KR100632887B1 - 격자 패치 배치, 리소그래피 장치, 검사 방법, 디바이스제조방법 및 이에 의해 제조된 디바이스 - Google Patents

격자 패치 배치, 리소그래피 장치, 검사 방법, 디바이스제조방법 및 이에 의해 제조된 디바이스 Download PDF

Info

Publication number
KR100632887B1
KR100632887B1 KR1020040107795A KR20040107795A KR100632887B1 KR 100632887 B1 KR100632887 B1 KR 100632887B1 KR 1020040107795 A KR1020040107795 A KR 1020040107795A KR 20040107795 A KR20040107795 A KR 20040107795A KR 100632887 B1 KR100632887 B1 KR 100632887B1
Authority
KR
South Korea
Prior art keywords
patch
patches
lattice
grid
lens
Prior art date
Application number
KR1020040107795A
Other languages
English (en)
Other versions
KR20050062428A (ko
Inventor
폴트니셔먼
콕하이코빅터
Original Assignee
에이에스엠엘 네델란즈 비.브이.
에이에스엠엘 홀딩 엔.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이에스엠엘 네델란즈 비.브이., 에이에스엠엘 홀딩 엔.브이. filed Critical 에이에스엠엘 네델란즈 비.브이.
Publication of KR20050062428A publication Critical patent/KR20050062428A/ko
Application granted granted Critical
Publication of KR100632887B1 publication Critical patent/KR100632887B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70516Calibration of components of the microlithographic apparatus, e.g. light sources, addressable masks or detectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70141Illumination system adjustment, e.g. adjustments during exposure or alignment during assembly of illumination system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/7015Details of optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Semiconductor Lasers (AREA)

Abstract

본 발명의 일 실시예에 따른 배치의 일 구성에서, 일 모듈상의 제1격자 패치는 또 다른 모듈상에서 제1격자 패치와 정렬된다. 상기 배치의 상이한 구성에서는, 일 모듈상의 제2격자 패치가 또 다른 모듈상에서 제2격자 패치와 정렬된다. 상기 두 구성은 동시에 존재하지 않는다.

Description

격자 패치 배치, 리소그래피 장치, 검사 방법, 디바이스 제조방법 및 이에 의해 제조된 디바이스{GRATING PATCH ARRANGEMENT, LITHOGRAPHIC APPARATUS, METHOD OF TESTING, DEVICE MANUFACTURING METHOD, AND DEVICE MANUFACTURED THEREBY}
도 1은 본 발명의 일 실시예에 따른 리소그래피 장치를 나타낸 도;
도 2는 최첨단기술에 다른 렌즈의 광학 특성들을 결정하는 디바이스를 개략적으로 나타낸 도;
도 3은 본 발명에 따라 제안된 디바이스를 나타낸 도;
도 4a 및 4b는 본 발명이 기초로 하는 원리를 보다 상세히 나타낸(매우 개략적인) 도;
도 5는 격자의 가능한 분포를 개략적으로 나타낸 도;
도 6은 본 발명의 추가 실시예를 나타낸 도;
도 7은 리소그래피 목적에 사용되지 않는 웨이퍼(또는 마스크)의 일 부분상에 존재하는 공간의 보다 경제적인 사용을 예시한 도;
도 8은 몇몇 격자 패치들로부터 투영되는 빛이 어떻게 디텍터상에 별도의 측정 스폿을 형성할 수 있는지를 나타낸 도이다.
상기 도면들에서, 대응되는 참조부호들은 대응되는 부분들을 나타낸다.
본 발명은 리소그래피 투영장치 및 방법에 관한 것이다.
본 명세서에서 채용된 "패터닝 구조체(patterning structure)"라는 용어는 기판의 타겟부에 형성되어야 할 패턴에 대응하는 패터닝된 단면을 입사하는 방사선빔에 부여하는데 사용될 수 있는 어떠한 구조체 또는 필드(field)을 의미하는 것으로서 폭넓게 해석되어야 하며, 본 명세서에서는 "광밸브(light valve)"라는 용어로도 사용된다. 일반적으로, 상기 패터닝 구조체상에 "표시되는(displayed)" 패턴은 결국 가령, [예를 들어, 피처들의 예비 바이어싱(pre-biasing), 광 근접 보정 피처(optical proximity correction features), 위상 및/또는 편광 변형 기술(polarization variation techniques), 및/또는 다중 노광 기술(multiple exposure techniques)이 사용되는] 기판 또는 그것의 층으로 전달되는 패턴과는 실질적으로 상이할 수 있다. 일반적으로, 이러한 패턴은 집적 회로 또는 기타 디바이스와 같이 타겟부에 형성될 디바이스 내의 특정기능층에 해당할 것이다(이하 참조). 패터닝 구조체는 반사형 및/또는 투과형일 수 있다. 패터닝 구조체의 예로는 다음과 같은 것들이 포함된다.
- 마스크. 이 마스크의 개념은 리소그래피분야에서 잘 알려져 있고, 바이너리(binary)형, 교번위상-시프트(alternating phase-shift)형 및 감쇠위상-시프트형과 같은 마스크형식과 다양한 하이브리드 마스크형식을 포함한다. 방사선빔내에 이 러한 마스크가 놓이면, 마스크상의 패턴에 따라 마스크상으로 입사되는 방사선의 선택적인 투과(투과형 마스크의 경우) 또는 반사(반사형 마스크의 경우)가 이루어진다. 마스크의 경우에는, 일반적으로 지지구조체가 마스크테이블이 되고, 상기 마스크테이블은 입사하는 방사선빔내의 소정위치에 마스크가 고정될 수 있게 하며, 필요한 경우에는 마스크를 상기 빔에 대하여 상대적으로 이동시킬 수 있도록 한다.
- 프로그래밍가능한 거울 어레이. 이러한 장치의 예로는, 점탄성 제어층 (viscoelastic control layer)과 반사면을 구비한 매트릭스-어드레서블 표면이 있다. 이러한 장치의 기본원리는, (예를 들어) 반사면의 어드레스된 영역(addressed area)에서는 입사광이 회절광으로 반사되는 반면, 어드레스되지 않은 영역에서는 입사광이 비회절광으로 반사되는 것이다. 적절한 필터를 사용하면, 상기 비회절광을 반사빔으로부터 필터링하여 회절광만 남게 할 수 있다; 이러한 방식으로, 상기 빔은 매트릭스-어드레서블 표면의 어드레싱패턴에 따라 패터닝되게 된다. 이에 대응되는 방식으로 격자 광 밸브(GLV)들의 어레이가 사용될 수도 있으며, 각각의 GLV는, 입사광을 회절광으로서 반사시키는 격자를 형성하도록 (예를 들어 전기 포텐셜의 적용에 의하여) 서로에 대해 변형될 수 있는 복수의 반사 리본을 포함한다. 프로그램가능한 거울 어레이의 추가적인 대안실시예는 매트릭스배열의 매우 작은 [예를 들어 초소형(microscopic)] 거울을 사용할 수 있으며, 상기 거울 각각은 적절히 국부화된 전기장을 인가하거나 또는 압전식 작동수단을 채용함으로써 축에 대하여 개별적으로 경사질 수 있다. 예를 들어, 상기 거울들은 매트릭스-어드레서블하여, 어드레스된 거울이 어드레스되지 않은 거울과는 상이한 방향으로 입사하는 방사선 빔을 반사시키도록 한다. 이 방식에서, 반사된 빔은 매트릭스 어드레서블 거울의 어드레싱 패턴에 따라 패터닝된다. 요구되는 매트릭스 어드레싱은 적절한 전자수단을 사용하여 수행될 수 있다. 상술된 상황 모두에서, 패터닝 구조체는 하나 이상의 프로그램가능한 거울 어레이를 포함할 수 있다. 이러한 거울 어레이에 관한 보다 상세한 정보는, 예를 들어 본 명세서에서 참조자료로 포함되어 있는 자료들인, 미국특허 US 5,296,891호, US 5,523,193호, 및 PCT 특허 출원 WO 98/38597호 및 WO 98/33096호로부터 얻을 수 있다. 프로그래밍 가능한 거울 어레이의 경우에, 상기 지지구조체는 예를 들어, 필요에 따라 고정되거나 또는 이동할 수 있는 프레임 또는 테이블로 구현될 수 있다.
- 프로그래밍가능한 LCD 패널. 이러한 구조의 일례는 본 명세서에서 참조자료로 채용되고 있는 미국특허 US 5,229,872호에 개시되어 있다. 상술된 바와 같이, 이러한 경우에서의 지지구조체는 예를 들어, 필요에 따라 고정되거나 또는 이동할 수 있는 프레임 또는 테이블로 구현될 수 있다.
설명을 간단히 하기 위하여, 본 명세서의 나머지 부분 중 어느 곳에서는 그 자체가 마스크(또는 "레티클")와 마스크테이블(또는 "레티클 테이블")과 관련된 예시적인 용어로서 지칭될 수도 있다. 하지만, 그러한 예시에서 논의된 일반적인 원리는 상술한 바와 같은 패터닝 구조체의 광의의 개념으로 보아야 한다.
리소그래피 장치는 소정 표면(예를 들어 기판의 타겟부)상으로 필요한 패턴을 적용하는데 사용될 수 있다. 리소그래피 투영장치는 예를 들어 집적회로(IC)의 제조에 사용될 수 있다. 이 경우에, 패터닝 구조체는 집적회로의 개별층에 대응되 는 회로패턴을 생성할 수 있으며, 이 패턴은 방사선감응재(레지스트) 층으로 도포된 기판(예를 들어, 실리콘 웨이퍼 또는 여타 반도체 재료)상의 (예를 들어, 1이상의 다이 및/또는 부분(들)을 포함하는) 타겟부상에 묘화될 수 있다. 일반적으로, 한 장의 웨이퍼는 인접해 있는 타겟부들의 전체 매트릭스 또는 네트워크를 포함하며, 이들 타겟부는 투영시스템을 통하여 (예를 들어, 한번에 하나씩) 연속적으로 조사된다. 마스크테이블상의 마스크에 의한 패터닝을 채용하는 현재 통용되는 장치중에서, 두 가지의 서로 다른 형식의 기계 사이에 구분이 있을 수 있다. 한 형태의 리소그래피 투영장치에서는 타겟부상에 전체마스크패턴을 한번에 노광함으로써 각 타겟부가 조사되는데, 이러한 장치를 통상 웨이퍼 스테퍼라고 한다. 통상 스텝-앤드-스캔 장치(step-and-scan apparatus)라 지칭되는 대안적인 장치에서는, 투영빔 하에서 소정의 기준방향("스캐닝"방향)으로 마스크패턴을 점진적으로 스캐닝하는 한편, 상기 방향과 동일방향 또는 반대방향으로 기판을 동기화시켜 스캐닝함으로써 각 타겟부가 조사되는데, 일반적으로 투영시스템은 배율인자(magnification factor) M(일반적으로 <1)을 가질 것이므로 기판테이블이 스캐닝되는 속도(V)는 마스크테이블이 스캐닝되는 속도의 인자 M배가 될 것이다. 스캐닝 형식의 장치에 있어 투영 빔은 스캐닝 방향으로 소정의 슬릿 폭을 갖는 슬릿의 형태를 가질 수 있다. 여기에 서술된 리소그래피장치와 관련된 보다 상세한 정보는 예를 들어, 본 명세서에서 참조로 채용된 US 6,046,792호에서 찾을 수 있다.
리소그래피 투영장치를 사용하는 제조공정에서, (예를 들어, 마스크의) 패턴은 방사선감응재(예를 들어, 레지스트)층이 적어도 부분적으로 도포된 기판상에 묘 화된다. 이 묘화단계에 앞서, 기판은 전처리(priming), 레지스트 도포 및/또는 소프트 베이크와 같은 여러가지 다른 과정을 거칠 수 있다. 노광 후 기판은, 후-노광 베이크(PEB), 현상, 하드 베이크 및/또는 묘화된 피처들의 측정/검사와 같은 또 다른 과정을 거치게 된다. 이러한 일련의 과정은, 디바이스(예를 들어 IC)의 각각의 층을 패터닝하는 기초로서 사용된다. 예를 들어, 이들 과정들(transfer procedures)은 기판상의 패터닝된 레지스트 층을 가져올 수 있다.
증착, 에칭, 이온주입(도핑), 금속화, 산화, 화학-기계적 연마 등과 같은 1이상의 패턴 프로세스가 이어지며, 이들 모두는 각각의 층을 생성, 수정 또는 마무리하기 위해 의도될 수 있다. 여러 개의 층이 요구된다면, 새로운 층마다 전체공정 또는 그것의 변형된 공정이 반복될 수 있다. 그 결과로, 기판(웨이퍼)상에는 디바이스의 어레이가 존재하게 될 것이다. 이들 디바이스는 다이싱 또는 소잉 등의 기술에 의해 서로 분리되고, 이들 각각의 디바이스는 캐리어에 장착되고 핀 등에 접속될 수 있다. 이와 같은 공정에 관한 추가정보는 예를 들어, "Microchip Fabrication: A Practical Guide to Semiconductor Processing"(3판, Peter van Zant 저, McGraw Hill출판사, 1997, ISBN 0-07-067250-4)으로 부터 얻을 수 있다.
본 명세서에서 지칭되는 바와 같은 기판은 예를 들어 트랙(통상적으로 레지스트의 층을 기판에 적용하고 노광된 레지스트를 현상하는 툴)이나 메트롤로지 또는 검사 툴에서 노광 전 또는 후에 처리될 수도 있다. 적용이 가능할 경우, 본 명세서의 내용은 상기 및 기타 기판 처리 툴에 적용될 수 있다. 또한, 기판은 (예를 들어 다중 층 IC를 생성시키기 위하여) 한번 이상 처리될 수 있어서, 본 명세서에 서 사용된 기판이라는 용어는 다중 처리된 층을 이미 포함하는 기판을 지칭할 수도 있다.
"투영시스템"이라는 용어는, 예를 들어, 굴절광학시스템, 반사광학시스템 및 카타디옵트릭 시스템을 포함하는 다양한 형태의 투영시스템을 포괄하는 것으로서 폭넓게 해석되어야 한다. 특정 투영시스템은 사용되는 노광 방사선, 노광 경로내의 침지 유체(들) 또는 가스 충전 영역의 유형, 노광 경로의 전체 또는 일부에 진공이 사용될지의 여부 등과 같은 팩터들을 기반으로 하여 선택될 수 있다. 설명을 간략히 하기 위하여, 이후에는 상기 투영시스템을 "렌즈"라 지칭할 수도 있다. 또한, 방사선 시스템은 방사선 투영빔의 지향, 성형, 저감, 확대, 패터닝 및/또는 제어를 위한 상기 디자인 형태들 중 어느 것에 따라 작동하는 구성요소들을 포함할 수 있고, 이후에는 이러한 구성요소들을 집합적으로 또는 개별적으로 "렌즈"라고 언급할 수도 있다.
또한, 상기 리소그래피 장치는 2이상의 기판테이블(및/또는 2이상의 마스크 테이블)을 갖는 형태일 수도 있다. 이러한 "다수스테이지" 장치에서는 추가 테이블이 병렬로 사용될 수 있거나, 1이상의 테이블이 노광에 사용되고 있는 동안 1이상의 다른 테이블에서는 준비작업 단계가 수행될 수도 있다. 듀얼 스테이지 리소그래피 장치는, 예를 들어 본 명세서에서 참조를 위해 채용한 미국특허 제5,969,441호 및 PCT 특허출원 WO 98/40791에 개시되어 있다.
또한, 리소그래피장치는 투영시스템의 최종요소와 기판 사이의 공간을 채우도록 비교적 높은 굴절률을 가지는 액체(예를 들어, 물)에 기판이 침지되는 형태일 수도 있다. 침지액은 리소그래피장치내의 여타의 공간, 예를 들어 마스크와 투영시스템의 제1요소 사이에 적용될 수도 있다. 당 업계에서는 투영시스템의 개구수를 증가시키기 위한 침지 기술의 사용이 잘 알려져 있다.
본 명세서에서, "방사선" 및 "빔"이란 용어는 (예를 들어, 365, 248, 193, 157 또는 126㎚의 파장을 갖는) 자외선(UV)과 (예를 들어, 파장이 5 내지 20㎚ 범위의 파장을 갖는)극자외(EUV)선 뿐만 아니라 (이온빔 또는 전자빔과 같은) 입자빔을 포함하는 모든 형태의 전자기방사선을 포괄하여 사용된다.
본 명세서에서는 IC의 제조에 있어서의 리소그래피 장치의 사용에 대하여 언급하였으나, 상기 장치는 달리 가능한 응용례들을 가진다는 것을 분명히 이해해야 한다. 예를 들어, 그것은 집적 광학시스템의 제조, 자기 도메인 메모리, 액정표시패널, 박막자기헤드, DNA 분석 디바이스 등을 위한 가이던스 및 검출패턴의 제조에 채용될 수 있다. 당업자라면, 이러한 대안적인 적용례와 관련하여, 본 명세서에서 사용된 "웨이퍼" 또는 "다이"와 같은 용어의 어떠한 사용도 각각 "기판" 및 "타겟부"와 같은 좀 더 일반적인 용어로 대체될 수 있다는 것을 고려해야 한다.
리소그래피 투영장치에 조명시스템 및/또는 투영렌즈의 광학적 특성들을 평가하는 것이 바람직할 수 있다. 하드웨어의 교체를 필요로(resort)하지 않고 위와 같은 평가를 달성하고 렌즈 교정을 수행하는 것 또한 바람직할 수 있다.
본 발명의 일 실시예에 따른 배치는 렌즈의 제1측면상에 배치되는 격자 패치들의 제1세트를 포함하고, 상기 제1세트는 제1격자 패치 및 제2격자 패치를 포함한 다. 상기 배치는 또한 상기 제1측면과 실질적으로 광학적으로 대향되는 렌즈의 제2측면상에 배치되는 격자 패치들의 제2세트를 포함하며, 상기 제2세트는 제3격자 패치 및 제4격자 패치를 포함한다. 상기 제1 및 제2세트들 중 1이상은 서로에 대하여 이동가능하다. 상기 배치의 제1구조에서는, 제1격자 패치와 제3격자 패치가 정렬되는 한편, 상기 배치의 제2구조에서는, 제2격자 패치와 제4격자 패치가 정렬된다. 상기 제1 및 제2구조는 동시에 존재하지 않는다.
이러한 배치를 포함하는 리소그래피 장치 및 검사 방법 또한 개시된다. 본 발명의 다른 실시예들은 렌즈 교정의 방법, 교정된 렌즈를 포함하는 리소그래피 장치 및 디바이스 제조방법과 이에 의해 제조된 디바이스를 포함한다.
본 발명의 실시예들은, 예를 들어, 광학시스템의 광학 특성들의 신속하고, 믿을 수 있고, 빈틈없으며 정확한 판정을 획득하는데 사용될 수 있는 방법, 장치 및 측정 디바이스를 포함한다.
도 1은 본 발명의 특정 실시예에 따른 리소그래피 투영장치를 개략적으로 도시하고 있다. 상기 장치는 다음의 것들을 포함한다:
방사선(예를 들어, UV 또는 EUV 방사선)의 투영빔(PB)을 공급하도록 구성된 (예를 들어, 공급가능한 구조를 갖는) 방사선 시스템 : 이 특정 실시예에서, 방사선 시스템(RS)은 방사선 소스(SO), 빔 전달 시스템(BD) 및 조명모드, 인티그레이터(IN) 및 콘덴싱 광학기(CO)를 설정하기 위한 조정구조체(AM)을 포함하는 조명시스템(IL)을 포함하여 이루어진다;
상기 투영빔을 패터닝할 수 있는 패터닝 구조체를 지지하도록 구성된 지지구조체 : 본 예시에서, 제1대상물테이블(마스크테이블)(MT)은 마스크(MA)(예를 들어, 레티클)를 잡아주는 마스크홀더가 제공되고, 아이템 PL에 대하여 상기 마스크를 정확히 위치시키는 제1위치설정구조체에 연결된다;
기판을 잡아주로록 구성된 제2대상물테이블(기판테이블) : 본 예시에서, 기판테이블(WT)에는 기판(W)(예를 들어, 레지스트 코팅된 반도체웨이퍼)을 잡아주는 기판홀더가 제공되고, 상기 기판을 아이템 PL에 대하여 정확히 위치시키는 제2위치설정구조체 및 렌즈(PL)에 대한 상기 기판 및/또는 기판테이블의 위치를 정확히 나타내도록 구성된 측정구조체(IF)에 연결된다; 그리고
상기 패터닝된 빔을 투영하도록 구성된 투영시스템("렌즈") : 본 예시에서, 투영시스템(PL)(예를 들어, 굴절 렌즈 그룹, 카타디옵트릭(catadioptric) 또는 카톱트릭(catoptric) 시스템 및/또는 거울시스템)은 마스크(MA)의 조사된 부분을 기판(W)의 타겟부(C)(예를 들어, 1이상의 다이 및/또는 그것의 부분(들)을 포함함)상으로 묘화(image)하도록 구성된다. 대안적으로, 상기 투영시스템은 프로그램가능한 패터닝 구조체의 요소들이 셔터로서 작용할 수 있는 제2소스들의 이미지들을 투영할 수 있다. 또한, 상기 투영시스템은 예를 들어 제2소스를 형성하고 상기 기판상으로 마이크로스폿(microspots)을 투영하기 위한 마이크로렌즈 어레이(MLA)를 포함할 수도 있다.
도시된 바와 같이, 상기 장치는 (예를 들어, 투과형 마스크를 구비한) 투과형이다. 하지만, 일반적으로, 그것은 (예를 들어, 반사형 마스크를 구비한) 반사형 일 수도 있다. 대안적으로는, 상기 장치는 상술된 바와 같은 형태의 프로그램가능한 거울 어레이와 같은 패터닝 구조체의 또 다른 종류를 채용할 수도 있다.
소스(SO)[예를 들어, 수은 램프, 엑시머 레이저, 전자 건, 레이저 발사 플라즈마 소스나 방전 프라즈마 소스, 또는 저장 링이나 싱크로트론의 전자 빔의 경로 주위에 제공되는 언듈레이터(undulator)]는 방사선의 빔을 생성한다. 상기 빔은 직접 조명시스템(일루미네이터)(IL)에 들어 가거나, 컨디셔닝 구조체 또는 필드를 거친 다음에 조명시스템(일루미네이터)(IL)으로 들어간다. 예를 들어, 빔전달시스템(BD)은 적절한 지향 거울 및/또는 빔 익스펜더를 포함할 수 있다. 상기 일루미네이터(IL)는, 예를 들어, 기판에서 투영빔에 의하여 전달되는 방사선 에너지의 각도 분포에 영향을 미칠 수 있는, 빔내의 세기 분포의 외반경 및/또는 내반경 크기(통상 각각 외측-σ 및 내측-σ라 함)를 설정하는 조정구조체 또는 필드(AM)를 포함하여 이루어진다. 또한, 상기 장치는 일반적으로 인티그레이터(IN) 및 콘덴서(CO)와 같은 여타 다양한 구성요소들을 포함하고 있다. 이러한 방식으로, 마스크(MA)에 입사되는 빔(PB)은 그 단면에 원하는 균일성과 세기 분포를 갖게 된다.
도 1과 관련하여, 상기 방사선 소스(SO)는 리소그패피 투영장치의 하우징내에 놓이지만(흔히 예를 들어, 방사선 소스(SO)가 수은램프인 경우에서 처럼), 그것이 리소그래피 투영장치로부터 멀리 떨어져 있어서 그것이 만들어 낸 방사선 빔이 (가령, 적절한 지향 거울의 도움으로) 장치 내부로 들어오게 할 수도 있다. 후자의 시나리오는 방사선 소스(SO)가 대개 엑시머레이저인 경우이다. 본 발명과 청구 범위는 이들 시나리오를 모두 포괄하고 있다.
이후, 상기 빔(PB)은 마스크테이블(MT)상에 잡혀 있는 마스크(MA)를 통과한다. 마스크(MA)를 지난(대안적으로는, 선택적으로 반사된) 빔(PB)은 렌즈(PL)를 통과하여 기판(W)의 타겟부(C)위에 빔(PB)을 포커싱한다. 제2위치설정구조체(및 간섭계측정구조체(IF))의 도움으로, 기판테이블(WT)은, 예를 들어 빔(PB)의 경로내에 상이한 타겟부(C)를 위치시키도록 정확하게 이동될 수 있다. 이와 유사하게, 제1위치설정구조체는 예를 들어, 마스크 라이브러리로부터 마스크(MA)를 기계적으로 회수한 후에, 또는 스캔하는 동안에, 빔(PB)의 경로에 대하여 마스크(MA)를 정확히 위치시키도록 사용될 수 있다. 일반적으로 대상물테이블(MT, WT)의 이동은, 도 1에 명확히 도시되지는 않았지만, 장행정모듈(long-stroke module)(개략 위치설정) 및 단행정모듈(미세 위치설정)의 도움을 받아 실현될 것이다. 하지만, (스텝-앤드-스캔 장치와는 대조적으로) 웨이퍼스테퍼의 경우에 마스크테이블(MT)이 단행정액추에이터에만 연결되거나 또는 고정될 수도 있다. 마스크(MA) 및 기판(W)은 마스크 정렬마크(M1,M2) 및 기판 정렬마크(P1,P2)를 사용하여 정렬될 수도 있다.
도시된 장치는 다음의 몇가지 바람직한 모드로 사용될 수 있다.
1. 스텝 모드에서는, 마스크테이블(MT)이 기본적으로 정지상태로 유지되는 한편, 전체 마스크 패턴이 한번에(즉, 단일 "섬광(flash)"으로) 타겟부(C)상에 투영된다. 이후 기판테이블(WT)이 X 및/또는 Y 방향으로 시프트되어 다른 타겟부(C)가 빔(PB)에 의하여 조사될 수 있다.
2. 스캔 모드에서는, 소정 타겟부(C)가 단일 "섬광"으로 노광되지 않는다는 것을 제외하고 기본적으로 동일한 시나리오가 적용된다. 그 대신에, 마스크테이블 (MT)이 v의 속도로 소정 방향(소위 "스캔방향", 예를 들어 y 방향)으로 이동 가능해서, 투영빔(PB)이 마스크 이미지의 모든 부분을 스캐닝할 수 있도록 한다. 이와 함께, 기판테이블(WT)은 속도 V=Mv로, 동일한 방향 또는 그 반대 방향으로 동시에 이동되는데, 이 때 M은 렌즈(PL)의 배율(통상 M=1/4 또는 M=1/5)이다. 이러한 방식으로, 분해능을 떨어뜨리지(compromise) 않고도 비교적 넓은 타겟부(C)가 노광될 수 있다.
3. 또 다른 모드에서는, 마스크테이블(MT)이 프로그램가능한 패터닝 구조체를 잡아주어 기본적으로 정적인 상태로 유지되며, 투영빔에 부여된 패턴이 타겟부(C)상에 투영되는 동안 기판테이블(WT)이 움직이거나 스캐닝된다. 이 모드에서는, 일반적으로 펄스방사선소스(pulsed radiation source)가 채용되며, 기판테이블(WT)의 매 이동후, 또는 스캔시 연속적인 방사선펄스들 사이에서 필요에 따라 프로그램가능한 패터닝수단이 업데이트된다. 이 작동 모드는, 위에서 언급된 바와 같은 종류의 프로그램가능한 거울 어레이와 같은 프로그램가능한 패터닝 구조체를 활용하는 마스크없는(maskless) 리소그래피에 용이하게 적용될 수 있다.
또한, 상술된 사용 모드들의 조합 및/또는 변형, 또는 전체적으로 상이한 사용 모드가 채용될 수도 있다.
리소그래피 투영장치의 조명시스템 및/또는 투영렌즈의 광학 특성들을 평가하기 위한 몇몇 유형의 측정들이 수행되는 것이 바람직하다. 국제특허출원공보 WO 01/63233A2는 레티클 레벨에 배치된 소스 모듈 및 기판 레벨에 배치된 센서 모듈을 포함하는 측정 디바이스에 대하여 기술하고 있다. 측정동안, 상기 소스와 센서 모 듈 사이에는 투영렌즈가 배치된다.
이하에서, "격자 패치"라는 용어는 1이상의 격자들을 포함하는 영역을 나타낸다. 이러한 응용의 분야에서, "격자 패치"라는 용어는, 예를 들어 션형 패턴(예를 들어, 래스터(raster) 패턴) 또는 2차원 패턴(예를 들어, 체스보드 형태의 패턴)을 지칭할 수 있다. WO 01/63233A2의 일반적으로 알려진 구현물들은 단 한가지 형태의 격자 패치를 포함하고 있다.
투영렌즈의 상이한 광학적 특성들의 판정을 개선시키기 위하여, 상이한 형태의 격자 패치들이 유리할 수 있다. 각각의 격자 패치는 특정한 응용을 위하여 디자인되거나 최적화되는 구조일 수 있다. 가령, 격자 패치 타입 A는, 예를 들어 매우 빠른 측정에 사용될 수 있는 작은 피치의 격자를 포함하고, 격자 패치 타입 B는, 예를 들어 매우 높은 분해능의 웨이브 프론트 측정 또는 확대된 측정 범위를 위해 사용되고, 격자 패치 타입 C는, 예를 들어 퓨필 측정에 사용될 수 있는 핀홀을 포함하며, 격자 패치 타입 D는, 예를 들어 확대된 캡처 범위에 사용될 수 있다. 특히 상기 핀홀은 조명시스템에 대한 측정 데이터를 얻을 수 있도록 한다.
레티클 레벨에 배치되는 격자 패치 A, B, C 및 D의 모든 타입에 대하여, 대응되는 등가의 격자 패치 A, B, C 및 D가 기판 레벨로 존재할 수도 있다. 레티클 레벨의 격자 패치에는 측정 빔이 공급된다. 상기 측정 빔은, 그것이 기판 레벨의 대응되는 격자 패치에 도달할 때까지 레티클 레벨의 격자 패치 및 투영 렌즈를 거쳐 간다. 기판 레벨의 격자 패치의 하류에 배치되는 추가 센서(예를 들어, 카메라나 여타 묘화 센서)는 전사되는 측정 빔의 세기를 판정할 수 있다. 미국특허출원 2003-0001107A1에 개시된 바와 같이 1이상의 광학적 특성을 동시에 측정하는 방법이 사용될 수도 있다.
여기서, 기판테이블상에 장착되는 이미지 센서 모듈을 포함하는 조립체가 개시된다. 상기 이미지 센서 모듈은 특정 피치 및 라인 폭을 갖는 격자들을 포함하는 이미지 센서 마크 패턴들을 갖는다. 일련의 센서 마크 패턴들과 상호작동하기 위한 마스크 마크 패턴들이 마스크에 배치된다. 마스크 레벨의 마스크 마크 패턴들과 상호작동하는 웨이퍼 레벨의 이미지 센서 마크 패턴들의 이 조립체는 렌즈 수차, 렌즈 확대 및 왜곡 그리고 렌즈의 초점 평면을 판정하는 측정을 허락할 수 있으나, 또한 기판테이블 및 마스크 패턴(마스크테이블)의 정렬을 허락할 수도 있다.
격자 패치들은 서로에 대해 너무 근접하게 배치되지 않는 것이 바람직할 것이다. 즉 그들 사이에 불충분한 상호 거리를 갖도록 배치되지 않는다. 상이한 격자들을 통과하는 측정 빔은 상이한 방향들로 회절 및 산란된다. 이러한 산란은 웨이퍼 레벨의 격자들 배후에 배치되는 디텍터(예를 들어, 카메라)에서 측정 빔에 의하여 공급되는 광의 오버랩을 가져올 수 있다.
이제까지, 패치들 중 하나를 제외한 모두로부터의 측정 빔에 의하여 공급되는 광이 카메라로 전사되는 것을 어떻게 방지할지에 대하여 알려진 방법은 없으며, 이들 격자 패치들이 서로 너무 근접하여 배치된다면 마스크 레벨의 격자 패치들 중 하나만을 조명하는 것은 어렵거나 불가능하였다. 상기 패치들이 서로 너무 근접하다면, 상이한 격자 패치들로부터의 광이 카메라를 때려, 디텍터상에서 상이한 격자들로부터의 광의 간섭을 야기할 수 있다. 각각의 격자 패치들을 통과하는(또는 그 로부터의) 빔을 분리시키는 것은 불가능할 수도 있다. 따라서, 동일한 센서를 이용하여 투영렌즈의 몇몇 상이한 광학적 특성들을 판정하는 것은, 불가능하지 않더라도 어렵다.
일반적으로 렌즈 및/또는 조명시스템의 광학적 특성들(본 발명에 사용되는 렌즈의 개념은 상술되었음)을 판정하는 디바이스(21)가 도 2와 연계하여 설명된다. 도 2에서, 모듈 23 및 모듈 27은, 각각 렌즈 31 위와 아래에 배치된다. 예를 들어, 모듈 23 및 모듈 27은 각각 렌즈(31)의 초점평면내 또는 그 부근에 배치될 수 있다. 격자 패치 43과 45는 각각 모듈 23과 27상에 존재한다. 모듈(23)상에 존재하는 상이한 격자 패치들은, 각각 상이한 참조부호(43A,43B,43C,43D)로 표시된다. 상기 모듈(27)상에는, 모듈(23)의 상기 격자 패치(43A,43B,43C,43D)에 대응되는 격자 패치들이 각각 45A, 45B, 45C 및 45D로 표기되어 있다.
모듈 23과 27은 상당히 임의의 방식으로 형상화될 수 있고, 그들 위의 격자 패치들(43,45)을 장착시키는 역할만 할 수도 있다. 현재 이용가능한 리소그래피 투영장치에서, 격자 패치들(43,45)은, 흔히 레티클(즉, 마스크), (예를 들어 패턴 외측의) 소스 모듈 또는 레티클(즉, 마스크) 스테이지에 장착되는 기준(fiducial) 모듈상 및 센서 모듈상에 각각 장착된다. 소스 모듈은 (예를 들어, 레티클과 같이) 교체가능할 수 있거나 또는 그것이 레티클 스테이지의 통합된 일부일 수 있다.
모듈 23은 측정 및 조정 유닛(33)에 연결되고 모듈 27은 측정 및 조정 유닛(35)에 연결될 수 있다. 상기 측정 및 조정 유닛(33,35)은 (예를 들어, 링크(37)을 통하여) 상호 연통될 수 있고 그들 중 하나 또는 둘 모두가 프로세서 유닛(38)(예 를 들어, 마이크로프로세서, 디지털 신호 프로세서 또는 여타 프로그램가능한 , 프로그래밍된 또는 할당된 논리 소자들의 어레이)에 연결될 수 있다.
상기 모듈(23)은 회절 차수를 포함하는 제2빔(26)을 제공하기 위하여 격자 패치(43(43A-43D))에 의해 회절될 수 있는 광 빔(25)에 의하여 조명될 수 있다. 모듈(27)아래에는, 카메라와 같은 센서(29)가 배치된다. 상기 센서(29)는 또한 프로세서 유닛(38)에 연결된다. 제2빔(26)의 회절 차수들은 렌즈(31)에 의하여 상이한 격자 패치들(45A-45D)상에 묘화되고, 이들은 다시 수용된 제2빔(26)을 회절시킨다. 이 회절은 디텍터(29)상에 부딪치는 추가 회절 차수들을 가져올 수도 있다. 하지만, 상이한 회절 차수들(45A-45D)의 이러한 추가 회절 차수들은 디텍터(29)의 표면에서 오버랩될 수 있다.
하지만, 회절은 카메라 위치에서의 오버랩에 대한 가장 중요한 이유가 되지는 않는다. 예를 들어, 오버랩은, 디텍터(29)(예를 들어, 카메라)의 표면이 모듈(27)로부터 실질적인 거리에 배치될 수 있다는 사실에 의하여 야기될 수도 있다. 이 오버랩은 참조부호(41)로 표기되어 있다.
상기 모듈(27)로부터, 상기 모듈(27)상의 수직선과의 큰 각도하에서 광이 나타난다(emerge). 격자 패치들(43A-43D)은 서로 소정 거리(d1) 분리되어 있고, 격자 패치들(45A-45D)은 서로 소정 거리(d2) 분리되어 있다. 도 2에서는, 편의상 렌즈(31)가 1의 축소율(demagnification)을 갖는, 따라서, d1이 d2와 동일한 것으로 도시되어 있다. 하지만, 일반적으로 말해서, 렌즈(31)가 치수에 영향을 줄 수도 있기 때문에 d1과 d2는 동일하지 않을 수 있다. d1이 d2와 "매치"된다는 것이 바람직하 거나 중요할 수 있다. 여타 저감 팩터들을 갖는 것이 가능하다 하더라도 리소그래피 장치에서 통상적으로 겪게되는 축소율(저감 팩터들)은 4 또는 5이다.
격자 패치들 43A-43D와 45A-45D 사이에서, 모듈(23,27)은 광 빔(26)을 차단하는 재료로 된 참조부호 39의 부분들을 포함한다. 상기 재료는, 예를 들어 크롬이다. 이들 부분들의 치수는 도 2에 d1과 d2에 의해 개략적으로 표기되어 있다. 상기 부분들(d1,d2)은 모듈(23,27)의 연속하는 격자 패치들 43A-43D와 45A-45D 사이에서 각각 매칭된다. 측정 및 조정 유닛(33,35) 및 디텍터(29) 둘 모두는 마이크로프로세서 유닛(38)과 연통될 수 있다.
디바이스(21)는 다음의 방식으로 작동될 수 있다. 리소그래피 장치의 조명시스템은 모듈(23)의 격자 패치들(43A-43D)을 조명한다. 상기 격자 패치들(43A-43D)은 렌즈(31)를 통과하는 잘 형성된(well-defined) 보다 높은 차수의 광 빔을 생성한다. 상기 격자 패치들(43A-43D)은 일부 잘 형성된 차수의 광 빔(25)만을 받아들여 제2빔(26)으로서 회절 패턴인 격자 패치(43)를 거친 후 렌즈(31)를 통해 이동되도록 한다. 빔(26)상의 렌즈(31)의 효과에 따라, 상기 렌즈(31)의 광학적 특성에 관한 정보를 얻을 수 있다.
서로에 대한 두 모듈 23과 27의 상대적인 상호 위치는 측정 및 조정 유닛(33,35)에 의하여 각각 측정될 수 있다. 상기 상대적인 위치는 마이크로프로세서 유닛(38)에 의하여 제어되듯이 상기 유닛(33,37)에 의하여 조정될 수 있다. 렌즈(31)을 통과한 후에, 빔(26)은 모듈(27)의 격자 패치(45)상이 입사된다. 그에 따른 회절 패턴은 센서(29)에 의하여 검출된다. 센서(29)에 의하여 검출된 회절 패턴은 프로세서 유닛(38)에 의하여 렌즈(31)의 1이상의 광학 특성들을 판정하기 위해 사용될 수 있다.
현재, 격자 패턴들(45A-45D)에 의하여 생성된 회절 패턴들이 서로에 대해 너무 근접해 있다면, 그들은 오버래핑 부분(41)을 생성시킬 수 있다. 이것의 결과는, 센서(29)에 의하여 검출되는 것과 같은 격자 패턴(45A)에 의하여 생성되는 패턴이, 격자 패턴(45B)에 의하여 생성되는 패턴에 의해 교란되도록 할 수 있다. 디텍터(45)상의 오버랩 결과가 추가 격자 패턴 타입들이 배치될 수 있는 모듈(27(및 23))상의 가용 공간의 손실을 야기할 수 없도록 상기 격자 패치들(45A-45D)을 보다 큰 거리만큼 분리시킴으로써(예를 들어, d1을 증가시킴으로써) 이러한 문제를 해결한다. 따라서, 하드웨어의 교환(가령, 상기 모듈 23과 27을 예들 들어 렌즈(31)의 상이한 특성들을 위한 상이한 격자들을 갖는 상이한 모듈들(23,27)로 교환)을 필요로 하지 않고 서로 몇가지 광학적 특성들을 판정하는 것은 어려울 수 있다.
이 문제에 대한 해법이 도 3에 제시되어 있다. 도 3에서, 도 2와 연계하여 사용된 것과 동일한 참조부호는 동일한 부분을 지칭한다. 모듈(23)은 격자 패치(43A-D)의 상이한 형태들을 포함한다. 격자 패치(45A-D)의 대응되는 타입들은 모듈(27)에 존재한다. 도 3에서, 격자 세트들의 상이한 형태들은 렌즈(31)의 상이한 특성들을 판정하는데 사용될 수 있다. 예를 들어, 격자 패치 43A와 45A는 매우 빠른 측정을 위한 작은 피치의 격자를 포함하고, 격자 패치 43B와 45B는 매우 높은 분해능의 웨이브 프론트 측정 또는 확대된 측정 범위를 위한 큰 피치의 격자를 포함하고, 격자 패치 43C와 45C는 퓨필 측정을 위한 핀홀 격자를 포함할 수 있다. 모듈 (23)에 배치된 격자 패치 43A와 43B 사이의 분리부(separation)는 d2로 주어지고, 모듈(27)에 배치된 위와 대응되는 격자 패치 45A와 45B 사이의 분리부는 d3로 주어진다.
다음의 설명은 격자 패치(43A,45A 및 43B,45B)에 관한 것이나, 다른 형태의 격자들에도 동등하게 적용될 수 있다. 상이한 형태의 격자 패치들로부터의 광이 센서(29)에 도달되는 것을 방지하기 위하여, 2개의 상이한 형태의 격자들이 동시에 정렬되지 않도록 각각의 격자들 사이에 분리부가 존재하는 것이 바람직할 수 있다. 이것의 결과는, 예를 들어 거리(d3)와는 상이한 거리(d2)를 선택함으로써 달성될 수 있다. 본 발명의 일 실시예에 따른 배치에서, 이들 거리들은 모듈(23)상에 존재하는 단위 길이(L) 당 격자의 개수가 모듈(27)상에 존재하는 단위 길이(L) 당 격자 개수의 복수배수(multiple)가 되지 않도록 선택된다. 도 3은 격자 패치(43B)를 통과하는 광이 센서(29)에 도달하지 않는 대신, 상기 광을 차단하기 위하여 격자 패치(45A-D)들 사이의 분리부를 형성하며, 예를 들어 크롬으로 만들어지는 부분들(39) 중 하나에 의하여 차단되는 예시를 나타내고 있다.
본 발명의 일 실시예에 따른 배치에서, 상기 격자 패치들(43A-43D)은, 그들이 단지 그들의 대응되는 격자 패치들(45A-45D)과 한번에 하나씩 정렬될 수 있도록 배치된다. 당업자라면 이해할 수 있듯이, 이러한 결과는 각 격자 패치들 사이의 거리를 적절히 선택함으로써 확보될 수 있다. 일 예시로서, 그 개수가 렌즈(31)에 의한 저감후에 모듈(27)상의 격자 패치 개수의 수배가 되지 않도록, 일정한 등가의 상호 패치 거리(inter-patch distance)를 갖는 모듈(23)상의 격자 패치의 개수를 선택할 수 있다. 모듈(27)상의 격자 패치들 또한 이격된, 일정한 등가의 상호 패치 거리로 되어 있다면, 모듈(27)에 대한 모듈(23)상의 격자 패치들의 분포는 두 격자 패치가 --적어도 특정 한계치들 사이에서-- 동시에 정렬될 수 있도록 할 수도 있다.
상호 패치 거리가 상술된 바와 같이 결정되면, "잉여의 격자 패치들", 즉 모듈(23)(모듈(27))상의 대응 격자 패치를 갖지 않는 모듈(27)(모듈(23) 각각)상의 격자 패치들에 의하여 점유되는 공백의 위치(blank position)를 남기는 것도 물론 가능하다. 이러한 방식으로, 모듈(23)상의 격자 패치들의 개수는 모듈(27)상의 격자 패치들의 개수와 동일하며, 상기 상호 패치 거리는 두 격자 패치들이 동시에 정렬되지 않도록 할 수 있다. 또 다른 가능성은, 웨이퍼상에 투영되는 투영렌즈들의 축소 후에 마스크 레벨의 상호 패치 거리와 웨이퍼 레벨의 격자 패치들에 대하여 각 쌍의 인접한 격자 패치들간의 평균 거리("상호 패치 거리")를 판정하는 것이다. 상기 평균은 동일하지 않을 수도 있다.
본 발명을 보다 명확히 하기 위하여, 매우 개략적인 도들을 포함하는 도 4a 및 4b에 대해 참조하기로 한다. 이번에도 역시, 동일한 참조부호들은 이전 도면들에서 사용된 것과 동일한 부분들을 지칭한다. 도 4a는, 격자 패치(43B,45B)들이 정렬되는 방식으로 모듈(23,27)이 배치되는 제1위치를 예시하고 있다. 제2빔(26)은 격자 패치(45B)들이 차단되지 않고 통과한다. 한편, 모듈(23)에 배치되는 격자 패치(43A)에 의해 생성되는 제2빔(26)은 모듈(27)의 크롬 층(39)에 으하여 순차적으로 차단된다.
도 4b에서, 모듈(23,27)은 측정 및 조정 유닛(33 및/또는 35)(중 1이상)에 의하여 이동된다. 그 다음, 격자 패치들(43A,45A)이 정렬되고, 모듈(23)에서 격자 패치(43B)를 통과하는 광이 차단된다. 이것의 결과는 각 격자들간의 거리 d2와 d3를 상이하게 선택함으로써 가능해질 수 있다. 당업자는 몇가지 구성이 가능하다는 것을 쉽게 이해할 수 있을 것이다. 더욱이, 본 발명의 실시예들은 한가지 치수, 예를 들어 이전 도면들과 연계하여 예시된 것과 같은 구조(set-up)로만 제한되는 것은 결코 아니다.
도 5에서는, 두가지 치수의 구조가 도시되어 있다. 모듈(23,27)은 위에서 본(예를 들어 도 4의 빔(25)의 방향을 따라 본) 도면이다. 도 5에 나타낸 바와 같이, 제1방향(p1)에 있어 격자 패치들의 개수는, 모듈(23)상에서는 단위 길이(L1) 당 2/3의 격자 패치가 존재하고 모듈(27)상에서는 단위 길이(L1) 당 1의 격자 패치가 존재하도록 선택된다. (도 5의 경우에는 상기 제1방향(p1)에 대해 직각인) 제2방향(p2)에 있어서, 모듈(23)상에서의 격자 패치들의 개수는 단위 길이(L2) 당 5개의 격자 패치를 가지고, 모듈(27)상에서는 그 개수가 단위 길이(L2) 당 4개의 격자 패치를 갖는다. 하지만, p1과 p2간의 각도는 90도와는 상이할 수도 있다.
상기 도면에서, 모듈(23,27)은 격자 패치 43A와 45A가 정렬되도록 위치된다. 다른 격자 패치들은 상부 모듈(23)을 통과하는 광이 모듈(27)의 크롬 층에 의하여 차단되도록 위치된다. 이는, 도 5에서 모듈(27) 및 모듈(23)의 크롬층(39)들에 음영처리(shading)함으로써 예시되어 있다. 예를 들어 서로에 대한 제1 및 제2방향(p1,p2)의 각도가 90가 아닌 각도와 같은 여타 대안예들은 그들 스스로 당업자에게 명백할 것이다.
본 발명의 추가 실시예가 도 6을 참조하여 설명된다. 도 6에는 격자 패치 77A 및 격자 패치 77B가 배치되는 제1모듈(61)을 포함하는 디바이스(70)가 도시되어 있다. 도 6의 경우에는, 2개의 격자 패치들이 도시되어 있으나, 본 발명은 많은 수의 격자 패치들에도 동등하게 적용된다. 격자 모듈(61)은 "소스 모듈"로도 불린다.
도 6에 나타낸 바와 같이, 모듈(61) 아래에는 렌즈(65)가 배치된다. 렌즈(65) 아래에는 격자 패치들을 갖는 제2모듈(67)(또는 "센서 모듈")이 존재한다. 상기 모듈은 격자 패치 75A, 격자 패치 75B, 격자 패치 75A* 및 격자 패치 75B*를 포함하나, 여기서도 역시 보다 많은 수가 적용가능하다. 격자 모듈(67) 아래에는, 디텍터(69)(예를 들어, 카메라)가 배치된다. 적절한 조정 디바이스(71)에 의하여 디텍터(69) 및 모듈(67)을 함께 이동시키는 것(즉, 그들을 서로 상대적으로 이동시키지 않는 것)이 바람직할 수 있다.
측정 빔(73)은 방사선 소스(63)에 의하여 제공된다. 방사선 소스(63)로부터의 측정 빔은 이해를 돕기 위해, 도 6에 단순하고 개략적인 방식으로 도시되어 있다. 실제로는, 방사선 소스가, 렌즈(56)의 개구수에 대응되는 각도를 갖는 광의 콘(cone)이 격자 패치(77A,77B)상으로 지향되도록 하는 것이 바람직할 수 있다.
디바이스(70)는 다음과 같이 사용될 수 있다. 광(73)은 방사선 소스(63)로부터 모듈(61)로 이동하고 두개의 격자 패치(77A,77B)를 조명한다. 상기 빔(73)은 격자 패치(77A,77B)에 의하여 회절된다. 격자 패치(77A,77B)를 통하여 이동하는 회절 차수들은 각각 참조부호 732 및 731로 나타낸 빔으로서 도시되어 있다. 이들 빔(732,731)은 렌즈(65)를 통과하여 제2모듈(67)을 때린다. 상기 모듈들(61,67)을 렌즈(65)의 초점평면에 대향하여 배치시키는 것이 바람직할 수 있다.
상기 빔(732,731)은 격자 패치(75A*,75B*)상에 입사된다. 여기서, 그들은 다시 회절되며 디텍터(69)(예를 들어 카메라나 여타 광학 또는 묘화 센서)상에 회절 패턴을 생성시킨다.
격자 패치 77A 및 75A*는 동일한 격자 상수를 갖는다. 77A/75A*의 격자 상수는 77B/75B*의 격자 상수와 동일할 수도 그렇지 않을 수도 있으나, 격자 패치 77B 및 75B* 또한 동일한 격자 상수를 갖는다. 하지만, 격자 패치 75A 및 75A*는, 격자 패치 75B 및 75B*가 그러하듯 상이한 크기를 갖는다. 예를 들어, 격자 패치 75A 및 75B 각각은 격자 패치 75A* 및 75B*보다 작을 수 있다.
소스(63)의 파워의 양은 변화될 수 있다. 이러한 변화는 카메라상의 신호 오버플로우(또는 언더플로우)를 야기할 수 있다. 격자 패치들을 교환함으로써(예를 들어, 격자 패치 75A* 대신 75A를 사용함으로써), 오버플로우가 방지될 수 있다. 또한, 렌즈(65)의 수차들이 매우 작은 격자 상수에 의하여 검출되지 않도록 하는 것도 가능하다. 이 경우에, 모듈(61,67)상에 존재하는 보다 큰 격자 상수가 사용될 수도 있다.
프린지(fringe) 패턴(734,733)이 디텍터(69)상에서 오버랩되지 않도록 하는 것이 바람직하거나 중요할 수 있다. 실제로 사용되는 격자 패치들은, 예를 들어 1/10 내지 1/50 범위의 값을 갖는 전단비(shear ratio) 및 (25㎛×25㎛) 내지 (250 ㎛×250㎛)의 범위내의 값을 갖는 크기에 대응되는 격자 상수를 가질 수 있다. 상기 프린지 패턴(734,733)이 분리되는(즉, 오버랩되지 않는) 방식으로 모듈(67)상에 존재하는 격자 패치들간의 각각의 상호간 거리 및 모듈(67)과 디텍터(69)간의 거리를 선택하는 것이 바람직할 수 있다.
도 7 및 도 8은 (리소그래피 장치에 장착되는 렌즈를 갖는 리소그래피 장치에 대하여) 렌즈의 광학 특성들을 판정하는 동시에 렌즈를 교정하는 교정 디바이스를 획득하는 원리를 설명하는데 사용된다. 이러한 작동은 "온-툴 교정(on-tool calibration)"이라 칭하기도 한다.
도 7에서, 하나의(a piece of) 유리와 같은 모듈(92)은 위에서 본 도면으로 도시되어 있다. 모듈(92)상에서는, 측정 기구를 위한 부분(91)이 보존된다. 상기 부분(91)은 윤곽(contour)을 포함하여 이루어진다. 상기 윤곽은 도 7에서는 직사각형으로 도시되어 있으나 어떠한 임의의 형상도 가질 수 있다. 상기 윤곽(107)의 내측에는, 수개의 격자 패치들이 생성되어 있다. 상기 격자 패치들은 참조부호 93, 95, 97 및 99로 나타내었다. 상기 격자 패치들(93,95,97,99)은 렌즈의 광학 특성을 판정하는데 사용될 수 있다. 상기 격자 패치들(93,95,97,99)은 각각 화살표 98, 103, 105 및 101에 의하여 상징적으로 나타나 있다. 도 7은 웨이퍼 레벨의 격자 패치들을 나타내고 있다. 대응되는 격자 패치들(도시 안됨)은 마스크 레벨로 존재한다.
도 7의 모듈(92)의 부분(91)의 3차원 도면인 도 8에서는, 도 7에서와 동일한 참조부호가 사용된다. 또한, 도 8에는 카메라(모듈이라고도 칭함)와 같은 광-감응 성(light-sensitive) 디바이스의 평면(109)이 도시되어 있다. "프린지 평면"이라고도 칭해지는 평면(109)상에는, 격자(93,95,97,99)에 의하여 생성되는 측정 빔(111)의 회절 패턴이 투영된다.
도 8에 도시된 바와 같은 조립체는 다음과 같이 사용될 수 있다. 일 실시예에서, 상기 부분(91)은 단 하나의 격자, 예를 들어 도 7의 격자 93을 포함한다. 상기 격자(93)는 화살표 98에 따라 배향될 수 있다. 측정 빔(111)은 상기 격자(93)에 의하여 생성되고 디텍터(예를 들어, 카메라)의 표면 평면(surface plane:109)을 때린다. 그에 따라 생성된 프린지 패턴은, 카메라 모듈(109)상에서 이용가능한 공간의 대략 1/4만을 점유할 수 있다. 일 예시로서, 표면 평면(109)이 예를 들어 상기 평면(109)상에서 이용가능한 1024×1024의 어레이에 대응되고, 개별 격자로부터의 회절 패턴이 512×512의 면적을 충전시킨다고 가정하는 경우, 동일 격자(93), 즉 동일한 방위를 갖는 격자의 4배를 수용하는 것이 가능할 수 있다.
또한, 예를 들어 각각 상이한 화살표 103, 105 및 101로 나타낸 바와 같이 상이한 방위를 갖는 복수의 추가 격자들(95,97,99)를 수용하는 것도 가능하다. 이러한 배치의 한가지 잠재적인 장점은 상기 부분(91)의 회전들이 각각 격자들(103, 105 또는 101) 중 어느 격자의 방위에 대응되는 또 다른 격자(93)를 회전시킬 필요가 있을 수 있다. 일반적으로 렌즈 및 디텍터 모두는 수차를 가질 수 있다. 동시에 1이상의 방향으로 측정함으로써, 렌즈 및 디텍터의 상이한 수차들에 대한 보다 정확한 측정 값을 얻을 수 있다.
빔(111)의 회절 패턴들간의 어떠한 오버랩도 피하는 것이 바람직하다. 도 6 에 나타낸 실시예와 연계하여 상술된 바와 같이, 예를 들어 상기 오버랩을 피하기 위하여 격자 패치들(93,95,97,99)간의 거리 및/또는 평면(109)과 부분 107간의 거리를 선택하는 것이 바람직할 수 있다.
본 출원에서 설명되는 측정 기술들은 당업자들에게 알려진 바와 같이 1이상의 간섭 패턴들의 검출을 포함할 수 있다. 본 명세서에서 설명된 모듈들은 (예를 들어 렌즈 또는 투영시스템을 측정하거나 교정하기 위하여) 그들이 사용되는 디바이스 또는 장치와 관련하여 교체가능하거나 그렇지 않을 수 있다.
본 발명의 몇몇 실시예들은 렌즈들의 제1광학 특성을 판정하도록 설계된 1이상의 제1격자 패치를 포함하고, 상기 렌즈들의 제1측면에 배치되도록 설계된 제1격자 패치 세트 및 상기 제1격자 패치에 대응되는 1이상의 제2격자 패치를 포함하고, 상기 렌즈들의 제2측면에 배치되도록 설계된 제2격자 패치 세트에 관한 것이다.
상기 제1세트의 격자 패치는 상기 렌즈들의 제2광학적 특성을 판정하기 위해 설계된 추가적인 제1격자 패치를 더 포함할 수 있고, 상기 제1 및 상기 제1격자 패치의 추가적인 제1격자 패치는 서로에 대하여 제1상호간 거리에 배치되고, 상기 제2격자 패치 세트는 상기 추가적인 제1격자 패치에 대응되는 추가적인 제2격자 패치를 포함하고, 상기 제2 및 상기 제2격자 패치의 추가적인 제2격자 패치들은 서로에 대하여 제2상호간 거리에 배치되고, 상기 제1격자 패치 세트는 상기 제2격자 패치 세트에 대하여 이동가능하고 상기 제2상호간 거리에 대한 상기 제1상호간 거리는 단지 상기 제1 및 제2격자 패치나 상기 추가적인 제1 및 제2격자 패치들을 동시에 완전하게 정렬시킬 수 있도록 되어 있다.
이러한 방식으로, 마스크 레벨의 단 하나의 격자 패치는 웨이퍼 레벨의 그에 대응되는 격자 패치와 동시에 정렬될 수 있다. 이는, 마스크 레벨의 여타 격자 패치들을 통과하는 측정 빔이 차단되고 결과적으로 측정을 간섭하지 않는다는 것을 의미한다. 마스크 레벨의 여타 격자 패치(들)(즉, 그들의 대응 격자 패치들과 정렬되지 않는 격자 패치들)를 통과하는 측정 빔으로부터의 광은 웨이퍼 레벨의 격자 패치 세트를 지날 수 없다.
본 발명의 또 다른 실시예에 따른 배치에서는, 상기 제1광학적 특성과 제2광학적 특성이 서로 상이하다. 이는, 렌즈 및 조명시스템의 상이한 광학적 특성들의 신속한 판정을 가능하게 하고 및/또는 하드웨어의 시간 소모적인 교체에 대한 필요성을 없애준다.
본 발명의 추가 실시예에 따른 배치에서는, 상기 제1격자 패치 세트가 복수의 제1격자 패치들을 포함하고, 상기 복수의 제1격자 패치는 제1의 평균 상호 격자 패치 거리를 형성하고, 상기 제1격자 패치는 제1크기를 가지고, 상기 제2격자 패치 세트는 복수의 제2격자 패치들을 포함하고, 상기 복수의 제2격자 패치는 제2의 평균 상호 격자 패치 거리를 형성하고 상기 제2격자 패치는 제2크기를 가지고, 상기 렌즈는 저감 팩터를 가지고 상기 저감 팩터에 의하여 분할되는 상기 제1크기가 상기 제2크기와 동일하며, 상기 저감 팩터에 의하여 분할되는 상기 제1평균은 상기 제2평균과 상이하다.
이러한 조건들을 충족시킴으로써, 상기 격자들의 분포는 --특정 한계치 내에서-- 자동적으로 "보정된다". 즉 두가지 타입의 격자 패치들이 동시에 정렬되지 않 도록 한다.
본 발명의 추가 실시예에 따른 디바이스는 상기 빔이 상기 제2세트를 통과한 후에 상기 렌즈들의 광학적 특성을 측정할 수 있도록 배치된 센서를 포함한다. (전자) 센서에 의한 측정을 처리하는 것이 유리함은 분명하다.
당업계의 추가적인 문제는 현재, 폭넓은 조건들의 측정에 사용될 수 있는 이용가능한 격자들이 없다는 점이다. 광학(렌즈)시스템상에서의 측정시 발생될 수 있는 조건들 가운데에는, 광학시스템에 큰 수차가 있고 및/또는 측정 빔의 세기가 갑작스럽게 변화하는 경우가 있다.
현재, 일단 렌즈들이 리소그래피 투영장치에 장착되면 상기 렌즈들의 광학적 특성들을 판정하기 위한 교정 렌즈 및 교정 센서 둘 모두를 확보해야 하는 또 다른 문제가 있다.
본 발명의 또 다른 추가 실시예에 따른 디바이스는, 제1피치 및 제1크기를 갖는 1이상의 제1격자 패치를 포함하고 렌즈의 제1측면에 배치되도록 설계된 제1격자 패치 세트, 상기 제1격자 패치에 대응되는 1이상의 제2격자 패치를 포함하고 상기 렌즈의 제2측면에 배치되도록 설계된 제2격자 패치 세트, 적어도 하나의 측정 스폿이 상기 제2세트의 격자 패치를 통하여 투영되는 측정 빔에 의하여 생성되는 디텍터상의 상기 제2격자 패치 세트 이면의 소정 거리에 배치되는 상기 디텍터를 포함하고, 상기 제1격자 패치 세트는 제2피치 및 제2크기를 갖는 1이상의 추가적인 제2격자 패치를 더 포함하고, 상기 제2피치 및 상기 제2크기 중 1이상은 상기 제1피치 및 상기 제1크기 중 1이상과 상이한 것을 특징으로 한다.
본 발명의 추가 실시예에 따른 디바이스는 제1방위를 갖는 1이상의 제1격자 패치를 포함하고 렌즈의 제1측면에 배치되도록 설계된 제1격자 패치, 상기 제1격자에 대응되는 1이상의 제2격자 패치를포함하고 상기 렌즈의 제2측면에 배치되도록 설계된 제2격자 패치 세트 및 디텍터상의 상기 제2격자 패치 세트 이면의 제1거리에 배치된 디텍터를 포함하고, 상기 디바이스가 작동중에 있을 때, 상기 제2세트의 격자 패치를 통하여 투영되는 측정 빔에 의하여 1이상의 측정 스폿이 생성되고, 상기 제1세트는 상기 제1방위와 상이한 제2방위를 갖는 1이상의 추가적인 격자 패치를 더 포함하고, 상기 제1격자 패치는 상기 추가적인 제1격자 패치로부터 제1거리에 배치되고, 상기 제2세트는 상기 제2방위와 동일한 방위를 갖는 1이상의 추가적인 제2격자 패치를 더 포함하고, 상기 제2격자 패치는 상기 추가적인 제2격자 패치로부터 제2거리에 배치되고 상기 제1거리 및 상기 제2거리 중 1이상은 상기 디바이스를 사용하고 있는 동안, 단지 별도의 측정 스폿들만이 상기 디텍터상에 생성되도록 되어 있는 것을 특징으로 한다.
본 발명의 일 실시예에 따른 리소그래피 장치는 방사선 투영빔을 제공하는 조명시스템, 패터닝수단을 지지하는 지지구조체, 상기 투영빔의 단면에 패턴을 부여하는 역할을 하는 패터닝수단, 기판을 잡아주는 기판테이블, 상기 패터닝된 빔을 상기 기판의 타겟부상으로 투영하는 투영시스템 및 본 명세서에 상술된 바와 같은 디바이스를 포함한다.
본 발명의 실시예들은 또한 본 명세서에서 상술된 디바이스를 이용한 렌즈 검사 방법, 상기 검사된 렌즈를 포함하는 리소그래피 장치 및 상기 리소그래피 장 치를 이용하여 제조된디바이스를 포함한다.
본 발명의 특정 실시예들에 대하여 상술하였으나, 청구된 본 발명은 상술된 것과는 달리 실행될 수도 있다는 것을 이해해야 한다. 적절한, 예를 들어 도 3 내지 5에 나타낸 바와 같은 원리들이 도 6 내지 8에 나타낸 바와 같은 배치에 적용될 수 있는 경우 상술된 모든 상이한 실시예들의 특징들이 조합될 수도 있다. 상기 방법의 추가 실시예들은 또한, 상기 방법을 기술한 명령어(예를 들어 논리 소자들의 어레이에 의하여 실행가능함)를 포함하도록 구성된, 본 명세서에서 설명된 방법을 수행하기 위한 장치 및 데이터 저장 매체(예를 들어, 자기 또는 광 디스크 또는 ROM, RAM, 또는 플래시 RAM과 같은 반도체 메모리)를 제어하도록 구성된, 1이상의 컴퓨터, 프로세서 및/또는 프로세서 유닛(예를 들어 논리 소자들의 어레이)을 포함할 수도 있다. 이들 실시예들의 설명은 청구되는 것으로 본 발명을 제한하려는 것이 아니라는 점을 분명히 이해해야 한다.
본 발명에 따르면, 하드웨어를 교체하지 않고도 리소그래피 투영장치에 조명시스템 및/또는 투영렌즈의 광학적 특성들을 바람직하게 평가할 수 있으며, 렌즈 교정까지 바람직하게 수행할 수 있다.

Claims (30)

  1. 렌즈의 제1측면상에 배치되고 제1격자 패치 및 제2격자 패치를 포함하는 격자 패치들의 제1세트; 및
    실질적으로 상기 제1측면과 광학적으로 대향되는 상기 렌즈의 제2측면상에 배치되고 제3격자 패치 및 제4격자 패치를 포함하는 격자 패치들의 제2세트를 포함하는 배치에 있어서,
    상기 제1 및 제2세트 중 1이상은 서로에 대하여 이동가능하고,
    상기 배치의 제1구성에서는 상기 제1 및 제3격자 패치들이 정렬되고,
    상기 배치의 제2구성에서는 상기 제2 및 제4격자 패치들이 정렬되고,
    상기 제1 및 제2구성은 동시에 존재하지 않는 것을 특징으로 하는 배치.
  2. 제1항에 있어서,
    상기 배치의 구성들의 제1세트는 상기 제1 및 제3격자 패치들이 정렬되는 모든 구성을 포함하고,
    상기 배치의 구성들의 제2세트는 상기 제2 및 제4격자 패치들이 정렬되는 모든 구성을 포함하고,
    상기 구성들의 제1 및 제2세트는 시간적으로(in time) 상호 배타적인 것을 특징으로 하는 배치.
  3. 제1항에 있어서,
    상기 배치의 제1 및 제2구성에서, 상기 제1세트는 적어도 실질적으로 상기 제1측면상의 상기 렌즈의 초점평면내에 놓이고, 상기 제2세트는 적어도 실질적으로 상기 제2측면상의 상기 렌즈의 초점평면내에 놓이는 것을 특징으로 하는 배치.
  4. 제1항에 있어서,
    입사하는 방사선 빔에 반응하여, 상기 제1격자 패치는 상기 렌즈에 의해 제1방식으로 영향을 받는 광을 방출하도록 구성되고,
    상기 입사하는 방사선 빔에 반응하여, 상기 제2격자 패치는 상기 렌즈에 의해 제2방식으로 영향을 받는 광을 방출하도록 구성되며, 상기 제2방식은 상기 제1방식과는 상이한 것을 특징으로 하는 배치.
  5. 제4항에 있어서,
    상기 배치는 (1) 상기 제1격자 패치에 의하여 방출되고 상기 제3격자 패치를 통과하는 광 및 (2) 상기 제2격자 패치에 의하여 방출되고 상기 제4격자 패치를 통과하는 광 중 1이상을 기반으로 한 상기 렌즈의 광학적 특성을 측정하도록 구성된 센서를 더 포함하는 것을 특징으로 하는 배치.
  6. 제1항에 있어서,
    상기 격자 패치들의 제1세트는 복수의 제1격자 패치를 포함하고, 상기 복수 의 제1격자 패치는 상기 제1 및 제2격자 패치를 포함하고 제1평균 상호-패치 거리를 특징으로 하고,
    상기 격자 패치들의 제2세트는 복수의 제2격자 패치를 포함하고, 상기 복수의 제2격자 패치는 상기 제3 및 제4격자 패치를 포함하고 제2평균 상호-패치 거리를 특징으로 하며,
    상기 제1 및 제2평균 상호-패치 거리간의 비는 상기 렌즈의 저감 팩터와는 실질적으로 상이한 것을 특징으로 하는 배치.
  7. 제6항에 있어서,
    상기 복수의 제1격자 패치들 각각은 제1크기를 가지고,
    상기 복수의 제2격자 패치들 각각은 제2크기를 가지며,
    상기 제1크기와 상기 제2크기간의 비는 상기 렌즈의 저감 팩터와 실질적으로 동일한 것을 특징으로 하는 패치.
  8. 제1항에 있어서,
    상기 제1격자 패치의 크기와 상기 제3격자 패치의 크기간의 비는 상기 렌즈의 저감 팩터와 실질적으로 동일하고,
    (1) 상기 제1격자 패치로부터 상기 제2격자 패치로의 거리와 (2) 상기 제3격자 패치로부터 상기 제4격자 패치로의 거리간의 비는 상기 렌즈의 저감 팩터와는 실질적으로 상이한 것을 특징으로 하는 배치.
  9. 제1항에 있어서,
    상기 제1 및 제3격자 패치들이 정렬되는 경우, 상기 제1격자 패치에 의한 영향을 받는 광은 상기 제3격자상에 입사되는 것을 특징으로 하는 배치.
  10. 제1항에 있어서,
    상기 제1 및 제3격자 패치들이 정렬되는 경우, 상기 제1격자 패치에 의한 영향을 받는 광은 상기 제3격자상에 입사되도록 상기 렌즈에 의하여 지향되는 것을 특징으로 하는 배치.
  11. 제1항에 있어서,
    상기 제1 및 제2격자 패치들은 상기 제1 및 제2격자 패치들 중 가장 좁은 폭보다 작지 않은 거리만큼 분리되는 것을 특징으로 하는 배치.
  12. 렌즈의 제1측면상에 배치되고 1이상의 제1격자 패치를 포함하는 격자 패치들의 제1세트; 및
    실질적으로 상기 제1측면과 광학적으로 대향되는 상기 렌즈의 제2측면상에 배치되고 상기 제1격자 패치에 대응되는 제2격자 패치 및 제3격자 패치를 포함하는 격자 패치들의 제2세트; 및
    상기 렌즈와 대향되는 상기 격자 패치들의 제2세트의 일 측면상에 배치되고 상기 제2세트를 통과하는 측정 빔을 검출하도록 구성된 디텍터를 포함하는 배치에 있어서,
    상기 제1격자 패치는 제1크기 및 제1피치를 가지고,
    상기 제3격자 패치는 제2크기 및 제2피치를 가지고, 상기 제2크기 및 상기 제2피치 중 1이상은 각각 상기 제1크기 및 상기 제1피치와는 상이한 것을 특징으로 하는 배치.
  13. 제12항에 있어서,
    상기 디텍터는 상기 제2격자 패치를 통과하는 제1측정 빔 및 상기 제3격자 패치를 통과하는 제2측정 빔을 검출하도록 구성되고,
    상기 제2 및 제3격자 패치들은, 상기 디텍터에서 상기 제1측정 빔에 의하여 생성되는 측정 스폿 및 상기 디텍터에서 상기 제2측정 빔에 의하여 생성되는 측정 스폿이 오버랩되지 않도록 배치되는 것을 특징으로 하는 배치.
  14. 제13항에 있어서,
    상기 제1 및 제2격자 패치들 중 1이상은 1/10 내지 1/50의 범위내의 값을 갖는 전단 비 및 (25㎛×25㎛) 내지 (250㎛×250㎛)의 범위내의 값을 갖는 크기에 대응되는 1이상의 격자 피치를 갖는 것을 특징으로 하는 배치.
  15. 렌즈의 제1측면상에 배치되고 제1방위를 갖는 제1격자 패치 및 제2방위를 갖 는 제2격자 패치를 포함하는 격자 패치들의 제1세트;
    실질적으로 상기 제1측면과 광학적으로 대향되는 상기 렌즈의 제2측면상에 배치되고 상기 제1격자 세트에 대응되는 제3격자 패치 및 상기 제2방위를 갖는 제4격자 패치를 포함하는 격자 패치들의 제2세트; 및
    상기 렌즈와 대향되는 상기 격자 패치들의 제2세트의 일 측면상에 배치되고 상기 제3격자 패치를 통과하는 제1측정 빔 및 상기 제4격자 패치를 통과하는 제2측정 빔을 검출하도록 구성된 디텍터를 포함하는 배치에 있어서,
    상기 제1 및 제2격자 패치들은 제1거리만큼 분리되고, 상기 제3 및 제4격자 패치들은 제2거리만큼 분리되며,
    상기 디텍터에서 상기 제1측정 빔에 의하여 생성되는 측정 스폿 및 상기 디텍터에서 상기 제2측정 빔에 의하여 생성되는 측정 스폿은 오버랩되지 않는 것을 특징으로 하는 배치.
  16. 리소그래피 장치에 있어서,
    방사선 빔을 제공하도록 구성된 방사선 시스템;
    상기 방사선 빔에 영향을 주도록 구성된 제1격자 패치와, 제2격자 패치를 포함하는 격자 패치들의 제1세트;
    제3격자 패치 및 제4격자 패치를 포함하는 격자 패치들의 제2세트;
    상기 제2세트의 적어도 일부분상에 상기 영향을 받은 빔을 투영하도록 구성된 투영시스템을 포함하고,
    상기 장치는 상기 제1 및 제2세트 중 1이상을 서로에 대하여 이동시키도록 구성되고,
    상기 장치의 제1구성에서, 상기 제1 및 제3격자 패치들은 상기 방사선 빔에 대하여 정렬되고,
    상기 장치의 제2구성에서 상기 제2 및 제4격자 패치들은 상기 방사선 빔에 대하여 정렬되며,
    상기 제1 및 제2구성은 동시에 존재하지 않는 것을 특징으로 하는 리소그래피 장치.
  17. 제16항에 있어서,
    상기 장치의 구성들의 제1세트는 상기 제1 및 제3격자 패치들이 정렬되는 모든 구성을 포함하고,
    상기 장치의 구성들의 제2세트는 상기 제2 및 제4격자 패치들이 정렬되는 모든 구성들을 포함하며,
    상기 구성들의 제1 및 제2세트는 시간적으로 상호 배타적인 것을 특징으로 하는 리소그래피 장치.
  18. 제16항에 있어서,
    상기 장치의 제1 및 제2구성에서, 상기 제1세트는 적어도 실질적으로 상기 제1측면상의 상기 투영시스템의 초점평면내에 놓이고, 상기 제2세트는 적어도 실질 적으로 상기 제2측면상의 상기 투영시스템의 초점평면내에 놓이는 것을 특징으로 하는 리소그래피 장치.
  19. 제16항에 있어서,
    상기 제1격자 패치는 상기 투영시스템에 의하여 제1방식으로 영향을 받는 광을 방출하도록 구성되고,
    상기 제2격자 패치는 상기 투영시스템에 의하여 제2방식으로 영향을 받는 광을 방출하도록 구성되고,
    상기 제2방식은 상기 제1방식과는 상이한 것을 특징으로 하는 리소그래피 장치.
  20. 제19항에 있어서,
    상기 장치는, (1) 상기 제1격자 패치에 의하여 방출되고 상기 제3격자 패치를 통과하는 광 및 (2) 상기 제2격자 패치에 의하여 방출되고 상기 제4격자 패치를 통과하는 광 중 1이상을 기반으로 하는 상기 투영시스템의 광학적 특성을 측정하도록 구성된 센서를 더 포함하는 것을 특징으로 하는 리소그래피 장치.
  21. 제16항에 있어서,
    상기 격자 패치들의 제1세트는 복수의 제1격자 패치를 포함하고, 상기 복수의 제1격자 패치는 상기 제1 및 제2격자 패치를 포함하고 제1평균 상호-패치 거리 를 특징으로 하고,
    상기 격자 패치들의 제2세트는 복수의 제2격자 패치를 포함하고, 상기 복수의 제2격자 패치는 상기 제3 및 제4격자 패치를 포함하고 제2평균 상호-패치 거리를 특징으로 하며,
    상기 제1 및 제2평균 상호-패치 거리간의 비는 상기 투영시스템의 저감 팩터와는 실질적으로 상이한 것을 특징으로 하는 리소그래피 장치.
  22. 제16항에 있어서,
    상기 복수의 제1격자 패치들 각각은 제1크기를 가지고,
    상기 복수의 제2격자 패치들 각각은 제2크기를 가지며,
    상기 제1크기와 상기 제2크기간의 비는 상기 투영시스템의 저감 팩터와 실질적으로 동일한 것을 특징으로 하는 리소그래피 장치.
  23. 제16항에 있어서,
    상기 제1격자 패치의 크기와 상기 제3격자 패치의 크기간의 비는 상기 투영시스템의 저감 팩터와 실질적으로 동일하고,
    (1) 상기 제1격자 패치로부터 상기 제2격자 패치로의 거리와 (2) 상기 제3격자 패치로부터 상기 제4격자 패치로의 거리간의 비는 실질적으로 상기 투영시스템의 저감 팩터와는 상이한 것을 특징으로 하는 리소그래피 장치.
  24. 제16항에 있어서,
    상기 제1 및 제3격자 패치들이 정렬되는 경우, 상기 제1격자 패치에 의한 영향을 받는 광은 상기 제3격자상에 입사되는 것을 특징으로 하는 리소그래피 장치.
  25. 제16항에 있어서,
    상기 제1 및 제3격자 패치들이 정렬되는 경우, 상기 제1격자 패치에 의한 영향을 받는 광은 상기 제3격자상에 입사되도록 상기 투영시스템에 의하여 지향되는 것을 특징으로 하는 리소그래피 장치.
  26. 검사방법에 있어서,
    렌즈의 제1측면상에 제1격자 패치 및 제2격자 패치를 포함하는 격자 패치들의 제1세트를 배치하는 단계;
    실질적으로 상기 제1측면에 광학적으로 대향되는 상기 렌즈의 제2측면상에 제3격자 패치 및 제4격자 패치를 포함하는 격자 패치들의 제2세트를 배치하는 단계;
    상기 제1 및 제2세트 중 1이상을 나머지 하나에 대하여 상기 제1 및 제3격자 패치들이 정렬되는 제1구성으로 이동시키는 단계;
    상기 제1 및 제2세트가 상기 제1구성에 있는 동안 상기 렌즈의 제1광학적 특성에 관한 정보를 획득하는 단계;
    상기 제1 및 제2세트 중 1이상을 나머지 하나에 대하여 상기 제2 및 제4격자 패치들이 정렬되는 제2구성으로 이동시키는 단계; 및
    상기 제1 및 제2세트가 상기 제2구성에 있는 동안 상기 제1광학적 특성과는 상이한 상기 렌즈의 제2광학적 특성에 관한 정보를 획득하는 단계를 포함하고,
    상기 제1 및 제2구성은 동시에 존재하지 않는 것을 특징으로 하는 방법.
  27. 제26항에 있어서,
    상기 렌즈의 제1광학 특성에 관한 정보는 상기 제3격자 패치를 통과하는 하나의 회절 차수의 광을 기반으로 하고,
    상기 렌즈의 제2광학 특성에 관한 정보는 상기 제4격자 패치를 통과하는 또 다른 회절 차수의 광을 기반으로 하는 것을 특징으로 하는 방법.
  28. 제26항에 있어서,
    상기 방법은 상기 렌즈를 사용하여 패터닝된 방사선 빔을 기판의 타겟부상으로 투영하는 단계를 포함하고, 상기 타겟부는 적어도 부분적으로 방사선 감응재의 층으로 덮힌 것을 특징으로 하는 방법.
  29. 제28의 방법에 따라 제조된 디바이스.
  30. 제26항에 있어서,
    상기 렌즈는 리소그래피 장치의 투영시스템의 요소인 것을 특징으로 하는 방 법.
KR1020040107795A 2003-12-19 2004-12-17 격자 패치 배치, 리소그래피 장치, 검사 방법, 디바이스제조방법 및 이에 의해 제조된 디바이스 KR100632887B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/739,525 2003-12-19
US10/739,525 US7113255B2 (en) 2003-12-19 2003-12-19 Grating patch arrangement, lithographic apparatus, method of testing, device manufacturing method, and device manufactured thereby

Publications (2)

Publication Number Publication Date
KR20050062428A KR20050062428A (ko) 2005-06-23
KR100632887B1 true KR100632887B1 (ko) 2006-10-16

Family

ID=34523189

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040107795A KR100632887B1 (ko) 2003-12-19 2004-12-17 격자 패치 배치, 리소그래피 장치, 검사 방법, 디바이스제조방법 및 이에 의해 제조된 디바이스

Country Status (7)

Country Link
US (1) US7113255B2 (ko)
EP (1) EP1544677B1 (ko)
JP (1) JP4414327B2 (ko)
KR (1) KR100632887B1 (ko)
CN (1) CN100576079C (ko)
SG (1) SG112972A1 (ko)
TW (1) TWI263121B (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4083751B2 (ja) * 2004-01-29 2008-04-30 エーエスエムエル ホールディング エヌ.ブイ. 空間光変調器アレイを較正するシステムおよび空間光変調器アレイを較正する方法
US20050259269A1 (en) 2004-05-19 2005-11-24 Asml Holding N.V. Shearing interferometer with dynamic pupil fill
US20060001890A1 (en) * 2004-07-02 2006-01-05 Asml Holding N.V. Spatial light modulator as source module for DUV wavefront sensor
US7889315B2 (en) * 2006-04-13 2011-02-15 Asml Netherlands B.V. Lithographic apparatus, lens interferometer and device manufacturing method
US7875528B2 (en) * 2007-02-07 2011-01-25 International Business Machines Corporation Method, system, program product for bonding two circuitry-including substrates and related stage
SG153747A1 (en) * 2007-12-13 2009-07-29 Asml Netherlands Bv Alignment method, alignment system and product with alignment mark
CN101487992B (zh) * 2009-03-04 2010-10-20 上海微电子装备有限公司 一种硅片标记捕获系统与方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4585342A (en) * 1984-06-29 1986-04-29 International Business Machines Corporation System for real-time monitoring the characteristics, variations and alignment errors of lithography structures
NL8601278A (nl) 1986-05-21 1987-12-16 Philips Nv Inrichting voor het detekteren van een vergrotingsfout in een optisch afbeeldingssysteem.
US5062705A (en) 1989-09-13 1991-11-05 Matsushita Electric Industrial Co., Ltd. Apparatus for evaluating a lens
JP3297545B2 (ja) * 1994-09-02 2002-07-02 キヤノン株式会社 露光条件及び投影光学系の収差測定方法
US5808742A (en) * 1995-05-31 1998-09-15 Massachusetts Institute Of Technology Optical alignment apparatus having multiple parallel alignment marks
DE69735016T2 (de) 1996-12-24 2006-08-17 Asml Netherlands B.V. Lithographisches Gerät mit zwei Objekthaltern
JP3626504B2 (ja) 1997-03-10 2005-03-09 アーエスエム リソグラフィ ベスローテン フェンノートシャップ 2個の物品ホルダを有する位置決め装置
US5767959A (en) * 1997-03-28 1998-06-16 Nikon Corporation Lens distortion measurement using moire fringes
US5851701A (en) * 1997-04-01 1998-12-22 Micron Technology, Inc. Atom lithographic mask having diffraction grating and attenuated phase shifters
JP3634550B2 (ja) 1997-04-03 2005-03-30 株式会社ルネサステクノロジ 投影レンズの収差測定方法
JP4109736B2 (ja) * 1997-11-14 2008-07-02 キヤノン株式会社 位置ずれ検出方法
US7016025B1 (en) 1999-06-24 2006-03-21 Asml Holding N.V. Method and apparatus for characterization of optical systems
US6360012B1 (en) 1999-06-25 2002-03-19 Svg Lithography Systems, Inc. In situ projection optic metrology method and apparatus
TW550377B (en) 2000-02-23 2003-09-01 Zeiss Stiftung Apparatus for wave-front detection
US6747282B2 (en) * 2001-06-13 2004-06-08 Asml Netherlands B.V. Lithographic apparatus, device manufacturing method, and device manufactured thereby
US6772084B2 (en) * 2002-01-31 2004-08-03 Timbre Technologies, Inc. Overlay measurements using periodic gratings
US6780550B2 (en) * 2002-06-28 2004-08-24 Timbre Technologies, Inc. Single pass lithography overlay technique
US6864956B1 (en) * 2003-03-19 2005-03-08 Silterra Malaysia Sdn. Bhd. Dual phase grating alignment marks

Also Published As

Publication number Publication date
JP4414327B2 (ja) 2010-02-10
KR20050062428A (ko) 2005-06-23
CN1637611A (zh) 2005-07-13
JP2005183983A (ja) 2005-07-07
US20050134824A1 (en) 2005-06-23
SG112972A1 (en) 2005-07-28
US7113255B2 (en) 2006-09-26
CN100576079C (zh) 2009-12-30
EP1544677B1 (en) 2012-05-30
TWI263121B (en) 2006-10-01
EP1544677A1 (en) 2005-06-22
TW200523687A (en) 2005-07-16

Similar Documents

Publication Publication Date Title
JP4979746B2 (ja) マスク・パターン、マーカ構造、リトグラフ投影装置におけるマーカ構造の提供方法、およびリトグラフ装置におけるマーカ構造の位置関係決定方法
KR100760036B1 (ko) 리소그래피장치
KR100562190B1 (ko) 리소그래피장치의 투영시스템의 수차를 측정하는 방법,디바이스제조방법, 및 그 제조된 디바이스
KR100583694B1 (ko) 정렬마크가 제공된 기판, 마스크 설계방법, 컴퓨터프로그램, 상기 마크를 노광하는 마스크, 디바이스제조방법 및 그 디바이스
US7324186B2 (en) Lithographic apparatus and device manufacturing method
KR100583692B1 (ko) 리소그래피 장치 작동 방법, 리소그래피 장치, 디바이스제조방법, 및 이것에 의해 제조된 디바이스
JP4034262B2 (ja) リソグラフ装置およびデバイス製造方法
JP4456555B2 (ja) リソグラフィ機器、リソグラフィ機器の特性を測定する方法、及びコンピュータ・プログラム
KR100695984B1 (ko) 리소그래피 장치의 투영시스템의 수차 판정 방법
KR20060052321A (ko) 광학 위치 평가장치 및 방법
JP2008091907A (ja) 測定装置および方法
KR20060072052A (ko) 리소그래피 장치 및 디바이스 제조방법
KR101938723B1 (ko) 조명 시스템
KR100549781B1 (ko) 리소그래피투영마스크, 리소그래피투영마스크를 이용한디바이스제조방법 및 그 제조된 디바이스
KR20050065390A (ko) 측정 방법, 정렬 마크 제공 방법 및 디바이스 제조방법
KR100659256B1 (ko) 리소그래피장치 및 디바이스 제조방법
KR100606495B1 (ko) 경사 감응성이 감소된 웨이퍼 정렬용 디바이스 및 방법
US7239393B2 (en) Calibration method for a lithographic apparatus and device manufacturing method
KR100632887B1 (ko) 격자 패치 배치, 리소그래피 장치, 검사 방법, 디바이스제조방법 및 이에 의해 제조된 디바이스
KR100588116B1 (ko) 리소그래피장치 및 빔크기와 발산을 결정하는 방법
JP4837713B2 (ja) リソグラフィ装置および方法
EP1491966A1 (en) Calibration method for a lithographic apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120921

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130923

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140919

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150918

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160919

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170922

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180921

Year of fee payment: 13