JP2009077234A - 三次元画像処理装置、方法及びプログラム - Google Patents

三次元画像処理装置、方法及びプログラム Download PDF

Info

Publication number
JP2009077234A
JP2009077234A JP2007245258A JP2007245258A JP2009077234A JP 2009077234 A JP2009077234 A JP 2009077234A JP 2007245258 A JP2007245258 A JP 2007245258A JP 2007245258 A JP2007245258 A JP 2007245258A JP 2009077234 A JP2009077234 A JP 2009077234A
Authority
JP
Japan
Prior art keywords
image
viewpoint
incident
distance
element image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007245258A
Other languages
English (en)
Inventor
Rieko Fukushima
理恵子 福島
Yuzo Hirayama
雄三 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007245258A priority Critical patent/JP2009077234A/ja
Priority to CNA2008102157416A priority patent/CN101394572A/zh
Priority to EP08016268A priority patent/EP2040478A2/en
Priority to US12/234,235 priority patent/US20090079733A1/en
Publication of JP2009077234A publication Critical patent/JP2009077234A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/305Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】任意の条件で取得された多視点情報を用い、簡易なプロセスで正確さを維持した三次元画像を表示する要素画像アレイを生成することが可能な三次元画像処理装置、方法及びプログラムを提供する。
【解決手段】任意の条件で取得された多視点情報に含まれる各視差画像を、第1視距離において略同一の領域に入射されるよう要素画像を構成する画素数を調整した各画素からの光線の入射位置と、多視点画像の画像取得位置と、に基づき、多視点画像に由来する視差情報を表示パネルを構成する各画素に割り当て、三次元画像表示のための要素画像アレイを生成する。
【選択図】 図17

Description

本発明は、三次元画像の表示にかかる要素画像アレイを生成するための三次元画像処理装置、方法及びプログラムに関する。
注視点を含む投影面に対し、互いに異なる複数の視点位置から取得した複数の多視点画像を用いた三次元画像表示装置として、多眼式、稠密多眼式、インテグラルイメージング方式(II式)、一次元II式(1D−II方式:水平方向にのみ視差画像表示)等の表示方式を採用したものが知られている。これら表示方式では、視差画像の数(視点数)が増えるほど三次元画像の画質が向上するが、視差画像の元となる多視点画像の取得に要する負担が増すという共通の特性を有している。なお、複数の多視点画像の投影面を同一に設定したときの投影面をディスプレイ面とし、射出瞳の座標に対応した画素情報を抽出したものが、その射出瞳の要素画像を構成する視差画像となる。
上記した各種の表示方式では、表示方式毎に視点数や視差画像の提示間隔や光線の関係が異なっている。そのため、三次元画像を正しく表示したい場合には注視点を含む投影面が同一であっても各々の表示方式に応じた視点から多視点画像を取得する必要がある。逆に、表示方式の異なる多視点画像を用いると、表示される三次元画像は誤りを含んだものとなるため、画質が低下するという問題がある。このように、多視点画像の取得にかかる負荷が高いのに対し、取得された多視点画像の汎用性は低いものとなっている。
そのため、従来、表示方式間の互換を高めるため種々の技術が提案されている。例えば、特許文献1には、視点数が所望の値に満たない場合に、視点間の画像を作成し補間する技術が開示されている。また、特許文献2には、隣接する複数の画素列に同一視点位置から取得した視点画像からの視差画像を複数割り当てることで、視点数を補間する技術が開示されている。
また、表示方式の異なる多視点情報を統一的に扱うアプローチ方法として、光線空間と呼ばれる技術が知られている(例えば、非特許文献1参照)。この技術を用いることで、光線空間から任意の三次元画像表示装置に応じた多視点情報を生成することができる。例えば、100の視点位置の多視点情報から生成した光線空間からは、任意の位置から取得した多視点情報を生成することができる。即ち、一度光線空間を生成すれば任意の表示方式に応じた多視点情報を生成することが可能である。
特開平09−9143号公報 特開2005−331844号公報 Masayuki Tanimoto and Toshiaki Fujii, "FTV-Free Viewpoint Television",ISO/IEC JTC1/SC29/WG11 M8595, July 2002.
しかしながら、特許文献1の技術では、三次元画像の正確さを増そうとすると補間のための計算量が増加するという問題がある。また、計算量を増したとしても、不足した情報から補間で生成する視差画像の精度、即ち、三次元画像の正確さは、正しい視差画像から生成した三次元画像に及ぶことはない。
また、特許文献2の技術では、補間した部分の視点画像は正しい情報ではなくなるため、表示される三次元画像が不正確になる等、画質の劣化が避けられないという問題がある。また、前もって生成した複数の多視点情報から任意の多視点情報を生成できる非特許文献1の技術では、光線空間生成のための負荷が高いという問題がある。
本発明は上記に鑑みてなされたものであって、任意の条件で取得された多視点情報を用い、簡易なプロセスで正確さを維持した三次元画像を表示する要素画像アレイを生成することが可能な三次元画像処理装置、方法及びプログラムを提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、所定幅を有する画素がマトリクス状に配列され、三次元画像表示のための各要素画像が複数画像に表示される表示パネルと、前記表示パネルの前面に配置され、前記所定幅の略整数倍のピッチ幅で設けられた射出瞳により前記各画素からの光線方向を制御し、当該各射出瞳に対応する要素画像を前記表示パネルから所定距離離間した領域に向けて射出する光線制御部と、に関する仕様を定義した仕様情報を記憶する記憶手段と、互いに異なる視点位置から取得された複数の視差画像を含む多視点画像を受け付ける受付手段と、前記仕様情報に基づき、前記要素画像を構成する各画素の中心と、当該要素画像に対応する前記射出瞳の中心とを結んだ光線の軌跡群が、前記光線制御部から所定距離離間した第1視距離において略同一の領域に入射されるよう前記要素画像の画素数を決定する視域制御手段と、前記仕様情報に基づき、前記光線制御部から所定距離離間した第2視距離の面上に、前記多視点画像の画像取得位置を設定する取得位置設定手段と、前記射出瞳を通じて射出された前記要素画像の各画素からの光線が、前記第2視距離の面に入射する入射位置を夫々導出する入射位置導出手段と、前記入射位置毎に、当該入射位置に最も近接する画像取得位置を特定する取得位置特定手段と、前記各入射位置に対応する光線の射出元の各画素に、前記取得位置特定手段で特定した画像取得位置に対応する多視点画像から抽出した視差画像を割り当て、要素画像アレイを生成する生成手段と、を備えたことを特徴とする。
また、本発明は、互いに異なる視点位置から取得された複数の多視点画像を受け付ける受付工程と、所定幅を有する画素がマトリクス状に配列され、三次元画像表示のための各要素画像が複数画像に表示される表示パネルと、前記表示パネルの前面に配置され、前記所定幅の略整数倍のピッチ幅で設けられた射出瞳により前記各画素からの光線方向を制御し、当該各射出瞳に対応する要素画像を前記表示パネルから所定距離離間した領域に向けて射出する光線制御部と、に関する仕様を定義した仕様情報に基づいて、前記要素画像を構成する各画素の中心と、当該要素画像に対応する前記射出瞳の中心とを結んだ光線の軌跡群が、前記光線制御部から所定距離離間した第1視距離において略同一の領域に入射されるよう前記要素画像の画素数を決定する視域制御工程と、前記仕様情報に基づき、前記光線制御部から所定距離離間した第2視距離の面上に、前記多視点画像の画像取得位置を設定する取得位置設定工程と、前記射出瞳を通じて射出された前記要素画像の各画素からの光線が、前記第2視距離の面に入射する入射位置を夫々導出する入射位置導出工程と、前記入射位置毎に、当該入射位置に最も近接する画像取得位置を特定する取得位置特定工程と、前記各入射位置に対応する光線の射出元の各画素に、前記取得位置特定工程で特定した画像取得位置に対応する多視点画像から抽出した視差画像を割り当て、要素画像アレイを生成する生成工程と、を含むことを特徴とする。
また、本発明は、コンピュータを、互いに異なる視点位置から取得された複数の多視点画像情報を受け付ける受付手段と、所定幅を有する画素がマトリクス状に配列され、三次元画像表示のための各要素画像が複数画像に表示される表示パネルと、前記表示パネルの前面に配置され、前記所定幅の略整数倍のピッチ幅で設けられた射出瞳により前記各画素からの光線方向を制御し、当該各射出瞳に対応する要素画像を前記表示パネルから所定距離離間した領域に向けて射出する光線制御部と、に関する仕様を定義した仕様情報に基づいて、前記要素画像を構成する各画素の中心と、当該要素画像に対応する前記射出瞳の中心とを結んだ光線の軌跡群が、前記光線制御部から所定距離離間した第1視距離において略同一の領域に入射されるよう前記要素画像の画素数を決定する視域制御手段と、前記仕様情報に基づき、前記光線制御部から所定距離離間した第2視距離の面上に、前記多視点画像の画像取得位置を設定する取得位置設定手段と、前記射出瞳を通じて射出された前記要素画像の各画素からの光線が、前記第2視距離の面に入射する入射位置を夫々導出する入射位置導出手段と、前記入射位置毎に、当該入射位置に最も近接する画像取得位置を特定する取得位置特定手段と、前記各入射位置に対応する光線の射出元の各画素に、前記取得位置特定手段で特定した画像取得位置に対応する多視点画像から抽出した視差画像を割り当て、要素画像アレイを生成する生成手段と、して機能させる。
本発明によれば、任意の条件で取得された多視点情報に含まれる各視差画像を、第1視距離において略同一の領域に入射されるよう要素画像を構成する画素数を調整した各画素からの光線の入射位置と、多視点画像の画像取得位置と、に基づき、表示パネルを構成する各画素に割り当てる。これにより、各画素からの光線方向と、各視差画像の取得方向とを近付けることができるため、簡易なプロセスで正確さを維持した三次元画像を表示する要素画像アレイを生成することができる。
以下に添付図面を参照して、三次元画像処理装置、方法及びプログラムの最良な実施形態を詳細に説明する。
図1は、本実施形態にかかる三次元画像表示装置100のハードウェア構成を示したブロック図である。図1に示したように、三次元画像表示装置100は、制御部1、操作部2、表示部3、ROM(Read Only Memory)4、RAM(Random Access Memory)5、記憶部6、通信部7等を備え、各部はバス8により接続されている。
制御部1は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等の演算装置からなり、RAM5の所定領域を作業領域として、ROM4又は記憶部6に予め記憶された各種制御プログラムとの協働により各種処理を実行し、三次元画像表示装置100を構成する各部の動作を統括的に制御する。また、制御部1は、ROM4又は記憶部6に予め記憶された所定のプログラムとの協働により、後述する各機能部(多視点情報受付部11、仕様情報取得部12、要素画像アレイ生成部13、表示制御部14)の機能を実現させる。
操作部2は、マウスやキーボード等の入力デバイスであって、ユーザから操作入力された情報を指示信号として受け付け、その指示信号を制御部1に出力する。
表示部3は、液晶等に代表されるフラットパネルディスプレイ(FPD)と、レンチキュラーレンズ等の光線制御素子と、を備えている。なお、表示部3の構成については後述する。
RAM5は、SDRAM等の揮発性記憶デバイスであって、制御部1の作業エリアやビデオメモリとして機能する。具体的には、後述する要素画像アレイの生成にかかる処理時において、各種変数やパラメータの値を一時記憶するバッファ等の役割を果たす。
記憶部6は、磁気的又は光学的に記録可能な記憶媒体を有し、三次元画像表示装置100の制御にかかるプログラムや各種情報を書き換え可能に記憶する。また、記憶部6は、表示部3の仕様に関する後述する仕様情報9(図9参照)を記憶している。
通信部7は、外部装置との間で通信を行うインターフェイスであって、受信した各種情報を制御部1に出力し、また、制御部1から出力される各種情報を外部装置へと送信する。
ここで、図2を参照して、表示部3の構成について詳細に説明する。図2は、表示部3の構造を概略的に示した斜視図である。なお、図2では視点数nをn=9とした表示部3を示している。
表示部3は、上述したようにFPDと光線制御素子とを有し、観察位置に応じて光線制御素子の射出瞳を経由して見える画素が切り替わることにより、観察者に三次元画像を視認させる。即ち、射出瞳の一つが、表示部3の画素の一つに相当している。このため、表示部3の解像度は、FPD31自体が有する解像度より低くなる。なお、解像度の低下を最小限に抑制するには、視差画像を水平方向のみに提示するのが有効であることが知られている。以下、本実施形態では視差画像を水平方向のみに提示する場合について説明する。
図2に示したように、表示部3は、サブ画素32がマトリクス状に配列されたFPD31と、当該FPD31の表示面の前面に配置された光線制御素子としてのレンチキュラー板34と、を備えている。ここで、上記した解像度低下を抑制する理由により、視差画像を水平方向のみに提示することからレンチキュラー板34を構成するシリンドリカルレンズ35のレンズ成分は水平成分のみになっている。なお、図2では垂直方向に光学開口が連続したシリンドリカルレンズ35を用いた構成を示したが、このシリンドリカルレンズ35を斜めに配置した構成としてもよい。
FPD31の表示面において、垂直方向に一列に並ぶサブ画素32は、単一のレンズで拡大されるサブ画素が単色とならないために、同一列内で赤(R)、緑(G)、青(B)
が交互に並ぶように配列されている。このような色配列を採用することで、観察位置からシリンドリカルレンズ35を介して観察される視差画像をR、G、Bを用いて構成することができる。一方、水平方向にも直線上に一列に並んでおり、同一列内でR、G、Bが交互に並ぶように配列されているが、この例に限らず、同一行で同じ色となるよう配列される態様としてもよい。
一般的なカラー画像表示装置においては、横に並んだRGBの3つのサブ画素32で1実効画素、即ち、輝度と色とが任意に設定できる最小単位が構成されることから、サブ画素の縦幅(3Pp)と横幅(Pp)との比は3:1となっている。なお、本実施形態では、サブ画素の縦幅と横幅との比が3:1の場合を示しているが、縦幅と横幅との比はこの例に限らないものとする。以下、サブ画素32の横幅Ppを画素ピッチという。
図2に示した表示面では、縦に並んだRGBの3つのサブ画素32で1の実効画素が形成され、これが横に並んだ9列の実行画素により、シリンドリカルレンズ35一つに対する視差画像の集合である要素画像33(黒枠で示される)が表示される。
レンチキュラー板34を構成する各シリンドリカルレンズ35は、要素画像33の略正面に夫々配置される。このような構成により、表示部3の画素に相当する射出瞳、即ち、シリンドリカルレンズ35のレンズ越しに拡大して見える実行画素が、水平方向の観察位置の変動に応じて切り替わる。なお、本説明ではサブ画素32の縦横比を3:1としているので、9視差とすることで表示部3の画素を正方形にすることができる。
1D−II方式や多眼式においても、表示部3の基本構成は図2に示した構成例と同様であり、観察位置に応じて射出瞳越しに観察される実行画素に表示された視差画像33(射出瞳ひとつに対応した要素画像の構成成分)が切り替わることで、観察者に三次元画像を視認させる。ここで、シリンドリカルレンズ35背後の要素画像33の要素画像幅Pは有限であることから、三次元画像を観察することが可能な領域、即ち視域も制限されることになる。以下、図3−1、図3−2を用いて要素画像33の幅と視域との関係について説明する。
図3−1は、表示部3の水平断面図である。また、図3−2は、図3−1に示したFPD31の最左端部分の要素画像33Lを拡大した図である。なお、図3−1、図3−2において、「P」は要素画像の横幅を意味している。また、「g」はレンチキュラー板34のレンズと要素画像33との間の距離(レンズ画素間距離)を意味している。また、「Ls1」は観察者の観察位置からレンチキュラー板34までの距離(視距離)を意味しており、後述する視域最適化距離に対応する。なお、図3−1中暗影部は要素画像33Lにより形成された視域を示している。
図3−1に示したように、観察者の観察位置がO1→O2→O3というように水平方向に移動すると、図3−2に示したように、この移動に応じて、シリンドリカルレンズ35のレンズ越しにサブ画素(実行画素)P1→P9からの表示用光線が順次切り替わって観察されることになる。なお、図3−2において、矢印はシリンドリカルレンズ35のレンズ越しに各実行画素が観察される主な方向を示している。実際は、画素が有限の幅を持っており、またレンズのデフォーカスも影響して、この主な方向を中心に観察できる範囲が広がっている。
ここで、一の要素画像について、視距離Ls1で三次元画像が観察される視域の幅(視域幅)を「VW」とすると、視域幅VWは下記式(1)の関係を有するため、下記式(2)のように表すことができる。
VW:(Pp×n)=Ls1:g (1)
VW=((Pp×n)×Ls1)/g (2)
上記式(2)から明らかなように、画素ピッチPpと視点数nとが一定の場合は、レンズ画素間距離gの値を小さくすることで視域幅VWを広くすることができる。なお、この場合、視差画像を提示する光線の間隔が広くなるため、奥行き方向の表示性能は低下することになる。
このように、三次元画像を観察できる領域には表示部3のハードウェア的な仕様や制約が深く関係している。そのため、有限の視距離で三次元画像を観察可能な領域を最大にするためには、上記式(1)の関係式で決まる全てのシリンドリカルレンズ35越しに要素画像が見える範囲、つまり視域幅VWを、視距離Ls1で一致させる必要がある。
ここで、図4−1、図4−2を参照して、視域幅VWを視距離Ls1で一致させる場合の手続きについて説明する。なお、図4−1は、表示部3の水平断面図を示した図である。また、図4−2は、図4−1に示したFPD31の最左端部分に含まれる一の要素画像33Lを拡大した図であり、要素画像幅と要素画像を表示するサブ画素を示している。
視域幅VWを視距離Ls1で一致させる場合には、図4−1、図4−2に示したように、要素画像33Lの中心と、シリンドリカルレンズ35の中心(射出瞳)と、を結ぶ直線を視距離Ls1で一点に交わらせればよい。このためには、シリンドリカルレンズ35の水平ピッチPsと要素画像幅Pとは下記式(3)の関係を満たす必要がある。なお、下記式(3)は下記式(4)のように変形できる。
Ls1:(Ls1+g)=Ps:P (3)
Ps=P×Ls1/(Ls1+g) (4)
上記式(4)を満たすために、多眼式の表示部3では、各シリンドリカルレンズ35の水平ピッチPsを表示面内に配列されたサブ画素32の横周期、即ち画素ピッチPpの視点数n倍よりLs/(Ls1+g)倍だけ短くなるよう作成する。これを一般化すると、シリンドリカルレンズ35の水平ピッチPsは、下記式(5)のように表すことができる。
Ps=(n×Pp)×Ls1/(Ls1+g) (5)
このため、多眼式における要素画像は常に視点数nに対応するn画素から形成されるとともに、水平方向にn個おきのサブ画素からの光線は視距離Ls1で集光点を形成する。
また、1D−II方式では、視距離Ls1に集光点を設けないようにする。このために、例えば、各シリンドリカルレンズの水平ピッチPsを、表示面内に配列されたサブ画素32の画素ピッチPpのn倍(nは視点数)に等しくする。即ち、下記式(6)を満たすようにシリンドリカルレンズの水平ピッチPsを作成する。
Ps=n×Pp (6)
これによって、水平方向にn個おきのサブ画素32から照射される光線は平行光線となる。このハードウェア構成において、視距離Ls1における視域を確保する((4)式を満たす)ためには、要素画像をn個のサブ画素から構成するとともに、(n+1)個のサブ画素から構成される要素画像を離散的に配置すればよい。
ここで、(n+1)個のサブ画素を発生させる割合を「m」とすると、要素画像幅Pは下記式(7)のように表すことができる。
P={(1−m)×n+m×(n+1)}×Pp (7)
また、上記式(7)は、式(4)及び式(6)より、下記式(8)となる。この式(8)を満たすように割合mを定めることで、視距離に集光点が発生することを防ぎつつ、上記式(4)を満たすことができる。
Ps/P=n/{(1−m)×n+m×(n+1)}
=Ls1/(Ls1+g) (8)
式(8)から、視域幅が最大になる視距離Ls1を長く設定したければ、割合mを小さくすればよいことが分かる。また、Ls1を短く設定したければ、割合mを大きくすればよいことが分かる。以下、本実施形態では、(n+1)個のサブ画素からなる要素画像を、上記式(8)から導出した割合mで離散的に発生させることで各要素画像を構成する画素数を決定し、視距離Ls1で視域幅VWを略一致させる処理を「視域最適化」と呼ぶ。また、この時の視距離Ls1を視域最適化距離と呼ぶ。
なお、(n+1)個のサブ画素からなる要素画像の発生位置は、視距離Ls1における視域の中心Ocから、各射出瞳の中心にむけてひかれた直線L1を中心に要素画像幅Pを定めたときの境界と、サブ画素の中心とを比較し、所属する要素画像を決定する判定を繰り返すことで定めることができる。
例えば、n=9であるとすると、各射出瞳の中心に向けて引かれた直線L1を中心に要素画像幅Pを定めたときの境界(左端と右端)より、画素中心が内側になるサブ画素32は、図4−2に示したように主に9個となるため、要素画像は主に9個のサブ画素から構成されることになる。しかしながら、上記式(8)よりP>9×Ppであることから、まれに、要素画像幅Pを定めたときの境界(左端と右端)の内側にサブ画素32の中心が入り、要素画像を構成するサブ画素32が10個になる場合がある。
なお、上記した視域最適化は、視距離Ls1で集光点が発生する多眼式にも適用可能である。即ち、ハードウェア的に設定された視距離Ls1以外の距離で視域幅を最大にしたい場合には、上記式(8)の関係を満たすように(n+1)個のサブ画素からなる要素画像が発生する割合mを定めればよい。
また、三次元画像の表示のためにFPD31に表示される要素画像アレイは、以下のように生成される。
図5は、多眼式の表示方式に応じた画像取得位置43と、視差画像45と、の関係の一例を示した模式図である。なお、図5では、視点数nをn=3とした場合を示している。同図において、要素画像44は、レンチキュラー板のレンズ一つに対応する視差画像45の集合である。このような要素画像の集合を要素画像アレイ(要素画像アレイ41)と称する。ここで、多視点画像とは、視点番号に応じた複数の異なる視点位置(画像取得位置)から単一の投影面を設定して撮影することで取得される画像(この図では46により表される二次元画像)である。このように取得した多視点画像を元に要素画像アレイを生成すると、三次元画像表示時に投影面がディスプレイ表面と一致することになる。
図5において、42は、視差画像45を表示したサブ画素と射出瞳(レンズ)の中心とを結ぶ線分であり、有限の距離(具体的にはLs1)で集光している。つまり、多眼式により三次元画像の表示を行う場合、この集光点が画像取得位置43に相当する。
図6は、1D−II方式の表示方式に応じた画像取得位置53と、視差画像55と、の関係の一例を示した模式図である。なお、図6では、視点数nをn=3とした場合を示している。要素画像54は、レンチキュラー板のレンズ一つに対応する視差画像55の集合であり、この要素画像54の集合が要素画像アレイ51となる。また、52は視差画像を表示したサブ画素と射出瞳(レンズ)の中心とを結ぶ線分である。ここで、線分52は上記式(6)の関係を満たしているため、平行光線で射出される。つまり、ID−II方式では、平行光線で多視点画像の取得を行い、この多視点画像をn画素毎のサブ画素に割り当てることが理想的である。ここで画像取得位置53は、取得される多視点画像は平行投影画像であるため、方向のみが規定され距離は規定されないことから、仮想的に配置している。
ところで、表示部3のFPD31に表示された要素画像アレイの観察は、表示部3から有限の距離離間した位置で行うことになる。有限の視距離で視域最適化を行った場合、より角度のついた光線情報が必要になることから、要素画像アレイを構成するために必要な多視点画像は、レンズ一本あたりの水平サブ画素数である視点数nより多くなる。具体的に、図6で示した1D−II方式では、視点数n=3(レンズ一本あたりの水平サブ画素数が3)と図5の多眼式とは同数であるが、画像取得位置は6箇所(視点番号−3、−2、−1、1、2、3)と多眼式の2倍となっている。
以下、図7を参照して、1D−II方式において、要素画像を構成するのに必要な多視点画像の数が増加する理由を説明する。図7は、視点数n=9とした場合の、要素画像33と、これを構成する視差画像と、射出瞳(シリンドリカルレンズ35)との関係を示した図である。
図7において、右端に位置するn=9個のサブ画素からなる要素画像33が、視点番号−2〜7に対応する視差画像から構成されているものとする。この要素画像33の左側にn+1=10個のサブ画素からなる要素画像33(図中中央の要素画像)が発生すると、追加された1のサブ画像は視点番号8の視差画像を表示することになる。そのため、図中左端に位置するn=9個のサブ画素からなる要素画像33は、視点番号−1〜8に対応する視差画像から構成される。つまり、上述した(n+1)個のサブ画素からなる要素画像が発生することで、要素画像を構成する視点番号が1ずれるとともに、レンズに対する
要素画像の相対的な位置も1サブ画素だけずれることになる。
視点番号のずれが意味するところは、射出瞳から射出される要素画像からの光線群の射出方向、即ち、三次元画像が表示される方向がシフトしたことに等しい。つまり、上記式(8)により、視域幅を広くする場合、つまり、視距離Lsをより小さくするような場合には、より角度のついた光線情報を包含した視差画像が必要になることから割合mの値が増加する。
なお、1D−II方式での視差画像は、前述したように同一視点の視点画像に由来する画像は平行光線に割り当てられている。そのため、観察者は、表示部3のFPD31に表示された要素画像アレイ(視差画像)を有限の距離から観察すると、複数の視点画像の足し合わせでその距離からの透視投影画像を見ることになる。
図8−1、図8−2、図8−3及び図8−4は、ID−II方式における要素画像アレイの見え方を説明するための図である。表示部3を有限の距離(図中矢印位置)から観察し、図8−1に示したように視点番号−2〜2の視差画像61が観察されたとすると、観察位置が左にずれた場合には、図8−2に示したように、視点番号−3〜1の視差画像61が観察されることになる。
また、図8−1で示した観察位置から、表示部3に近付いたときは、図8−3に示したように、視点番号−3、−1、1、3の視差画像61が観察されることになり、表示部3から遠ざかったときには、図8−4に示したように、視点番号−1、1の視差画像61が観察されることになる。結果的に観察者は、各観察位置に応じた透視投影画像を観察することで、三次元画像として視認することなる。
なお、図8−1、図8−2、図8−3及び図8−4では、単視点から見た場合を図示したが、両眼での観察においても同様であり、両眼夫々の観察位置に応じた透視投影映像を、三次元画像として視認することになる。つまり、表示された三次元画像は、実際に物が存在した場合の光線を荒くではあるがサンプリングしたものとなっており、三次元画像は空間中に固有の座標を持つ。これは、従来の2眼式に代表される両眼視差を利用した技術との決定的な相違点である。
また、図5に示した多眼式も、従来は集光点が設定視点距離で両眼間隔に設定された2眼式の延長上にある手法である。しかしながら近時、集光点を想定視距離より意図的に遠方に設定したり、両眼間隔より十分狭い間隔で設定する稠密多眼式とすることで、空間像的に表示する方式も提案されている。
上述したように、三次元画像の表示方式や表示を行う表示装置の仕様により多視点画像の生成方法は異なるため、生成した多視点画像を他の表示方式や表示装置に転用するような場合では、表示される三次元画像の正確さを維持することは困難である。そのため、本実施形態の三次元画像表示装置100では、後述する機能的構成の制御により、任意の画像取得位置で取得された多視点画像を、表示部3の仕様に応じて並び替え各サブ画素に割り当て直すことで、表示される三次元画像の正確さを維持する。
図9は、制御部1とROM4又は記憶部6に予め記憶された所定のプログラムとの協働により実現される、三次元画像表示装置100の機能的構成を示した図である。同図に示したように、三次元画像表示装置100は、機能的構成として多視点情報受付部11、仕様情報取得部12、要素画像アレイ生成部13及び表示制御部14を備えている。
多視点情報受付部11は、通信部7を介し外部から入力された多視点情報を受け付ける受付手段として機能し、受け付けた多視点情報を要素画像アレイ生成部13に出力する。ここで、多視点情報とは三次元画像の表示にかかる複数の多視点画像と、各視点画像の撮影位置の前後関係を示す視点番号と、を少なくとも含んだ情報群である。なお、多視点画像の入力は通信部7を介して外部から入力されるものに限らず、記憶部6に予め記憶された多視点情報を読み出すことで、受け付ける態様としてもよい。
仕様情報取得部12は、表示部3のハードウェア的な仕様や制約を定義した仕様情報9を記憶部6から読み出し、要素画像アレイ生成部13に出力する。ここで、仕様情報9としては、シリンドリカルレンズ35の水平ピッチPsや一のシリンドリカルレンズ35に対応する要素画像の視点数n、サブ画素32の画素ピッチPp、シリンドリカルレンズ35を通じて隣接するサブ画素から照射される光線間の角度(視域射出角)等が挙げられる。
要素画像アレイ生成部13は、仕様情報取得部12により取得された仕様情報に基づいて、表示部3の構成を仮想的に実現し、後述する要素画像アレイ生成処理時における表示部3から射出される光線の状態をシミュレーションにより導出する。
なお、本実施形態では、三次元画像表示装置100が備える表示部3に関する仕様情報を記憶部6に記憶する態様としたが、これに限らず、通信部7を介して外部装置から取得する態様としてもよい。また、他の三次元画像表示装置に備えられた表示部の仕様情報を取得する態様としてもよく、この場合、三次元画像表示装置100自身が表示部3を備えない態様としてもよい。
要素画像アレイ生成部13は、多視点情報受付部11及び仕様情報取得部12から取得した各種情報に基づいて、入力された多視点情報から表示部3の仕様に応じた要素画像アレイを生成する。
具体的に、要素画像アレイ生成部13は、仮想的に実現した表示部3の構成に基づいて、シリンドリカルレンズ35から所定距離離間した視距離Ls1において上述した視域最適化を行い、(n+1)個のサブ画素からなる要素画像が発生する割合mを定めることで、各要素画像33を構成するサブ画素32の数を決定する視域制御手段として機能する。
また、要素画像アレイ生成部13は、多視点情報受付部11で受け付けられた多視点情報に、画像取得位置情報が含まれているか否かを判定する。ここで、画像取得位置情報とは、多視点情報に含まれた各視点画像の画像取得位置に関する情報群であって、少なくとも画像取得距離Lcが含まれているものとする。
また、要素画像アレイ生成部13は、多視点情報受付部11で受け付けられた多視点情報に含まれた画像取得位置情報又は多視点画像の総数から、視距離Ls2を決定する。
また、要素画像アレイ生成部13は、FPD31の中心線に対応するLc2面の位置から、後述する光線間距離x毎に視点番号をFPD31の両側方向に順次割当て、対応する画像取得位置を設定する取得位置設定手段として機能する。
また、要素画像アレイ生成部13は、視域最適化を適用した後のFPD31の各サブ画素から射出される表示用光線のLs2面への入射位置を夫々導出する入射位置導出手段として機能する。ここで、Ls2面とは、三次元画像の表示面である表示部3(シリンドリカルレンズ35)から、視距離Ls2だけ離間した位置に仮想的に設けた表示部3の対向面である。なお、Ls2面は、表示部3と平行な面としてもよいし、曲面としてもよい。
また、要素画像アレイ生成部13は、視域最適化を適用した後のFPD31の各サブ画素から射出される表示用光線のLs2面への各入射位置と、Ls2面での画像取得位置とを比較し、各入射位置について最も近接する画像取得位置を夫々特定する取得位置特定手段として機能する。
また、要素画像アレイ生成部13は、各入射位置に対応する表示用光線の射出元となったサブ画素に特定した画像取得位置の視点番号に対応する視差画像を割り当て、要素画像アレイを生成する生成手段として機能する。
また、要素画像アレイ生成部13は、操作部2を介してユーザから指示される光線間距離xや視距離Ls2、視距離Ls1の値の変更指示を受け付ける変更受付手段として機能し、指示された値に基づいて要素画像アレイを生成する。
以下、図10〜17を参照して、要素画像アレイ生成部13について説明する。まず、図10は、n=9で且つ1D−II方式を採用した表示部3の水平断面図であって、視域最適化を適用する前の状態の各射出瞳(シリンドリカルレンズ35)から射出される光線の軌跡を示している。なお、正面に射出される光線を視点番号「0」で表し、視点番号0の左側に射出される光線をマイナス、右側に射出される光線をプラスでナンバリングしている(以下、同様)。
上述したように、特定の距離に集光点を設けない1D−II方式の場合では、各射出瞳
から射出される光線が平行の関係にある。そのため、これらの光線に対応する光線情報を取得するためには、図11に示したように、図10の視点番号−4〜4に対応する視点番号−4〜4の合計9視点から、投影面Vsに向けて平行投影、即ち、無限遠からの透視投影で多視点画像を取得する必要がある。これにより、各要素画像を構成するサブ画素のうち、同一位置のサブ画素に対応する射出瞳から射出される光線を平行光線とすることができる。
一方、図10と同様のハードウェア構成の表示部3において、有限の視距離Ls1について視域最適化を施した場合の各射出瞳から射出される光線の軌跡は、図12のように示される。抽象的な図ではあるが、最も左端の射出瞳(シリンドリカルレンズ35)からの光線情報を取得するためには、視点番号3〜11に対応する合計9視点から、平行投影で多視点画像を取得する必要がある。1D−II方式の場合、上述したように要素画像を構成する多視点画像の数は増加する。そのため、図12の構成では、全てのサブ画素について必要となる多視点画像の数、即ち、視点番号は−11〜11の23個必要となり、これら視点番号と投影面Vsに対する画像取得方向との関係は、図13のように表すことができる。
なお、平行投影で多視点画像を取得する際に必要となる多視点画像の総数、即ち、総視点数Naは、下記式(9)により求めることができる。ここで、HはFPD31の画面幅を意味している。
Na=(H−Ps+VW)×g/L/Pp+1 (9)
図14は、投影面と多視点画像取得位置の視点番号との関係を示した図である。同図では、図13で示した23方向からの平行投影で取得した多視点画像が保有する光線情報が満たす領域を、図中の暗影部で表している。ここで、投影面Vsに対する視点番号−11〜11からの破線で示した線分が実際に三次元画像の表示に用いる光線情報、即ち表示用光線に対応する。つまり、図14から、多視点画像が保有する光線情報が満たす領域が、表示用光線に較べ過多であることが分かる。
一方、図15は、図14と比較するための図であって、投影面Vsと多視点画像取得位置の視点番号との関係を示した図である。同図では、視域最適化距離Ls1から透視投影で取得した多視点画像が保有する光線情報が満たす領域を、図中の暗影部で表している。なお、多視点画像取得距離が有限の距離であるということは、多視点画像が透視投影で取得されることを意味する。有限の距離Ls1の視点番号−4〜4の9視点から取得した光線は、3次元画像の表示に用いる表示用光線(図中破線部)と略等しい。即ち、視域最適化距離Ls1が最も効率良く光線情報を取得することができる距離となっている。多眼式の場合では視距離に集光点があるため、三次元画像の表示に用いる光線情報と多視点画像として取得する光線情報とを完全に一致させることができる。
また、図16は、図14、15と対比するための図であって、投影面Vsと多視点画像取得位置の視点番号との関係を示した図である。同図では、無限遠より近く、視域最適化距離Ls1より遠い視距離Ls2から、透視投影で取得した多視点画像が保有する光線情報が満たす領域を、図中の暗影部で表している。図16の構成では、図14と比較しより効率的に多視点画像の光線情報を利用できるが、図15の構成よりは効率は悪いものとなっている。
図14、15、16での状態をまとめると、下記表のように表すことができる。ここで、表示用光線に含まれる誤差とは、平行光線とのずれ量であって、距離が無限遠に近付くほど誤差は低下することになる。
Figure 2009077234
要素画像アレイ生成部13は、上述した画像取得用の光線が満たす光線領域と三次元画像の表示用光線が満たす光線領域との乖離に着目し、視域最適化距離Ls1での表示用光線に基づいて、多視点情報に含まれた視差画像群から要素画像アレイを生成する。以下、要素画像アレイ生成部13の動作原理について説明する。
射出瞳を介して射出された各サブ画素32からの表示用光線間は、有限の視距離Lにおいて等間隔で観察されることになる。このとき、一の要素画像から射出された表示要光線の距離Lにおける表示用光線間の間隔(光線間距離x)は、下記式(10)により表される。
Pp:x=g:L (10)
ここで、各表示用光線が距離Lの面に入射する位置(入射位置)は、表示部3を投影面Vsとした場合での画像取得位置と対応している。つまり、これら画像取得位置で取得された多視点画像から抽出した視差画像を、対応するサブ画素に割り当てた要素画像アレイを生成することで、距離Lに応じた三次元画像を表示することが可能である。この場合、図13で示した視点番号分の多視点画像よりも多視点画像の数を減少させることができる。
例えば、図16の例では、視域最適化距離Ls1で投影面Vsからの光線の入射位置が略同一化された表示用光線群は、Ls1以遠で再度広がりを見せる。このとき、一の要素画像から射出された距離Ls2面での表示用光線の光線間距離xは、上記式(10)により規定され、視点番号−6〜6の各位置に表示用光線が入射される。これら表示用光線の入射位置は、表示部3を投影面Vsとした場合での多視点画像取得位置と対応しており、視点番号−6〜6の合計13個となっている。つまり、図13で示した23視点の平行投影多視点画像と比較して、10視点分の多視点画像を減少させることができる。
要素画像アレイ生成部13は、上述した表示用光線の入射位置と画像取得位置との関係に基づいて、多視点情報受付部11により受け付けられた多視点情報から要素画像アレイを生成する。つまり、要素画像アレイ生成部13は、多視点情報から導出した視距離Ls2面での画像取得位置を上記(10)式に基づいて設定し、このLs2面に入射する視距離Ls1で視域最適化した各サブ画素からの表示用光線の位置に最も近接した画像取得位置を対応するサブ画素に割り当てることで、多視点情報から要素画像アレイを生成する。
ここで、図17を参照して、多視点画像から抽出した視差画像のサブ画素への割り当てについて説明する。図17は、表示部3の水平断面図を示した図であって、視距離Ls1で視域最適化後のサブ画素から射出された表示用光線の軌跡を示している。33Lは、FPD31の左端に位置する要素画像を示しており、33CはFPD31の中央に位置する要素画像を示しており、33Rは、FPD31の右端に位置する要素画像を示している。また、要素画像アレイ生成部13により、多視点情報に含まれた画像取得距離Lc又は多視点画像数に基づき有限の視距離Ls2が設定され、このLs2面において、上記式(10)により画像取得位置に対応する視点番号−5〜5が夫々設定されたものとする。
ここで、要素画像33Lに着目すると、要素画像33Lの各サブ画素から射出された表示用光線のLs2面での入射位置は、視点番号−3〜5に夫々近接していることがわかる。この場合、要素画像アレイ生成部13は、これら視点番号−3〜5に対応する9個の視差画像を多視点情報から取り出し、要素画像33Lの各サブ画素に割り当てる。
また、要素画像33Cに着目すると、要素画像33Cの各サブ画素から射出された表示用光線のLs2面での入射位置は、視点番号−4〜4に夫々近接していることが分かる。この場合、要素画像アレイ生成部13は、これら視点番号−4〜4に対応する9個の多視点画像から視差画像を取り出し、要素画像33Cの各サブ画素に割り当てる。
さらに、要素画像33Rに着目すると、要素画像33Rの各サブ画素から射出された表示用光線のLs2面での入射位置は、視点番号−5〜3に夫々近接していることがわかる。この場合、要素画像アレイ生成部13は、これら視点番号−5〜3に対応する9個の多視点画像から視差画像を取り出し、要素画像33Rの各サブ画素に割り当てる。
このように、要素画像アレイ生成部13は、FPD31を構成する全てのサブ画素について、対応する多視点画像から抽出した視差画像を割り当てて行くことで要素画像アレイを生成する。なお、図17の例では、(n+1)個のサブ画素から構成される要素画像については図示していないが、上記同様(n+1)個のサブ画素について対応する多視点画像から抽出した視差画像が割り当てられるものとする。
以下、図18を参照して、三次元画像表示装置100の動作を説明する。ここで、図18は、要素画像アレイ生成処理の手順を示したフローチャートである。なお、本処理の前提として、仕様情報取得部12により表示部3に関する仕様情報9が記憶部6等から取得され、要素画像アレイ生成部13に出力されているものとする。
まず、多視点情報受付部11により、通信部7等を介して多視点情報の入力が受け付けられると(ステップS11)、要素画像アレイ生成部13は、この多視点情報に画像取得位置情報が含まれているか否かを判定する(ステップS12)。
ステップS12において、多視点情報に画像取得位置情報が含まれていると判定した場合には(ステップS12;Yes)、要素画像アレイ生成部13は、画像取得位置情報に含まれた画像取得距離Lcを視距離Ls2として設定する(ステップS13)。
要素画像アレイ生成部13は、仕様情報取得部12により取得された仕様情報9に基づいて、視距離Ls1で視域最適化を実行する(ステップS14)。なお、ここで視距離Ls1は有限の視距離であるものとし、Ls1≦Ls2の関係を満たすものとする。
続いて、要素画像アレイ生成部13は、FPD31の中心線に対応するLc2面の位置から、上記式(10)により導出した光線間距離x毎に視点番号をFPD31の両側方向に順次割当て、Ls2面上での画像取得位置を設定する(ステップS15)。
なお、本実施形態では、上記式(10)に基づいて光線間距離xを決定する態様としたが、これに限らず、多視点情報に画像取得位置の間隔を示す情報が含まれていた場合には、この画像取得位置の間隔を光線間距離xとする態様としてもよい。
次いで、要素画像アレイ生成部13は、視域最適化後の各サブ画素から射出された表示用光線が、Ls2面に入射する入射位置を夫々導出し(ステップS16)、各入射位置に最も近接する画像取得位置(視点番号)を夫々特定する(ステップS17)。
次に、要素画像アレイ生成部13は、Ls2面への各入射位置に対応する表示用光線の射出元となったサブ画素に、ステップS17で特定した視点番号の多視点画像から抽出した視差画像を夫々割当て、要素画像アレイを生成し(ステップS18)、ステップS26の処理へと移行する。
一方、ステップS12において、多視点情報に画像取得位置情報が含まれていないと判定した場合には(ステップS12;No)、要素画像アレイ生成部13は、仕様情報取得部12により取得された仕様情報9に基づいて、有限の視距離Ls1で視域最適化を実行した後(ステップS19)、有限の視距離Ls2を仮設定する(ステップS20)。ここで、Ls1とLs2との関係は、Ls1≦Ls2であるものとする。
要素画像アレイ生成部13は、FPD31の中心線に対応するLc2面の位置から、上記式(10)により導出した光線間距離x毎に視点番号をFPD31の両側方向に順次割当て、Ls2面上での画像取得位置を設定する(ステップS21)。
次いで、要素画像アレイ生成部13は、視域最適化後の各サブ画素から射出された表示用光線が、Ls2面に入射する入射範囲の幅、即ちLs2面における視域幅VWを導出する(ステップS22)。
続いて、要素画像アレイ生成部13は、多視点情報に含まれた総視点番号に基づいて、Ls2面上における画像取得範囲の幅を導出する(ステップS23)。具体的には、(視差画像数−1)×光線間距離xを算出することで画像取得範囲を導出することができる。
次に、要素画像アレイ生成部13は、ステップS22で導出した入射範囲の幅と、ステップS23で導出した取得範囲の幅と、が略一致するか否かを判定する(ステップS24)。なお、両幅が略一致すると判定する程度は任意に設定することが可能であるものとする。
ステップS24において、両幅が一致しないと判定した場合には(ステップS24;No)、要素画像アレイ生成部13は、ステップS19の処理へと再び戻り、Ls2を他の値で仮設定する。また、ステップS24において、両幅が略一致すると判定した場合には(ステップS24;Yes)、要素画像アレイ生成部13は、現在仮設定中のLs2の値を正式な値として設定し直し(ステップS25)、ステップS16の処理に移行する。
ステップS26では、表示制御部14が、ステップS18で生成された要素画像アレイを、FPD31の各サブ画素32に表示させることで、三次元画像を表示部3に表示させる(ステップS26)。
ここで、操作部2を介し、光線間距離xの値を変更する指示情報が入力されると(ステップS27;Yes)、要素画像アレイ生成部13は、この指示された値に光線間距離xを変更した後、ステップS15の処理へと再び戻り、ステップS16〜18の処理を行うことで、変更後の光線間距離xについて要素画像アレイを生成する。
即ち、三次元画像表示装置100のユーザは、表示部3に表示された三次元画像を観察しながら、光線間距離xの値を変更することが可能となっており、その見え方を適宜修正することができる。
また、操作部2を介し、Ls2の値を変更する指示情報が入力されると(ステップS27;No→ステップS28;Yes)、要素画像アレイ生成部13は、この指示された値にLs2を変更した後、ステップS15の処理へと再び戻り、ステップS16〜18の処理を行うことで、変更後のLs2についての要素画像アレイを生成する。
即ち、三次元画像表示装置100のユーザは、表示部3に表示された三次元画像を観察しながら、Ls2の値を変更することが可能となっており、その見え方を適宜修正することができる。なお、変更後のLs2の値は、Ls1以上であるものとするが、Ls1を下回らないよう操作部2からの入力を制限することとしてもよいし、Ls2の値に応じLs1の値を自動的に修正する態様としてもよい。
また、操作部2を介し、Ls2の値を変更する指示情報が入力された場合には(ステップS28;No→ステップS29;Yes)、要素画像アレイ生成部13は、この指示された値にLs1を変更した後、ステップS14の処理へと再び戻り、ステップS15〜18の処理を行うことで、変更後のLs1についての要素画像アレイを生成する。
即ち、三次元画像表示装置100のユーザは、表示部3に表示された三次元画像を観察しながら、Ls1の値を変更することが可能となっており、その見え方を適宜修正することができる。なお、変更後のLs1の値は、Ls2以下であるものとするが、Ls2を上回らないよう操作部2からの入力を制限することとしてもよいし、Ls1の値に応じLs2の値を自動的に修正する態様としてもよい。
また、要素画像アレイ生成部13は、操作部2を介しパラメータを変更する指示が入力されないと判断すると(ステップS27;No→ステップS28;No→ステップS29;No)、本処理を終了する。
なお、上記要素画像アレイ生成処理の手順は、多眼式又は1D−II方式であっても変わりはない。つまり、多視点情報受付部11により受け付けられた多視点情報が多眼式又は1D−II方式に基づいて生成されたものであったとしても、この多視点情報から表示部3の仕様に応じた要素画像アレイを生成することができる。
ここで、図19、20を参照して、本要素画像アレイ生成処理により生成された要素画像アレイの表示状態について説明する。図19、20は、1D−II方式で同一視点位置から取得された多視点画像に由来する視差画像が割り当てられた各サブ画素のからの光線の軌跡を示したものである。
図19は、平行投影画像として取得した単一の視点画像から抽出した視差画像をサブ画素に割り当てた場合の光線群の軌跡を示している。図中太線で示したようにサブ画素からの光線は平行関係にある。この場合、各サブ画素からの光線方向と各視差画像取得時の視線方向とは一致するため、視差画像が表す情報と各サブ画素からの表示用光線が表す情報に乖離は生じず、正しい三次元画像を表示することができる。
また、図20は、有限の視距離から透視投影画像として取得された単一の視点画像から抽出した視差画像をサブ画素に割り当てた場合の光線群の軌跡を示している。図中太線で示したようにサブ画素からの光線は略透視の関係にある。1D−II方式では、有限の視距離で集光点を設けないようにしていることから、視差画像が表す情報と各サブ画素からの表示用光線が表す情報との間に誤差が生じることになる。しかしながら、各サブ画素からの光線方向と各視差画像取得時の視線方向とを近付けることができるため、全体としては略正しい三次元画像を表示することができる。
以上のように、本実施形態の三次元画像表示装置100によれば、任意の条件で取得された多視点情報に含まれる各視差画像を、視距離Ls1において略同一の領域に入射されるよう要素画像を構成する画素数を調整した各画素からの光線の入射位置と、各視差画像の画像取得位置と、に基づき、表示パネルを構成する各画素に割り当てる。これにより、各画素からの光線方向と、各視差画像取得時の視線方向とを近付けることができるため、簡易なプロセスで正確さを維持した三次元画像を表示する要素画像アレイを生成することができる。
なお、上述した要素画像アレイ生成処理において、画像取得位置の間隔、即ち光線間距離xの値が変更された場合、表示される三次元画像の奥行きが変化することになる。例えば、画像取得位置の間隔が1/2になると、三次元画像は奥行き方向に略1/2につぶれた状態で表示される。
また、視距離Ls1、視距離Ls2の変更により、画像取得距離が変更されると、三次元画像の透視度が変化することになる。この場合、例えば、画像取得距離が小さくなると透視度が大きくなり、表示部3より手前にあるものがより大きく、奥にあるものがより小さく表示される。また、画像取得距離が大きくなると透視度が小さくなり、透視度がゼロの場合は、手前にあるものに比べて奥にあるものが小さく表示される。正しい三次元画像の表示状態が分かる場合、この関係を意識して画像取得距離、画像取得間隔を調整し、所望の表示状態を実現することが可能である。
なお、本実施形態では、表示部3に表示された三次元画像をユーザが視認することで、表示状態の正確さを確認する態様としたが、これに限らず、例えば、正しい三次元画像データと表示部3に表示された三次元画像とを照合することで、表示状態の正確さを判定する態様としてもよい。
具体的には、表示部3に表示された三次元画像を、好ましくは複数の視点から撮影する撮像装置を備え、要素画像アレイ生成部13は、この撮像装置で取得された三次元画像の画像データと、記憶部6等に予め記憶した正しい三次元画像データと、の照合度を算出することで、表示された三次元画像の正確さを判定する。この判定の結果、照合度が所定の閾値以下であった場合、要素画像アレイ生成部13は、視距離Ls1やLs2、光線間距離xの値を修正し、照合度が所定の閾値を超えるまで調整を行う。このように、表示された三次元画像の正確さを自動的に調整することで、正確な三次元画像をユーザに提示することができる。
また、本実施形態では、水平方向の三次元画像の表示について説明したが、これに限らず、垂直方向についても適用することとしてもよい。例えば、視差画像の垂直方向と水平方向との画像取得距離を異ならせることができる場合(透視度を異ならせることができる場合)、水平方向については視距離Ls2、垂直方向については視距離Ls1で視差画像を取得することにより、垂直方向と水平方向ともに透視度が正しい三次元画像を表示することができる。
以上、発明の実施の形態について説明したが、本発明はこれに限定されるものではなく、本発明の主旨を逸脱しない範囲での種々の変更、置換、追加などが可能である。
例えば、三次元画像表示装置100における各処理を実行するプログラムを、インストール可能な形式又は実行可能な形式でCD−ROM、フロッピー(R)ディスク(FD)、DVD等のコンピュータで読み取り可能な記録媒体に記録して提供する態様としてもよい。
また、三次元画像表示装置100における各処理を実行するプログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成しても良い。
この場合には、プログラムは、三次元画像表示装置100において上記記録媒体から読み出して実行することによりRAM5上にロードされ、上記機能的構成で説明した各部がRAM5上に生成される。
また、本実施形態では、光線制御子としてシリンドリカルレンズ35からなるレンチキュラー板34を用いた態様を説明したが、これに限らず、レンズアレイやピンホールアレイ等を光線制御子として用いた態様としてもよい。
三次元画像表示装置の構成を示した図である。 表示部の構造を示した図である。 表示部の水平断面図である。 要素画像から射出される光線を示した図である。 表示部の水平断面図である。 要素画像幅と要素画像を表示するサブ画素を示した図である。 多視点画像取得位置と視差画像との関係の一例を示した模式図である。 多視点画像取得位置と視差画像との関係の一例を示した模式図である。 要素画像とこれを構成する視差画像と射出瞳との関係を示した図である。 視差画像の見え方を説明するための図である。 視差画像の見え方を説明するための図である。 視差画像の見え方を説明するための図である。 視差画像の見え方を説明するための図である。 三次元画像表示装置の機能的構成を示した図である。 表示部の水平断面図である。 投影面と多視点画像取得位置の視点番号との関係を示した図である。 表示部の水平断面図である。 投影面と多視点画像取得位置の視点番号との関係を示した図である。 投影面と多視点画像取得位置の視点番号との関係を示した図である。 投影面と多視点画像取得位置の視点番号との関係を示した図である。 投影面と多視点画像取得位置の視点番号との関係を示した図である。 表示部の水平断面図である。 要素画像アレイ生成処理の手順を示したフローチャートである。 表示部の水平断面図である。 表示部の水平断面図である。
符号の説明
100 三次元画像表示装置
1 制御部
2 操作部
3 表示部
31 FPD
32 サブ画素
33 要素画像
34 レンチキュラー板
35 シリンドリカルレンズ
4 ROM
5 RAM
6 記憶部
7 通信部
8 バス
9 仕様情報
11 多視点情報受付部
12 仕様情報取得部
13 要素画像アレイ生成部
14 表示制御部

Claims (10)

  1. 所定幅を有する画素がマトリクス状に配列され、三次元画像表示のための各要素画像が複数画像に表示される表示パネルと、前記表示パネルの前面に配置され、前記所定幅の略整数倍のピッチ幅で設けられた射出瞳により前記各画素からの光線方向を制御し、当該各射出瞳に対応する要素画像を前記表示パネルから所定距離離間した領域に向けて射出する光線制御部と、に関する仕様を定義した仕様情報を記憶する記憶手段と、
    互いに異なる視点位置から取得された複数の視差画像を含む多視点画像を受け付ける受付手段と、
    前記仕様情報に基づき、前記要素画像を構成する各画素の中心と、当該要素画像に対応する前記射出瞳の中心とを結んだ光線の軌跡群が、前記光線制御部から所定距離離間した第1視距離において略同一の領域に入射されるよう前記要素画像の画素数を決定する視域制御手段と、
    前記仕様情報に基づき、前記光線制御部から所定距離離間した第2視距離の面上に、前記多視点画像の画像取得位置を設定する取得位置設定手段と、
    前記射出瞳を通じて射出された前記要素画像の各画素からの光線が、前記第2視距離の面に入射する入射位置を夫々導出する入射位置導出手段と、
    前記入射位置毎に、当該入射位置に最も近接する画像取得位置を特定する取得位置特定手段と、
    前記各入射位置に対応する光線の射出元の各画素に、前記取得位置特定手段で特定した画像取得位置に対応する多視点画像から抽出した視差画像を割り当て、要素画像アレイを生成する生成手段と、
    を備えたことを特徴とする三次元画像処理装置。
  2. 前記受付手段は、前記多視点画像を取得した際の注視点を含む投影面と画像取得位置との間の距離を示した画像取得距離を受け付け、
    前記取得位置設定手段は、前記受付手段で受け付けられた画像取得距離を、前記第2視距離として設定することを特徴とする請求項1に記載の三次元画像処理装置。
  3. 前記取得位置設定手段は、前記光線制御部から所定距離離間した第3視距離面において、前記多視点画像について画像取得位置を設定した際の画像取得領域の幅と、前記射出瞳を通じて射出された前記要素画像の各画素からの光線の、前記第3視距離面への入射領域の幅と、が略一致する第3視距離を前記第2視距離として決定することを特徴とする請求項1に記載の三次元画像処理装置。
  4. 前記取得位置設定手段は、前記表示パネルと光線制御部との間の距離と前記光線制御部からの視距離との関係に基づき、前記画素の所定幅から前記第2視距離の面上における画像取得位置間の間隔を決定することを特徴とする請求項1〜3の何れか一項に記載の三次元画像処理装置。
  5. 前記第1視距離の変更指示を受け付ける変更受付手段を更に備え、
    前記視域制御手段は、前記変更された第1視距離において略同一の領域に入射されるよう、前記要素画像の画素数を再度調整することを特徴とする請求項1に記載の三次元画像処理装置。
  6. 前記第2視距離の変更指示を受け付ける変更受付手段を更に備え、
    前記取得位置設定手段は、前記変更された第2視距離の面上に前記多視点画像の画像取得位置を再度設定することを特徴とする請求項1に記載の三次元画像処理装置。
  7. 前記第2視距離の面上に設定された前記画像取得位置間の間隔の変更指示を受け付ける変更受付手段を更に備え、
    前記取得位置設定手段は、前記変更された画像取得位置間の間隔で前記視点画像の画像取得位置を再度設定することを特徴とする請求項1に記載の三次元画像処理装置。
  8. 前記視域制御手段は、前記要素画像がn個の視点位置から取得された多視点画像から抽出したn個の視差画像から構成される第1要素画像の表示配列中に、(n+1)個の視点位置から取得された多視点画像から抽出した(n+1)個の視差画像から構成される第2要素画像を離散的に発生させることを特徴とする請求項1に記載の三次元画像処理装置。
  9. 互いに異なる視点位置から取得された複数の多視点画像を受け付ける受付工程と、
    所定幅を有する画素がマトリクス状に配列され、三次元画像表示のための各要素画像が複数画像に表示される表示パネルと、前記表示パネルの前面に配置され、前記所定幅の略整数倍のピッチ幅で設けられた射出瞳により前記各画素からの光線方向を制御し、当該各射出瞳に対応する要素画像を前記表示パネルから所定距離離間した領域に向けて射出する光線制御部と、に関する仕様を定義した仕様情報に基づいて、前記要素画像を構成する各画素の中心と、当該要素画像に対応する前記射出瞳の中心とを結んだ光線の軌跡群が、前記光線制御部から所定距離離間した第1視距離において略同一の領域に入射されるよう前記要素画像の画素数を決定する視域制御工程と、
    前記仕様情報に基づき、前記光線制御部から所定距離離間した第2視距離の面上に、前記多視点画像の画像取得位置を設定する取得位置設定工程と、
    前記射出瞳を通じて射出された前記要素画像の各画素からの光線が、前記第2視距離の面に入射する入射位置を夫々導出する入射位置導出工程と、
    前記入射位置毎に、当該入射位置に最も近接する画像取得位置を特定する取得位置特定工程と、
    前記各入射位置に対応する光線の射出元の各画素に、前記取得位置特定工程で特定した画像取得位置に対応する多視点画像から抽出した視差画像を割り当て、要素画像アレイを生成する生成工程と、
    を含むことを特徴とする三次元画像処理方法。
  10. コンピュータを、
    互いに異なる視点位置から取得された複数の多視点画像情報を受け付ける受付手段と、
    所定幅を有する画素がマトリクス状に配列され、三次元画像表示のための各要素画像が複数画像に表示される表示パネルと、前記表示パネルの前面に配置され、前記所定幅の略整数倍のピッチ幅で設けられた射出瞳により前記各画素からの光線方向を制御し、当該各射出瞳に対応する要素画像を前記表示パネルから所定距離離間した領域に向けて射出する光線制御部と、に関する仕様を定義した仕様情報に基づいて、前記要素画像を構成する各画素の中心と、当該要素画像に対応する前記射出瞳の中心とを結んだ光線の軌跡群が、前記光線制御部から所定距離離間した第1視距離において略同一の領域に入射されるよう前記要素画像の画素数を決定する視域制御手段と、
    前記仕様情報に基づき、前記光線制御部から所定距離離間した第2視距離の面上に、前記多視点画像の画像取得位置を設定する取得位置設定手段と、
    前記射出瞳を通じて射出された前記要素画像の各画素からの光線が、前記第2視距離の面に入射する入射位置を夫々導出する入射位置導出手段と、
    前記入射位置毎に、当該入射位置に最も近接する画像取得位置を特定する取得位置特定手段と、
    前記各入射位置に対応する光線の射出元の各画素に、前記取得位置特定手段で特定した画像取得位置に対応する多視点画像から抽出した視差画像を割り当て、要素画像アレイを生成する生成手段と、
    して機能させる三次元画像処理プログラム。
JP2007245258A 2007-09-21 2007-09-21 三次元画像処理装置、方法及びプログラム Pending JP2009077234A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007245258A JP2009077234A (ja) 2007-09-21 2007-09-21 三次元画像処理装置、方法及びプログラム
CNA2008102157416A CN101394572A (zh) 2007-09-21 2008-09-09 三维图像处理装置以及方法
EP08016268A EP2040478A2 (en) 2007-09-21 2008-09-16 Apparatus, method, and computer program product for processing three-dimensional images
US12/234,235 US20090079733A1 (en) 2007-09-21 2008-09-19 Apparatus, method, and computer program product for processing three-dimensional images

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007245258A JP2009077234A (ja) 2007-09-21 2007-09-21 三次元画像処理装置、方法及びプログラム

Publications (1)

Publication Number Publication Date
JP2009077234A true JP2009077234A (ja) 2009-04-09

Family

ID=40010950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007245258A Pending JP2009077234A (ja) 2007-09-21 2007-09-21 三次元画像処理装置、方法及びプログラム

Country Status (4)

Country Link
US (1) US20090079733A1 (ja)
EP (1) EP2040478A2 (ja)
JP (1) JP2009077234A (ja)
CN (1) CN101394572A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4937424B1 (ja) * 2010-11-22 2012-05-23 株式会社東芝 立体画像表示装置および方法
WO2012161075A1 (ja) * 2011-05-26 2012-11-29 ソニー株式会社 表示装置および方法、並びにプログラム
WO2012161076A1 (ja) * 2011-05-26 2012-11-29 ソニー株式会社 表示装置および方法、並びにプログラム
US8368744B2 (en) 2011-02-21 2013-02-05 Kabushiki Kaisha Toshiba Image display apparatus, image processing device, and image processing method
JP2013190713A (ja) * 2012-03-15 2013-09-26 Sony Corp 表示装置および方法、情報処理装置および方法、並びにプログラム
JP2014093779A (ja) * 2012-10-31 2014-05-19 Samsung Electronics Co Ltd 映像処理方法及び映像処理装置
KR20140126308A (ko) * 2012-01-26 2014-10-30 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 자동 입체 디스플레이 및 3d 이미지를 표시하는 방법
JP2015515165A (ja) * 2012-02-16 2015-05-21 ディメンコ ビー.ヴィー.Dimenco B.V. 裸眼立体ディスプレイ装置及び駆動方法
JP2016081027A (ja) * 2014-10-11 2016-05-16 深▲セン▼超多▲維▼光▲電▼子有限公司 立体表示装置の校正システム及びその校正方法

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008085503A (ja) * 2006-09-26 2008-04-10 Toshiba Corp 三次元画像処理装置、方法、プログラム及び三次元画像表示装置
GB2467794A (en) * 2009-02-17 2010-08-18 Arik Noam Shamash 3D television and display unit
CN102349304B (zh) * 2009-03-30 2015-05-06 日本电气株式会社 图像显示装置、图像生成装置、图像显示方法、图像生成方法和存储程序的非暂时计算机可读介质
US7978407B1 (en) 2009-06-27 2011-07-12 Holovisions LLC Holovision (TM) 3D imaging with rotating light-emitting members
JP5296218B2 (ja) 2009-09-28 2013-09-25 株式会社東芝 立体映像表示方法及び立体映像表示装置
US8587498B2 (en) * 2010-03-01 2013-11-19 Holovisions LLC 3D image display with binocular disparity and motion parallax
JP5835932B2 (ja) * 2010-07-02 2015-12-24 キヤノン株式会社 画像処理装置、及びその制御方法
CN101895779B (zh) * 2010-07-23 2011-10-05 深圳超多维光电子有限公司 立体显示方法和系统
WO2012073336A1 (ja) * 2010-11-30 2012-06-07 株式会社 東芝 立体映像表示装置及び方法
EP2461238B1 (en) 2010-12-02 2017-06-28 LG Electronics Inc. Image display apparatus including an input device
JP6058282B2 (ja) * 2011-05-19 2017-01-11 東芝メディカルシステムズ株式会社 医用画像診断装置及び画像処理装置
JP2013006019A (ja) * 2011-05-23 2013-01-10 Toshiba Corp 医用画像診断装置、画像処理装置及び超音波診断装置
US9363504B2 (en) * 2011-06-23 2016-06-07 Lg Electronics Inc. Apparatus and method for displaying 3-dimensional image
CN103096014B (zh) * 2011-10-28 2016-03-30 华为技术有限公司 一种视频呈现方法和系统
JP5818674B2 (ja) * 2011-12-21 2015-11-18 株式会社東芝 画像処理装置、方法、及びプログラム、並びに、画像表示装置
US20130163854A1 (en) * 2011-12-23 2013-06-27 Chia-Ming Cheng Image processing method and associated apparatus
CN102740104B (zh) * 2012-06-04 2015-04-15 深圳超多维光电子有限公司 一种立体显示控制方法及相应的装置、设备
US10116927B2 (en) 2012-09-26 2018-10-30 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for reproducing image information and autostereoscopic screen
EP2936046A1 (en) * 2012-12-20 2015-10-28 Marposs Societa' Per Azioni System and method for checking dimensions and/or position of an edge of a workpiece
US9992484B2 (en) 2013-05-17 2018-06-05 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for reproducing image information, and autostereoscopic screen
KR102135686B1 (ko) 2014-05-16 2020-07-21 삼성디스플레이 주식회사 입체영상 표시장치 및 이의 구동 방법
CN106297610B (zh) 2015-06-05 2020-03-17 北京智谷睿拓技术服务有限公司 显示控制方法和装置
CN106297611B (zh) * 2015-06-05 2021-08-10 北京智谷睿拓技术服务有限公司 显示控制方法和装置
CN106291953B (zh) 2015-06-05 2019-01-08 北京智谷睿拓技术服务有限公司 显示控制方法和装置
CN105007476B (zh) * 2015-07-01 2017-05-10 北京邮电大学 一种图像显示方法及装置
CN105118421B (zh) * 2015-09-29 2018-03-20 京东方科技集团股份有限公司 像素阵列及其驱动方法和显示面板
CN105911712B (zh) * 2016-06-30 2018-12-04 北京邮电大学 一种多视点液晶显示器lcd裸眼3d显示方法及装置
CN106231286B (zh) * 2016-07-11 2018-03-20 北京邮电大学 一种三维图像生成方法及装置
CN106898048B (zh) * 2017-01-19 2019-10-29 大连理工大学 一种可适应复杂场景的无畸变集成成像三维显示方法
KR101963392B1 (ko) * 2017-08-16 2019-03-28 한국과학기술연구원 무안경식 3차원 영상표시장치의 동적 최대 시역 형성 방법
TWI665905B (zh) * 2017-10-27 2019-07-11 群睿股份有限公司 立體影像產生方法、成像方法與系統
CN109410780A (zh) * 2018-12-04 2019-03-01 深圳奇屏科技有限公司 一种低串扰裸眼3d-led大屏幕
CN110297333B (zh) * 2019-07-08 2022-01-18 中国人民解放军陆军装甲兵学院 一种光场显示系统调节方法及系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH099143A (ja) 1995-06-21 1997-01-10 Canon Inc 画像処理装置
DE19827590C2 (de) * 1998-06-20 2001-05-03 Christoph Grosmann Verfahren und Vorrichtung zur Autostereoskopie
US7425951B2 (en) * 2002-12-27 2008-09-16 Kabushiki Kaisha Toshiba Three-dimensional image display apparatus, method of distributing elemental images to the display apparatus, and method of displaying three-dimensional image on the display apparatus
US7375886B2 (en) * 2004-04-19 2008-05-20 Stereographics Corporation Method and apparatus for optimizing the viewing distance of a lenticular stereogram
JP3944188B2 (ja) 2004-05-21 2007-07-11 株式会社東芝 立体画像表示方法、立体画像撮像方法及び立体画像表示装置
US20060215018A1 (en) * 2005-03-28 2006-09-28 Rieko Fukushima Image display apparatus
JP2007245258A (ja) 2006-03-14 2007-09-27 Nec Tokin Corp 配管連結用治具
JP4403162B2 (ja) * 2006-09-29 2010-01-20 株式会社東芝 立体画像表示装置および立体画像の作製方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4937424B1 (ja) * 2010-11-22 2012-05-23 株式会社東芝 立体画像表示装置および方法
WO2012070103A1 (ja) * 2010-11-22 2012-05-31 株式会社 東芝 立体画像表示装置および方法
US8368744B2 (en) 2011-02-21 2013-02-05 Kabushiki Kaisha Toshiba Image display apparatus, image processing device, and image processing method
WO2012161076A1 (ja) * 2011-05-26 2012-11-29 ソニー株式会社 表示装置および方法、並びにプログラム
JP2012248979A (ja) * 2011-05-26 2012-12-13 Sony Corp 表示装置および方法、並びにプログラム
JP2013008001A (ja) * 2011-05-26 2013-01-10 Sony Corp 表示装置および方法、並びにプログラム
WO2012161075A1 (ja) * 2011-05-26 2012-11-29 ソニー株式会社 表示装置および方法、並びにプログラム
US9842570B2 (en) 2011-05-26 2017-12-12 Saturn Licensing Llc Display device and method, and program
KR20140126308A (ko) * 2012-01-26 2014-10-30 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 자동 입체 디스플레이 및 3d 이미지를 표시하는 방법
JP2015510328A (ja) * 2012-01-26 2015-04-02 フラウンホファー−ゲゼルシャフトツア フェデルンク デア アンゲヴァンテン フォルシュンク エーファウ オートステレオスコピックディスプレイおよび3d画像の表示方法
KR101953112B1 (ko) * 2012-01-26 2019-02-28 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 자동 입체 디스플레이 및 3d 이미지를 표시하는 방법
JP2015515165A (ja) * 2012-02-16 2015-05-21 ディメンコ ビー.ヴィー.Dimenco B.V. 裸眼立体ディスプレイ装置及び駆動方法
JP2013190713A (ja) * 2012-03-15 2013-09-26 Sony Corp 表示装置および方法、情報処理装置および方法、並びにプログラム
JP2014093779A (ja) * 2012-10-31 2014-05-19 Samsung Electronics Co Ltd 映像処理方法及び映像処理装置
JP2016081027A (ja) * 2014-10-11 2016-05-16 深▲セン▼超多▲維▼光▲電▼子有限公司 立体表示装置の校正システム及びその校正方法

Also Published As

Publication number Publication date
EP2040478A2 (en) 2009-03-25
US20090079733A1 (en) 2009-03-26
CN101394572A (zh) 2009-03-25

Similar Documents

Publication Publication Date Title
JP2009077234A (ja) 三次元画像処理装置、方法及びプログラム
EP2786583B1 (en) Image processing apparatus and method for subpixel rendering
TWI452340B (zh) Dimensional image display device, image display method
KR101675961B1 (ko) 적응적 부화소 렌더링 장치 및 방법
KR102121389B1 (ko) 무안경 3d 디스플레이 장치 및 그 제어 방법
US9674509B2 (en) Multi-view 3D image display apparatus using modified common viewing zone
JP5306275B2 (ja) 表示装置及び立体画像の表示方法
EP2562581A1 (en) Three-dimensional video display device and three-dimensional video display method
EP2811746A1 (en) Glasses-free 3d image display device for flattening field of view and minimizing dynamic crosstalk
US9110296B2 (en) Image processing device, autostereoscopic display device, and image processing method for parallax correction
US9020238B2 (en) Stereoscopic image generation method and stereoscopic image generation system
JP5881732B2 (ja) 画像処理装置、立体画像表示装置、画像処理方法および画像処理プログラム
JP6060329B2 (ja) 3dディスプレイ装置で3次元映像を視覚化する方法および3dディスプレイ装置
US10694173B2 (en) Multiview image display apparatus and control method thereof
KR20150144439A (ko) 입체 영상 표시 장치
JP2012186653A (ja) 画像表示装置、方法およびプログラム
KR101975246B1 (ko) 다시점 영상 디스플레이 장치 및 그 제어 방법
KR20140115854A (ko) 입체 영상 표시 장치 및 입체 영상 표시 방법
AU2015289185B2 (en) Method for the representation of a three-dimensional scene on an auto-stereoscopic monitor
TW201320719A (zh) 立體畫像顯示裝置、畫像處理裝置及畫像處理方法
KR102463170B1 (ko) 3차원 영상을 표시하는 장치 및 방법
US20140293019A1 (en) Apparatus and method for producing stereoscopic subtitles by analyzing three-dimensional (3d) space
KR20160081029A (ko) 무안경 다시점 3d 디스플레이 장치 및 그의 영상 처리 방법
KR102293837B1 (ko) 입체영상표시장치 및 이의 동작방법
TWI469625B (zh) Image processing apparatus and method, and stereoscopic image display apparatus