43) 내의 화소의 배치예를 나타낸 것이다. 도 15에서 시차번호 -10번이 나타내는 것은 렌즈번호 -10번 이전이고, 시차번호 10번이 나타내는 것은 렌즈번호 10번 이후이므로, 시차번호가 -9에서 9까지인 도 19는 렌즈번호 -9번 ~ -1번 및 1번 ~ 9번에 상당한다. 인접한 시차번호는 인접한 열에 할당되어 있다. 화소행에서의 세로주기는, 화소열에서의 가로주기(Pp)의 3배로 정해져 있다. 각 화소(34)는 일정한 면적비율의 화소개구부 또는 발광화소부를 갖고, 상기 화소개구부는 블랙 매트릭스(35)로 에워싸여져 있다. 이와 같이 화소개구부와 블랙 매트릭스(35)가 수평방향으로 화소주기를 이루고, 또 이 화소주기(Pp)의 정수 배의 수평주기로 배열된 광학적 개구로서 렌티큘러시트(334)가 겹쳐지도록 되어 있다. 즉, 렌티큘러시트의 각 실린드리컬렌즈의 광축이 화소주기(Pp)의 정수 배로 위치하도록 각 렌즈가 배열되어 있다. 렌티큘러시트 대신 광학적 개구를 가진 시차배리어(332)로서 슬릿이 설치되는 경우에도, 광학적 개구의 중심축이 화 소주기(Pp)의 정수 배가 되도록 배치되게 된다.
이와 같은 정수 배의 배치에서는, 표시화면 전체에서는 모아레나 색모아레가 발생할 염려가 있으나, 이 모아레를 약하게 하기 위해, 편광판의 표면에 설치된 확산층의 확산처리(헤이즈)를 통상적인 액정표시장치의 편광판 표면에 경면반사 방지용으로 설치되는 것 보다 약간 강한 것을 사용하여도 좋다. 이 확산층은, 액정표시장치의 편광판 표면에 일체화되어 있어도 좋고, 렌티큘러시트의 이면에 일체화되어 있어도 좋고, 독립된 확산시트이어도 좋다.
도 18에 도시된 것과 같이 18열 6행의 화소(34)에서 1실효화소(43)가 구성되는 표시부의 배열에서는, 수평방향으로 18시차를 부여할 수가 있는 3차원화상 표시가 가능해진다. 이와 같은 표시배열에서는, 다관찰방식에서는 18시점으로 되고, 실효화소(43)에 표시되는 요소화상의 피치가 18화소피치이고, 또 시차배리어의 가로피치가 다관찰의 경우에 18화소피치 보다 작아지게 된다.
II방식에서는, 마찬가지로 실효화소(43)에 요소화상이 표시되어, 예컨대 18화소피치가 시차배리어 피치(Ps)에 같은 평행광선 조가 이루어지도록 설계된다. 이와 같은 II방식의 설계에서는, 18화소폭 보다 조금 큰 간격(예컨대 18.02)에서 요소화상 경계가 생기게 된다. 따라서, 실효화소의 폭은 표시면 내의 위치에 따라 18열 또는 19열의 폭에 상당하게 된다. 즉, 요소화상 피치의 평균값이 18화소의 폭(Pp)보다 크고, 또 시차배리어(332)의 가로피치가 18화소폭으로 된다. 실효화소(43)가 종횡비 1이고 정사각배열이기 때문에, 수직방향이 수평방향과 실질적으로 같은 실효해상도로 표시할 수 있게 된다.
도 20은, 도 18에 도시된 실효화소(43) 내의 화소의 배치의 도 19와 다른 경우의 예를 나타낸 것이다. 도 15에서 시차번호 -10번과 시차번호 9번이 함께 나타나 있는 것은 렌즈번호 -10번만이기 때문에, 이 도 19는 렌즈번호 -10번에 상당하고, -10에서 9까지의 숫자로 시차번호를 나타내는바, 인접한 시차번호는 인접열에 할당될 수 있도록 되어 있다. 즉, 이 도 20는 실효화소의 폭이 19열로 된 예이다. 이와 같이 II방식에서는, 일부의 실효화소(요소화상)의 폭이 19열분으로 되어 있어, 화면의 중심에서 좌우의 단부로 향함에 따라 요소화소 내의 시차번호의 범위가 어긋나 가게 된다. 이에 대해, 통상의 다관찰방식 디스플레이에서는 전체 화면에 걸쳐 항상 도 19의 시차번호 범위에 있게 된다.
도 21은 도 18에 도시된 실효화소(43) 내의 화소의 배치의 쌍안 호환모드의 예을 나타낸 것이다. 이는 도 10a에서의 예 2-10에 상당하는 것으로, 시차번호 -1과 1은 각각 우안용 시차성분, 좌안용 시차성분을 나타내고, K는 시차분리용 흑색화상을 나타낸다.
도 22는, 도 19에 도시된 실효화소(43) 내의 화소 배치에 대한 도 21과 마찬가지(도 10a에서의 예 2-10에 상당)인 쌍안 호환모드의 예을 나타낸 것이다. 이와 같이 쌍안 호환모드에 있어서도 실효화소의 폭이 19열로 된 렌즈번호(3D화소번호)는 같게 된다.
이하에서는, 평면표시장치의 화소수가, 정사각형으로 된 최소단위의 화소 군에서 센 경우의 1예로서 도 15에 도시된 것과 같이 가로방향(수평방향)이 1920(LCD 화소번호 1 ~ 1920에 상당)이고, 세로방향(수직방향)이 1200이며, 각 최소단위의 화소 군은, 적, 록, 청(RGB)의 서브화소를 포함하고 있는 것으로 하고서 설명한다. 이 서브화소는, 도 15에 도시된 LCD 서브화소번호 1에서 5760에 상당한다.
도 23 및 도 24는, 3차원화상 표시장치의 표시부의 수평단면을 개략적으로 나타낸 것이다. 도 23 또는 도 24에 도시된 것과 같이, 슬릿(333)의 수평방향의 피치(Ps; 주기) 또는 렌티큘러시트(334)의 실린드리컬렌즈의 수평방향 피치(Ps; 주기)는 정확히 화소의 수평피치(Pp)의 정수 배로 정해져 있다. 즉, 인접하는 슬릿(333)의 광학적 개구 사이의 중심을 통과하는 중심축(351; 표시면에 대해 수직) 또는 인접하는 실린드리컬렌즈의 경계를 지나는 기준축(352; 표시면에 대해 수직)은, 화소경계를 통과하고 있는 것으로 한다. 중심축(351) 또는 기준축(352) 사이에 상당하는 영역에는, 정수(整數) 개의 화소가 배치되고, 중심축(351) 또는 기준축(352)의 수평방향 피치(Ps; 주기)는 일정하게 정해져 있다. 도 23 및 도 24에 도시된 예에서는, 이 수평방향 피치(Ps)는 18화소 분으로 정해져 있다. 표시장치의 표시면(331)과 시차배리어(333, 334)의 광학적 개구에 상당하는 부분 사이의 갭(d 또는 d')은 표시장치의 유리기판이나 슬릿이 설치된 유리기판이나 렌티큘러시트의 재질의 굴절률을 고려해서 실효적으로 약 2mm로 정해져 있다. 이와 같이 시차배리어의 피치(Ps; 거리의 차이로 눈에 보이는 피치(Ps)가 아니고 시차배리어의 실제의 피치(Ps))가 화소피치(Pp)의 정수 배로 되어 있는 것은, 이미 설명한 바와 같이 1차원 인테그럴이미징이다. 이에 대해, 요소화상 피치(Pe)가 화소피치(Pp)의 정수 배로 되어 있는 것은 일반적으로 다관찰방식으로 분류된다.
도 25는, 평행광선 II방식에서의 표시장치의 표시면 내에서의 화상의 배치방 법을 표시부(331)의 정면에서 본 개념도로 나타낸 것이다. 표시부(331)의 표시면은, 각 관통구멍(시차배리어의 광학적 개구부)에 대응하는 요소화상(370; 굵은 태두리 내)을 표시하는 화소군으로 분할되고, 요소화상은, II방식에서 각각 18열 또는 19열의 화소열로 구성되는 화소군(그 폭을 Pe로 나타냄)으로 표시된다. 시차할당될 수 있는 화소열의 합계 수는, LCD 화소가 3개의 LCD 서브화소(서브픽셀)로 이루어진 것에서 5760열, 관통구멍 수는 320(도 25에서 부호 364로 나타내어진 영역에 기재되는 관통구멍번호(렌즈번호, 슬릿번호)의 범위는, #-160 ~ #-1, #1 ~ #160)이고, 관통구멍 피치(Ps)는 18화소폭과 같다. 도 25에서, 각 화소열(365)에는 대응하는 시차번호(본 예에서는 도 15에 도시된 것과 같이 시차번호 -17 ~ -1, 1 ~ 17의 34방향분)가 부호 363로 표시된 영역에 항목으로 나타내어져 있다. 관통구멍 번호 #1인 요소화상은 시차번호 -9 ~ -1, 1 ~ 9의 18시차성분의 열로 이루어지고, 관통구멍 번호 #-159인 요소화상은 시차번호 -17 ~ -1 및 1로 이루어진 18시차성분의 열로 되어 있다. 요소화상의 폭이 18화소열의 폭 보다 조금에 크기 때문에, 요소화상의 경계를 가장 가까운 화소열 경계에 맞춰지도록 하면(통상의 A-D 변환방법), 관통구멍에 대한 화소열 수는 대부분의 관통구멍에 대해서는 18열이지만, 19열의 화소열 수에 대응하는 관통구멍도 있다. 19열에 대응하는 관통구멍 번호를 경계로 관통구멍 내의 시차번호 범위가 하나씩 쉬프트되어 있다. 19열로 되어 있는 관통구멍 번호는 #10, #30, #49, #69, #88, #107, # 127, #146(및 이들의 마이너스의 번호)이다(시거리 700mm인 경우).
도 15에 도시된 것과 같이, 각 방향의 시차성분 화상의 배치가 개시ㆍ종료되는 관통구멍 번호(표 중의 슬릿(렌즈)번호)가 나타내어져 있다. 이 표에는, 대응하는 3차원화상 표시시의 수평해상도에 기해 화소열 번호(3D 화소번호), 시차삽입화상 표시부의 서브화소열 번호(LCD 서브화소번호) 및 화소열 번호(LCD 화소번호)도 나타나 있다. 이와 같이 시차성분 화상을 할당함으로써 3차원화상이 표시된다. 도 16에는 -17번의 시차성분 화상의 필요최소한의 투영범위(슬릿 또는 렌즈번호와 3D 화소번호) 및 그 시차성분 화상의 시차삽입화상에서의 배치범위(LCD 화소번호와 LCD 서브화소번호)가 사선으로 나타내어져 있다. 도 16 왼쪽의 시차성분류상에서는 사선부 만을 사용하고 있지만, 특히 이 II방식 표시장치용으로 준비된 것이 아닌 일반적인 입력데이터로서는, 사선부 만 아니라 전체 범위를 사용하는 경우도 있는바, 그렇게 하더라도 지장은 없다. 이 예에서의 사선부는, 3D 화소번호 또는 슬릿(렌즈)번호로 14열분(15 - 2 + 1 또는 (-146) - (-159) + 1)의 범위이다. 도 16 오른쪽의 시차삽입화상에서는, 사선의 범위에 18화소열 간격으로 분할되어 배치되게 된다. 이 경우의 18이란 수는 시차수와 같은 수이다. 시차성분 화상에서 14열분의 범위가 18열 간격으로 배치되기 때문에, LCD 서브화소번호 범위가 235열분(245 - 11 + 1는, 18 x (14 - 1) + 1과 같음)으로 되고, LCD 화소번호로는 그의 약 1/3(LCD 서브화소번호 11, 245는 LCD 화소번호 4, 82에 속함)인 79열분(82 - 4 + 1)으로 된다. 도 16에서 예를 들어 설명한 이들 열 범위를 모든 시차번호에 대해 나타낸 것이 도 15이다.
한편, 압축ㆍ강조표시모드에서 만큼은 아니지만, 통상표시모드나 쌍안ㆍ다관찰 호환모드에 있어서도 요소화상 폭을 결정하는 관찰기준 시거리와 투시투영의 기준으로 되는 거리(투영중심선과 투영면의 거리)는 반드시 같지 않아도 되는바, 대체로 가까운 값(양자의 비가 1/2 ~ 2 정도)이라면 특히 문제를 일으키지 않는다.
이상과 같이, 본 발명의 실시예에 따른 3차원화상 표시장치에 의하면, 평행광선 II방식에서, 쌍안ㆍ다관찰방식용 등의 투시투영의 화상을 표시할 수 있도록 하고, 나아가 튀어나옴 들어감이 압축되어 종횡으로 강조된 3차원화상의 표시가 가능해지게 된다.
도 26은 본 발명의 실시예에 따른 3차원화상 촬상방법을 개략적으로 나타낸 것이다. 또, 도 27a 및 27b는 도 26에 도시된 3차원화상 촬상방법에서 처리순서를 플로우차트로 나타낸 것이다. 도 26에 도시된 것과 같이 등간격으로 수평방향으로 배열된 카메라(429)의 중앙부에 피사체 위치검출기(431)가 설치되어, 모든 카메라(429)가 피사체(421a, 421b)를 포함하여 투영면(422)에 투영된 상으로 촬상하도록 조정된다. 이 경우, 초점은 투영면 부근에 있는 피사체(421b)에 맞춰진다. 튀어나옴 한계의 z좌표(zn) 및 들어감 한계의 z좌표(zf), 관찰기준 시거리(정규 카메라 거리; L) 및 적정 카메라 간격(정규 카메라 간격; P)는 표시장치의 구성에 따라 미리 결정된 값이 입력되게 됨으로, 카메라 간격의 적정 카메라 간격에 대한 비(a), 깊이 압축 배율(b), 카메라 거리의 관찰기준 시거리에 대한 비(q), 튀어나옴 시야의 z좌표(zn), 들어감 한계의 z좌표(zf)의 관계식이 도출되게 된다.
도 27a의 예에서는, 검출기(431)에 의해 카메라(429)에 가장 가까운 피사체(421a)의 일부 위치까지의 거리가 검출되고, 또 초점을 맞추는 피사체(421b)까지의 거리가 검출기(431)에 의한 자동초점기능 또는 수동초점기능으로 검출되고, 줌기능 과 연동해서 검출되는 화각(畵角)에서 얻어지는 촬영면(투영면) 사이즈 정보(표시면 사이즈에 대한 비)와도 합쳐져, 이들과 함께 압축율(b)가 결정되게 된다(단계 S30, S31 및 S32). 또, 카메라 거리의 비(q)가 결정된다(단계 S30 및 S33). 그 후, 카메라 간격의 비(a), 배율(b), 카메라 거리의 비(q), 튀어나옴 한계의 z좌표(zn), 들어감 한계의 z좌표(zf)의 관계식으로부터 최적인 카메라(429) 사이의 간격의 비(a)가 결정된다(단계 S34 및 S35). 가장 적합한 카메라(429) 사이의 간격의 비(a)는 표시되거나 또는 카메라(429) 사이의 간격이 조건에서 벗어나고 있다는 경고가 발해지게 된다(단계 S36 및 S37). 여기서, 카메라(429) 사이의 간격은 자동적으로 최적의 간격으로 조정되는 기능을 갖도록 하여도 좋다. 카메라(429) 사이의 간격의 조정은 기계적으로 간격을 변화시켜도 좋고, 광학계 또는 회로의 처리로 등가적으로 간격이 변화되도록 하여도 좋으며, 직선상에 조밀하게 설치한 다수의 카메라(429)에서 최적 간격에 해당하는 카메라(429)가 선택되도록 하여도 좋다. 도 27b의 예에서는, 초점을 맞추는 피사체(421b)까지의 거리가 검출기(431)에 의한 자동초점기능 또는 수동초점기능에 의해 검출되어, 줌기능과 연동해서 검출되는 화각에서 얻어지는 촬영면(투영면) 사이즈 정보(표시면 사이즈에 대한 비)와도 합쳐져, 이들과 함께 카메라 거리의 비(q)가 결정된다(단계 S40 및 S41). 그 후, 미리 수동 등으로 설정되어 있는 카메라(429) 사이의 간격의 비(a) 및 압축율(b)을 기초로(단계 S42 및 S43), 검출기(431)에 의해 검출되는 가장 가까운 위치의 피사체(421a)의 거리(단계 S44)가 튀어나옴ㆍ들어감 한계역(zn, zf)에서 벗어나 있는지 여부의 검정이 이루어지게 된다(단계 S46). 벗어나 있는 경우에는 경고가 발해지지만, 최적 카 메라(429) 사이의 간격(a)이 표시된다(단계 S47 및 S48).
이와 같은 3차원화상 촬상방법에 따라 지나치게 튀어나오는 등으로 상의 흐림이나 왜곡이 억제되어 본 발명에 따른 3차원화상 표시장치나 3차원화상 표시방법에 적절한 형식으로의 촬상이 이루어질 수 있게 된다.
한편, 본 발명은 상기 실시예 그대로에 한정되지 않고, 실시단계에서는 그 요지를 벗어나지 않는 범위에서 구성요소를 변형시켜 구체화할 수도 있다.
또, 상기 실시예에 개시되어 있는 복수의 구성요소의 적절한 조합으로 여러가지 발명을 형성할 수도 있는바, 예컨대 실시예에 도시되어 있는 전체 구성요소에서 몇 가지 구성요소를 삭제하여도 좋고, 또 다른 실시예에 쓰이는 구성요소를 적절히 조합하여도 좋다.
한편, 기타 본 발명을 실시함에 있어 본 발명의 기술분야에 숙련된 기술자라면 여러 가지로 변형시켜 실시할 수도 있다. 그리고, 본 발명은 실시예로서 도시되고 설명된 것에 한정되는 것도 아니다. 따라서, 본 발명은 특허청구범위에 기재된 내용의 요지를 벗어나지 않는 한도에서 여러 가지로 변형해서 실시될 수가 있게 된다.
이상 설명한 바와 같이 본 발명에 의하면, 평행광선 II방식에서, 쌍안ㆍ다관찰방식용 등의 투시투영의 화상을 표시할 수 있음과 더불어 깊이방향으로 압축된 3차원화상이나 튀어나옴ㆍ들어감에 대한 종횡방향으로 강조된 3차원화상의 표시를 할 수 있는 3차원화상 표시장치를 제공할 수 있게 된다.

Claims (17)

  1. 소정의 폭을 가진 각 화소가 수직방향 및 수평방향을 가진 표시면 내에 행렬형상으로 배열된 표시부와;
    이 표시부 전면에 설치되고, 각각이 대략 직선모양으로 연장되면서 상기 화소의 소정폭의 정수 배에 상당하는 수평피치로 배치되고 관찰기준 시거리에 따라 정해진 폭을 갖는 각 요소화상을 상기 표시면 상에서 화소로부터의 광선을 제어해서 정의하는 광학적 개구를 갖는 시차배리어와;
    수직방향의 시거리에 의해 실질적으로 정해진 투시투영과 수평방향의 평행투영을 피사체에 대해 행함으로써 얻어진 시차성분 화상을 통상표시모드에서 각 화소열에 대응하는 부분으로 분할하도록 구성되고, 연속시점의 3차원화상을 생성하기 위해 요소화상의 각 소정 범위가 하나의 화소열에 배분됨과 더불어 표시부에 표시되도록 하는 제1처리부 및;
    수직 및 수평방향 양쪽의 시거리에 의해 실질적으로 정해진 투시투영을 피사체에 대해 행함으로써 얻어진 시차성분 화상을 압축ㆍ강조모드에서 각 화소열에 대응하는 부분으로 분할하도록 구성되고, 피사체화상이 깊이방향으로 압축됨과 더불어 수직 및 수평방향으로 강조되는 연속시점의 3차원화상을 생성하기 위해 각 요소화상의 소정 범위가 하나의 화소열에 대해 배분됨과 더불어 표시부에 표시되도록 하는 제2처리부를 구비하여 구성된 것을 특징으로 하는 3차원화상 표시장치.
  2. 제1항에 있어서, 수직 및 수평방향 양쪽의 시거리에 의해 실질적으로 정해진 투시투영을 행함으로써 얻어진 시차성분 화상을 다관찰 호환모드에서 각 화소열에 대응하는 부분으로 분할하도록 구성되고, 다시점의 3차원화상을 생성하기 위해 요소화상의 각 소정 범위가 동일한 시차정보로서 복수의 인접하는 화소열에 배분됨과 더불어 표시부에 표시하는 제3처리부를 더 구비하여 구성된 것을 특징으로 하는 3차원화상 표시장치.
  3. 제1항에 있어서, 상기 제1 및 제2처리부 중 하나를 선택하도록 구성된 선택부를 더 구비하여 구성된 것을 특징으로 하는 3차원화상 표시장치.
  4. 제2항에 있어서, 상기 제1,제2,제3처리부 중 하나를 선택하도록 구성된 선택부를 더 구비하여 구성된 것을 특징으로 하는 3차원화상 표시장치.
  5. 제4항에 있어서, 상기 선택부가, 피사체를 실사함으로써 얻어진 화상이 표시될 때, 제2 및 제3처리부 중 하나를 선택하도록 된 것을 특징으로 하는 3차원화상 표시장치.
  6. 제2항에 있어서, 상기 제3처리부가, 큰 압축율을 이용해서 깊이방향으로 피사체화상을 압축함으로써 3차원화상 대신 2차원화상을 표시하도록 구성된 것을 특징으로 하는 3차원화상 표시장치.
  7. 제2항에 있어서, 상기 제3처리부가, 시차성분 화상 사이의 화소열에 흑색 또는 소정의 색을 표시하도록 구성된 것을 특징으로 하는 3차원화상 표시장치.
  8. 소정의 폭을 가진 각 화소가 수직방향 및 수평방향을 가진 표시면 내에 행렬형상으로 배열된 표시부와;
    이 표시부 전면에 설치되고, 각각이 대략 직선모양으로 연장되면서 상기 화소의 소정폭의 정수 배에 상당하는 수평피치로 배치되고 관찰기준 시거리에 따라 정해진 폭을 갖는 각 요소화상을 상기 표시면 상에서 화소로부터의 광선을 제어해서 정의하는 광학적 개구를 갖는 시차배리어와;
    수직방향의 시거리에 의해 실질적으로 정해진 투시투영과 수평방향의 평행투영을 피사체에 대해 행함으로써 얻어진 시차성분 화상을 통상표시모드에서 각 화소열에 대응하는 부분으로 분할하도록 구성되고, 연속시점의 3차원화상을 생성하기 위해 요소화상의 각 소정 범위가 하나의 화소열에 배분됨과 더불어 표시부에 표시되도록 하는 제1처리부를 구비한 3차원화상 표시장치에 3차원화상을 표시하는 3차원화상 표시방법으로서,
    상기 3차원화상 표시방법이,
    수직 및 수평방향 양쪽의 시거리에 의해 실질적으로 정해진 투시투영을 피사체에 대해 행함으로써 얻어진 시차성분 화상을 각 화소열에 대응하는 부분으로 분할하고, 상기 요소화상의 대응하는 소정 범위에 각 화소열을 배분하며, 압축ㆍ강조 표시모드를 이용해서 피사체화상이 깊이 방향으로 압축됨과 더불어 수직방향으로 강조되는 연속시점의 3차원화상을 표시하도록 표시부에 화소열을 표시해서 이루어지고;
    상기 시거리에서의 상기 시차배리어를 개입시키는 상기 화소의 투영위치의 수평간격에 의존해서 시차성분 마다 투시투영 촬영의 수평간격이 정해지는 촬영기준조건을 기초로 해서, 시거리가 기준조건을 기초로 하는 한 촬영위치와 투영면 사이의 거리를 q배로 설정하고, 피사체를 깊이방향으로 b배로 압축하도록 각 시차성분의 투시투영 촬영의 수평간격을 기준조건의 q/b 이하로 설정함으로써 광각적 투영처리가 실시되는 것을 특징으로 하는 3차원화상 표시방법.
  9. 제8항에 있어서, 상기 통상표시모드 및 상기 압축ㆍ강조표시모드가, 상기 수직방향의 투시투영 중심거리를 연속적으로 변화시킴으로써 연속적으로 절환될 수 있도록 된 것을 특징으로 하는 3차원화상 표시방법.
  10. 제8항에 있어서, 상기 통상표시모드와 상기 압축ㆍ강조표시모드의 절환시에, 투시투영 촬영의 간격을 좁게 함과 동시에 피사계 심도를 얕게 하고서 연속적으로 절환하는 것을 특징으로 하는 3차원화상 표시방법.
  11. 제8항에 있어서, 상기 통상표시모드와 상기 압축ㆍ강조표시모드가 피사체의 위치를 검출해서 자동적으로 절환되도록 된 것을 특징으로 하는 3차원화상 표시방 법.
  12. 소정의 폭을 가진 각 화소가 수직방향 및 수평방향을 가진 표시면 내에 행렬형상으로 배열된 표시부와;
    이 표시부 전면에 설치되고, 각각이 대략 직선모양으로 연장되면서 상기 화소의 소정폭의 정수 배에 상당하는 수평피치로 배치되고 관찰기준 시거리에 따라 정해진 폭을 갖는 각 요소화상을 상기 표시면 상에서 화소로부터의 광선을 제어해서 정의하는 광학적 개구를 갖는 시차배리어와;
    수직방향의 시거리에 의해 실질적으로 정해진 투시투영과 수평방향의 평행투영을 피사체에 대해 행함으로써 얻어진 시차성분 화상을 통상표시모드에서 각 화소열에 대응하는 부분으로 분할하도록 구성되고, 연속시점의 3차원화상을 생성하기 위해 요소화상의 각 소정 범위가 하나의 화소열에 배분됨과 더불어 표시부에 표시되도록 하는 제1처리부를 구비한 3차원화상 표시장치에 3차원화상을 촬상하는 3차원화상 촬상방법으로서,
    상기 3차원화상 촬상방법이,
    수직 및 수평방향 양쪽의 시거리에 의해 실질적으로 정해진 투시투영을 피사체에 대해 행함으로써 얻어진 시차성분 화상을 각 화소열에 대응하는 부분으로 분할하고, 상기 요소화상의 대응하는 소정 범위에 각 화소열을 배분하며, 압축ㆍ강조 표시모드를 이용해서 피사체화상이 깊이 방향으로 압축됨과 더불어 수직방향으로 강조되는 연속시점의 3차원화상을 표시하도록 3차원화상 표시장치의 표시부에 화소열을 표시해서 이루어지고;
    상기 시거리에서의 상기 시차배리어를 개입시키는 상기 화소의 투영위치의 수평간격에 의존해서 시차성분 마다 투시투영 촬영의 수평간격이 정해지는 촬영기준조건을 기초로 해서, 시거리가 기준조건을 기초로 하는 한 촬영위치와 피사체 주시점 사이의 거리를 q배로 설정하고, 피사체를 깊이방향으로 b배로 압축하도록 각 시차성분의 투시투영 촬영의 수평간격을 기준조건의 q/b 이하로 설정함으로써 광각적 투영처리가 실시되는 것을 특징으로 하는 3차원화상 촬상방법.
  13. 제12항에 있어서, 카메라로부터 카메라에 가장 가까운 피사체 부분까지의 거리와, 상기 투시투영 촬영의 카메라 촛점거리를 검출함으로써, 상기 투시투영 촬영의 수평간격이 자동적으로 제어되는 것을 특징으로 하는 3차원화상 촬상방법.
  14. 제12항에 있어서, 카메라로부터 카메라에 가장 가까운 피사체 부분까지의 거리와, 상기 투시투영 촬영의 카메라 촛점거리를 검출함으로써, 상기 투시투영 촬영의 적정한 수평간격 범위가 표시되거나 또는 촬영자에게 수평간격이 적정한 범위를 벗어나 있음을 경고하도록 된 것을 특징으로 하는 3차원화상 촬상방법.
  15. 소정의 폭을 가진 각 화소가 수직방향 및 수평방향을 가진 표시면 내에 행렬형상으로 배열된 표시부와;
    이 표시부 전면에 설치되고, 각각이 대략 직선모양으로 연장되면서 상기 화소의 소정폭의 정수 배에 상당하는 수평피치로 배치되고 관찰기준 시거리에 따라 정해진 폭을 갖는 각 요소화상을 상기 표시면 상에서 화소로부터의 광선을 제어해서 정의하는 광학적 개구를 갖는 시차배리어와;
    수직방향의 시거리에 의해 실질적으로 정해진 투시투영과 수평방향의 평행투영을 피사체에 대해 행함으로써 얻어진 시차성분 화상을 통상표시모드에서 각 화소열에 대응하는 부분으로 분할하도록 구성되고, 연속시점의 3차원화상을 생성하기 위해 요소화상의 각 소정 범위가 하나의 화소열에 배분됨과 더불어 표시부에 표시되도록 하는 제1처리부 및;
    수직 및 수평방향 양쪽의 시거리에 의해 실질적으로 정해진 투시투영을 피사체에 대해 행함으로써 얻어진 시차성분 화상을 다관찰 호환모드에서 각 화소열에 대응하는 부분으로 분할하도록 구성되고, 다시점의 3차원화상을 생성하기 위해 각 요소화상의 소정 범위가 동일한 시차정보로서 복수의 인접하는 화소열에 대해 배분되도록 하는 제2처리부를 구비하여 구성된 것을 특징으로 하는 3차원화상 표시장치.
  16. 제15항에 있어서, 상기 제1 및 제2처리부 중 하나를 선택하도록 구성된 선택부를 더 구비하여 구성된 것을 특징으로 하는 3차원화상 표시장치.
  17. 제15항에 있어서, 상기 제2처리부가, 시차성분 화상 사이의 화소열에 흑색 또는 소정의 색을 표시하도록 된 것을 특징으로 하는 3차원화상 표시장치.
KR1020050042046A 2004-05-21 2005-05-19 3차원화상 표시방법, 3차원화상 촬상방법 및 3차원화상표시장치 KR100637363B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004151891A JP3944188B2 (ja) 2004-05-21 2004-05-21 立体画像表示方法、立体画像撮像方法及び立体画像表示装置
JPJP-P-2004-00151891 2004-05-21

Publications (2)

Publication Number Publication Date
KR20060048022A KR20060048022A (ko) 2006-05-18
KR100637363B1 true KR100637363B1 (ko) 2006-10-23

Family

ID=34941385

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050042046A KR100637363B1 (ko) 2004-05-21 2005-05-19 3차원화상 표시방법, 3차원화상 촬상방법 및 3차원화상표시장치

Country Status (5)

Country Link
US (1) US7643552B2 (ko)
EP (1) EP1599053A3 (ko)
JP (1) JP3944188B2 (ko)
KR (1) KR100637363B1 (ko)
CN (1) CN1700776A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11055863B2 (en) * 2017-03-07 2021-07-06 Omron Corporation Three-dimensional shape measurement device, three-dimensional shape measurement method, and program

Families Citing this family (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7190496B2 (en) * 2003-07-24 2007-03-13 Zebra Imaging, Inc. Enhanced environment visualization using holographic stereograms
ES2306198T3 (es) * 2004-08-17 2008-11-01 Koninklijke Philips Electronics N.V. Deteccion de modo de vista.
JP4202991B2 (ja) * 2004-09-29 2008-12-24 株式会社東芝 立体画像用データの記録方法及び表示再生方法
JP4328311B2 (ja) * 2005-04-14 2009-09-09 株式会社東芝 三次元画像表示用多視点画像の作成方法およびプログラム
US20060250391A1 (en) * 2005-05-09 2006-11-09 Vesely Michael A Three dimensional horizontal perspective workstation
US8717423B2 (en) 2005-05-09 2014-05-06 Zspace, Inc. Modifying perspective of stereoscopic images based on changes in user viewpoint
US8296134B2 (en) * 2005-05-13 2012-10-23 Panasonic Corporation Audio encoding apparatus and spectrum modifying method
JP4476905B2 (ja) * 2005-08-31 2010-06-09 株式会社東芝 立体表示画像データの構造、立体表示画像データの記録方法、表示再生方法、記録プログラム、および表示再生プログラム
JP2007079858A (ja) * 2005-09-13 2007-03-29 Canon Inc 文書編集方法及び装置
KR100753517B1 (ko) 2005-10-12 2007-08-31 엘지전자 주식회사 입체 영상 디스플레이 기능을 갖는 이동통신 단말기 및이를 이용한 입체 영상 디스플레이 방법
US9843790B2 (en) 2006-03-15 2017-12-12 Fovi 3D, Inc. Dynamic autostereoscopic displays
EP1994768A2 (en) * 2006-03-15 2008-11-26 Zebra Imaging, Inc. Dynamic autostereoscopic displays
US20080144174A1 (en) * 2006-03-15 2008-06-19 Zebra Imaging, Inc. Dynamic autostereoscopic displays
JP5011842B2 (ja) * 2006-06-22 2012-08-29 株式会社ニコン 画像再生装置
US8972902B2 (en) * 2008-08-22 2015-03-03 Northrop Grumman Systems Corporation Compound gesture recognition
JP4714115B2 (ja) * 2006-09-07 2011-06-29 株式会社東芝 立体映像表示装置および立体映像表示方法
JP4393496B2 (ja) * 2006-09-26 2010-01-06 株式会社東芝 立体映像表示装置
CN101523924B (zh) * 2006-09-28 2011-07-06 皇家飞利浦电子股份有限公司 3d菜单显示
JP4197716B2 (ja) * 2006-10-03 2008-12-17 株式会社東芝 立体映像表示装置
JP2008228199A (ja) * 2007-03-15 2008-09-25 Toshiba Corp 立体画像表示装置及び立体画像表示方法並びに立体画像用データの構造
JP4331224B2 (ja) 2007-03-29 2009-09-16 株式会社東芝 三次元画像表示装置及び三次元画像の表示方法
JP2009077234A (ja) * 2007-09-21 2009-04-09 Toshiba Corp 三次元画像処理装置、方法及びプログラム
US8237780B2 (en) * 2007-10-29 2012-08-07 The Boeing Company Method and apparatus for 3D viewing
US8355019B2 (en) * 2007-11-02 2013-01-15 Dimension Technologies, Inc. 3D optical illusions from off-axis displays
JP4657313B2 (ja) * 2008-03-05 2011-03-23 富士フイルム株式会社 立体画像表示装置および方法並びにプログラム
US8279222B2 (en) * 2008-03-14 2012-10-02 Seiko Epson Corporation Processing graphics data for a stereoscopic display
JP4987767B2 (ja) * 2008-03-18 2012-07-25 株式会社東芝 三次元画像表示装置の製造装置及び三次元画像表示装置の製造方法
JP5342796B2 (ja) * 2008-03-27 2013-11-13 株式会社東芝 三次元画像表示方法および装置
KR101239058B1 (ko) * 2008-11-08 2013-03-05 쓰리디원 주식회사 원거리용 무안경방식 입체영상 디스플레이 장치
WO2010117129A2 (en) 2009-04-07 2010-10-14 Lg Electronics Inc. Broadcast transmitter, broadcast receiver and 3d video data processing method thereof
US7978407B1 (en) 2009-06-27 2011-07-12 Holovisions LLC Holovision (TM) 3D imaging with rotating light-emitting members
EP2282550A1 (en) * 2009-07-27 2011-02-09 Koninklijke Philips Electronics N.V. Combining 3D video and auxiliary data
US10021377B2 (en) 2009-07-27 2018-07-10 Koninklijke Philips N.V. Combining 3D video and auxiliary data that is provided when not reveived
JP5296218B2 (ja) 2009-09-28 2013-09-25 株式会社東芝 立体映像表示方法及び立体映像表示装置
GB0919112D0 (en) * 2009-10-30 2009-12-16 Rue De Int Ltd Security device
US8717360B2 (en) 2010-01-29 2014-05-06 Zspace, Inc. Presenting a view within a three dimensional scene
JP5306275B2 (ja) 2010-03-31 2013-10-02 株式会社東芝 表示装置及び立体画像の表示方法
CN102223518A (zh) * 2010-04-14 2011-10-19 鸿富锦精密工业(深圳)有限公司 三维数字影像监控系统及方法
CN102271261A (zh) * 2010-06-07 2011-12-07 天瀚科技股份有限公司 立体影像撷取及播放装置
KR101685981B1 (ko) * 2010-07-29 2016-12-13 엘지전자 주식회사 입체영상 디스플레이 시스템, 입체영상 디스플레이 장치 및 입체영상 디스플레이 방법
JP2012042720A (ja) * 2010-08-19 2012-03-01 Sony Corp 画像処理装置および方法、並びにプログラム
WO2012026185A1 (ja) * 2010-08-24 2012-03-01 富士フイルム株式会社 撮像装置およびその動作制御方法
JP2012083412A (ja) * 2010-10-07 2012-04-26 Sony Corp 画像処理装置、画像処理方法、およびプログラム
JP5695395B2 (ja) * 2010-11-19 2015-04-01 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 立体画像生成方法及びその装置
WO2012073795A1 (ja) * 2010-11-30 2012-06-07 シャープ株式会社 表示装置およびその駆動方法、並びに電子装置
US9124881B2 (en) 2010-12-03 2015-09-01 Fly's Eye Imaging LLC Method of displaying an enhanced three-dimensional images
CN103460257A (zh) * 2011-03-31 2013-12-18 富士胶片株式会社 立体显示设备、接受指令的方法、程序及记录其的介质
JP5666967B2 (ja) 2011-04-08 2015-02-12 株式会社東芝 医用画像処理システム、医用画像処理装置、医用画像診断装置、医用画像処理方法および医用画像処理プログラム
JP5858559B2 (ja) * 2011-04-08 2016-02-10 株式会社三共 遊技機
JP5858558B2 (ja) * 2011-04-08 2016-02-10 株式会社三共 遊技機
US9285586B2 (en) * 2011-05-13 2016-03-15 Sony Corporation Adjusting parallax barriers
US8786529B1 (en) 2011-05-18 2014-07-22 Zspace, Inc. Liquid crystal variable drive voltage
JP5858563B2 (ja) * 2011-05-24 2016-02-10 株式会社三共 遊技機
JP5720421B2 (ja) * 2011-05-27 2015-05-20 株式会社Jvcケンウッド 裸眼立体ディスプレイ装置
JP5978695B2 (ja) * 2011-05-27 2016-08-24 株式会社Jvcケンウッド 裸眼立体ディスプレイ装置及び視点調整方法
JP5747679B2 (ja) * 2011-06-17 2015-07-15 国立研究開発法人情報通信研究機構 3次元画像の提示方法
US9432658B2 (en) 2011-06-20 2016-08-30 Panasonic Intellectual Property Corporation Of America Image display device
JP5708395B2 (ja) * 2011-09-16 2015-04-30 株式会社Jvcケンウッド 映像表示装置及び映像表示方法
CN103048865A (zh) * 2011-10-14 2013-04-17 宏碁股份有限公司 投影元件以及投影三维图像的方法
EP2801200B1 (en) * 2012-01-06 2019-03-13 Ultra-D Coöperatief U.A. Display processor for 3d display
US8937644B2 (en) 2012-03-21 2015-01-20 Canon Kabushiki Kaisha Stereoscopic image capture
WO2014021134A1 (ja) * 2012-07-30 2014-02-06 オリンパス株式会社 撮像装置及び撮像方法
KR20140054532A (ko) * 2012-10-29 2014-05-09 삼성디스플레이 주식회사 능동 배리어 패널의 구동 방법 및 이를 수행하기 위한 표시 장치
KR101469225B1 (ko) * 2013-02-20 2014-12-09 (주) 리얼뷰 입체 영상 표시 장치 및 그 방법
CN103945207B (zh) * 2014-04-24 2015-09-02 浙江大学 一种基于视点合成的立体图像垂直视差消除方法
CN104243960B (zh) * 2014-10-14 2016-09-28 四川大学 基于液晶盒和偏光片的集成成像双视3d显示器
WO2016117089A1 (ja) * 2015-01-22 2016-07-28 オリンパス株式会社 三次元発光画像の生成方法及び撮像システム
EP3279726A4 (en) * 2015-03-31 2018-04-11 FUJIFILM Corporation Lenticular display element, method for forming lenticular image, and method for manufacturing lenticular display element
CN104820981B (zh) * 2015-04-22 2017-10-31 上海交通大学 一种基于视差分层分割的图像立体表示方法及系统
JP6545997B2 (ja) * 2015-04-24 2019-07-17 日立オートモティブシステムズ株式会社 画像処理装置
CN106980500B (zh) * 2017-02-17 2019-12-10 福建天泉教育科技有限公司 一种安卓虚拟现实模式和裸眼模式切换方法和系统
US10701308B2 (en) * 2017-07-31 2020-06-30 Noah Zimmerman Methods and systems for a natural and realistic telepresence experience
US10388060B2 (en) * 2017-08-28 2019-08-20 Futurewei Technologies, Inc. System and method for multi-view rendering
JP7129789B2 (ja) * 2018-02-19 2022-09-02 京セラ株式会社 ヘッドアップディスプレイ、ヘッドアップディスプレイシステム、および移動体
US10795176B2 (en) * 2018-08-24 2020-10-06 3D Media Ltd Three-dimensional display adapted for viewers with a dominant eye
EP3651119A1 (en) * 2018-11-06 2020-05-13 Koninklijke Philips N.V. Disparity estimation from a wide angle image
CN109922326B (zh) * 2019-03-29 2020-11-06 深圳市新致维科技有限公司 裸眼3d视频图像的分辨率确定方法、装置、介质及设备
CN110456516B (zh) * 2019-07-28 2024-04-05 成都航空职业技术学院 基于针孔阵列和微透镜阵列的集成成像3d显示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05122733A (ja) * 1991-10-28 1993-05-18 Nippon Hoso Kyokai <Nhk> 3次元画像表示装置
JPH06276552A (ja) 1993-03-24 1994-09-30 Nissan Motor Co Ltd 立体画像撮影装置および画像提示装置
US6377230B1 (en) * 1995-10-05 2002-04-23 Semiconductor Energy Laboratory Co., Ltd. Three dimensional display unit and display method
GB2351866A (en) * 1999-07-07 2001-01-10 Sharp Kk Stereoscopic display
EP1085769B1 (en) * 1999-09-15 2012-02-01 Sharp Kabushiki Kaisha Stereoscopic image pickup apparatus
GB2358980B (en) * 2000-02-07 2004-09-01 British Broadcasting Corp Processing of images for 3D display
JP3647376B2 (ja) * 2001-01-31 2005-05-11 キヤノン株式会社 視点位置検出装置、視点位置検出方法及び立体画像表示システム
JP2003161912A (ja) * 2001-09-13 2003-06-06 Hit Design:Kk 3次元画像表示装置および3次元画像表示における色再現方法
GB2387664B (en) * 2002-04-17 2005-08-24 Philip Anthony Surman Autostereoscopic display
GB2389728A (en) * 2002-06-11 2003-12-17 Sharp Kk Parallax barrier for autostereoscopic display
AU2003268676A1 (en) * 2002-09-27 2004-04-19 Sharp Kabushiki Kaisha 3-d image display unit, 3-d image recording device and 3-d image recording method
US7425951B2 (en) 2002-12-27 2008-09-16 Kabushiki Kaisha Toshiba Three-dimensional image display apparatus, method of distributing elemental images to the display apparatus, and method of displaying three-dimensional image on the display apparatus
AU2003221143A1 (en) * 2003-03-20 2004-10-11 Seijiro Tomita Stereoscopic video photographing/displaying system
GB2399653A (en) * 2003-03-21 2004-09-22 Sharp Kk Parallax barrier for multiple view display
JP3966830B2 (ja) 2003-03-28 2007-08-29 株式会社東芝 立体表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11055863B2 (en) * 2017-03-07 2021-07-06 Omron Corporation Three-dimensional shape measurement device, three-dimensional shape measurement method, and program

Also Published As

Publication number Publication date
KR20060048022A (ko) 2006-05-18
JP3944188B2 (ja) 2007-07-11
US7643552B2 (en) 2010-01-05
EP1599053A2 (en) 2005-11-23
EP1599053A3 (en) 2013-05-01
JP2005331844A (ja) 2005-12-02
US20050264651A1 (en) 2005-12-01
CN1700776A (zh) 2005-11-23

Similar Documents

Publication Publication Date Title
KR100637363B1 (ko) 3차원화상 표시방법, 3차원화상 촬상방법 및 3차원화상표시장치
JP5238429B2 (ja) 立体映像撮影装置および立体映像撮影システム
US8106940B2 (en) Stereoscopic image display apparatus and stereoscopic image producing method
KR100598758B1 (ko) 입체 표시 장치
US7652665B2 (en) Method for producing multi-viewpoint image for three-dimensional image display and program therefor
KR101629479B1 (ko) 능동 부화소 렌더링 방식 고밀도 다시점 영상 표시 시스템 및 방법
US8427532B2 (en) Apparatus and method of displaying the three-dimensional image
CN102917235B (zh) 图像处理装置和图像处理方法
KR100416548B1 (ko) 3차원 영상 표시장치
JP4202991B2 (ja) 立体画像用データの記録方法及び表示再生方法
TWI446007B (zh) Three - dimensional image display device and three - dimensional image display method
JP4327758B2 (ja) 立体画像表示装置
US20080225113A1 (en) Three-dimensional image display device, method for displaying three-dimensional image, and structure of three-dimensional image data
US20090115800A1 (en) Multi-view display device
CN107102446B (zh) 一种三维立体显示面板、其显示方法及显示装置
JPH06194758A (ja) 奥行画像形成方法及び装置
KR100742728B1 (ko) 3차원 화상 표시장치
KR100950628B1 (ko) 허상과 실상 결합형 집적 영상 시스템
TW201508337A (zh) 立體顯示裝置及儲存媒體
KR100662429B1 (ko) 입체 영상 표시 장치
JP4393496B2 (ja) 立体映像表示装置
KR101768369B1 (ko) 테이블탑 3d 디스플레이 방법
KR20240109362A (ko) 기울어진 픽셀 구조를 통해 크로스토크가 개선된 무안경 입체영상 표시장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120924

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130925

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140923

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150918

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee