KR100542801B1 - 음향터치스크린용격자트랜스듀서 - Google Patents

음향터치스크린용격자트랜스듀서 Download PDF

Info

Publication number
KR100542801B1
KR100542801B1 KR1019970073127A KR19970073127A KR100542801B1 KR 100542801 B1 KR100542801 B1 KR 100542801B1 KR 1019970073127 A KR1019970073127 A KR 1019970073127A KR 19970073127 A KR19970073127 A KR 19970073127A KR 100542801 B1 KR100542801 B1 KR 100542801B1
Authority
KR
South Korea
Prior art keywords
wave
acoustic
substrate
transducer
waves
Prior art date
Application number
KR1019970073127A
Other languages
English (en)
Other versions
KR19980064569A (ko
Inventor
시게끼 감바라
히로시 가네다
로버트 아델러
조엘 켄트
브루스 맥스필드
마사오 다께우치
Original Assignee
터치 패널 시스템즈 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 터치 패널 시스템즈 코포레이션 filed Critical 터치 패널 시스템즈 코포레이션
Publication of KR19980064569A publication Critical patent/KR19980064569A/ko
Application granted granted Critical
Publication of KR100542801B1 publication Critical patent/KR100542801B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/043Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves
    • G06F3/0436Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using propagating acoustic waves in which generating transducers and detecting transducers are attached to a single acoustic waves transmission substrate

Abstract

본 발명은 표면을 갖는 기판; 및 상기 표면과 교차하는 축을 따라 상기 기판을 통하여 전파되는 상기 기판내 벌크파를 변환하는 음향파 트랜스듀서를 포함하는 음향 터치 감지 장치에 관한 것이며, 여기서 상기 벌크파의 에너지는 상기 표면에서 상당한 에너지를 가지는 전환된 파 모드를 가지며 상기 표면을 따라 전파되는 파와 결합된다. 상기 장치는 벌크파를 레일리파 또는 플레이트파에 결합하기 위한 일련의 산란 중심(scattering center)을 포함한다. 레일리파 또는 플레이트파를 기판 영역에 걸쳐 분산시키고, 분석하여 터치 위치를 나타내는 섭동을 검출할 수 있다.

Description

음향 터치스크린용 격자 트랜스듀서
본 발명은 초음파 트랜스듀서 분야, 특히 음향 터치스크린용 격자 트랜스듀서에 관한 것이다.
터치스크린은 대화형 컴퓨터 시스템용 입력 장치이다. 상기 터치스크린은 정보 키오스크, 레스토랑용 주문 기입 시스템같은 응용을 위하여 상업적으로 많이 사용된다.
주요 터치스크린 기술은 저항막방식(resistive) 터치스크린, 용량성 터치스크린, 및 음향 터치스크린이다. 음향 터치스크린, 즉, 초음파 터치스크린은 매우 견고한 터치 감지 표면이나 디스플레이된 이미지의 광학적인 저하가 최소로 되는 것을 요구할 때 특히 유리하다.
다양한 형태의 초음파 트랜스듀서가 공지되어 있다. 음향 터치스크린에 사용된 가장 통상적인 형태는 웨지 트랜스듀서(wedge transducer) 및 압전 트랜스듀서 엘리먼트와 터치 기판 사이의 직접적인 결합이다. 트랜스듀서는 한 형태로부터 다른 형태로 에너지를 전환하는 물리적 엘리먼트 또는 일련의 엘리먼트이다. 이것은 음향파 모드들 사이의 전환 및 전기 및 음향 에너지 사이의 전환을 포함한다. 통상적으로 사용되는 압전 트랜스듀서는 표면상에 형성된 도전체를 가지는 직사각형 각기둥의 압전 세라믹으로 형성되고, 이들은 기판 엘리먼트(예를들어, 웨지 재료)의 표면과 접촉하고 있는 표면상에 형성된 금속 전극이나 세라믹 엘리먼트의 편평한 표면을 장착함으로써, 표면에 음향적으로 결합된다.
웨지 트랜스듀서는 표면파(surface-bound wave) 또는 플레이트 파를 기판에 유도한다. 웨지 트랜스듀서는 음향파가 다른 매체의 경계 표면상에 비스듬하게 입사할 때 굴절되는 현상을 사용한다. 통상적인 웨지 트랜스듀서는, 통상적으로 한측면상에 장착된 압전 엘리먼트를 갖는 플라스틱 웨지 및 예를들어 유리인 기판에 부착된 사변(hypotenuse)을 가지는 플라스틱 웨지로 이루어진다. 압전 엘리먼트는 웨지 재료 중에서 벌크파와 결합한다. 이런 벌크파는 유리에서 수평으로 전파되는 파로부터 또는 이 파로 굴절하기 위하여 임계각(즉, “웨지 각”)으로 전파된다. 웨지 재료는 터치 기판에서 희망 모드의 위상 속도보다 느린 벌크파 음향 속도로 선택된다; 웨지 각의 코사인은 이들 두 속도의 비와 같다. 그러므로, 웨지 트랜스듀서는 레일리파(Rayleigh wave), 러브파(Love wave), 및 램파(Lamb wave) 등의 플레이트파를 송수신하기 위하여 사용된다.
이와는 대조적으로, 직접-결합 또는 “에지(edge)” 트랜스듀서는, 통상적으로 기판의 표면에서 상당한(appreciable) 전력을 가지는 음향파가 직접적으로 생성되는 방식으로 터치스크린 기판에 직접적으로 접착된 압전 엘리먼트를 제공한다. 그래서 인터페이스는 희망 음향 모드로 결합하는 음향 기능뿐 아니라, 기판에 압전 엘리먼트를 접속하는 기계적 기능을 제공한다. 본원에 참조된 미국특허 제 5,162,618 호의 도 2B는 램파를 얇은 기판에 보내기 위하여 사용된 에지(edge) 트랜스듀서를 도시한다. Lardat에 의한 미국특허 제 3,893,047 호를 참조하라. 에지 트랜스듀서는 기판에서의 깊이의 기능으로서 노드(node) 없이 플레이트파에 결합하기 위하여 가장 일반적으로 사용된다. 레일리파에 결합하는 에지 트랜스듀서를 개발하기 위하여 몇몇 연구가 행하여 졌다. 본원에 참조된 Ushida에 의한 일본특허 제 08-305481 호 및 제 08-305482 호를 참조한다. 이러한 에지 트랜스듀서는 소형이지만, 압전 트랜스듀서가 보호되지 않은 채로 있다.
공지된 음향 터치 위치 센서의 하나의 형태로는, 패널을 통하여 기판의 제 2 에지상의 제 1 어레이 반대편에 배치된 검출기의 대응 어레이로 직접적으로 전파되는 병렬 표면파 또는 플레이트 파를 동시에 발생시키기 위해 기판의 제 1 에지를 따라 배치된 전송기의 어레이를 가지는 터치 패널 또는 플레이트를 포함한다. 트랜스듀서 어레이의 다른 쌍은 제 1 세트에 직각으로 제공된다. 한 포인트에서 패널을 터치하는 것은 터치 포인트를 통하여 통과하는 파의 감쇠를 유발하므로, 두세트의 트랜스듀서 어레이로부터의 출력의 해석이 터치 좌표를 가리키도록 한다. 이런 형태의 음향 터치 위치 센서는 본원에 참조된 Toda에 의한 미국특허 제 3,673,327 호 및 국제공개번호(WO) 제 94/02911 호에 나타나 있다. 음향파가 발산하기 때문에, 하나의 전송 트랜스듀서로부터 방사된 파의 일부분은 한세트의 수신 트랜스듀서에 입사할 것이며, 송수신 트랜스듀서의 간단한 일대일 관계보다 미세한 터치 위치의 식별이 이루어진다. 이런한 시스템은 다수의 트랜스듀서를 필요로 한다.
도 1에 도시된 바와같은 아들러(Adler)형 음향 터치스크린이라 불리는 상업적으로 성공한 음향 터치스크린 시스템은, 신호를 공간적으로 확산하고 위치를 표시하는 시간적 섭동(perturbation) 측면을 분석함으로써 효과적으로 트랜스듀서를 사용한다. 그러므로, 통상적인 직사각형 터치스크린은 두 세트의 트랜스듀서를 포함하고, 각각의 세트는 기판에 의해 규정된 물리적 데카르트 좌표 시스템의 축에 각각 배렬된 상이한 축을 가진다. 음향 펄스 또는 펄스 열은 하나의 트랜스듀서에 의해 생성되고, 예를 들어 반사 엘리먼트의 어레이를 교차하는 축을 따라 좁은 레일리파처럼 전파되며, 각각의 엘리먼트는 45°의 각을 이루고 음향파 펄스의 파장의 정수배에 대응하여 이격된다. 각각의 반사 엘리먼트는 터치 감지를 위하여 적응된 기판의 넓은 영역을 가로질러 제 1 어레이 및 트랜스듀서의 미러 이미지인 대향 어레이 및 트랜스듀서로 축에 수직인 경로를 따라 파의 일부를 반사시키고, 어레이의 다음 반사 엘리먼트로 상기 파의 일부를 통과시킨다. 미러 이미지 어레이의 트랜스듀서는 양쪽 어레이의 반사 엘리먼트에 의해 반사되고 방사된 펄스에 대해 병렬이 아닌 방향으로 지향된 증가적으로 변화하는 파 부분의 중복 부분으로 구성된 음향파를 수신한다. 그러므로, 음향파는 감쇠된 파가 발생되는 축 위치를 특징으로 하는 시간 분산 정보를 유지하면서 수집된다. 센서의 검출가능한 영역의 파경로는 시간 지연을 특징으로 하므로, 터치 감지 영역을 터치하는 물체에 의해 감쇠된 파경로는 합성된 되돌아오는 파형에서의 감쇠 타이밍을 결정함으로써 식별될 수 있다.
제 2 세트의 어레이 및 트랜스듀서는 제 1 세트의 어레이에 직각으로 제공되고, 유사하게 동작한다. 트랜스듀서의 축이 기판의 물리적 좌표 축에 대응하기 때문에, 되돌아오는 파의 감쇠 타이밍은 기판상의 위치의 데카르트 좌표를 가리키고, 상기 좌표는 추후에 감쇠 물체의 2차원 데카르트 좌표 위치를 결정하기 위하여 순차적으로 결정된다. 상기 시스템은 표면 터치가 표면에서의 전력 밀도를 가지는 표면파 또는 플레이트 파를 감쇠시킨다는 원리에 따라 동작한다. 기판을 가로질러 이동하는 파의 감쇠는, 파의 대응 감쇠가 특정 시간 주기에서 수신 트랜스듀서에 영향을 주도록한다. 그래서, 제어기는 축 좌표 위치를 결정하기 위하여 시간적인 감쇠 특성을 검출하기 위해서만 필요하다. 데카르트 좌표 위치를 결정하기 위하여 두 개의 축을 따라 순차적으로 측정이 이루어진다. 본원에 참조된 미국특허 제 4,642,423호, 제 4,644,100 호, 제 4,645,870 호, 제 4,700,176 호, 제 4,746,914 호 및 제 4,791,416 호, Re. 33,151을 참조하라. 본원에 참조된 Adler에 의한 미국특허 제 4,642,423 호는, 구형의 작은 입체각에 의해 형성된 직사각형 터치스크린 표면에 대한 의사-평탄화 기술을 언급하고 있다.
도 1에 도시된 바와같이, 시스템은 음향파 전송 수단(11 및 12)에 의해 버스트(burst) 형태로 단시간의 초음파 신호를 전송하고, 전송된 신호를 음향파 분산기로서 동작하는 반사 부재(13 및 14)를 통하여 좌표 입력 범위(15)의 전체 표면으로 분산시키고, 수신 수단(18 및 19)에 의한 신호를 음향파 수렴기(acoustic wave condenser)로서 동작하는 반사 부재(16 및 17)를 통하여 추가로 수신하고, 지시된 좌표를 검출하기 위하여 시간축을 따라 수신된 신호를 분석한다.
웨지형 트랜스듀서가 패널 표면에 위치되는 일부의 터치스크린 시스템은 패널 표면보다 반드시 높다. 도 2에 도시된 바와같이, 디스플레이가 일반적인 음극선관 같은 곡면 패널로 구성될 때, 웨지형 트랜스듀서(23)가 위치될 수 있는 공간은, 종종 곡면 패널(21) 및 곡면 패널(21)의 주변을 커버하는 베즐(22) 사이에서 나타낸다. 그러나, 디스플레이가 도 3에 도시된 바와같이 액정 디스플레이 또는 플라즈마 디스플레이같은 편평한 패널로 구성될 때, 베즐(25)로 커버된 패널(24)의 표면 주변에서 패널(24) 및 베즐(25) 사이의 틈이 없어서, 웨지형 트랜스듀서를 위치시키기 위한 공간이 없다. 그러므로, 웨지형 트랜스듀서가 사용될 때, 초음파형 터치 패널은 편평한 패널에 적합하지 않다. 그래서, 적용가능한 디스플레이 및 하우징 구성의 형태는 상당히 제한된다.
공지된 반사 어레이는 소다 석회 유리 시트 상으로 실크 인쇄되고, 플로트 공정(float process)에 의해 형성되고, 상승된 유리 중단부(interruption)의 산 모양의(chevron) 패턴을 형성하기 위하여 오븐에서 경화되는 유리 프릿(frit)으로 이루어진다. 통상적으로 이들 중단부는 음향파장의 1% 정도의 높이 또는 깊이를 가지므로, 음향 에너지를 부분적으로만 반사한다. 수신 트랜스듀서에서 등가 음향 전력을 제공하기 위하여, 반사 엘리먼트의 간격이 전송 트랜스듀서로부터의 거리를 증가시킴에 따라 감소되거나, 전송 트랜스듀서로부터의 거리가 증가됨에 따라 반사성이 증가하도록 반사 엘리먼트의 음향 투과율과 반사율의 밸런스가 변경될 수 있다. 터치 센서가 일반적으로 디스플레이 장치의 정면에 배치되고, 반사 어레이가 광학적으로 가시적이기 때문에, 반사 어레이는 능동 감지 영역의 외측인 기판의 주변에 배치되고, 베즐 아래 숨겨져 보호된다.
트랜스듀서 수를 더 줄이기 위하여, 접혀진 음향 경로가 사용될 수 있다. 미국특허 제 4,700,176 호의 도 11은, 파를 전송하고 감지 파를 수신하기 위해 단일 트랜스듀서를 사용하며, 단일 반사 어레이가 파를 분산 및 재결합하기 위하여 사용된다. 그러므로 상기 시스템은 반사 어레이와 반대의 반사 구조를 사용한다. 그래서, 음향파는 기판의 에지 또는 전송 반사 격자의 축에 평행한 반사기 어레이에서 180°반사되고 기판을 통하여 반사 어레이로 다시 반사되고 그것의 경로를 다시 트랜스듀서로 되돌린다. 이런 경우, 트랜스듀서는 적당한 시간주기로 송신기 및 수신기로서 각각 작동하기 위하여 시분할 다중화된다. 제 2 트랜스듀서, 반사 어레이 및 반사 에지는 수직축을 따라 터치 좌표를 결정하기 위하여 축에 대해 직각으로 제공된다. “트리플 송신(triple transit)” 시스템은 두 개의 축으로부터 파를 생성 및 수신하는 두 개의 직교하는 축으로의 터치를 검출하기 위한 감지파를 생성하는 단일 트랜스듀서를 제공한다. 본원에 참조된 미국특허 제 5,072,427 호, 제 5,162,618 호 및 제 5,177,327 호를 참조한다. 현재 상업적인 상품의 대부분은 레일리파를 바탕으로 한다. 레일리파는 터치 표면에 한정된다는 사실로 인해 터치 표면에 유용한 전력 밀도를 유지한다. 레일리파는 파 전파 축을 포함하는 수직 평면에서 타원형 경로를 따라 이동하는 기판 입자를 통해 수직 및 수평 파 성분을 가지며, 기판의 깊이를 증가시킴에 따라 감소하는 파 에너지를 갖는 파이다. 전단 응력 및 압력 응력 양쪽이 레일리파와 관련된다.
수학적으로, 레일리파는 반무한 매체에서만 존재한다. 실현 가능한 유한 두께의 기판에서, 얻어지는 파는 보다 정확하게 의사-레일리파라 불린다. 여기서, 레일리파는 이론에서만 존재하므로, 이에 대한 언급은 의사-레일리파를 가리킨다. 공학적 목적으로는, 터치스크린 설계에 이익이 있는 거리에 대한 레일리파 전파를 지지하기 위하여 레일리 파장의 3 또는 4배의 두께를 가지는 기판이면 충분하다.
레일리파 이외에, 표면상의 터치를 감지하는 음향파, 즉 음향 에너지의 측정 가능한 감쇠를 초래하는 표면상의 터치, 램(Lamb)파, 러브(Love)파, 수평으로 편광된 0차 전단파(ZOHPS), 및 수평으로 편광된 고차(high order)의 전단파(HOHPS)를 포함하지만, 이에 국한되지 않는다. 본원에 참조된 미국특허 제 5,591,945 호, 제 5,329,070 호, 제 5,260,521 호, 제 5,234,148 호, 제 5,177,327 호, 제 5,162,618 호 및 제 5,072,427 호를 참조하라.
레일리파와 같이, 러브파는 하나의 표면에 의해 구속되거나 인도되는 “표면파(surface-bound wave)”이고, 충분히 두꺼운 기판에 제공된 다른 표면에 의해 영향을 받지 않는다. 레일리파와 대조적으로, 러브파의 입자 운동은 수평방향, 즉 터치 표면에 평행하고 전파 방향에 수직이다. 전단 응력만이 러브파와 관련된다.
음향 터치스크린과 관련하여 관심이 있을 수 있는 음향파 종류는 플레이트파이다. 이것은 다양한 대칭 및 차수의 램파뿐 아니라, 가장 낮은 차수를 가진 수평으로 편광된 전단 플레이트파 및 가장 높은 차수를 가진 수평으로 편광된 전단 플레이트파(HOHPS)를 포함한다.
규칙적인 간격 또는 증가하는 간격을 가지는 반사 엘리먼트의 어레이는 음향파를 포함하는 입사 방사(incident radiation)를 회절 또는 산란시킬 수 있다는 것이 알려져 있다. 상술한 공지된 아들러(Adler)형 터치스크린 설계는, 음향파를 소정 각도로 간섭적으로 반사하기 위해 반사 어레이를 사용한다. 본원에 참조된 미국특허 제 5,072,427 호 및 제 5,591,945 호에 따른 터치스크린 설계는 이 원리를 확대하여, 파의 파모드 전환시에 표면상에서 소정 각도로 음향파를 간섭적으로 반사시키는 반사 어레이를 제공한다. 그래서, 회절 격자를 가지는 음향파의 상호작용은 다양한 파 모드 사이에서 파 에너지를 전환시킬 수 있다.
음향파에 의해 감지된 터치는 커버 시트를 통하여 직접 또는 간접적으로 표면에 대하여 손가락 또는 스타일러스에 의한 프레싱을 포함한다. 본원에 참조되고 전단 모드파 음향 센서 시스템 및 에지 트랜스듀서를 사용하는 미국특허 제 5,451,723 호를 참조하라. 레일리파 음향 터치센서에 사용된 웨지 트랜스듀서를 사용하면 커버시트 및 웨지 트랜스듀서 사이의 기계적 간섭으로 인해 정면상에 커버 시트를 장착하는 것이 어려워진다. LCD 터치모니터 설계로, 웨지 트랜스듀서를 사용하면 기계적 설계가 복잡해지고 옵션이 제한될 수 있다.
웨지 트랜스듀서로부터의 상기 기계적 간섭을 처리하기 위한 한가지 방법은 본원에 참조된 1996년 3월 4일자 출원된 미국특허 제 08/610,260 호에 기술된다. 본원에 서술된 바와같이, 웨지 트랜스듀서는 터치스크린 기판의 정면 뒤쪽의 웨지 트랜스듀서를 우묵한 곳에 두는 터치 영역에 인접한 정면 베즐상에 장착될 수 있지만, 음향 손실을 초래한다. 액정 디스플레이(LCD) 터치모니터 설계의 요구 사항과 반대로, 상기 웨지 트랜스듀서의 사용은 기계적인 설계를 복잡하게 하고 옵션을 한정한다.
Masao Takeuchi 및 Hiroshi Shimizu에 의한 “표면 음향파에 대한 격자 커플러의 이론 분석”이라는 발명의 명칭의 여기에 참조된 일본 음향 학회지 36(11):543-557(6/24/1980)은, 격자 트랜스듀서 및 그것의 이론적 구조를 개시한다. Tohoku 대학의 Masao Takeuchi 및 Hiroshi Shimizu에 의한 “주기적 구조의 플레이트파의 단방향 여기(excitation)”(일본)(1991) 이라는 명칭의 출판된 연구 논문을 또한 참조하라. J.Melngailis 및 R.C. Williamson에 의한 “격자에서의 표면파 및 벌크파의 상호작용 : 위상 시프트 및 날카로운 표면 파/반사된 벌크파 공진”, Proc. 1978 IEEE 초음파 심포지움, p.623; Herman A. Haus, Annalisa Lattes 및 John Melngailis에 의한 “표면 음향파 및 플레이트 모드 사이의 격자 결합“, IEEE 음파 및 초음파 트랜잭션, p.258(1980, 9월)을 또한 참조하라.
웨지 트랜스듀서에서, 예를들어 레일리파에 결합되지 않은 압전 트랜스듀서로부터 전환되지 않은 벌크파는 터치스크린 기판에 진입하지 않고 웨지 재료에 방산된다. 대조적으로, 표면 격자 배열에 있어서, 격자에서 예를 들어 레일리파로 전화되지 않은 압전기(piezo)로부터의 벌크파 에너지는 기판 재료 그 자체에서 전파되는 기생 벌크 또는 플레이트파의 형태를 취한다.
Takeuchi 등(1980)에 의해 명백한 바와 같이, 입사 벌크파 에너지로부터 레일리파 에너지로의 전환 효율의 이론적 상한은 81%이고, 기생파 형태의 벌크파 에너지의 이론적 최소치 19%를 남긴다. 이런 효율조차 실제적으로 달성하기 어렵다; Takeuchi등(1980)에 의한 “F 인자”를 참조한다. 그래서 격자 트랜스듀서가 웨지 트랜스듀서에 비하여 상당한 단점:강한 기생파의 발생을 가진다는 것이 명백하다. 비파괴 검사같은 통상적인 초음파 트랜스듀서 응용에 대하여, 이와같은 강한 기생파의 발생은 허용되지 않는다. 터치스크린에서 조차, 소망하는 파에 대하여 기판의 평면에서 평행하게 전파되는 발생된 기생파를 예측하는 것이 어렵다고 생각된다. 비슷한 고려가 기생파에 대한 수신 모드 격자 트랜스듀서의 감도에 적용된다.
바람직하지 않은 기생파는 음향 터치스크린 설계의 적어도 몇몇 예에 대하여 문제가 될 수 있다는 것이 공지되어 있다. 예를들어, 여기에 참조된 미국특허 제 5,260,521 호의 도 13, 14 및 17, 및 본문을 참조한다. 상업적 터치스크린 제어기에서 터치 인식 알고리즘은 희망 신호가 기생 신호의 간섭으로부터 자유로울 것을 요구한다.
R.F.Humphryes 및 E.A.Ash에 의한 1969년 5월 1일자 전자 레터(5권 9번) “음향 벌크 표면파 트랜스듀서”라는 논문은 단방향 트랜스듀서를 구성하기 위한 수단으로서 비대칭 격자 티쓰(teeth)를 사용하는 격자 트랜스듀서를 논의한다. 이런 참고 문헌은 표면들 사이에 레일리파를 전달하기 위한 수단으로서 대향 기판 표면상에 한쌍의 격자를 고려한다.
여기에서 참조된 미국특허 제 5,400,788 호의 도 12, 13 및 14는, 레일리파를 벌크파에 결합하기 위하여 격자가 사용되는 트랜스듀서 배열을 개시한다. 압전 기판상 인터디지털(interdigital) 트랜스듀서는 레일리파를 생성하는데, 상기 레일리파는 벌크파를 압축하기 위하여 격자를 통하여 전환되고 상기 벌크파는 음향파 가이드(선택적으로 광섬유임)에 결합된다. 인터디지털 전극 및 격자는 원형 아크(arc) 단면을 형성한다.
본원에 참조된 “반사 모드 초음파 터치 감지 스위치”가 발명의 명칭인 미국특허 제 5,673,041 호는 터치 패널 기판의 두께 모드 공진을 사용하는 초음파 터치 센서를 개시한다. 예를들어 폴리비닐리덴 플루오르화물(PVDF)로 형성된 투명 압전 엘리먼트의 어레이는 기판(예를들어, 유리)의 후면에 접착된다. 기판 두께 공진에 결합된 압전 엘리먼트의 임피던스 특성은 전자장치에 의해 모니터된다. 손가락 터치는 음향 에너지를 흡수하고 두께 공진을 댐핑하고 공진 시스템의 Q(품질 인자)를 변경하므로, 두께 공진에 결합된 압전기의 임피던스 특성을 변화시킨다. 그러므로, 이런 방법은 흡수 물체에 의해 음향파의 공지된 댐핑을 사용하고, 산란 구조 또는 격자를 사용하지 않는다.
본 발명은 음향 터치스크린에 대한 트랜스듀서 시스템을 제공하며, 여기서 음향 방사 엘리먼트, 예를들어, 압전 엘리먼트가 매체 중에서 벌크파를 생성하는데, 이 파는 유용한 플레이트파 또는 표면파, 예를들어, 레일리파, 러브파 또는 HOHPS파를 생성하기 위하여 격자 구조와 상호작용한다. 그래서, 압전 엘리먼트에 결합하는 벌크파는 격자 구조와 상호작용하여, 기판의 하나 이상의 표면에 의해 속박되어 있고 적어도 하나의 표면에서 상당한(appreciable) 에너지를 가지는 파 모드로 전환된다. 이들 일반적인 원리를 사용하여, 다양한 터치스크린 구성이 가능하다. 통상적으로, 벌크파 모드 자체는 터치스크린에서 사용하기에 적당하지 않고, 보다 유용한 파 모드로 전환되어야 한다.
본 발명에 따르면, 벌크파는 표면의 근방범위에 대하여 영(0)이 아닌 각도로 전파되는 표면에서 격자와 상호작용한다. 선택적으로 격자는 표면 격자 구조에 추가적으로 또는 표면 격자 구조 대신에, 기판의 내부에 중요한 성분을 가진다. 격자 그 자체는 음향파 모드를 결합할 수 있는 적어도 하나의 산란 중심을 포함하고; 실질적으로, 효율적인 파모드 전환은, 선형, 곡선, 점, 또는 다른 모양이어도 좋은 일련의 주기적인 섭동과 함께 발생한다. 선형 격자, 예를들어 엘리먼트가 입사 음향빔의 폭 이상으로 연장하여 배치된 선형 격자는 일차원 산란 엘리먼트이고, 통상적으로 축을 따라 약간 분기하는 산란된 음향파를 생성한다. 음향파의 일부와 상호작용하는 엘리먼트는 예를들어 포인트 산란 중심 또는 짧은 연장 엘리먼트이고, 상이한 파 모드 또는 전파 축을 각각 가진 다수의 상이한 음향파로 산란할 수 있다. 만곡되거나 만곡 축을 따라 배열된 엘리먼트는 유사한 특성의 선형 격자와 비교하여 음향파를 수렴하거나 발산하는 음향 렌즈로서 작용한다.
본 발명의 발명자는 종파(압축파) 및/또는 횡파(전단파)일 수 있는 벌크파가 기판을 통해 상기 기판의 표면상의 주기적 섭동 구조를 향해 전파될 때, 벌크파는 주기적인 섭동에 의해 표면파(surface bound wave) 또는 플레이트파로 전환되는 것을 발견하였다. 표면파 또는 플레이트파는 예를들어 패널의 디스플레이 범위에 대응하는 패널의 터치 감지 영역에서 터치 위치(접촉 위치 또는 입력 위치)를 매우 정밀하게 검출하기 위하여 사용될 수 있고, 그래서 웨지형 트랜스듀서에 대한 필요성을 경감시킨다. 통상적인 실시예에서, 상기 파는 기판의 한 표면상의 압축 모드 음향파 트랜스듀서에 의해 생성되는데, 이것은 격자 또는 일련의 산란 엘리먼트를 향해 지향된 벌크파를 기판에서 생성한다. 놀랍게도, 격자 트랜스듀서 그 자체가 기판에서 중요한 결합을 행하는 한편, 발명자는 격자 트랜스듀서를 통합한 완전한 터치스크린에 대하여 처리 가능하게 된는 기생 신호 효과를 발견하였다.
본 발명의 다른 측면은 중합체 기판에 적당한 레일리파 트랜스듀서를 포함하고, 음향 트랜스듀서 시스템을 제공한다. 미국특허 제 5,162,618 호, Col. 5, 42-44 라인은 전단 플레이트파를 사용하는 터치스크린용 플라스틱 기판에 관한 것이다; 레일리파가 플라스틱 기판에서 어떻게 생성되는지는 제공되지 않는다. 압전 트랜스듀서의 반대측의 웨지 엘리먼트의 웨지 각도(wedge angle)는 다음식에 의해 주어진다;
cos(θ) = VP(웨지)/VR(기판)
주어진 재료에 대하여 레일리파 속도(VR)는 통상적으로 압력파 속도(VP)의 약 1/2이다. 웨지 트랜스듀서를 설계하기 위하여, 즉, 1 이하의 cos(θ)에 대하여, 웨지 재료의 압력파 속도는 웨지 재료의 압력파 속도가 기판에서의 압력파 속도의 약 1/2 이하이어야 한다. 기판 재료(예를들어, 유리)가 비교적 빠른 음속을 가지고 웨지 재료(예를들어, 아크릴)가 비교적 느린 음속을 갖는 경우, 이와같이 될 수 있다. 그러나, 만약 기판이 중합체 재료로서, 느린 음속을 가지면, 요구된 훨씬 느린 음속을 가지는 허용 가능한 웨지 재료를 발견하는 것은 어렵다. 레일리파가 실제적인 중합체 기판상에 생성되어 수신되는 중합체 터치스크린 설계를 이루기 위하여, 웨지 트랜스듀서에 대한 대안이 필요하다. 그러므로, 본 발명은 웨지 재료의 굴절 특성을 고려하지 않고, 그 대신 파 모드를 전환하기 위해 회절 원리를 사용한다.
본 발명에 따르면, 격자는 바람직하게 다중 산란 중심의 간섭 산란을 이용한다. 그래서 격자는 벌크파 및 희망 파 사이의 희망 브래그(Bragg) 회절 결합에 대응하는 적어도 하나의 중요한 푸리에 성분을 가지는 어레이일 수 있다. 이런 경우 벌크파의 파 벡터의 수평 성분은 플레이트 또는 표면파의 파 속도에 결합한다. 격자는 표면 구조로서 제공되고, 벌크파는 기판의 표면에 입사되는 각으로 격자상에 입사된다. 선택적으로, 격자는 기판 또는 비평면에 매몰될 수 있다. 격자 트랜스듀서의 기본적인 동작 원리는 비록 격자 구조의 비대칭이 지향성을 유도할지라도, 격자 구조의 세부사항에 거의 무관하다. 격자는 홈(groove), 융기(ridge), 증착 재료, 충전된 홈, 매몰된 구조(기판 표면 아래 음향 반사 엘리먼트)로서 존재하는 엘리먼트로 이루어지고, 사각형, 사인형, 톱날형, 및 다른 대칭 또는 비대칭 모양을 포함하는 다양한 프로파일을 갖는다. 실제적으로, 중합체 기판용 몰딩 격자 트랜스듀서에 대하여, 사인 격자(sinusiodal grating)의 완만한 에지가 바람직하다. 엘리먼트의 대칭 및 이격으로 인해, 격자 엘리먼트의 기능은 비록 격자가 고조파에 대해서는 다른 특성을 가질지라도, 기본 주파수에 대해서는 본질적으로 동일하다.
상기 목적을 위하여, 격자는 2차원 파 벡터 공간에서 하나 이상의 포인트에 대한 중요한 푸리에 변환 크기를 가지는 산란 중심의 분포를 형성하도록 하는 방식으로 매체의 음향 특성이 변조되는 센서 서브시스템의 영역으로 고려될 수 있다. 다수의 허용각을 가지는 격자는 2차원 파 벡터 공간에서 둘 이상의 포인트에 대한 중요한 2차원 푸리에 변환 크기를 가진다. 격자는 예를들어 격자 재료의 층을 선택적으로 증착함으로써 형성된 편평한 격자 또는 벌크 회절 구조일 수 있다.
다중 방향에 결합함으로써, 몇몇 효과가 상실되고 기생 신호를 피하기 위하여 더 많은 주의가 필요해질 수 있다; 그러나, 설계의 감소 부분 수 및 밀집도 및 기계적 간략성은 어떤 환경하에서 유리할 수 있다. 예를들어, 단일 수신 트랜스듀서는 X 및 Y 신호 양쪽을 수신할 수 있다.
어떤 경우, 이것은 기판의 나머지에 접착된 재료의 스트립상에서 반사 어레이 또는 격자를 제조하기 위한 제조 목적에 유용하다 ; 미국특허 제 4,746,914 호, 칼럼 9를 참조. 그래서 접착된 구조는 제조 편리성 또는 패키징 구성을 위하여 사용된다.
음향 트랜스듀서 부분을 형성하는 음향 방사 또는 감지 구조는 통상적으로 압전 엘리먼트이지만, 이에 국한되지는 않는다. 트랜스듀서는 한 형태로부터 다른 형태로 에너지를 전환하는 구조이고, 양방향일 수 있다. 예를들어, 전기 음향 트랜스듀서, 광음향 트랜스듀서, 자기 음향 트랜스듀서, 음파-음향 트랜스듀서(한 음향파 모드 및 다른 음향파 모드 사이에서 에너지를 전환), 및 열 음향 트랜스듀서, 기타 등등이 사용 가능하다.
압전 엘리먼트는 통상적으로 중간에 압전 반응 재료를 가진 전극의 역할을 하는 전도 부분을 가지는 얇은 직사각형 평판(slab) 형태이다. 발진 전압 신호가 전극에 인가될 때, 압전 효과를 통한 압전 재료내의 결과적인 전기장은 압전 재료의 성질, 전극 배열, 및 기게적 제한 또는 결합에 따라 엘리먼트가 진동하도록 한다. 거꾸로, 만약 엘리먼트가 기계적 발진에 영향을 받으면, 발진 전압이 전극상에 나타난다.
압전 엘리먼트의 기계적 발진 모드에 관한 몇몇 옵션이 있다. 공통적인 선택은 엘리먼트의 얇은 크기에 관련하여 가장 낮은 차수의 압축 팽창 발진이다; 상기 엘리먼트는 중요한 길이방향 성분을 가지는 벌크 압력파 또는 다른 음향 모드에 결합한다. 다른 선택 사항은 하나의 전극 유지 표면이 반대 표면에 평행하지 않게 이동하는 가장 낮은 차수의 전단 발진이다; 상기 엘리먼트는 전단 성분을 가지는 벌크 전단파 및 다른 음향 모드에 결합한다. 전단 이동 방향은 전극의 평면에서 임의의 방향으로 설계될 수 있다. 보다 복잡한 옵션이 가능하다. 본 발명의 일측면에 따라, 기판에서 전파되는 다양한 세트의 감지파는 적당한 모드-감지 트랜스듀서에 선택적으로 결합함으로써 전파 모드에 따라 구별될 수 있다.
통상적으로, 압전 엘리먼트는 희망 모드의 발진을 위하여 동작 주파수에서 공진 주파수를 가지도록 설계된다. 가장 낮은 차수의 압축 발진을 위하여, 공진 주파수는 압전 트랜스듀서 엘리먼트가 전단 파장 두께의 1/2이도록 2배의 압전 엘리먼트 두께로 나뉘어진 벌크 압력파 속도(압전 재료 내의)이다. 유사하게, 가장 낮은 차수 전단 모드 압전 엘리먼트는 벌크 전단 파장 두께의 1/2이다. 터치스크린에 사용된 바와같이, 압전 엘리먼트는 기판에서 음향파로의 결합으로 인하여 댐핑된 기계적 발진기이다.
본 발명의 일실시예에서, 압전 엘리먼트는 개별적으로 구동되는 직렬로 배열된 밴드 전극(band electrode)을 가진다. 유리의 두께를 따라 배치된 일련의 전극을 가진 기판, 예를들어 유리평판의 에지에 결합될 때, 위상 어레이 트랜스듀서가 형성된다. 가장 간단한 실시예에서, 전극의 간격은 소망하는 전파 각의 코사인으로 나뉘어진 희망 벌크 파장의 1.5배이고, 전극이 전기적으로 병렬이도록 교대로 배열하므로, 모드 선택적인 두 개의 전극 트랜스듀서를 형성하고, 기판에서 대각선으로 위쪽 및 아래쪽으로 음향파를 생성한다. 보다 일반적으로, 위상 어레이의 각각의 전극은 개별적으로 여기되거나 분석될 수 있고, 2배의 내부 전극 간격보다 긴 파장을 가지는 음향파와 결합하도록 하는데, 이것은 양방향 선택성을 허용한다.
전송 트랜스듀서는 제어기로부터 희망 주파수에서 사인파 또는 의사 사인파 톤 버스트로 여기된다. 이런 버스트는 통상적으로 공칭 동작 주파수에서 최대의 전력 스펙트럼을 가진다. 일반적으로, 센서는 특정 주파수 또는 주파수 세트에서 사용하기 위하여 동조되므로, 이런 파라미터는 미리 설정된다. 본원에 참조된 미국특허 제 4,644,100, Re. 33,151 및 4,700,176을 참조한다.
격자 트랜스듀서의 기본 개념은 아래와 같다. 압전 엘리먼트는 기판에 직접적으로 접착되고 기판내의 벌크파에 결합한다. 그리고 나서, 이들 벌크파는 격자를 통하여 터치스크린 동작을 위한 희망 음향 모드에 결합한다. 희망 음향 모드는 레일리파일 수 있다.
웨지 트랜스듀서와 대조적으로, 격자 트랜스듀서는 웨지가 필요하지 않으므로, 감소된 기계적 프로파일을 가진다. 이것은 LCD 터치모니터에 특히 중요하다.
격자 트랜스듀서는 기판의 표면상에 웨지-트랜스듀서 서브어셈블리의 정밀한 각 정렬을 필요로하지 않기 때문에 특히 유리하다. 격자 트랜스듀서에서, 격자의 각 정렬은 유사한 허용오차를 가진다. 그러나 상기 허용오차는 표준 프린팅 공정에 의해 쉽게 충족될 수 있다. 허용오차는 기판 표면상 압전 엘리먼트의 배치를 위하여 좀더 느슨하다.
y 축, 또는 곡선화되거 확장되거나 인터럽트된 엘리먼트에 평행하게 또는 경사질 수 있는 도 4의 격자 5a', 5b', 8a' 및 8b'는 기판의 국부 표면에 의해 규정된 수평(x-y)면에서 2차원 브래그 산란 조건을 통하여 벌크파 및 표면파 또는 플레이트파를 결합시킨다. k는 표면파 또는 플레이트파의 파 벡터를 나타낸다. 이것은 도 4에 규정된 바와같은 X-Y 평면의 벡터이고, 그 방향은 음향파의 전파 방향이고 그 진폭은 2π/λ이고, 여기서 λ는 표면파 또는 플레이트파의 파장이다. (kB)∥는 벌크파 파벡터의 수평 투영, 즉, x 및 y성분을 나타낸다. θB는 k 및 (kB)∥ 사이의 각으로서 규정되고, θBT는 표면 벌크파로부터 표면 또는 플레이트파로 전환하기 위한 각이고, θBR은 표면파 또는 플레이트파로부터 벌크파로 전환하기 위한 각이고, 결합된 벌크파 모드가 다르므로, 각각의 산란각이 다르다는 것을 나타내기 위하여 다른 표기를 가지고 있다. kB는 격자의 중요한 2차원 푸리에 성분이다. 2차원 브래그 산란 조건은 만약 다음 방정식이 만족되면 부합된다:
±kB = k - (kB)∥
이런 기본 2차원 브래그 산란 조건에 대한 많은 특정 경우가 있다. 몇몇 예는 아래와 같이 주어진다.
k 및 (kB)∥는 평행, 즉 θE = 0°이고, 격자는 간격(p)을 가지는 k에 수직인 선형 격자 엘리먼트의 주기적 구조인 특정 경우에, 상기 관계는 n이 정수인 다음 스칼라 조건으로 감소된다:
2πn/p = k - kBsinθB
게다가, 만약 희망 표면파 또는 플레이트파가 파장(λR)의 레일리파이고( 및 벌크파 파장이 λB인) 경우, 이런 관계는 다음 방정식으로 감소된다.
θB = Arcsin(λBR + nλB/p)(n=..., -3,-2,-1,0,1,2,3,...)(1a)
방정식(1a)에서 내부 각(θB)은 일반적으로 -π/2<θB<π/2, 바람직하게 -3π/8<θB<3π/8, 더욱 바람직하게 -π/4<θB<π/4의 범위(반경)로부터 선택될 수 있다.
터치를 감지하기 위하여 사용된 파는 기판의 표면상 터치에 의해 검출 가능하게 교란된 음향파이다. 표면파 또는 플레이트파 모드의 선택을 위하여 많은 옵션이 존재한다. 레일리파는 우수한 터치 감도를 가지며, 본질적으로 임의의 큰 두께의 기판에 대하여 조차 터치 표면 근방의 얇은 범위로 제한된다. 수평으로 편광된 전단파는 물 및 실리콘 고무 밀봉같은 액체 및 겔형 오염물에 약하게 결합하는 장점을 가진다. 비균질 기판은 다른 형태 파의 전파를 지지하는 것외에, 특히 레일리파같은 터치 표면 근처에 잡혀진 수평으로 편광된 전단파인 러브파를 포함하는 비대칭 표면 전력 밀도를 가지는 수평 편광 전단파의 전파을 지지하도록 적응된다. 충분히 얇은 기판에서 램파는 음향파모드의 선택에 대한 또다른 옵션을 제공한다. 다양한 기술상의 트레이드-오프(trade-off)가 주어진 응용에 대한 음향 모드의 최적 선택과 관련된다.
이것과 관련하여, 러브파는 높은 위상 속도를 가지는 낮은 기판 부분과 인터페이스된 낮은 위상 속도를 가지는 상부 기판 부분에 의해 지지된다. 비대칭 수평 편광 전단파로서 분류된 유사 형태의 파는 보다 복잡한 성질의 수직 위상 속도 기울기에 의해 지지될 수 있다. 음향적인 흡수층상의 고속층 위에 저속층의 샌드위치는 러브파를 지지하고 동시에 기생 플레이트파를 필터링한다. 그래서, 기판은 다른 음향 전파 특성 및/또는 음향 인터페이스를 가지는 층을 포함할 수 있다.
기판은 직사각형 모양 또는 6각형 플레이트같은 비직사각형 모양을 가지는 편평한 플레이트로서 형성된다. 선택적으로 기판은 원통, 구형 또는 타원형 표면 또는 섹션 표면으로서 하나 또는 2개의 축을 따라 곡선화되거나, 다른 구조를 가질 수 있다. 큰 입체각 구형, 및 완전한 원통형 기판이 가능하다. 예를들어, 다각형 터치 센서는 각각의 측면상에 반사 어레이 및 각 꼭지점에 트랜스듀서가 제공된다. 본 발명은 표준 직사각형 센서 기하형태로 국한되지 않는다.
상기 응용을 위하여, 기판은 단결정 구조가 아니라 균질 또는 비균질일 수 있는 엘리먼트의 음향 결합 세트를 요구한다. 전송 트랜스듀서로부터 수신 트랜스듀서로 음향 경로는 제조 과정의 일부로서 함께 접착된 기판의 영역을 선택적으로 통과할 수 있다.
본원에 참조된 1996년 8월 12일에 출원된 공동 계류중인 미국특허 제 08/615,716 호에 개시된 개념에 따라, 패널의 낮은 곡률은 요구되지 않고, 실제적으로 격자 트랜스듀서는 총체적인 비평면 표면을 포함하는 다수의 상이한 음향 터치 입력 감지 기하형태에 적용될 수 있다. 미국특허 제 08/615,716 호는 다중 및/또는 과다한 감지파의 사용 및 분석을 포함한다.
큰 기판은 상기 기판이 큰 영역에 걸쳐 터치를 감지하는 예를 들어 큰 화이트 보드 응용에 사용될 수 있다. 아들러형 음향 센서는 전자 화이트 보드에서 사용하는 것으로 고려되었다; 도 10 및 Seiko Epson에 의한 유럽특허 제 94119257.7 호의 관련 텍스트를 참조하라. 화이트 보드 응용에서, 기판은 투명할 필요가 없으므로, 알루미늄같은 불투명 재료로 형성될 수 있다. 바람직하게, 알루미늄 및 몇몇 다른 금속은 비교적 느린 음향 위상 전파 속도를 가지는 에나멜로 코팅되므로, 정면 상의 높은 터치 감도(수평 전단 플레이트파 모드에 관련)을 가지는 러브파를 지지한다.
기판을 형성하기 위한 적당한 유리는 소다 석회 유리; 붕소 함유 유리, 예를들어, 붕규산 유리; 바륨, 스트론튬 또는 납 함유 유리, 및 크라운 유리를 포함한다. Tsumura 및 Kent의 미국특허 제 08/904,670 호를 참조하라. 허용 가능한 음향 손실을 가지며 알루미늄 및 강철을 포함하지만 이에 국한되지 않는 다른 재료가 사용될 수 있다. 어떤 조건하에서, 적당한 기판은 Dow Chemical로부터 중합체, 예를들어 Styron®, 저-음향-손실 중합체로 형성될 수 있다. 적당한 기판은 예를들어, 적층부인 비균질 음향 특성을 가지는 기판으로터 형성될 수 있다. 적층부는 예를들어 붕규산 유리 또는 Schott B270 유리 소다 석회 유리 적층부 또는 알루미늄상의 에나멜은 정면상에 집중된 음향파 에너지를 가지는 러브파 전파을 지지할 수 있다.
그래서, 본 발명에 따른 하나의 터치형 좌표 입력 장치는 표면파 또는 플레이트파가 전파되는 표면을 가지는 전파 매체, 상기 전파 매체의 최하부로부터 전파 매체의 표면쪽으로 비스듬한 방향으로 벌크파를 전파시키고 주기적인 섭동에 의해 표면파 또는 플레이트파를 생성하는 전송 수단, 상기 전파 매체의 표면상에 형성되고 터치할 수 있는 디스플레이 영역, 상기 디스플레이 영역의 주변에서 서로 대향하는 양측면에 제공되고 전송 수단으로부터의 표면파 또는 플레이트파를 두 개의 측면 부분중 한쪽으로부터 디스플레이 영역 전체에 걸쳐 전파시킬뿐 아니라, 다른 측면 부분에서 전파된 표면파 또는 플레이트파를 집중 또는 수렴하는 반사 수단, 및 집중된 표면파 또는 플레이트파를 주기적인 섭동에 의해 벌크파로 수렴하고, 전파 매체의 최하부를 향해 비스듬한 방향으로 벌크파를 전파시키고 전파된 벌크파를 수신하는 수신 수단을 포함한다.
본 발명에 따른 어떤 실시예에서, 전파 매체는 편평한 패널 또는 저곡률 패널로 구성된다. 게다가, 전송 수단은 전파 매체의 제 1 코너 부분중 최하부 부분에 배치되고 전기 신호에 응답하여 전파 매체의 표면을 향해 비스듬한 방향으로 벌크파를 전파시키기 위한 제 1 압전 수단 및 전파 매체의 표면상의 표면파로 제 1 압전 수단으로부터의 벌크파를 전환하는 제 1 격자 수단을 포함하고, 수신 수단은 전파 매체의 표면상의 벌크파로 표면파를 전환하고 전파 매체의 제 2 코너 부분중 최하부 부분를 향해 비스듬한 방향으로 벌크파를 전파시키는 제 2 격자 수단 및 제 2 코너 부분중 최하부의 제 2 격자 수단에 의한 전환시 얻어진 벌크파를 수신하고 전기 신호를 생성하는 제 2 압전 수단을 포함한다.
본 발명의 일실시예는 기판의 감지파에 압전 엘리먼트를 결합하기 위하여 격자 트랜스듀서를 사용하는 아들러형 터치스크린 시스템을 제공한다. 그러므로, 터치스크린은 초음파 표면파 또는 플레이트파가 전파될 수 있는 측방으로 대칭인 디스플레이 영역을 가지는 패널을 포함하는 좌표 입력 장치 시스템을 제공한다. 통상적인 4개의 트랜스듀서 시스템에서, 두쌍의 트랜스듀서가 X 및 Y 축 각각에 대하여 제공된다. 각각의 트랜스듀서에 대하여, 경사면은 패널의 코너 부분에 제공되고, 압전 트랜스듀서는 경사면상에 배치된다. 압전 엘리먼트는 격자 구조가 배치되는 디스플레이 영역의 주변에서 전송 영역에 관련하여 비스듬한 축을 따라 전파되는 벌크 파를 결합한다. 격자는 표면파 또는 플레이트파와 벌크파를 결합시키므로, 벌크파 트랜스듀서가 표면파 또는 플레이트파와 상호작용하도록 한다. 이들 표면파 또는 플레이트파는 반사 어레이(반사 격자)가 패널의 주변 에지 근처에 제공되는 축을 따라 이동한다. 반사 어레이의 엘리먼트는 패널을 가로질러 이동하는 감지파와 표면파 또는 플레이트파 부분을 각각 결합하고, 인접한 엘리먼트에 부분을 전송하므로, 전체 터치 감지 영역으로부터 트랜스듀서에 결합하는 좁은 음향 빔으로 분산된 감지파를 결합한다. 그래서, 각각의 트랜스듀서는 대칭적으로 음향파를 전송하거나 수신한다. 두 개의 쌍은 좌표 시스템을 형성하기 위하여 직각으로 배치된다. 격자는 음향 빔의 확산을 보상하기 위해 집중화 기능을 제공한다.
음향 경로는 송수신 어레이를 벗어난 산란중에 반사 경계와 조우할 수 있따. 반사 경계는 산란 중심의 겹침으로부터 간섭 산란을 사용할 수 있고, 만약 그렇다면 음향 경로의 세그먼트를 따르는 반사 어레이에 대한 유사 원리를 사용하여 설계될 수 있다. 그러나, 반사 경계에 대하여, 보다 강하게 산란하는 반사 엘리먼트를 사용하는 것이 바람직하다. 본 발명에 따라, 이들 반사 경계는 동일 평면에서 모드 변화를 가지거나 가지지 않고 파의 반사에 대응하거나, 예를들어, 표면의 평면에서 이동하는 파로부터 표면에 기울어진 각으로 지향된 벌크파로의 모드 전환에 대응하는 중요한 푸리에 성분을 사용한다.
신호 인공구조(artifact)를 유발할 수 있는 바람직하지 않은 기생 음향 경로의 생성을 최소화기 위한 공학적인 주의가 어레이에서 요구된다. 격자 트랜스듀서를 사용할 때, 이들 기생 경로는 3차원에서 고려되어야만 한다.
본 발명자는 압전 트랜스듀서의 축을 따라 기생 음향파의 생성에도 불구하고, 작업 가능한 실시예가 생성될수있다는 것을 발견하였다. 아들러형 터치스크린에서, 음향파는 음향 반사 어레이와 상호작용한다. 반사 어레이는 전파 파장 및 각 양쪽에 대한 협대역 필터로서 동작한다. 그래서, 반사 어레이는 트랜스듀서의 방향성 감도와 관련하여 시스템의 허용각을 제한하도록 동작하는 고 방향 감도를 가진다. 그래서, 벌크파 기생 성분이 비교적 낮은 에너지로 이루어지는 시스템에서, 공전파 에너지(stray wave energy)는 수신된 전자 신호에서 실질적인 간섭을 거의 유발하지 않는다. 기생파의 직접 경로가 이용 불가능하거나 유용한 시간 윈도우 외측에 있고, 시간 윈도우내에 있는 반사된 경로가 감쇠되는 것을 가정하면, 기생 성분을 방지하기 위한 특별한 노력을 필요하지 않다. 간섭 기생 경로가 문제가 있는 것이 입증된 경우, 통상적으로 터치 센서 구조의 작은 변화는 상기 문제를 제거한다.
벌크파 기생성분이 높은 크기일 때, 기생 감쇠 설계 고려사항이 중요하다. 파 모드를 상호 전환하기 위하여 격자를 사용할 때, 벌크파로부터의 입사 음향파 에너지의 81% 정도가 특정한 희망 음향파 모드에 결합된다. 그래서, 적어도 19%는 기생파 에너지로서 반사되거나 산란되고, 희망 파에 평행하게 이동한다. 그러므로, 본 발명에 따라, 희망 파는 반사되거나 산란된 기생파와 다른 축을 따라 선택적으로 산란되고/되거나 상기 시스템은 기생파의 간섭을 줄이기 위하여 반사 어레이 또는 모드 선택 필터같은 하나 이상의 기계적 필터, 또는 시간-격자 시스템같은 전자 필터가 제공된다. 기생파의 효과를 감소시키는 다른 특정한 유용한 기술은 희망 표면파 또는 플레이트파와 관련하여 적당한 예각으로 전단 모드 벌크파를 생성하는 전단파 모드 압전 엘리먼트를 사용하는 것이다. 이런 실시예는 적어도 두 개의 장점을 제공한다. 첫째, 반사된 파 에너지는 희망 파 모드에 평행하지 않게 전파하하므로, 자신의 경로에 따라 표면에 인가된 재료를 흡수함으로써 쉽게 감쇠된다. 둘째, 상기 전단 모드 벌크파는 희망 표면파 또는 플레이트파에만 결합하고, Takeuchi등(1980)에 따른 “F” 인자가 효율적인 파 전환을 나타내는 1과 동일하도록 한다.
터치스크린은 통상적으로 다수의 기능을 가지는 제어 시스템과 관련된다. 처음으로, 전자 신호가 생성되는데, 이 신호는 파의 세트를 추후에 형성하는 음향파를 형성하기 위하여 트랜스듀서를 여기시킨다. 그리고 나서, 트랜스듀서는 파의 세트를 수신하고, 전기 신호로 상기 세트를 변환한다. 낮은 레벨의 제어 시스템에서 비교적 높은 데이터 비율을 가지는 중요한 정보를 유지하는 전기 신호가 수신된다. 많은 실시예에서, 수신된 신호에 포함된 위상 정보를 포착할 필요가 없다. 그러나, 몇몇 예에서, 상기와 같이 하는 것이 바람직하다. 종종 낮은 레벨 제어와 구조적으로 결합되는 중간 레벨 제어 시스템은 수신된 데이터를 처리하고, 섭동을 식별 및 특성화하는고자 한다. 예를들어, 일실시예에서, 중간 레벨 제어는 신호를 필터링하고, 기준선 수정을 수행하고, 임계치에 대한 신호 관계를 결정하고, 너무 짧거나 너무 긴 음향 지연을 가지는 기생 음향 경로를 나타내는 신호를 제거하기 위하여 신호를 게이팅한다. 높은 레벨 제어는 신호 섭동을 분석하고 터치 위치를 출력한다. 그러므로 전체적으로 제어 시스템은 음향파 여기하고, 섭동같은 터치 정보를 유지하는 음향파 부분을 수신하며, 터치 특성, 예를들어, 위치를 추출하기 위하여 수신된 부분을 분석하는 기능을 갖는다.
본 발명의 범위는 하나 이상의 센서 서브시스템이 양의(positive) 신호 형태인 실시예를 포함한다. 여기서 “양의 신호”는 터치가 음향 경로를 완성하기 위하여 요구된 모드 전환을 유도하거나 본래의 파로부터 동위상에서 시프트된 파를 생성하는 희망 음향 경로를 사용하는 것을 의미한다. 그래서 신호 섭동은 이전 신호 크기가 작거나 영인 지연 시간에서의 신호 크기의 생성이다. 1996년 8월 12일 출원된 공동 계류중인 미국특허 제 08/615,716를 참조하라.
여기 기능(excitation function)은 일련의 펄스일 수 있고, 형상화된 펄스는 주파수의 공칭 동작 주파수에서 실질적인 전력 스펙트럼 밀도를 가지는 규정된 패턴에서 생략된다. 이런 펄스는 제한된 지속기간으로 이루어지기 때문에, 제한된 밴드 폭을 가진다. 예를들어 Elo 터치시스템은 6 내지 42 발진 범위의 지속기간을 가지는 5,53 ㎒ 톤 버스트를 여기하고, 예를들어 반사 어레이의 대역폭과 비교하여 제한된 여기 지속기간으로 인해, 광주파수 대역 여기를 발생시키는 제어기를 제공한다. 이런 전자 펄스열은 통상적으로 전송 압전 엘리먼트를 구동한다. 여기 버스트에 대한 높은 제어 융통성을 원하는 경우, 아날로그 장치 AD9850같은 직접 디지털 합성장치가 사용될 수 있다.
본 발명에 따른 시스템이 기생 신호로부터 실질적인 간섭없이 구성되지만, 몇몇 구성은 제한된 지속기간의 기생 신호가 희망 신호와 간섭하도록 한다. 이런 경우, 다른 기생 신호 감도를 가지는 하나 이상의 부분적으로 남는 센서 서스시스템을 제공하는 것이 바람직하다. 그래서, 하나의 트랜스듀서 서브시스템으로부터 신호 또는 그 일부분이 사용되지 않는 경우에도 불구하고, 다른 트랜스듀서 서브시스템으로부터의 신호가 터치 위치를 결정하도록 처리될 수 있다. 그러므로, 본 발명의 실시예에 따라, 음향 신호 섭동은 기생 또는 잠재적 기생 신호에 대한 상이한 감도를 가지는 3개 이상의 음향 트랜스듀서 서브시스템에 의해 감지될 수 있다. 게다가, 기생 신호가 간섭하지 않는 경우, 안티 쉐도윙(anti-shadowing) 알고리즘 처리 및 다중 터치 감지를 포함한 추가 정보가 추가의 정보 및 기능성을 제공하기 위하여 사용될 수 있다.
그러므로, 본 발명의 목적은 표면을 갖는 기판 및 상기 표면과 교차하는 축을 따라 기판을 통하여 전파되는, 기판내 벌크파를 변환하는 음향파 트랜스듀서를 채용하는 음향 터치 감지 장치 및 방법을 제공하는 것이고, 여기서 벌크파의 에너지는 표면에서 상당한 에너지를 갖는 전환된 파 모드를 가지며 표면을 따라 전파되는 파에 결합된다. 전환된 파 모드의 섭동이 검출된다. 음향파 모드 커플러는 예를 들어, 음향 회절 엘리먼트 또는 일련의 음향 회절 엘리먼트이다. 통상적으로, 시스템은 전환된 파의 에너지 섭동을 검출하기 위한 수단을 포함한다.
본 발명의 다른 목적은 표면을 따라 음향파를 전파하기 위한 표면을 가지는 전파 매체, 전파 매체에서 벌크파를 생성시키기 위한 방사 엘리먼트, 벌크파로부터 음향파를 발생시키기 위한 제 1 모드 전환기, 제 1 모드 전환기로부터 음향파를 수신하여 대응 벌크파를 발생시키기 위한 제 2 모드 전환기, 및 제 2 모드 전환기로부터 벌크파를 수신하기 위한 수신 엘리먼트를 포함하는 음향 터치스크린을 제공하는 것이고, 여기서 일련의 적어도 하나의 모드 전환기는 적어도 하나의 파 산란 엘리먼트 또는 회절 파 모드 결합 구조를 포함한다.
본 발명의 또 다른 목적은 중앙 영역, 및 한쌍의 표면을 가지는 음향 감지장치용 기판을 제공하는 것이고, 기판에 결합되고, 그 안에서 벌크파를 생성하며, 적어도 하나의 표면과 교차하는 전파 축을 가지는 음향 트랜스듀서; 표면중 하나에서 근접하여 형성되고, 벌크파의 음향파 에너지를 표면중 하나에서 상당한 에너지를 가지는 간섭성 파로 전환하도록 적응된 일련의 적어도 하나의 산란 엘리먼트; 및 중앙 영역을 통하여 전환된 음향파 에너지 부분을 반사하기 위한 수단을 포함한다. 반사 수단으로부터의 음향파는 공간적으로 분산된다.
또한, 본 발명의 목적은 음향파 소스가 기판의 표면을 향해 기울어진 방향으로 벌크파를 전파하기 위한 수단을 포함하는 시스템을 제공하는 것이다.
또한, 본 발명의 목적은 벌크파가 기판상 또는 기판내의 적어도 하나의 산란 중심과 상호작용함으로써 다른 파 모드에 결합되는 시스템을 제공하는 것이다. 산란 중심은 기판의 주기적 섭동을 제공하는 세트 또는 격자 구조로서 배열될 수 있다.
본 발명에 따르면, 웨지 트랜스듀서는 음향 터치스크린 설계로부터 제거되거나 재배치되어, 잠재적으로 개선된 정면 허용차(clearance) 및 개선된 환경에 대한 저항력을 제공한다. 기판과 비교하여 비교적 낮은 음향 전파 속도를 가지는 웨지에 대한 필요성을 제거하면, 플라스틱같은 느린 음향 전파 속도의 기판의 사용될 수 있다.
본 발명의 또다른 목적은 낮은 정렬 감도 및 잠재적으로 감소된 제조 비용을 가지는 트랜스듀서를 가진 음향 터치스크린 시스템을 제공하는 것이다.
본 발명의 또다른 목적은 수렴하는 음향파(converging acoustic wave)를 발생시키거나 다른 포커싱 또는 음향 렌즈 기능성을 제공하는 트랜스듀서를 제공하는 것이다.
상기 목적 및 다른 목적은 명백하다. 본 발명의 완전한 이해를 위하여, 첨부 도면에 도시된 바와 같은 본 발명의 바람직한 실시예에 대하여 이하에 상세하게 설명할 것이다.
본 발명의 바람직한 실시예는 도면에 관련하여 기술된다. 도면의 유사한 특징은 동일 참조 번호로 지시된다. 음향 장치의 공지된 상호작용 원리는 공칭 송수신 트랜스듀서가 한쪽 기능을 수행하는 것을 나타낸다. 그러므로, 하기에 기술된 실시예에서, 음향 트랜스듀서는 음향 신호를 전송 또는 수신하거나, 양쪽 기능을 모두 수행할 수 있다.
실시예 1
도 5는 본 발명에 따른 좌표 입력 장치의 일실시예를 도시한 사시도이고, 도 6은 격자에 의해 섭동 영역 또는 회절 영역을 도시하기 위한 개략적인 사시도이다.
본 실시예의 좌표 입력 장치는, 터치할 수 있고 그 표면상에 형성된 X 축 및 Y 축의 방향으로 좌우 대칭인 디스플레이 영역(이미지 디스플레이 영역)(2)을 가지며 표면파 또는 플레이트파가 전파될 수 있는 표면을 가진 전파 매체(1), 및 전파 매체(1)의 최하부로부터 전파 매체(1)의 표면을 향해 비스듬한 방향으로 벌크파(압력 모드 또는 전단 모드일 수 있음)를 전파하고 섭동에 의해 X 축 및 Y 축의 방향으로 표면파 또는 플레이트파를 발생시키는 전송 트랜스듀서(즉, 경사면(3a)상에 장착된 압전 트랜스듀서(4a)와 X 축 방향으로 매체(1) 상에 형성된 격자(5a)를 포함하는 전송 수단, 및 매체(1)의 경사면(3b)상에 형성된 압전 트랜스듀서(4b) 및 Y 축 방향의 격자(5b)를 포함하는 전송 수단)를 포함한다. 이 실시예에서, 전파 매체(1)는 경사진 에지를 가지는 소다 석회 유리로 형성된 등방성 편평한 패널로 구성된다.
상술된 전송 수단(3a, 4a, 5a 및 3b, 4b, 5b)은 전파 매체(1)의 최하부에서 X 축 및 Y 축 방향으로 섭동 영역(전송 영역)에 대응하는 인접 코너 부분(제 1 코너 부분)의 원래 영역(베이스 영역)에서 형성된 경사면(3a 및 3b), 상기 경사면에 배치되고 전기 신호에 응답하여 전파 매체(1)의 표면상 섭동 영역(전송 영역)을 향해 비스듬한 방향으로 벌크파를 방사하기 위한 압전 트랜스듀서(제 1 압전 수단)(4a 및 4b), 및 압전 트랜스듀서로부터 전파 매체로 전파된 벌크파를 전파 매체(1)의 표면상 섭동 영역(전송 영역)의 표면파로 전환하기 위한 격자(제 1 격자 수단)(5a 및 5b)를 포함한다. 더욱이, 전파 매체(1)(X 축의 전송 영역 및 Y 축의 전송 영역)의 표면상 디스플레이 영역(2) 주변의 섭동 영역에서 서로 교차하는 수직 영역의 경사면(3a 및 3b)으로부터 직각의 투영 평면(투영 영역), 및 격자(5a 및 5b)는 각각 섭동 영역(교차 영역 또는 투영 영역)에 배치된다. 격자(제 1 전환 수단)(5a 및 5b)는 서로 거의 평행하게 압전 트랜스듀서(4a, 4b)로부터 전파되고 벌크파의 이동 방향에 대하여 수직 방향으로 연장하며 주기적으로 배치된 다수의 선형 격자(그리드(grid) 또는 래티스(lattice))를 포함함으로써, 벌크파와 표면파를 서로 전환할 수 있다.
X 축 방향의 전송 수단(3a, 4a, 5a) 및 Y 축 방향의 전송 수단(3b, 4b, 5b)으로부터의 표면파 또는 플레이트파는 제 1 반사 어레이(제 1 반사 수단 또는 제 1 반사 격자 수단)(6a 및 6b) 및 제 2 반사 어레이(제 2 반사 수단 도는 제 2 반사 격자 수단)(7a 및 7b)를 포함하는 반사 수단에 의해 디스플레이 영역(2)의 전체에 걸쳐 Y 축 및 X 축 방향으로 전파되고, 전파된 표면파 또는 플레이트파는 X 축 및 Y 축 방향으로 지향되거나 수렴되며, 수신 수단(8a, 9a, 10a 및 8b, 9b, 10b)에 의해 각각 수신된다.
특히, 원점으로서 주기적인 섭동 영역(전송 영역)을 가지는 X 축 방향으로부터 Y 축 방향으로 전송 수단(3a, 4a, 5a)으로부터의 표면파 또는 플레이트 파를 전파시키기 위한 제 1 X축 반사 어레이(6a)는 디스플레이 영역(2)의 주변에서 X 축 방향으로 연장하는 하나의 측면부(제 1 측면부)에 형성되고, 제 1 X 축 반사 어레이(6a)에 의해 Y 축 방향으로 반사된 표면파 또는 플레이트파를 반사하고 X 축 방향으로 섭동 영역(수신 영역)에서 반사된 표면파 또는 플레이트파를 지향시키기 위한 제 2 X 축 반사 어레이(7a)는 디스플레이 영역(2)의 주변 제 1 측면부에 반대인 다른 측면부(제 2 측면부)에 형성된다. 게다가, 원점으로서 섭동 영역(전송 영역)을 가지는 Y 축 방향으로부터 X 축 방향으로 전송 수단(3b, 4b, 5b)으로부터의 표면파 또는 플레이트파를 전파시키기 위한 제 1 Y 축 반사 어레이(6b)는 디스플레이 영역(2)의 주변에서 Y 축 방향으로 연장하는 한측면부에 형성되고, Y 축 반사 어레이(6b)에 의해 X 축의 방향으로 반사된 표면파 또는 플레이트파를 반사시키고 Y 축의 방향으로 섭동 영역(수신 영역)에서 반사된 표면파 또는 플레이트파를 지향시키기 위한 제 2 Y 축 반사 어레이(7b)는 디스플레이 영역(2)의 주변에서 상기된 측면부에 반대의 다른 측면부에 형성된다. 각각의 반사 어레이는 일부분의 표면파 또는 플레이트파를 전송하거나 반사할 수 있다. 반사 어레이(6a, 6b, 7a 및 7b)는 섭동 영역(X 축의 수신 영역 및 Y 축의 수신 영역)의 디스플레이 영역(2)에서 전파된 표면파 또는 플레이트파를 지향시키는 것뿐 아니라, 디스플레이 영역(2) 전체에 걸쳐 X 축 방향의 전송 수단 및 Y 축 방향의 전송 수단으로부터 표면파 또는 플레이트파를 전파시키는 것을 가능하게 한다.
수신 수단(8a, 9a, 10a 및 8b, 9b, 10b)은 디스플레이 영역(2)으로 전파되어 수렴된 표면파 또는 플레이트파를 벌크파로 전환하고, 전파된 벌크파를 수신하기 위하여 전파 매체(1)의 최하부를 향해 비스듬한 방향으로 발진파를 전파시킨다. 특히, 수신 수단은 제 2 반사 어레이(7a 및 7b)에 인접한 섭동 영역(수신 영역)에 배치되고 전파 매체(1)의 최하부 부분을 향해 비스듬한 방향으로 벌크파를 전파시키는 것뿐 아니라 표면파 또는 플레이트파를 벌크파를 전환하기 위한 격자(제 2 전환 수단)(8a 및 8b), 전파 매체(1)의 최하부에서 격자(8a 및 8b)에 의해 회절된 투영 영역에 대응하는 코너 영역(제 2 코너 부분)의 최종 영역에 형성된 경사면(9a 및 9b), 및 경사면상에 배치되고 격자(8a 및 8b)에 의해 전환시 얻어진 벌크파를 수신하고 전기 신호를 생성하기 위한 압전 트랜스듀서(제 2 압전 수단)(10a 및 10b)를 포함한다. 격자(제 2 전환 수단)(8a 및 8b)는 격자(제 1 전환 수단)(5a 및 5b)와 동일한 방식으로 압전 트랜스듀서(10a 및 10b)쪽으로 벌크파의 이동 방향에 관하여 수직 방향에 평행하고 주기적으로 배치되며 연장되는 다수의 선형 격자(그리드)를 포함한다.
압전 트랜스듀서(10a 및 10b)에 의해 수신된 신호는 신호를 분석하기 위한 검출 수단(도시되지 않음)에 공급된다. 검출 수단에서, 대응 시간 지역과 함께 수신된 신호에서 디스플레이 영역(2)의 터치에 의해 초래된 왜곡 성분은 디스플레이 영역(2)에서 터치 위치 또는 터치 영역을 검출하기 위하여 검출된다.
전파 매체(1)에서 직선 이동하는 압전 트랜스듀서(4a 및 4b)에 의해 생성된 벌크파는 전파 매체(1) 및 섭동 영역(격자 5a 및 5b)의 인터페이스상에 비스듬하게 입사하고, 표면파 또는 플레이트파로 전환된다. 전파 매체(1)에서 전파된 표면파 또는 플레이트파는 벌크파로 전환될 섭동 영역(격자 8a 및 8b)에서 비스듬한 방향으로 회절된다.
상기 좌표 입력 장치에서, 전기 신호가 압전 트랜스듀서(4a 및 4b)에 공급될 때, 압전 트랜스듀서의 진동에 의해 벌크파가 생성되고, 벌크파는 섭동 영역에서 격자(5a 및 5b)에 의해 표면파 또는 플레이트파로 전환될 수 있으므로, 표면파 또는 플레이트파는 제 1 반사 수단에 의해 디스플레이 영역(2)에서 다수의 경로(루트)를 통하여 X 축 및 Y 축의 방향으로 전파될 수 있다. 그러므로, 디스플레이 영역(2)이 손가락 등에 의해 터치될 때, 표면파 또는 플레이트파는 산란되고, 산란된 성분을 포함하는 표면파 또는 플레이트파는 제 2 반사 수단에 의해 섭동 영역(수신 영역)으로 지향되거나 수렴된다. 수신 영역에서, 표면파 또는 플레이트파는 격자(8a 및 8b)에 의해 벌크파로 전환되고, 벌크파는 압전 트랜스듀서(10a 또는 10b)에 의해 전기 신호로 전환된다.
섭동을 위한 격자(5a, 5b, 8a 및 8b)는 얇은데, 예를들어 높이가 음향파장보다 훨씬 작아서, 전파 매체의 표면은 웨지형 트랜스듀서의 기계적 프로파일과 비교하여 비교적 부드럽다. 그러므로, 본 발명에 따른 터치 패널은 비교적 작은 틈을 가지는 베즐 뒤에 장착된다.
비록 전파 매체의 종류가 제한되지 않을지라도, 표면파 또는 플레이트파 특히, 초음파 표면파 또는 플레이트파가 전파될 수 있는 패널이 사용된다. 패널의 디스플레이 영역은 터치할 수 있는 범위(즉, 좌표 입력 범위)를 포함하고, 일반적으로 상술한 실시예에서와 같이 좌우대칭 모양 특히, 선형 대칭 모양(특히, 직사각형 모양)으로 형성된다. 패널로서 구성된 전파 매체는 일반적으로 액정 스크린, 진공 형광체, 다른 편평한 패널 디스플레이 등을 눈에 보이도록 하기 위하여 투명도를 가진다. 바람직한 전파 매체는 투명하고 등방성이다. 디스플레이 영역의 주변(패널 등의 전파 매체의 단부)은 일반적으로 베즐로 커버된다.
경사면은 전파 매체의 최하부에서 원래 영역 및 최종 영역에 대응하는 부분에 형성되거나, 도 5에 도시된 바와같이 패널 등의 전파 매체의 측면 및 하부면 사이의 코너 부분 전체에 형성될 수 있다.
섭동 영역(격자 영역)의 섭동 사이클(격자 사이클, 격자의 간격 또는 피치)은, 전파 매체에서 벌크파의 파장 및 전파 매체의 표면에서 표면파 파장에 따라, 예를들어 약 0.01 내지 10 mm, 바람직하게 약 0.1 내지 5 mm, 보다 바람직하게 약 0.3 내지 1 mm의 범위 내에서 선택될 수 있다. 격자의 수 및 폭은 특별히 제한되지 않지만, 예를들어 격자(래티스) 수는 약 3 내지 10이고, 격자 폭(기판보다 넓은 영역 크기)은 약 0.01 내지 10 mm이다.
격자의 두께(높이)는 5 mm 이하(예를들어, 약 0.01 내지 3 mm)의 범위, 바람직하게 약 0.1 내지 3 mm, 보다 바람직하게 0.1 내지 1 mm의 범위내에서 선택된다. 격자는 스크린 프린팅(screen printing) 또는 다른 기술에 의해 형성될 수 있다. 격자는 에칭, 커팅 또는 그라인딩(grinding), 또는 침식(ablation), 또는 다른 재료 제거 방법에 의해 형성된다. 격자는 몰딩, 핫 스탬핑(hot stamping), 또는 기판 특성 사전 제작 변형에 의해 형성된다. 격자 엘리먼트는 격자의 반사도 및 투명도의 밸런스를 맞추기 위하여 반사 어레이의 엘리먼트와 유사한 방식으로 높이 및/또는 폭에서 변화할 수 있다. 예를들어, 단조로운 높이 변형 격자가 단방향성을 격자에 제공하기 위하여 사용될 수 있다.
반사 수단은 반사 어레이로 구성되지 않고, 표면파 또는 플레이트파를전송할 수 있는 하나 또는 다수의 반사 부재로 구성될 수 있다. 반사 수단을 구성하는 반사 어레이는 투영부(예를들어, 유리, 세라믹 또는 금속으로 형성되는 투영부) 및/또는 전파 매체의 표면상의 홈(groove)으로서 형성된 반사 어레이 엘리먼트(반사 어레이 그룹)의 집합체이다. 반사 어레이 엘리먼트는 일반적으로 서로 평행하게 형성되고, 반사 부재의 각 또는 각각의 반사 어레이 엘리먼트는 X 축 및 Y 축 방향으로 표면파 또는 플레이트파를 전파시키기 위하여 X 축 또는 Y 축 방향에 대략적으로 45°이다. 본원에 참조된 미국특허 제 5,591,945 호에 공지된 바와 같이, 반사 어레이 엘리먼트는 터치스크린에 대한 직사각형이 아닌 파경로를 생성하거나 입사파 및 반사파 사이의 모드 전환, 예를들어, 보다 높은 차수의 수평 편광 전단파(HOHPS) 또는 러브파로의 준레일리파의 전환을 이루기 위하여 다른 각도로 입사될 수 있다.
격자 엘리먼트는 반사 어레이 엘리먼트, 예를들어, 스크린 프린팅으로 공통 공정시 형성된다. 이런 공통성은 제조 가격을 감소시킨다.
본 발명에 따른 터치스크린은 통상적으로 전자 제어 시스템(도면에 도시되지 않음)을 사용하는데, 상기 시스템은 감지 음향파를 생성하고 터치 위치를 가리키는 섭동을 결정한다. 전자 장치 제어는 차례로 컴퓨터(도면에 도시되지 않음), 예를들어 개인용 컴퓨터, 내장 시스템, 인간 인터페이스 장치로서 키오스크 또는 사용자 단말기와 인터페이스한다. 그러므로, 컴퓨터 시스템은 적당한 임의의 형태로 이루어질 수 있고, 예를들어 디스플레이 장치, 오디오 입력 및/또는 출력 능력부, 키보드, 전자 카메라, 다른 포인팅 입력 장치 등등을 포함할 수 있다. 컴퓨터 시스템은 고객 소프트웨어를 사용하여 동작하지만, 통상적으로, 마이크로소프트 윈도우(예를들어, 2.1, 3.11, CE, NT, 95, 98, 등), 매캔토시 운영 시스셈. 유닉스 변수 등등의 표준 운영 시스템을 사용하여 동작한다. 그러므로, 터치스크린은 사용자 입력을 수신하기 위하여 그래픽 사용자 인터페이스 시스템용 제 1 또는 제 2 포인팅 장치로서 사용될 수 있다. 터치스크린 제어기 및 컴퓨터 시스템은 예를들어, 내장형 시스템 내에 통합될 수 있다.
본 발명에 따른 터치 형태 좌표 입력 장치는, 음극선관과 같은 곡면 표면을 가지는 디스플레이뿐만 아니라, 액정 디스플레이 및 플라즈마 디스플레이인 편평한 패널 디스플레이에도 적절히 사용될 수 있다.
실시예 2
터치스크린 통합 격자 트랜스듀서는 설계, 어셈블리, 및 검사된다. 완전히 기능적이며 특성 신호를 생성하는 격자 트랜스듀서 터치스크린이 제조되었다.
단지 작은 관련 진폭 기생 신호가 관찰된다. 이들 기생 신호는 터치스크린 동작을 위한 희망 신호의 시간 주기 외측에 있다. 이들 기생 신호는 터치스크린 시스템 동작을 분열시키지 않고 제어기 전자장치 내의 시간 격자로 또는 터치 영역 및 반사 어레이의 외부에 터치스크린상의 음향 댐퍼를 포함함으로써 더 감소될 수 있다. 격자 트랜스듀서에 의한 기생파 발생에도 불구하고, 수신 트랜스듀서로부터의 기생신호는 격자 트랜스듀서를 갖는 음향 터치스크린의 기능에 대한 장애물이 아니다. 유리 기판의 크기는 약 272.5mm×348.7mm×3mm이다. 유리 기판은 θB=45°격자 트랜스듀서용 압전 엘리먼트를 장착하기 위해 하부에 45°베즐이 제공된다. 즉 압전 엘리먼트의 표준은 수직 방향에 관련하여 45°의 각 θB을 형성한다. 14 mm 폭의 반사 어레이는 유리상에 프린팅된다. 어레이 내부의 투명한 유리의 직사각형 영역은 약 234.6 mm × 310.8 mm 크기이다. 이것은 15 인치를 초과하는 대각선 크기를 가지는 능동 터치 영역을 제공한다.
상술된 유리 프릿의 다중-패스 프린팅으로, 각각 40 미크론 높이의 4개의 격자는 4개의 트랜스듀서 위치에 제공된다. 광각의 압전 트랜스듀서 엘리먼트(4a, 4b, 10a 및 10b)는 표면(3a, 3b)상에 본드된다. 도 5 및 도 6을 참조하라. 와이어 케이블(도 5 및 도 6에 도시되지 않음)은 각각의 압전 트랜스듀서(4a, 4b, 10a 및 10b) 전극에 납땜함으로써 각각 접속된다. 와이어 케이블은 커넥터를 통하여 제어기에 접속된다. 상업적으로 이용 가능한 초음파형 제어기(일본의 터치 패널 시스템 코포레이션, 리미티드, 일본("TPS“)에 의해 제조된 1055E101)가 제어기로서 사용된다. 적당한 소프트웨어를 가지는 개인용 컴퓨터는 제어기에 접속된다. 적당한 음향 터치스크린 성능은 관측된다.
비교하기 위하여, 웨지 트랜스듀서는 격자 트랜스듀서(5a, 5b, 8a, 8b)의 바로 정면에 시간적으로 위치된다. 격자 트랜스듀서는 대략 10 dB 이하의 터치스크린 신호(두개의 트랜스듀서로 인한 신호 경로에 대해)를 제공한다. 격자 트랜스듀서 설계 및 제조가 최적화되지 않았지만, 격자 트랜스듀서는 많은 제품 설계에 충분히 유용한 효과를 나타냈다.
게다가, 신호 파형이 관측된다. 격자 트랜스듀서 터치스크린으로부터 신호의 표시는 도 7에 나타난다.
피크 라벨 A는 실험적인 설정의 인위구조이다. 버스트 및 수신 회로로부터의 혼선은 수신 신호에서 나타나는 감쇠된 버스트 신호를 초래한다. 이것은 수신된 신호에서 편리한 t=0 마커를 제공한다.
B는 거의 190 마이크로초의 희망 터치스크린 신호를 나타내고 피크 A후 약 90 마이크로초후 시작한다. 터치스크린이 터치될 때, 딥(dip) C는 터치스크린 동작에 대하여 바람직한 바와같이 신호 B에 나타난다.
작은 기생 신호(D)는 약 80 마이크로초, 즉, 희망 신호가 시작하기 10마이크로초전에 관측된다. 이런 신호의 제거는 두 개의 격자 트랜스듀서를 가지는 에지 근처의 유리 기판의 상부 및 하부면 둘 모두를 댐핑함으로써 관측된다.
다른 작은 기생 신호(E)는 희망 신호후 약 20 마이크로초후에 관찰된다. 이런 기생 신호는 웨지 트랜스듀서를 가지는 터치스크린에서 관측된다. 웨지 및 격자 트랜스듀서 둘 모두의 경우에 대하여, 이런 기생 신호는 유리 에지의 레일리파 반사를 제거하기 위하여 유리의 상부 표면상에 적당하게 배치된 적당한 음향 댐퍼로 제거될 수 있다.
실시예 3
도 8은 LCD 터치모니터 내에 음향 터치 스트림에 대한 양호한 적합성을 제공하는 음향 터치 스트린에 적응되어 적용된 격자 트랜스듀서를 도시한 것이다. 도 8에서, 밀봉부(24)를 포함하는 베즐(26)은 터치스크린의 주위 및 감지 작업부 사이의 장벽을 제공한다. 기판(20)의 정면(22)은 밀봉부(24)에 인접한다. 밀봉부(24)는 오염으로부터 격자(30), 압전 트랜스듀서(32) 뿐만 아니라, 편평한 패널 디스플레이(28)를 보호하면서 충분한 음향파 에너지가 터치스크린 동작을 허용하도록 한다. 압전 엘리먼트(32)는 기판(20)의 후면 베즐(38)에 접착되고, 전기적으로 납땜(34) 및 와이어(36)와 접속된다. 베즐은 여기 동안 압전 트랜스듀서(32)에 의해 방사된 벌크파의 전파 축, 또는 기판(20)의 벌크 음향파에 대한 트랜스듀서의 최대 감도축을 따라 배치된 격자(30)에 대하여 각(θB)으로 기울어진다. 격자는 격자(30)에 대해 경사진 각도로 축을 따라 전파되는 벌크파를 표면(22)에서 상당한 에너지를 가지는 표면파 또는 플레이트파와 결합한다.
LCD 터치모니터 설계의 사시도로부터, 격자 트랜스듀서는 터치스크린 설계만의 사시도로부터 분명하지 않은 몇몇 이익을 제공하는 것이 도시된다. 격자는 통상적으로 선택적인 밀봉보다 높이가 훨씬 낮은 프로파일을 가지며 베즐 아래에서 쉽게 맞춰진다. 납땝 접속 및 관련 와이어 라우팅을 포함하는 압전 엘리먼트는 기판의 비스듬한 표면과 관련된 제거된 기판 재료의 볼륨에 맞춰진다. 그러므로, 격자 트랜스듀서는 LCD 터치모니터에 대한 우수한 기계적 설계 해결책을 가능하게 한다.
실시예 4
실시예 2에 도시된 바와 유사한 격자 트랜스듀서는 3 mm 두께의 소다 석회 유리 기판상에 제조된다.
이들 격자 트랜스듀서는 도 6에 도시된 바와같이 격자 엘리먼트를 가지는 경사진 압전 엘리먼트(θB=45°)를 가진다. 격자는 반사 어레이를 제조하기 위하여 사용된 400℃ 이상의 동일 스크린 프린팅 공정 및 오븐 경화로 유리 프릿을 증착함으로써 구성된다. 고온 경화는 유리 프릿을 소결시키고 유리 기판에 설치한다. 경화된 유리 프리트는 입방 센티미터당 약 5.6 그램의 밀도를 가진 단단한 세라믹 재료이다. 40 미크론 까지의 격자 높이가 스크린 프린팅 공정의 다중 통로를 사용하여 얻어진다.
0.89 mm의 격자 간격은 마사오 타께우찌 및 히로시 시미쯔등에 의한 “표면 음향파에 대한 격자 커플러의 이론적 분석”이 발명의 명칭이고 일본 음향 소사이어티 저널지의 36(11):543-557(1980, 6월 24일)에 제공된 원리를 바탕으로 설계된다. 이런 계산은 3103 미터/초의 레일리파 속도, 5940 미터/초의 벌크 압력파 속도, 45°의 벌크파 각, 및 5.53 ㎒의 동작 주파수가 가정된다.
선택적으로, 적당한 반사 엘리먼트는 샌드-블래스팅(sand-blasting)과 같은 침식 공정에 의해 형성된다.
압전 엘리먼트는 종래 기술에 공지된 바와같은 후지 세라믹으로부터의 세라믹 압전 재료로 구성되고 Fremont CA의 Elo 터치 시스템 및 일본 도쿄의 TPS으로부터 입수 가능한 다수의 터치스크린 제품을 위한 웨지 트랜스듀서에 사용된다. 이런 재료는 PZT 관련 압전 세라믹이다. 압전 엘리먼트는 비록 설계 주파수가 선택에 관한 것일지라도, 5.53 ㎒에서 일반적으로 기본적인 공진을 가진다. 압전 엘리먼트는 3 mm 넓다.
압전 엘리먼트는 수평 기판 표면에 관하여 45°에 대해 각으로 경사면에 접착된다. 압전의 측면 상의 전도 전극은 압전 엘리먼트 주위로 연장된 유리에 접착되어, 양쪽 압전 전극은 동일 노출 표면상의 와이어에 납땜되도록 한다. HP 8012B 펄스 발생기는 5 밀리초마다 반복되는 5 마이크로초 게이트를 생성하기 위하여 사용된다. 이런 게이트는 HP 8111A 기능 발생기를 트리거하기 위하여 사용되고, 이것은 차례로 5 마이크로초 지속기간의 톤 버스트를 생성한다. HP 8111A는 10 볼트의 공칭 크기를 가지고 5.53 ㎒ 주파수에서 사인파 톤 버스트를 생성하기 위하여 프로그램된다. 이들 톤 버스트는 1MΩ 입력 채널을 사용하는 Yokogawa DL12000 4-채널 디지털 오실로스코프상에서 관측된다. 이들 톤 버스트는 검사중에 격자 트랜스듀서를 여기하기 위하여 사용된다.
웨지 트랜스듀서는 격자 트랜스듀서로부터 25 cm의 거리로 유리 기판상에 배치되고 Yokogawa DL 12000 4-채널 디지털 오실리로스코프의 제 2의 1 MΩ 입력 채널에 접속된다. 격자 트랜스듀서에 대한 전송 버스트 및 웨지 트랜스듀서로부터의 수신 신호의 타이밍 및 진폭은 디지털 오실로스코프상에 동시에 관측된다.
격자 트랜스듀서로부터의 신호는 웨지 트랜스듀서에서 관찰되고, 격자 트랜스듀서로부터 상당한 표면 에너지를 가지는 파의 연속적인 방사를 나타낸다.
격자 트랜스듀서 및 웨지 트랜스듀서 사이의 손가락 또는 다른 레일리파 흡수기를 배치하면 수신된 신호가 제거된다. 이것은 실질적인 표면 전력을 가지는 파 모드가 낮은 등급의 감쇠를 나타내고, 단지 적합할 것 같은 관측 파 모드가 준 레일리파이다는 것을 나타낸다는 것이 기대될때 수신된 신호가 격자 트랜스듀서 및 웨지 트랜스듀서 사이의 레일리파 전파에 기인한다는 것을 증명한다. 게다가, 톤 버스트 및 수신된 신호 사이의 시간 지연은 유리 기판상의 공지된 레일리파 속도에 올바르게 대응한다.
실시예 5
실시예 1, 2 및 4는 0°의 방사(또는 수신)각을 가지는 격자 트랜스듀서를 사용한다. 즉, 레일리파의 방향은 수평 평면상 벌크파의 전파 축의 투영과 동일하다. 격자 트랜스듀서 설계는 그렇게 제한되지 않는다. 격자 트랜스듀서 개념은 벌크파 방향의 수평 성분과 관련하여 레일리파의 전파 방향이 영이 아닌 방사각(θE)을 가지는 경우에 일반화될 수 있다. 영이 아닌 방사각은 다음 두 개의 잠재적인 장점을 가진다.
영이 아닌 방사각은 기계적 설계 융통성을 제공한다. 터치스크린(66)의 한쪽 모서리(58)에서 한쌍의 수신 격자 트랜스듀서의 평면도를 도시하는 도 9를 참조하라. 각각의 격자 트랜스듀서는 배면 경사면(56)상에 장착된 압전 엘리먼트(60a, 60b)를 포함하고, 한세트의 격자 엘리먼트가 압전 트랜스듀서 벌크파 결합축(52a, 52b)을 따라 기판(66)을 통하여 정렬된다. 격자(54a, 54b)는 벌크파 전파 축(52a, 52b)에 대하여 기울어져서, 벌크파가 각각 기판(66) 에지(64,62)에 평행하게 이동하는 벌크파 전파 축과 상이한 축(50a, 50b)을 따라 이동하는 단일 표면 또는 플레이트파로 한정된 파 모드로 전환되도록 한다.
상기 설계는 만약 예를들어, 유리 기판의 일반적 코너 및 장착 포스트같은 터치모니터의 다른 성분 사이에 기계적 간섭이 존재하면 유용하다.
영이 아닌 방사각의 제 2 이점은 희망 레일리파 방사 각 및 압전 엘리먼트에 의해 생성된 기생 벌크파의 통상적인 영의 방사각의 각 분리가 있다. 등가적으로, 도 9에 도시된 바와같이, 수신 격자 트랜스듀서의 감지 방향 및 기생 벌크파를 인입하기 위한 감지 방향의 각적인 분리가 있다. 압전 트랜스듀서와 결합된 벌크파는 레일리파에 관하여 임의의 각, 예를들어 90°를 가지며, 벌크파의 전파 축의 수평 투영에 평행하게 이동하는 희망 레일리파 및 기생파의 실질적인 공간 분리에 대한 가능성을 제공한다.
그러므로, 시스템은 경사진 압전 엘리먼트(θB=45°) 및 영이 아닌 방사각(θE=30°) 격자 트랜스듀서를 가지도록 구성된다. 제조 방법은 실시예 4의 영인 방사각에 대하여 동일하다. 단지 차이점은 격자 간격 및 방향은 벌크 압력파의 수평 성분에 레일리파 파 벡터를 결합하기 위하여 브래그 산란 조건중 수평 성분과 부합하도록 변형된다.
이들 30°방사각 격자 트랜스듀서는 실시예 4의 영 방사각에 논의된 동일 실험 방법을 사용하여 검사된다. 표면 흡수기에 대한 감도 및 양적인 시간 지연 데이터는 그것이 레일리파 신호인지 확인한다. 영이 아닌 방사각 격자 트랜스듀서의 동작은 완전히 논증된다.
일반적으로 30°방사각 격자 트랜스듀서(θB=45°)의 각 방향성은 격자 트랜스듀서로부터 반경 250 mm로 원형 아크상 여러 위치에서 수신 웨지 트랜스듀서를 배치시킴으로써 측정된다. 방사각의 함수로서 트랜스듀서쌍을 통하여 전송된 관련 측정 신호 크기(관찰된 최대 크기에 관련하여)는 아래와 같이 도시된다.
Figure pat00001
격자 트랜스듀서는 영이 아닌 방사각으로 지향된 전송 빔을 갖는지가 관측된다. 31.5°의 방사각에서 관측된 피크는 30°의 공칭 설계값과 가깝다. 그래서, 격자 트랜스듀서가 음향 터치스크린 설계에 대한 새로운 옵션을 제공하는 영이 아닌 방사각을 유지할 수 있는 것을 알 수 있다.
실시예 6
도 10에 도시된 바와같이, 수평으로 장착된 압전 엘리먼트(32)의 특정 경우는 선택적이고, θE=0이다. 이런 격자 트랜스듀서 설계는 기판의 에지(68)에서 기계적 경사 표면에 대한 필요성을 제거한다. 이런 제조 공정은 제조 가격을 감소시킬 수 있다. 도 10에 도시된 바와같이, 벌크파(72)는 부분적으로 격자(30)에 인접한 정면(22)을 벗어나서 반사하고, 레일리파인 전환된 파 모드(79)를 생성한다. 파 에너지의 부분은 표면(22)에 평행하게 이동하는 파로 전환된다. 통상적으로, 기판(20)의 배면(42)은 수신된 파에 결합된 낮은 음향 에너지를 가지므로, 터치에 민감하지 않고, 배면상에 장착한다.
θB=0° 격자 트랜스듀서를 통합한 터치스크린이 설계되고, 어셈블리되고, 검사된다. 사용된 방법은 유리 기판이 경사지게 제공되지 않는 것을 제외하고 실시예 2와 같다. 결과적인 격자 트랜스듀서 터치스크린은 완전히 기능적이고 특성 신호를 생성하도록 형성된다. 기생파의 생성은 격자 트랜스듀서 음향 터치스크린의 성공적인 동작을 방해하지 않고 관찰된 기생 신호는 최소이다.
비교하기 위해, 웨지 트랜스듀서는 격자 트랜스듀서의 바로 앞에 시간적으로 배치된다. θB=0°인 경우, 격자 트랜스듀서 및 웨지 트랜스듀서는 실험 에러내에 동일 터치스크린 신호 크기를 제공한다. 격자 트랜스듀서 설계 및 제조가 θB=0°격자 트랜스듀서에 대하여 최적화되지 않지만, 상업적 이익의 트랜스듀서 효과가 명백히 입증된다.
대략 10 dB(트랜스듀서당 5dB) 신호는 실시예 2의 θB=45°에 대하여 관측된다. 이런 실험적 관측은 새로운 물리적인 효과가 θB=0°격자 트랜스듀서 설계에 대한 효율성을 강화시킨다는 것을 제안한다.
실시예 7
실시예 6에 상술된 바와 유사한 격자 트랜스듀서는 3 mm 두께의 소다 석회 유리 기판상에 제조되고, θB=0°격자 트랜스듀서를 가진다.
유리가 경사지지 않고 압전 엘리먼트가 도 10에 도시된 바와같이 유리의 하부 표면상 격자 반대편에 설치되는 것을 제외하고 실시예 4에 기술된 제조 기술 및 검사 방법을 사용하여 측정이 행해진다. 증가된 효율성은 실시예 4의 θB=45°격자 트랜스듀서에 대하여 관측된다. 이것은 실시예 2의 터치스크린에 대하여 실시예 6의 터치스크린의 증가된 신호 크기가 θB=0°에 대한 격자 트랜스듀서 효율 향상에 기인한다는 것이 확인된다.
θB=0°인 경우에, 새로운 메커니즘 또는 물질적인 효과가 나타나기 시작하며 θB≠0°인 경우에는 나타나지 않는다. 수직 벌크 파는 상부 및 하부 기판표면에서 다중 반사될 수 있으며, 여전히 격자를 통해 압전기 엘리먼트 및 레일리 파에 결합하기 위하여 정확한 방위 및 위상을 가진다. 이들 다중 반사는 격자를 통해 희망 음향모드에 결합하기 위하여 한번 이상 변화하는 벌크 파를 제공함으로써 격자 트랜스듀서 효율을 강화하는 수단을 제공한다.
θB=0°경우에서 고찰할 수 있는 다른 방법은 기판의 두께 공진을 고려하는 것이다. 격자 및 압전 엘리먼트 둘다는 기판의 두께 진동에 연관된다. 이러한 공진조건을 얻기 위한 바람직한 수단은 격자 트랜스듀서 표면과 평행한 표면상에 압전 트랜스튜서를 배치하는 것이다. 전술한 다중반사 개념적인 모델과 동일하지만, 두께 진동 구조는 시간영역보다 오히려 주파수영역에서 상기 효과를 고려한다. 따라서, 동작 주파수가 기판의 두께 공진에 대응할 때 무엇이 발생하는지를 고려하는 것은 중요하다.
기판 두께 및/또는 동작 주파수를 동조시킴으로써, 두께 공진은 강화될 수있다. 이것은 트랜스튜서 효율을 강화하기 위한 추가 수단을 제공한다. 수직 벌크 파의 두께 모드 공진 또는 다중 반사는 예를들어 수직 압력파 및 레일리 파사이의 격자를 통해 결합을 증가시키기 위하여 사용될 수있다. 이것은 최대 트랜스튜서 효율을 위한 최적 격자높이를 차례로 감소시켜서, 제조방법을 단순화한다.
두께 모드 공진은 접착된 압전 엘리먼트의 등가 회로저항을 동조시키기 위한 설계를 제공하므로, 음향 터치스크린의 전자 임피던스 특성을 제어한다. 도 11은 격자 트랜스튜서에 대한 등가회로를 도시한다. 이러한 진동 또는 다중반사는 압전 엘리먼트가 접착되는 예를 들어 유리 표면의 기계 또는 음향 임피던스를 변경시킨다. 두께 공진에서, 유리의 음향 임피던스는 감소되며, 유리에 접착된 압전 엘리먼트의 기계적인 Q는 증가된다. 이것은 트랜스튜서의 등가회로 저항(도 11의 회로도에서 “R”로 도시됨)이 감소되는 결과를 가진다.
만일 압전 엘리먼트가 동작 주파수에 적절하게 동조된다면, 즉
Figure pat00002
가 동작주파수와 동일하다면, 공진 인덕턴스 및 커패시턴스의 임피던스는 상쇄되며 등가회로는 단순히 커패시턴스 C0 와 저항 R이 병렬을 이룬다. 압전 엘리먼트에 전달된 전력은 V2/R로 주어지며, 여기서 V는 인가된 구동전압의 제곱 평균 제곱근이다.
공지된 상업용 터치스크린 제어기의 트랜스튜서 여기 버스트 회로는 종종 전류원보다 전압원과 매우 비슷하다. 이것은 특히 전송 버스트 진폭이 최대 전압 안전 기준(예를들어, 언더라이터 래버래토리스의 기준)에 의해 제한되는 경우에 그렇다. 여기 신호에 대해 전압이 고정된다면, 작은 등가회로 변환기 저항수단은 트랜스튜서에 인가된 전력을 증가시킨다. 따라서, 동일한 제어기 설계에서, 두께 공진은 음향파를 변환시키기 위해 이용할 수 있는 전력을 상당히 증가시킬 수있다.
실시예 8
격자 트랜스튜서는 제조되어 알루미늄 기판상에서 검사된다. 알루미늄은 불투명 터치 패널용 기판으로써 사용될 수있다. 이것은 격자 트랜스튜서 동작의 원리가 기판 재료의 특정 선택에 제한되지 않는다는 것을 기술한다.
격자는 알루미늄 기판의 표면에서 홈를 가공함으로써 형성된다. 그레이트는 51미크론 깊이, 254 미크론 폭 및 533미크론 중심심(center-to-center) 간격을 가진 홈로 설계된다. 격자는 10개의 그레이트(grate)를 가진다.
유리 기판을 사용하는 실시예 6에서 처럼, 압전 엘리먼트는 수평으로 장착되며, 방사각은 제로이다. 이경우에, 격자의 영역에서 알루미늄 기판의 두께는 두께 공진에 대응하도록 설계된다. 기판의 두께는 격자의 영역에서 2.29mm이다.
격자 트랜스튜서 동작은 실시예 4에서 기술된 검사와 유사한 검사를 사용하여 관찰된다. 14볼트 피크 간의 진폭을 가진 3 내지 4 마이크로초 톤 버스트는 웨지 트랜스튜서를 여기시키기 위하여 전송펄스로서 사용된다. 웨지 트랜스튜서로부터의 레일리 파는 격자에서 지향된다. 2mm 폭의 압전 엘리먼트는 격자의 시작하에서 기판의 하부상에 장착된다. 수신된 신호는 1.4 볼트 피크간의 피크 진폭, 즉 여기 신호에 대해 -20dB로 관측된다. 한쌍의 웨지 트랜스튜서의 신호 진폭은 유사한 측정 신호를 제공한다.
기판상에 증착된 재료보다 오히려 홈을 사용하여 격자 트랜스튜서를 성공적으로 구성하는 것에 주의하라. 이것은 격자 제조에 대한 다양한 제조방법을 더 기술한다.
실시예 9
전형 수평-압전(θB=0°) 및 0이 아닌 방사각(θE=45°) 격자 트랜스튜서는 유리로 특정되지 않은 두 가지 재료를 포함하는 3가지 다른 격자 재료로 제조된다. 레일리 파 방사는 모든 3가지 경우, 즉 경화 유리 프릿(약 10μ 높이); 상표명Lithopone의 로딩된 에폭시(약 25μ 높이); 및 텅스텐 로딩 에폭시(약 25μ 높이)에서 관측된다. 따라서, 에폭시는 무기 필터 조성물을 위해 중합체 매트릭스를 제공한다. 유리프릿 및 상표명 Lithopone의 로딩된 에폭시 격자에 대해 증착된 양은 대략 동일하며, 대응 수신 신호는 실험적인 불확실성 내에서 동일하다. 텅스텐 로딩 에폭시 격자는 2배 내지 3배의 양을 가지며, 수신된 신호의 진폭에서 대응하여 증가한다.
중합체 격자 재료의 사용은 설계 및 방법의 유연성을 향상시킨다.
실시예 10
실시예 2, 4, 5, 6 및 7에서, 압전 엘리먼트에 결합된 벌크파는 압력파이다. 예를들어, 도 5 및 도 6에 도시된 엘리먼트(4a, 4b, 10a, 10b)는 선택적으로 전단응력 모드 압전 엘리먼트이다. 그러나, 본 실시예에서 기술된 바와같이, 벌크 전단파는 종래의 저비용 압력 모드 압전 엘리먼트를 이용하여 발생될 수있다.
이 실시예는 도 12에 도시된 바와같이 새로운 방법으로 장착되는 압축-모드 압전 엘리먼트(32)를 사용하여, 벌크파(78)가 격자(30)에 도달하기전에 종이의 평면에서 입자 이동으로 함으로써 전단압력 파(80)로 변환되도록 함으로써 구현된다. 도 12에서, 기판(20)은 초당 6000미터의 벌크 압력 파 속도와 초당 3433미터의 벌크 전단파 속도를 가진 소자-제한 유리이다. 5.5MHz 압축-모드 압전 엘리먼트(32)는 수평면에 대해 각 θp=62.6°만큼 기울어진다. 방사된 벌크 압력 파(78)는 수직방향에 대해 θp 각도로 아랫방향으로 전파된다. 이것은 수직방향에 대해 각도 θs=30.5°로 전파되는 상향 반사 전단 파(80)를 유발한다. θs의 값은 다음과 같은 스넬 법칙(Snell's Law)에 의해 결정된다.
sin(θs)/Va=sin(θp)/Vp
이 실시예에서 θp의 값은 광학의 브레우스터 각도(Brewster's angle)의 음향 아날로드를 충족시키도록 선택된다. 공지된 음향원리(예를들어, 방정식 9.45(Tn=...),B.A.Auld,Acoustic Fields and Waves in Solids, (2nd ed.) Vol.II, Krieger Publishing Co., Malabar, FL, 1990, ISBN 089874783-X 참조)를 사용하여 계산될 수 있는 바와 같이, 입사압력은 전단 파로써 100% 반사된다. 이러한 모든 변환 반사는 공통 압력 모드 압전 엘리먼트로 벌크 전단 파가 효율적으로 발생되게 한다.
압력 모드 압전 엘리먼트(32)에서 조차 전단 파(80)로 격자(30)를 방사하는 능력은 예를들어 레일리 파 발생(Takeuchi 등, 1980 참조)을 위한 “F” 인자를 변경 또는 최적화하기 위한 중요한 옵션을 제공한다.
도 12에 도시된 경우는 도시된 기판이 안전한 유리 적층부(20, 130, 132), 즉, 폴리비닐 부틸레이트 중합체(130)를 삽입하는 소다 석회유리(20, 132)중 상부 적층물(20) 또는 다른 적층물일 때 특히 장점을 제공한다. 이 경우, 전단 파는 상부 유리 시트(130)의 배면(42)에서 반사되며, 유리(20) 및 폴리비닐 부틸레이트(130)사이의 음향 임피던스의 큰 차이 때문에 대부분의 파(80)는 격자(30)쪽의 윗방향으로 반사되어 예를들어, 레일리 파(79)로 변환된다. 다른 한편으로, 기행플레이트 파 모드는 중합체 층(130)에 의해 빠르게 감쇄된다. 안전한 유리 적층부의 상부 적층부(20)의 상부면상의 경사(74)는 예를 들어, 로봇식 압전 엘리먼트 공정을 위해 용이하게 액세스 할 수 있으며, 압전 엘리먼트(32)와 기판(20)을 형성하는 유리 시트이상 연장되는 임의의 초과 중합체(130)사이의 기계적인 간섭을 제거한다.
θs=30.5°인 특정 실시예에 있어서, 전단 파는 sin2s)부분 즉, 수직방향의 전단 이동형태의 전력의 약 26%와, cos2s)부분, 즉 수평으로 편광된 전단압력 이동 형태의 에너지의 약 74%를 가진다. 이후의 실시예에 기술된 바와같이, 이 큰 수평 전단 성분은 격자로부터 방사된 파가 러브 파 또는 HOHPS 파와 같은 수평 편광 전단 파인 실시예를 가능하게 한다.
실시예 11
전송된(또는 수신된) 음향 모드가 레일리 파가 아닌 격자 트랜스튜서가 설계될 수있다. 도 13A 및 도 13B는 수평 평광 전단 파, 즉 러브 파를 여기시키는 수평 전단 모드 압전 엘리먼트(32')를 사용하는 격자 트랜스듀서를 고려한다.
성층 기판(84, 86)은 예를 들어 3mm층 소다-석회 유리에 접착된 상표명 Schott B 270의 유리 및 바륨함유 유리와 같은 0.5mm 두께의 저속 벌크 전단 유리층이다. 이러한 기판(84, 86)은 1mm 두께의 유리 기판에서 저차 수평 편광 전단(ZOHPS) 파에 의해 제공되는 것보다, 표면(82)에서 수평 전단 이동의 고전력 밀도를 제공하는 러브 파(94)를 전파시킬 수있다.
압전 엘리먼트(32')의 전단 이동, 벌크 전단 파(92)의 전단 이동, 그레이트(90)의 축 및 러브 파(94)의 전단 이동은 도 13A의 지면에 모두 수직이다.
다른 한편으로, 도 13B는 도 12에 도시된 것과 유사한 기하학적 형태를 사용한다. 그러나, 이러한 경우에, 수평 전단 모드 압전 엘리먼트(32‘)로부터 수평 편광 벌크 전단 파(96)는 모드의 변환없이 기판(86)의 배면(88)에서 간단하게 반사되므로, 입사각은 반사각과 동일하다. 이러한 격자 트랜스듀서는 전술한 압전 방위 및 방사각의 변형으로 설계될 수있다. 그러나, 최악의 경우의 실시예로서 큰 방사각, 예를들어 90°에서는, 벌크 파의 수평 전단 이동이 방사된 파의 수평 이동에 더 이상 평행하지 않기 때문에 효율이 손실된다.
격자의 간격 및 방위는 방사된 러브 파의 파 벡터 및 벌크 파의 파 벡터중 수평 성분사이의 브래그 산란 조건에 의해 결정된다.
실시예 12
포커싱 격자 트랜스듀서는 도 14A에 도시된 바와같이 그레이트(5a', 5b', 8a')에 곡률을 제공하여 구성될 수있다. 곡면 압전 엘리먼트에 대한 필요성이 존재하지 않는 것에 주목하라. 압전 엘리먼트에 대한 제조비용을 부가하지 않으면서, 격자 트랜스듀서는 방사된 음향빔의 포커싱 특성을 조절하는 것이 자유롭다. 이것은 웨지 트랜스듀서 및 에지 트랜스듀서에 대한 경우가 아니다.
수평 지향 압전 엘리먼트를 가진 격자 트랜스듀서에 대해, 격자(5a', 5b', 8a')의 곡률반경은 적정 포커싱 길이(100, 102, 104)와 동일하게 설정된다. 효율적인 포커싱 길이는 초점 길이가 반사 어레이의 길이보다 길거나 동일할지라도, 반사 어레이(6a, 6b, 7a)의 길이의 약 1/2 내지 3/4이 바람직하다. 이들 격자 엘리먼트는 적정 경로에 따라 음향파 에너지를 지향하기 위하여 포물선형 구조 또는 다른 희망 구조일 수있다. 통상적으로, 격자의 적정 포커싱 길이는 격자의 크기에 비교하여 크며, 포물선형 곡률 및 원형 곡률은 실제적으로 동일하다. 경사진 압전 엘리먼트를 가진 격자 트랜스듀서에서는 기계적인 수학 식이 더 복잡할지라도 초점 길이를 조절하는 것이 자유롭다. 브래그 산란의 원리는 계속해서 응용할 수있다. 희망 브래그 산란 각은 격자 트랜스듀서내에서의 위치의 함수가 된다. 포커싱 격자 트랜스듀서의 그레이트의 곡률은 도 14b 및 다음 방적식을 참조하여 설계될 수 있다.
dy/dx = tan(π/2 - θg)
kg 2 = [kBsinθB]2 + kR 2 - 2·kBsinθBKRcosθ
sin(θg - θ) = [kBsinBsinθ]/kg
트랜스듀서 빔의 약간의 포커싱은 회절 빔 스프레딩으로부터 신호 손실을 부분적으로 오프셋하는데 사용될 수 있다. 예를 들면, 포커싱 격자 트랜스듀서 초점 길이는 반사 어레이의 길이 또는 그 길이의 절반을 갖도록 설정될 수 있다. 반사 어레이를 도시하지 않았지만, 미합중국 특허 제 3,673,327호의 Johnson-Freyberger형 터치스크린이나 Alder형 터치스크린을 포함할 수 있는 도 14A에서 도시된 바와 같이, 격자는 기판을 가로지르는 거리의 절반 내지 4분의 3 정도인 초점 길이를 가질 수 있다.
실시예 13
도 15A는 F-인자는 1이므로, 트랜스듀서 효율이 더욱 향상되는 격자 트랜스듀서를 도시한다; 「Takeuchi et al.(1980)」참조. 이것은 다음 방정식을 만족하는 θB에 대한 충분한 네거티브값을 갖는 격자에 벌크 전단파가 입사되는 것이 가능하다.
|sin(θB)|>Vs/Vp = (0.5 - σ)/(1 - σ)1/2
여기서 Vs는 벌크 전단 속도, Vp는 벌크 압력파 속도, 및 σ는 포아송 비율이다. 이 조건이 충족되고 격자 간격이 벌크 전단파와 레일리파를 결합시키도록 구성될때, 브래그 스캐터링을 통하여 벌크 압력파와 레일리파를 결합하지 않는다. 포아송 비율 σ= 0.355를 갖는 알루미늄인 경우에, 상기 조건은 θB>28.3으로서 수치적으로 평가된다. 그러므로 F=1을 갖는 격자 트랜스듀서는 도 15A에 의해 지시된 방향으로 예를 들면 30°정도 경사진 기판 표면상에 장착된 수평 전단 압전 엘리먼트로 구성될 수 있다.
그러므로, 도 15A에서 도시된 바와 같이, 압전 트랜스듀서(32)는 전환된 파형 모드(79)의 전파 축과 반대인 격자(30‘)의 평면에서 전파 축의 돌출부를 갖는 벌크파(108)를 생성하도록 설정된다. 압전 엘리먼트(32)는 내부 경사면내로 차폐되어, 땜납(34) 범프, 본드 와이어(36) 및 신호 케이블(106)이 보호되도록 한다.
일부 경우에 있어서, 압전, 땜납 접속, 및 와이어 라우팅이 도 15A에 도시된 바와같이 기판내의 오목한 부분내에 위치됨으로써 보호되는 것이 유용하다. 어떤 경우에는, 이들 기계적인 설계 이점은 예를 들면 비용이 저렴한 압력-모드 압전 엘리먼트가 사용되기 때문에 F<1일지라도 도 15A의 기하형태를 정당화할 것이다.
특히 몰딩 공정에 의하여 형성된 중합체 기판에 대하여, 도 15A의 기판 기하형태는 F=1의 이점과 압전 엘리먼트의 기계적인 보호를 비용이 거의 않는 제조 비용으로 제공할 수 있다. 예를 들면, 스티론666(Dow Chemical로부터 제조된 폴리스티렌)에 대하여, 포아송 비율 σ=0.35이고 전단 모드 압전은 약 30°정도로 네거티브하게 경사지거나 F=1을 제공한다.
도 15A의 기하형태의 레일리 또는 러브파 격자 트랜스듀서의 중합체 기판 실시예는 상술한 바와같이 웨지 트랜스듀서가 중합체 기판에 대하여 설계되는 것이 어렵거나 불가능하기 때문에 특히 중요하다. 몰딩된 중합체 기판에 대하여 격자( 및 반사 어레이)는 몰드내로 디자인될 수 있다는 것을 주지하라. 이러한 공정에 있어서, 변화가능한 높이 또는 깊이로 격자를 지지하는 것이 어렵지 않다.
도 15B에서 도시된 바와 같이 다른 실시 예는 도 15A 및 도 12의 원리를 조합한다. 예를 들면, 폴리스티렌 기판(20)에 대하여, 압전 엘리먼트(32)는 수평에 대하여 60°각도로 장착될 수 있다. 압전 엘리먼트(32)는 격자(30‘)쪽으로 지향된, 수직에 대하여 60°로 전달하는 벌크 압력파(116)에 결합한다. 반사 표면(112)에서, 이 벌크 압력파는 90°정도 반사되고 θB=-30°로 벌크 전단파(118)로 모드전환된다. 반사 표면(112)은 수직에 대하여 55.6°의 각도를 형성한다. 예 10에 참조된 B.A. Auld의 텍스트북에 제공된 음향 원리는 반사 표면에서 77% 모드-전환 효율을 가져온다.
도 15B는 웨지 구조(110)상에 압전 트랜스듀서(32)를 장착할 수 있는 가능성을 입증하며, 이 웨지 구조는 인터페이스(120)에서 접착제 또는 다른 수단으로 접착된다. 인터페이스(120)는 임의의 큰 정도로 벌크파 모드(118)를 감쇠시키지 않는다. 그러므로, 기판(20)은 양측(22,42)상에 형성된 표면 구조를 가질 필요가 없다.
도 15B는 벌크파가 반사되고 하나의 반사 표면에 의해 모드가 전환되는 예를 도시한다. 격자 트랜스듀서 구성에서 두 개이상의 벌크파 반사를 포함할 수 있다. 이것은 부가적인 옵션을 음향 터치스크린을 위한 격자 구성에 부가한다.
격자 트랜스듀서 구조의 근방에 놓여진 흡수제는 기생파의 효과를 억제하는데 사용될 수 있다. 기준 표면을 몰딩하고/하거나 음향 임피던스 매칭 흡수제를 제공할 수 있어서, 기생파를 처리시 대단한 유연성이 제공된다.
예 14
θB≠0°일 경우, 격자 트랜스듀서는 단방향이다. 즉 전방향으로 빔을 발산하고 후방으로는 발산하지 않는다.
θB = 0°일 경우, 대칭적으로 구성된 격자 트랜스듀서는 양방향이다. 즉, 전후 방향으로 동일하게 빔을 발산한다. 일부 경우에는, 터치스크린 격자 트랜스듀서가 서로 평행이 되지 않게 전파하는 두 개의 유용한 파형 모드에 결합되도록 구성된다면 이롭다.
단방향 θB = 0°격자 트랜스듀서를 구성하는 것이 가능하다. 하나의 접근 방법은 격자 트랜스듀서 뒤에 음향 반사기를 놓는 것이다. 예를 들면, 반파 길이 격자 (n+1/2)λ(122)는 도 16에 도시된 바와 같이 파형 모드를 전환하도록 의도된 격자(30) 뒤에 놓여질 수 있다. 도 17에 도시된 실시예에서, 반사기(128)는 후방으로 파장 이격(nλ) 격자의 간단한 연장이다. 파장 이격 격자(128)는 기판의 뒷면(43)으로부터 반사하는 수직 벌크파(130)에 후방 음향파(126)를 결합시키고 나서 격자(128)의 연장에서 희망 전방 음향파(124)에 결합시킨다. 전방파(124) 및 후방파(126)는 트랜스듀서 시스템으로부터 발산된 유효파(79)로서 합산된다.
선택적으로, 레일리파 발생 및 수신에 대하여, 비대칭 격자 형상(132)이 도 18A에 도시된 바와같이 사용될 수 있다. 이러한 격자가 단방향인 실험적 증거는 본원에 참조된 May 1, 1969 article of Electronics Letter(Volumn 5 Number 9)에 제공되어 있다. 이론적으로, 비대칭 격자와 수직 벌크파의 상호작용은 타원형 입자 이동을 유도할 수 있다. 반대방향으로 이동하는 레일리파가 반대방향에서의 타원형 입자 이동에 상응할 경우, 타원형으로 여기된 격자는 한 방향의 레일리파에 우선적으로 결합될 수 있을 것이다.
본원에 참조된 Prof. Takeuchi and Prof. Yamanouchi, "Unidirectional excitation of plate waves in a periodic structure", October 1991에는 스캐터링 중심의 주기적인 어레이로부터 4분의 1 파장(n+1/4)λ만큼 오프셋된 여기 중심의 주기적인 어레이가 음향파의 단방향 발산을 초래할 수 있다는 것을 입증한다. 유사한 원리가 터치스크린의 격자 트랜스듀서에 본 발명에 따라 적용될 수 있다.
레일리파 또는 러브파와 같은 표면 안내파는 기판내로 어느 정도 관통한다; 실질적인 에너지 밀도는 예를 들면, 표면 아래에 반파장으로 여전히 존재한다. 도 18b에 도시된 본 발명의 일 실시예에 따르면, 회절 음향파 모드 커플러(90‘,90“)의 엘리먼트는 상부면아래로 유사한 깊이로 연장할 수 있다. 이 경우에 기판(20)으로부터 전면(82)에 접근하는 기판(88')의 하부에 음향적으로 결합된 전단 모드 압전 엘리먼트인 압전 트랜스듀서(32”)로부터의 벌크파(92’)는 얕은 영역(84‘)에 도달하기 전에 깊게 놓여있는 영역(86’)에 도달할 것이다. 기판(20‘)은 러브파 전파를 지지할 수 있는 적층부로 형성된다. 이러한 시간 지연 및 상응하는 위상 시프트를 허용하기 위하여, 회절 음향파 모드 커플러(90’,90“)의 엘리먼트는 상대적인 오프셋(91)을 가질거나 표면을 따라 러브파(94‘) 전파의 적정방향에 대하여 구조적 간섭을 달성하기 위하여, 반대방향으로 전파하는 파(94”)보다 비교적 더 큰 에너지로 기울어질 수 있다. 그러므로 이러한 형태의 커플러는 부분적으로 또는 완전히 단방향이 될수 있다. 이 경우, 기판은 예를들면, 중금속 함유 에나멜이 농축된 층으로 코팅된 알루미늄일 수 있다. 매립된 회절 음향파 모드 커플러 엘리먼트(90’)는 코팅동안에 에나멜(84‘)로 채워진 알루미늄의 표면에 스탬핑된 자국으로 형성될 수 있으며, 표면 회절 음향파 모드 커플러 엘리먼트(90“)는 완전히 경화되기 전에 에나멜(84’)내로 찍혀질 수도 있다. 상대 오프셋(91)은 도시하지 않은 기계적인 고정물에 의해 형성된다.
실시예 15
격자 트랜스듀서를 사용하는 음향 센서는 전체 4개의 트랜스듀서에 제한된 배열에 한정될 필요는 없다. 웨지 트랜스듀서를 사용하는 음향 터치스크린이 가능하면, 6개,8개, 또는 그이상의 트랜스듀서를 갖는 구성이 본 발명에 따라 단일 터치스크린 시스템 또는 기판 상에 제공될 수 있다. 예를 들면, 본 발명에 따른 장방형 터치스크린의 일 실시예에서, 두 개의 격자 트랜스듀서가 각 코너에 제공되며, 터치 위치: X우측,X좌측,Y상부 및 Y하부를 결정하기 위하여 제어기 전자장치에 의해 처리하기 위한 4개의 센서가 요구된다. 이것은 3개이상의 어레이쌍에 의해 X좌표를 측정함으로써 일반화될 수 있다. 그러나, 웨지-트랜스듀서 터치스크린 아날로그를 가지지 않는 격자-트랜스듀서 음향 터치스크린 실시예가 특히 중요하다.
웨지 트랜스듀서와 유사하고 에지 트랜스듀서와 유사하지 않은 격자 트랜스듀서는 자유 에지로의 근접에 관계없이 기판 표면상의 어딘가에 놓여질 수 있다. 그러나, 기판 표면상에 접착된 웨지 트랜스듀서와 달리, 격자 트랜스듀서는 다른 센서 서브시스템의 유효한 음향 경로에 놓여질 때 음향적으로 완전히 불투명한 장애를 나타내지 않는다. 격자 트랜스듀서는 센서 서브시스템에도 설계가 더 자유롭도록 한다. 특히, 격자 트랜스듀서는 도 19A 및 19B에 도시된 바와 같이, 센서 서브시스템의 이음매없는 타일링(tiling)을 가능하게 한다.
도 19A는 전송(142) 및 수신(140) 격자 트랜스듀서 뿐만아니라 상응하는 전송(146) 및 수신(144) 반사 어레이의 한 쌍의 그레이트를 도시한다. 이러한 그레이트 및 반사 어레이는 예를 들면 프린팅, 에칭, 금속 기판의 스탬핑 또는 중합체 기판용 몰드의 셰이핑(shaping)과 같은 다양한 방법으로 형성될 수 있다. 바람직한 실시예에서, 격자(140,142)는 예를 들면 기판재료와 동일한 재료로 만들어진 웨지와 같은 단방향 트랜스듀서의 일부로서, 도 15B에 도시된 것과 유사한 배열로 θB<0°가 되도록 기판의 후방과 압전 엘리먼트 사이에 놓여진다.
도 19B는 그레이트쌍(150X,150Y,152X,152Y)과 반사 어레이(154X,156X,154Y,156Y)의 하나의 가능한 타일링 배열을 도시한다. 검은 원은 도 19A에서와 같이 전송 격자(150X,150Y) 트랜스듀서를 나타내며, 굵은 화살표는 전송 반사 어레이(154X,154Y)를 나타내며, 가느다란 화살표는 수신 반사 어레이(156X,156Y)를 나타내며, 흰 원은 수신 격자 트랜스듀서(152X,152Y)를 나타낸다. 택일적으로, 전송 및 수신 어레이는 중첩되며 단일 공통 전송/수신 격자 트랜스듀서(도시하지 않음)와 연관된다. 도 19B에서 점선으로 지시한 바와같이, X-전송 어레이(154X)는 음향파를 하방으로 지향시킨다. 유사하게, Y-전송 어레이(154Y)는 음향파를 우측으로 지향시킨다. 표면상의 각 포인트는 적어도 하나의 X 센서 서브시스템과 적어도 하나의 Y 센서 서브시스템에 의해 감지된다. 대부분의 터치 표면에는, 사실상 X 및 Y의 두 개의 측정이 있다. 이러한 타일링은 임의의 사이즈의 터치 표면을 지지할 수 있다. 터치(160)를 위하여, Y 좌표는 파(158Y)에 의하여 감지된다. X 좌표는 파(158X 및 158X')에 의해 감지된다.
도 19B의 실시예에 있어서, 감소된 결합 강도를 갖는 격자( 및 반사 어레이)를 사용하는 것이 바람직할 수도 있다. 이것이 신호 진폭을 감소시키므로, 개별적인 센서 서브시스템의 최대 사이즈를 감소시킬 수 있지만, 다른 중첩된 센서 서브시스템의 성분로부터 음향 신호의 쉐도잉을 이롭게 감소시킬 것이다. 또한, X 반사 어레이가 Y 센서 서브시스템에 대하여 국소화된 쉐도우없이 생산될 수 있도록 희망 음향 경로가 직교 X 및 Y 방향으로부터 편향되도록 하는 것이 유용할 수 있다. 바람직한 실시예에서, 레일리파는 터치를 감지하는데 사용될 수 있다. 예를 들면, 터치 표면은 평평할 필요없는 로봇 장치의 알루미늄 또는 스틸 쉘일 수 있다. 이러한 터치 민감 로봇 표면은 예를 들면 충돌 방지를 위하여 사용될 수 있다. 선택적으로, 금속 터치 표면에는 터치 표면에 대항하여 플라스틱을 프레싱할 때만 친밀한 음향 접촉을 하도록 설계되어 있는 플라스틱 커버시트가 제공되어 있다.
다른 바람직한 실시예에서, 러브파는 터치를 감지하는 데 사용된다. 러브-파 기판은 예를 들어 조밀한 에나멜로 코팅된 알루미늄으로 제공된다. 이 경우에, 격자 트랜스듀서 및 반사층은 알루미늄 표면에서의 에칭 또는 홈로서 제공되거나, 또는 에나멜 내부로 돌출하는 도포된 재료로서 제공된다. 이러한 실시예는 펠트-펜 잉크에 의한 드라잉 용제와 같은 액상 오염물질에 대해 감소된 감도가 요구되는 대형 화이트보드와 같은 응용의 경우에 유용하다.
실시예 16
실시예 10에서 설명한 바와 같이, 기판의 후면에서의 반사와 결합된 도 12의 압축파 모드 압전 엘리먼트는 벌크 전단파에 결합시키기 위해 사용될 수 있다. 본 실시예는 러브 파에 결합시키기 위해 벌키 압력 파와는 다른 벌크 전단파가 사용될 수 있다. 이 실시 예는 도 13B에 도시된 바와 같은 러브파 기판(196)를 포함한다. 수신기 쌍을 도시하는 도 20은 러브파(210,212)가 벌크파(214,216)의 전파 축에 대해 격자 평면에서 90°인 방사각도로 여기되고, 이것은 기판의 배면에서 반사되고 압전 트랜스듀서(198,200)에 장착된 정면 경사부(204,206)와 함께 압력 모드로서 결합하는 바람직한 실시예를 예시한다.
90°인 방사/수신 각도에 대해, 격자(202,208)는 러브파 전달축(210,212)에 대해 수직이 아니라, 다음 식 1을 만족시키는 각도 θg 만큼 회전된다.
tan(θg )/Vlove = sin(θs)/Vs
러브파 위상속도(Vlove)는 경험적으로 결정될 수 있고, 적층물질의 공지된 특성에 기초하여 계산되거나, 각도 θg 는 최대 유효 각도를 찾기위해 경험적으로 변화될 수 있고, 이것은 유효 러브파 위상속도를 결정할 수 있게 한다. 러브파 및 벌크 전단파 위상 속도는 크게 상이하지 않고 각도는 매우 작기 때문에, θg 의 최적값은 θ 로부터 크게 벗어나지 않을 것이다.
90°인 방사/수신 각도는 90°일 필요가 없음을 유의해야 한다. 그러나, 90° 이외의 각도에서, 효율이 다소 손실될 것이다. 벌크파의 전단 이동의 수평성분은 더 이상 러브파의 전단 이동과 평행하지 않게 된다. 예를들어, 45°인 방사각도에 대해 효율이 2 인자 손실될 것이다. 이 러브파 격자 트랜스듀서 설계는 간명하고 컴팩트하다. 이것은 단순한 경사형-압전 회절격자 트랜스듀서와 비교하여 추가 부품 또는 제조단계를 부가하지 않고 더욱 값비싼 압전 엘리먼트의 필요를 방지하는 이점을 갖는다.
실시예 17
반사 어레이 없이 작동하는 다수의 음향 터치스크린 시스템 설계가 있다. 본원에 참조된 Johnson 및 Freyberger(1972)에 의한 US 3,673,327 호 및 Kohji Toda에 의한 PCT 출원 WO94/02911(PCT/JP/01028, 1994)를 참조하라. 회절격자 트랜스듀서는 이러한 음향 터치스크린에 대한 새로운 변경을 가능케 한다. WO 94/02911의 도 16 및 19와 유사한 도 21은 본 발명에 따른 설계를 나타내며, 여기서 “T"는 전송 격자 트랜스듀서이고 ”R"은 수신 회절격자 트랜스듀서이다.
본 발명의 바람직한 실시예에 따라, 도 21의 격자 트랜스듀서는 다수의 압전 엘리먼트를 규정하는 금속화 패턴이 형성되는 폴리비닐리덴 플루오라이드(“PVDF") 시이트를 포함한다. 이 PVDF 서브어셈블리는 각각의 격자 엘리먼트를 향하여 전파하는 벌크파를 발생시키기 위해, 기판의 경사면에 장착된다. PVDF를 사용할 때, 비교적 고 임피던스 PVDF 인터디지털 트랜스듀서를 갖춘 저 임피던스 케이블링의 사용하도록 하기 위해 트랜스듀서에 국부적인 임피던스 정합회로 예를들어, 전계효과 트랜지스터(”FET")를 사용하는 것이 유익하다.
종래기술에 따라 유리 기판의 최상부면에 접착된 인터디지털 압전 엘리먼트와 비교하면, 본 발명에 따라 최하부면의 압전 엘리먼트 음향 트랜스듀서(즉 격자 트랜스듀서) 및 최상부면의 회절격자는 다음의 가능한 장점: (a) 1/4 전극 라인폭을 필요로 하지 않는 더 간소한 압전 전극 설계; (b) 회절격자의 단일 패스 경로가 더욱 용이하게 구비된 트랜스듀서의 상대 각도 정렬; 및 (c) 정교한 압전 엘리먼트 및 사용자로부터 떨어져 기판표면에 이동된 전기 접속부를 제공한다.
도 22는 두 개의 상이한 파 모드인 러브파(162) 및 레일리 파(164)에 결합된 비교적 단순한 구조를 갖는 격자 트랜스듀서를 도시한다. 기판(84,86)은 러브파 뿐만 아니라, 레일리파의 전파를 지원한다. 예를들어, 상부 압전 엘리먼트(174)는 θ1 = θB = 60°압력 벌크파를 통해 레일리파에 결합되고 경사 표면(178)에 장착된 압력-모드 압전 엘리먼트일 수 있고 하부 압전 엘리먼트(172)는 θ2 = θS = 24°인 전단 벌크파를 통해 전단 벌크파에 결합되고 경사 표면(176)에 장착된 수평으로 편광된 전단-모드 압전 엘리먼트일 수 있다. 격자(166) 간격은 그것의 2차원 푸리에 변환에서 다중의 유용한 피크를 제공하는 방식으로 θS = 24°에서 벌크 전단파에 러브파를 결합하고 θB = 60°에서 벌크 압력파와 레일리파를 결합하도록 상술한 브래그 산란원리를 사용하여 계산될 수 있다. 벌크 전단파의 전파각도(θB)는 러브파 위상 속도, 회절격자 간격 및 벌크 전단 속도로부터 계산될 수 있다. 알루미늄(σ=0.355)에 대해 그리고 러브파 속도가 레일리파와 근사할 정도까지, θB 는 벌크 전단파에 대해 약 24°이다. 이러한 센서는 러브파 대 레일리파 흡수비율로부터 물기있는 손가락에 의한 터치를 물방울과 용이하게 구별할 수 있다.
도 22에도 예시된 다른 실시예에서, 0차(zeroth order) 러브파 및 n=1인 러브파에 민감한 듀얼-모드 회절격자 트랜스듀서가 제공된다. 이 경우에, 압전 엘리먼트(172,174)는 수평으로 편광된 전단-모드 압전 엘리먼트이고 기판(84,86)은 영차 및 일차 러브파 전파를 지원하기에 충분한 두께인 상부 저속-전단-속도 층(84)을 갖는다. 표면에서 바람직하게 전단 에너지를 흡수함으로써, 터치는 전단 모드 에너지의 깊이 프로파일을 변화시킬 수 있고, 따라서 입사하는 어떤 것, 예를 들어 영차 러브파(162) 에너지를 일차 러브파(164) 에너지로 변환할 수 있다. n=0인 러브파(162)를 전송하고 n=1인 러브파(164)를 수신하거나 n=0인 러브파(162) 및 n=1인 러브파(164) 모두를 수신함으로써, 양의 터치 신호 또는 양 및 감쇠 응답 센서 시스템이 달성된다. 단 하나의 양의 터치 신호가 희망된다면, 단일 압전 엘리먼트를 갖는 희망 모드를 위한 격자 트랜스듀서가 설계될 수 있다.
격자 트랜스듀서는 따라서 음향 터치스크린의 음향 모드의 선택을 위한 개선된 옵션을 제공한다.
실시예 18
음원은 간단한 최상부 및 최하부 전극을 갖춘 간단한 압전 엘리먼트일 필요가 없다. 본 실시예에 따라, 더욱 정교한 음원이 고려된다. 이들은 복수의 압전 엘리먼트 및/또는 도 23에 도시된 바와 같이, 정교한 전극 장치를 갖는 압전 엘리먼트를 포함할 수 있다.
12mm 두께의 유리 기판(180)과 같은 비교적 두꺼운 기판의 경우에, 격자(182)로부터 비교적 떨어진 최하부면(194) 보단 격자(182)에 인접한 수직 에지(192)상에 압전 엘리먼트(188)를 장착하는 것이 바람직하다. 더욱 인접한 압전 엘리먼트(188) 위치는 압전 엘리먼트(188)로부터 방사된 벌크파(184)의 회절 확산을 최소화하는데 기여할 것이다. 바람직한 실시예에서, 압전 엘리먼트(188)는 부동 최하부 전극(190)과 기하구조에서 인터디지털인 노광된 전극(192,194) 셋트를 갖는다. 인접한 인터디지털 전극(192,194)의 중심간 간격(s)은 수직방향에 대해 희망 벌크파(184)의 각도(θB)의 코사인으로 나누어진 기판의 벌크 파장의 1/2 즉, s=1/2*λ(벌크)/cos(θB)에 대응한다. 모든 인터디지털 전극(192,194)은 폴링 동안 공통 전압으로 유지되지만, 동작 동안 지시된 바와 같이 교대 편광으로 연결된다.
도 23에 도시된 설계에선 도 1에 도시된 설계와 비교할 때 3dB의 손실이 예상되는데, 그 이유는 상향 전파 벌크파(184) 및 하향 전파 벌크파(186)가 압전 엘리먼트(188)에 의해 발생되기 때문이다. 선택적으로, 충분히 작은 인터디지털 전극 간격으로, 전극은 인접전극이 교호 위상일 필요가 없도록 각각의 전극으로 및 전극으로부터 신호의 개별적인 위상화를 제어할 수 있고, 하향 전파 벌크파(186)는 제거될 수 있다.
실시예 19
종래기술에서 공지된 바와 같이, 기판상에 적절하게 배치되고 구성된 한 쌍의 격자는 기판의 제 1 표면으로부터 기판의 제 2 표면으로 파 에너지를 전달하기 위해 사용될 수 있다. 본원에 참조된 Humphryes 및 Ash(1969)에 의한 발명기술을 참조하라. 따라서 이 구조는 “비아(via)”로 고려될 수 있다. 본 발명에 따라, 이러한 구조는 기판의 제 1 표면상에 표면 에너지를 갖는 파를 발생시키기 위해, 웨지 트랜스듀서 및 회절격자 트랜스듀서를 포함하는, 임의의 구조의 사용하도록 하는데, 이 파는 기판의 제 2 표면에 효과적으로 전달되어, 반사 어레이 또는 터치 표면 보단 기판 표면을 분리하기 위해 음파 발생 구조를 제거한다. 이런한 장치는 음파가 통상적인 방해 또는 간섭 구조를 통과하도록 한다.
도 24A, 24B 및 24C는 대형 연속 기판의 표면(242)상에 임의로 배치된 터치표면(238)을 제공하기 위한 수단으로서 이러한 음향 비아를 이용하는 실시예를 도시한다. 기판(246)은 예를 들어 테이블 최상부 또는 카운터 최상부로서의 역할을 할 수 있을 정도로 충분히 큰 6mm 두께의 조합된 소다 석회 유리로 이루어질 수 있다. 설계 엔지니어는 터치 감지 구역(238)을 기판의 연속된 최상부 표면(242)내에 임의로 위치시킬 수 있다. 단지 4개의 신장된 격자(240)만이 표면(242)의 전면에 나타난다. 바람직한 실시예에서, 이들 격자는 편평한 최상부 기판 표면(242)의 중단이 없는 방식으로 투명 에폭시로 후방이-채워진(back-filled) 홈일 수 있다. 특히, 최상부 기판 표면엔 반사 어레이 및 트랜스듀서 성분이 없음을 주목하라.
터치 감지 구역뒤에, 디스플레이 장치는 접착영역(236)에서 기판의 후방 표면(244)에 적절한 접착재료(254)로 광학적으로 접착된다. 디스플레이 장치(도면에 도시되지 않음)는 10.4 “ 액정 디스플레이(LCD)일 수 있다. 선택적으로, 이 디스플레이 장치는 기판에 광학적으로 접착된 역 투사 스크린을 포함할 수 있다. 따라서, 설계 엔지니어는 인터넷/인트라넷 인터페이스로서 회사원의 데스크톱 또는 음식 주문용 레스트랑 카운터등과 같은 연속 표면상에 터치/디스플레이 인터페이스를 위치시킬 수 있다.
기판(246)의 최하부 표면(244)에, 4개의 멀티-엘리먼트 격자(234) 및 4개의 레일리파 웨지 트랜스듀서(230)는 도 1에 도시된 시스템과 유사한 장치가 제공된다. 반사 어레이(232) 쌍간의 통상적인 음향 경로는 디스플레이 장치의 음향학적 흡수 광 접착(254)에 의해 차단된다. 반사 어레이(232)와 디스플레이 장치 사이엔 격자(234)가 배치된다. 프린팅, 스크라이빙, 에칭 및 기타 침식 및 추가 공정을 포함하는 다수의 옵션이 격자 및 반사 어레이의 제조를 위해 이용될 수 있다.
최상부 및 최하부 표면상의 격자 쌍은 두 표면간에 레일리파(248,252)의 에너지를 전달하기 위해 음향 비아로서의 역할을 한다. 바람직한 실시예에서, 수직 축에 대해 θB= -45°로 전파하는 벌크 전단파(250)는 격자(24,240)에 결합되고 따라서 소다-석회 유리에 대해 F=1인 조건을 만족시킨다. 격자 간격(p)은 다음 식으로 계산될 수 있다:
p = (VR/f)(1-sin(θB) + (VR/VB))
예를들어, 동작 주파수 f= 5MHz , 레일리 파 속도 VR=3.16mm/μsec 벌크(전단) 속도 VB = 3.43mm/μsec , 및 θB= -45°에 대해, 격자 간격 p = 383㎛ 이다. 회절격자 구조는 1cm폭이고 약 250개의 그레이트를 가질 수 있다.
본 실시예는 격자 트랜스듀서의 형태인 음향 비아의 용도, 더 일반적으로는 압전 엘리먼트가 기판에 직접 접착되지 않는 실시예에서 격자 트랜스듀서 매커니즘의 용도를 예시한다.
실시예 20
본 발명에 따라, 격자는 편평한 표면상에 일련의 라인일 필요가 없지만, 더욱 개량된 설계 고려사항을 포함할 수 있다. 예를들어, 이것은 다중 축 감도를 위한 단일 트랜스듀서의 사용을 허용한다. 그래서, 공통 X/Y 수신 또는 전송 격자 트랜스듀서가 가능하다.
도 9를 참조하면, 공통 X/Y 격자 트랜스듀서의 일실시예가 존재하며, 여기서 압전기 엘리먼트(60a와 60b)가 대략 2배의 길이가 되는 단일 압전기 엘리먼트로 대체된다. 임의로, 상기 2개 세트의 격자(54a와 54b)는 중첩하도록 연장되어 2차원 푸리에 성분에 유용한 2개의 중첩된 격자 구조를 형성한다. 선택적으로, 이런 중첩 라인의 격자 패턴은 음의 그리드 패턴, 즉 다이아몬드형 단위 셀을 갖는 반사기 도트의 래티스(lattice)에 의해 대체될 수 있다.
도 25는 수평 장착된 압전기 엘리먼트(220), wmr θ B =0°를 사용한 유사한 디자인의 격자 트랜스듀서를 도시한다. 이런 경우의 격자는 X와 Y 방향 둘 모두에서 그 중심간 간격이 예를 들어 레일리파의 대략 한 파장인 도트의 정사각형 또는 직사각형 어레이(222)이다. 이런 격자(222)의 아래에 있는 압전기 엘리먼트(220)는 X(224)와 Y(226) 어레이 둘다로부터의 신호에 응답할 것이다. 상기 압전기 엘리먼트(222)에 의해 발생된 신호는 다수의 주파수 성분을 포함할 수 있다는 것에 유의한다. 임의 축을 따르는 상기 엘리먼트의 간격은 산란 특성을 결정하여, 격자가 다른 축을 따르는 주파수에 대해 선택적으로 되도록 한다. 그러므로, 상기 θ B =0°의 경우에, 직사각형 래티스는 제 1 주파수가 한 축을 따라 전파하고 제 1 주파수가 제 2 축을 따라 전파하도록 할 것이다.
Figure pat00003
인 경우에 대하여, 상기 직사각형 래티스는 평행 4변형 래티스로 대체된다.
실시예 21
도 26a와 도 26b는 비평면, 예를 들어 반구체 센서의 예를 제공하는데, 상기 터치 표면은 23.5°N 위도에서 “북회귀선”의 모든 북반구에 대응하고, 적도와 북회귀선 사이의 영역은 어레이와 트랜스듀서에 유용하다. 도 26a는 터치 존, 2개의 전송 격자 트랜스듀서, 2개의 전송 반사 어레이 2개의 수신 반사 어레이 및 2개의 수신 격자 트랜스듀서로 표현되는 메르카터 투영도(Mercator porjection)를 제공한다. 이런 엘리먼트는 도 26b의 평면 투영도 상에 도시되는 2개의 센서 서브시스템을 형성한다. 이런 2개의 센서 서브시스템(통상적으로 반사 어레이를 확장 및 중첩함으로써 다소 중첩하도록 설계됨)은 전체 터치 구역에 걸친 하나의 좌표의 측정치를 제공한다.
이런 센서는 “초음파 트랙볼(ultrasonic trackball)”, 즉, 기계적 트랙볼의 기능, 보기, 느끼기로 움직이지않는 부품을 갖는 입력 장치로서 동작할 수 있다. 사람은 X 방향 성분 이동으로 터치 구역 상에 자신의 손가락을 이동시킴으로써 이런 초음파 트랙볼을 “굴린다”. 연관된 제어기 전자 장치는 터치 정보를 처리하여 표준 기계적 트랙볼과 동일한 포맷으로 호스트 컴퓨터에 데이터를 보낼 수 있다.
부가적 센서 서브시스템은 도 26 a와 도 26b에 도시된 센서 서브시스템 상에 중첩된 수 있다. 총 8개의 격자 트랜스듀서와 8개의 반사 어레이로, 상기 터치 구역상에 2차원 터치 위치가 완전히 재구성될 수 있다. 총 12개의 격자 트랜스듀서와 어레이로, 예를 들어 Y 축(북극점(264)을 통과하는)에 대하여 +60°와 -60°만큼 회전되는 도 26a에 도시된 성분의 카피를 포함함으로써, 상기 터치 구역은 3좌표 측정의 여분 세트로 완전히 커버될 수 있다. 이런 여분은 다중 터치 정보를 처리할 수 있는 견고한 알고리즘의 전개를 위한 옵션을 증진한다.
격자 트랜스듀서의 사용하면 압전기 엘리먼트. 전기적 접속 및 아마 제어기 전자 장치 자체가 반구체 기판 셸의 내부에 배치되도록 한다. 그러므로, 격자 트랜스듀서는 초음파 트랙볼이 견고성과 간소성이 개선된 기계적 구성을 갖도록 한다.
일 실시예에서, 기판은 15㎝ 직경, 3㎜ 두께의 반구 스틸 셸로 이루어진다. 이런 초음파 트랙볼은 상당한 물리적 혹사를 받게 될 수 있고 아직도 완전히 기능적이다. 그러므로, 공중 액세스 키오스크를 위한 트랙볼 기능성을 갖는 입력 장치가 제공된다.
다른 실시예에서, 상기 기판의 반구체는 사용자 손에 알맞은 더 나은 인간 환경 공학을 제공하도록 왜곡된다. 이것은 기계적 트랙볼을 위한 옵션이 아니라는 것에 유의한다.
또다른 실시예에서, 상기 기판은 폴리스틸렌, 예를 들어 Dow Chemical로부터의 Styron®666과 같은 5㎝ 직경, 3㎜ 두께 반구체 셸로 형성된다. 이런 실시예에서, 반사 어레이, 격자 및 격자 트랜스듀서의 압전기 엘리먼트를 장착하기 위한 경사면을 포함하는 기판은 모두 몰드 디자인내에 포함될 수 있음에 유의한다. 이것은 저비용 제조 공정을 지원한다. 임의로, 이런 폴리스틸렌 센서를 대한 동작 주파수는 2㎒이다. 벌크 전단파와 압력 속도로부터 계산될 수 있는 바와 같이 0.99㎜/㎲의 레일리파 속도가 주어진다면, 파장(λR)은 약 1/2㎜이다. 이것은 본질직으로 약 5㎒의 동작 주파수에서 유리의 레일리파장과 동일하다. 음향 감쇠가 강한 단조 증가 주파수 함수이기 때문에, 이런 낮아지는 동작 주파수는 음향 감쇠가 5㎝ 직경 센서에 대해 15㎝ 미만의 최대 경로 길이를 지지하도록 충분히 낮아지는 것을 보장한다. 발표된 문헌에서, Styron®666 벌크 압력파에 대해 낮은 음향 감쇠: 5㎒에서 1.8㏈/㎝를 가지는 것으로서 중합체 사이에서 두드러진다. http: // www.ultasonic.com /Tables /plastics.html를 참조한다. 2㎒로 스케일링될 때, 이것은 약 0.72㏈/㎝ 미만 또는 약15㎝ 경로 길이에 대해 10㏈이다. 미국 특허 제5,648,643호는 전단 모드 음향 터치스크린에서의 폴리스틸렌 사용을 개시한다. 레일리파가 전단과 종방향 음향 에너지의 혼합이기 때문에, 유사한 스케일의 음향 손실이 관찰될 것이고, 기존의 음향 터치스크린 제어기 디자인이 이런 센서 시스템에 사용될 수 있을 것이다.
도 26a와 도 26b에 도시된 상기 R1/T1과 R2/T2 센서 서브시스템에서, 상기 전송 어레이(270)는 X축을 가로지르고 적도 평면(260)에 관련하여 X축에 대해 각도(Θ) 만큼 회전되는 큰 원의 섹션을 따른다. Θ=20°라면, 경사각은 북회귀선(262)의 23.5° 위도 미만이다. 도 15에 도시된 격자 트랜스듀서가 사용될 수 있다. 압전기 엘리먼트(266, 268)중 하나는 수직 방향의 이들의 장축으로 장착되고 상기 격자는 방출 각θ E =Θ에 대해 디자인되거나, 전체 격자 트랜스듀서 자체가 압전기 엘리먼트(266, 268)를 포함하고, 각도(Θ) 만큼 회전되는 θ E =0°디자인이 사용될 수 있다. 하나의 옵션은 전단 모드 압전기 엘리먼트(266, 268)가 음의 경사각(θ E =30°)으로 폴리스틸렌 기판상에 장착되는 F=1 디자인이다.
상기 반사 어레이(270, 272) 디자인은 사용된 트랜스듀서 타입과 거의 무관하지만, 완전함을 위해 아래에 개시된다.
상기 반사 어레이(270, 272)는 큰 원의 세그먼트를 형성한다. 상기 전송 어레이(270)는 반구체 표면상에서 다음의 궤도를 따라간다.
Figure pat00004
여기에서, R은 반구체의 반경이고, 예를 들어 2.5㎝이다. 여기에서 x,y, 및 z 방향에 대해 여기서 사용된 정의는 도 26b에 도시되어 있다. 유사하게, 상기 수신 어레이에 대한 궤도는 다음과 같다.
Figure pat00005
이런 식에서, s는 전송(266)과 수신(268) 트랜스듀서 사이의 대응하는음향 경로(274)에 대응하는 지연 시간으로 단조롭게 증가하는 경로 파라미터이다. 이런 예에서, 상기 어레이는 이미 개시된 센서 서브시스템 쌍 사이에 중첩을 제공하도록 s의 작은 양의 값에서 시작하여 1보다 다소 큰 s값에서 종료될 것이다.
이제 다음 관계에 의해 정의된 반구체의 표면을 위한(θ,φ) 좌표 시스템을 고려한다.
Figure pat00006
이런 좌표 시스템에 의하여, 상기 전송 어레이는 다음 궤도를 따른다.
Figure pat00007
그리고 상기 수신 어레이는 다음 궤도를 따른다.
Figure pat00008
또한 상기 터치 구역을 통한 음향 경로는 큰 원의 세그먼트이다. 상기 경로 파라미터에 대한 전송(270)과 수신(272) 어레이를 연결하는 큰 원은 Z축에 대한 경도 라인의 세그먼트, 즉 다음의 큰 원의 섹션이다.
Figure pat00009
러브파 및 다른 음향 모드가 일부 실시예에서 유용할 수 있지만, 속도(VR)의 레일리파가 사용되는 디자인이 더 상세히 후술된다. 경로 파라미터의 함수로서 지연 시간은 다음과 같이 제한된다.
Figure pat00010
또한 상기 지연 시간은 음향 경로를 차단하는 터치 좌표(φ)에 의하여 표현될 수 있다.
Figure pat00011
이런 해석식으로, 검색 테이블이 계산될 수 있다. 이런 검색 테이블은 신호 섭동의 측정된 지연 시간을 터치 좌표(φ)로 변환하기 위해 실시간 마이크로 프로세서 코드에서 사용될 수 있다.
반사기 간격과 각도는 이전에 개시된 원리를 사용하여 계산될 수 있다. 도 26b의 제 1 센서 서브시스템을 여기에 다시 참조한다. 전송 어레이에 대하여, 상기 반사기 간격 벡터는
Figure pat00012
이고, 여기서Kt(s)와Kp(s)는 다음과 같은 식에 의해 이미 주어진다면 공지된 어레이 궤도(θ(s),π(s))로부터 계산될 수 있다.
Figure pat00013
여기에서 λR은 레일리 파장을 나타낸다. 상기 S의 크기는 상기 반사기에 대한 수직 방향에서 상기 반사기들 사이의 중심간 길이를 제공하고, S의 방향은 상기 반사기 엘리먼트에 수직이다.
터치스크린 시스템의 새로운 면과 새로운 리셉터클이 도시되고 서술되었는데, 이것은 이 점을 위해 추구된 목적 및 장점을 충족시킨다. 그러나, 바람직한 실시예를 서술한 명세서 및 도면을 고려하면, 당업자들은 본 발명을 변화, 변경, 변형, 조합, 하위조합시킬 수 있고, 다르게 사용하거나 응용할 수 있다. 본 발명의 정신 및 범위를 벗어나지 않는 이러한 모든 변화, 변경, 변형 및 다른 용도와 응용은 다음의 청구항에 의해 규정된 본 발명에 의해 커버된다.
본 발명에 의하면, 표면을 갖는 기판 및 상기 표면과 교차하는 축을 따라 기판을 통하여 전파되는, 기판내 벌크파를 변환하는 음향파 트랜스듀서를 채용하는 음향 터치 감지 장치 및 방법을 제공할 수 있다.
도 1은 종래의 음향 터치스크린 장치를 도시하는 개략적인 사시도.
도 2는 곡면 패널과 베즐(bezel) 사이의 관계를 도시하는 개략적인 단면도.
도 3은 편평한 패널과 베즐 사이의 관계를 도시하는 개략적인 단면도.
도 4는 표면과(surface bound wave) 또는 플레이트파(plate wave)와 벌크파(bulk wave) 사이의 전환 메카니즘을 설명하기 위한 개략도.
도 5 및 도 6은 각각 본 발명에 따른 좌표 입력 장치의 일실시예를 도시하는 개략적인 정면 및 측면 사시도.
도 7은 터치로 유도된 섭동을 가진 검출된 수신 음향파를 도시한 도.
도 8은 직접적인 경로, 압축-모드 압전 트랜스듀서가 장착된 후방 경사면, 및 둔각 입사각을 가지며, 편평한 패널 디스플레이의 앞에 정면 베즐 및 표면 시일(seal)을 가지는 본 발명에 따른 격자 트랜스듀서 장치를 도시한 도.
도 9는 기판면내의 벌크파의 전파 축의 투영이 전환된 파의 전파 축과 다른 격자 트랜스듀서 시스템을 도시한 도.
도 10은 직접 경로, 압축-모드 압전 트랜스듀서가 장착된 후면을 가지며, 압전 트랜스듀서와 산란 엘리먼트 사이의 기판에서 두께 공진을 가지는 본 발명에 따른 격자 트랜듀서 장치를 도시한 도.
도 11은 압전 트랜스듀서-기판 시스템의 개략적인 등가 회로.
도 12는 반사 경로, 전단-모드 벌크파를 생성하는 압전 트랜스듀서가 장착된 전방 경사면, 및 둔각의 입사각을 가지는 본 발명에 따른 격자 트랜스듀서 장치를 도시한 도.
도 13A는 직접 경로, 전단-모드 압전 트랜스듀서가 장착된 후방 경사면, 및 둔각 입사각을 가지며, 기판 중의 러브(Love)파를 지지하는 본 발명에 따른 격자 트랜스듀서 장치를 도시한 도.
도 13B는 반사된 경로, 전단-모드 압전 트랜스듀서가 장착된 전방 경사면, 및 둔각 입사각을 가지며, 기판 중의 러브파를 지지하는 본 발명에 따른 격자 트랜스듀서 장치를 도시한 도.
도 14A는 수렴하는 음향파를 방사하는 격자를 가지는 본 발명에 따른 격자 트랜스듀서 터치스크린 시스템을 도시한 도.
도 14B는 곡면 격자 엘리먼트의 모드 전환 및 포커싱 효과의 개략도.
도 15A는 중합체 기판에서 직접 경로, 압전 트랜스듀서가 장착된 후방 내부 경사면, 및 예각 입사각을 가지는 본 발명에 따른 격자 트랜스듀서 장치를 도시한 도.
도 15B는 전단-모드 압전 트랜스듀서가 장착된 에지, 후면 내부 경사면 반사 경로, 및 예각 입사각을 가지는 본 발명에 따른 격자 트랜스듀서 장치를 도시한 도.
도 16은 일방향 음향파 방사를 제공하는 비대칭 격자 구조를 가지며, 공진 설치 압전 트랜스듀서를 가지는 본 발명에 따른 격자 트랜스듀서를 도시한 도.
도 17은 격자 구조에 대하여 비대칭적으로 배치된 트랜스듀서를 가지며, 선택적으로 지향성 음향파 방사를 제공하는 공진 설치 압전 트랜스듀서를 가지는 본 발명에 따른 격자 트랜스듀서를 도시한 도.
도 18A 및 18B는 각각 선택적으로 지향성 음향파 방사를 제공하는, 비대칭 엘리먼트를 가지는 격자 구조, 및 오프셋 적층 격자 구조를 가지는 공진 설치 압전 트랜스듀서를 가지는 본 발명에 따른 두 개의 격자 트랜스듀서의 실시예를 도시한 도.
도 19는 각각의 반사 어레이 세그먼트가 격자 트랜스듀서 구조와 관련된 구획화된 반사 어레이를 가지는 본 발명에 다른 격자 트랜스듀서를 도시한 도.
도 20은 러브파 전파를 지지하는 기판상 본 발명에 따른 격자 트랜스듀서를 도시하고, 전환된 러브파는 벌크파의 전파 축에 직각으로 이동하는 것을 도시한 도.
도 21은 반사 어레이없이 동작하는 본 발명에 따른 격자 트랜스듀서를 도시한 도.
도 22는 격자가 2개의 압전 트랜스듀서에 두 개의 다른 파를 결합시키는 본 발명에 따른 격자 트랜스듀서를 도시한 도.
도 23은 기판내 벌크파와의 결합을 조정하기 위하여 복합 압전 트랜스듀서 엘리먼트를 가지는 본 발명에 따른 격자 트랜스듀서를 도시한 도.
도 24A는 기판의 후면과 정면 사이의 음향 에너지를 전달하는 한쌍의 격자 구조를 가지는 본 발명에 다른 시스템을 도시한 도.
도 24B는 압전 엘리먼트 또는 웨지(wedge) 트랜스듀서없이 도 23A에 도시된 시스템을 사용하는 터치 센서 시스템이 얼마나 간략화된 정면 구조를 가지는가를 도시한 도.
도 24C는 음향 트랜스듀서, 반사 어레이 및 확장된 격자 구조가 기판의 후면상에 제공되고, 정면 터치 감도를 허용하는 도 23B에 따른 터치 센서 시스템의 후면을 도시한 도.
도 25는 기판면내에 두 개의 중요한 허용각을 가져서 두 개의 다른 전환된 파에 결합하는 본 발명에 따른 격자 트랜스듀서를 도시한 도.
도 26A 및 도 26B는 각각 메르카토르 투영(Mercator projection)시 격자 트랜스듀서를 사용하는 반구형의 센서 시스템에 대한 파 경로를 나타낸 본 발명에 따른 시스템을 도시한 도 및 평면도.
*도면의 주요 부분에 대한 부호의 설명*
1 : 전파 매체
2 : 디스플레이 영역
3a, 3b, 9a, 9b : 경사면
4a, 4b, 10a, 10b, 32, 32' : 압전 트랜스듀서

Claims (70)

  1. (a) 표면을 가지는 기판;
    (b) 상기 표면과 교차하는 축을 따라 상기 기판을 통하여 전파되는 벌크파인 제 1 파와 결합하는 음향파 트랜스듀서;
    (c) 상기 제 1 파의 에너지를, 상기 표면에서 상당한 에너지를 가지는 전환된 파 모드(converted wave mode)를 가지며 상기 표면에 평행한 축을 따라 전파되는 제 2 파와 결합시키는 회절 음향파 모드 커플러; 및
    (d) 상기 제 2 파의 에너지 섭동(perturbation)을 검출하기 위한 수단을 포함하는 음향 터치 감지 장치.
  2. 제 1항에 있어서, 상기 음향파 트랜스듀서는 상기 표면에 대해 비스듬한 방향으로 벌크파를 전파시키기 위한 수단을 포함하는 것을 특징으로 하는 음향 터치 감지 장치.
  3. 제 1항에 있어서, 상기 음향파 트랜스듀서는 상기 회절 음향파 모드 커플러에 상기 제 1 파를 직접 결합하는 것을 특징으로 하는 음향 터치 감지 장치.
  4. 제 1항에 있어서, 상기 음향파 트랜스듀서는 상기 제 1 파의 경로에서 적어도 하나의 음향 반사를 통하여 상기 회절 음향파 모드 커플러에 상기 제 1 파를 결합하는 것을 특징으로 하는 음향 터치 감지 장치.
  5. 제 1항에 있어서, 상기 회절 음향파 모드 커플러는 상기 제 1 파와 다른 파 모드를 가지며 상기 제 1 파의 에너지를 포함하는 제 3 파와 결합하는 것을 특징으로 하는 음향 터치 감지 장치.
  6. 제 1항에 있어서, 상기 표면과 교차하는 축을 따라 상기 기판을 통하여 전파되는 벌크파인 제 8 파와 결합하는 제 2 음향파 트랜스듀서를 더 포함하고, 상기 회절 음향파 모드 커플러는 상기 제 8 파의 에너지를, 상기 제 2 파와 구별되며 상기 표면에서 상당한 에너지를 가지는 전환된 파 모드를 가지며 상기 표면에 평행한 축을 따라 전파되는 제 9 파와 결합시키는 것을 특징으로 하는 음향 터치 감지 장치.
  7. 제 1항에 있어서, 상기 회절 음향파 모드 커플러는 일련의 산란 중심(scattering center)을 포함하는 것을 특징으로 하는 음향 터치 감지 장치.
  8. 제 7항에 있어서, 상기 일련의 산란 중심은 상기 표면상에 배치되는 것을 특징으로 하는 음향 터치 감지 장치.
  9. 제 1항에 있어서, 상기 회절 음향파 모드 커플러는 상기 기판의 주위 영역과 다른 음향 특성을 가지는 일련의 이격된 엘리먼트(spaced element)를 포함하는 것을 특징으로 하는 음향 터치 감지 장치.
  10. 제 9항에 있어서, 상기 엘리먼트는 규칙적으로 이격되는 연장된 선형 격자(grate)를 포함하는 것을 특징으로 하는 음향 터치 감지 장치.
  11. 제 9항에 있어서, 상기 엘리먼트는 규칙적으로 이격되는 연장된 만곡형 격자를 포함하는 것을 특징으로 하는 음향 터치 감지 장치.
  12. 제 1항에 있어서, 상기 회절 음향파 모드 커플러는 상기 기판의 주기적인 음향 섭동을 포함하는 것을 특징으로 하는 음향 터치 감지 장치.
  13. 제 1항에 있어서, 상기 제 2 파의 전파 축과 다른 축을 따라 상기 표면에 평행하게 각각 전파되는 일련의 제 4 파로서 상기 제 2 파의 에너지의 일부를 반사하기 위하여 상기 제 2 파의 경로의 적어도 일부를 따라 배치된 일련의 엘리먼트를 더 포함하는 것을 특징으로 하는 음향 터치 감지 장치.
  14. 제 13항에 있어서, 상기 일련의 제 4 파는 단조 증가로 변화하는 분명한 고유의 시간 지연을 가지는 것을 특징으로 하는 음향 터치 감지 장치.
  15. 제 14항에 있어서, 상기 일련의 제 4 파의 상기 축을 교차하는 경로를 따라 배치되고, 공통 수신기를 향해 상기 일련의 제 4 파의 에너지중 적어도 일부분을 반사시키는 일련의 엘리먼트를 더 포함하고, 상기 공통 수신기는 상기 일련의 제 4 파 중 상기 반사 부분의 에너지에 관련된 신호를 생성하는 것을 특징으로 하는 음향 터치 감지 장치.
  16. 제 15항에 있어서, 상기 제 2 파의 에너지 섭동을 검출하기 위한 수단은 상기 공통 수신기로부터의 신호를 분석하여 수신된 에너지의 섭동을 검출하기 위한 수단을 포함하는 것을 특징으로 하는 음향 터치 감지 장치.
  17. 제 1항에 있어서, 상기 표면과 교차하는 축을 따라 상기 기판을 통하여 전파되는 상이한 벌크파에 각각 결합하는 다수의 음향파 트랜스듀서를 더 포함하고, 상기 상이한 벌크파의 에너지는, 각각 상기 표면에서 상당한 에너지를 가지는 전환된 파 모드를 가지며 회절 음향 모드 커플러에 의해 상기 표면에 평행한 축을 따라 전파되는 파와 결합되는 것을 특징으로 하는 음향 터치 감지 장치.
  18. 제 17항에 있어서, 상기 상이한 벌크파와 결합된 적어도 두 개의 상기 전환된 파 모드는 평행 경로를 따라 전파되는 것을 특징으로 하는 음향 터치 감지 장치.
  19. 제 1항에 있어서, 상기 표면에서 상당한 에너지를 가지는 상기 파의 음향 에너지의 상이한 일부 경로를 따라 각각 순차적으로 배치된 파 분산기(wave disperser) 및 파 수렴기(wave condenser)를 더 포함하고, 상기 파 분산기 및 파 수렴기는 터치 감지에 적합한 상기 표면의 일부에 의해 분리되어 있는 것을 특징으로 하는 음향 터치 감지 장치.
  20. 제 19항에 있어서, 상기 표면과 교차하는 축을 따라 상기 기판을 통하여 전파되는 벌크파인 제 5 파에 결합하는 제 2 음향파 트랜스듀서를 더 포함하고, 상기 제 5 파는, 상기 표면에서 상당한 에너지를 가지는 전환된 파 모드를 가지며 상기 표면에 평행한 축을 따라 전파되는 제 6 파와 결합되며, 상기 제 2 파는 상기 파 분산기의 적어도 일부를 포함하는 경로를 가지며, 상기 제 6 파는 상기 수렴기의 적어도 일부를 포함하는 경로를 가지는 것을 특징으로 하는 음향 터치 감지 장치.
  21. 제 1항에 있어서, 상기 검출 수단은 상기 섭동 위치를 검출하는 것을 특징으로 하는 음향 터치 감지 장치.
  22. 제 1항에 있어서, 상기 표면은 편평한(planar) 것을 특징으로 하는 음향 터치 감지 장치.
  23. 제 1항에 있어서, 상기 표면은 완만하지만 평면이 아니며, 상기 제 2 파의 전파 축은 상기 표면을 따라 궤적을 그리며 국부적으로 변화하는 것을 특징으로 하는 음향 터치 감지 장치.
  24. 제 1 항에 있어서, 상기 음향파 트랜스듀서는 편평한 음향 결합 표면을 포함하고, 상기 편평한 음향 결합 표면은 상기 제 1 파에 의해 교차된 상기 표면 일부에 대하여 기울어져 있는 것을 특징으로 하는 음향 터치 감지 장치.
  25. 제 1항에 있어서, 상기 음향파 트랜스듀서는 압전 엘리먼트를 포함하는 것을 특징으로 하는 음향 터치 감지 장치.
  26. 제 1항에 있어서, 상기 음향파 트랜스듀서는 상기 제 1 파를 제 7 음향파와 결합시키는 회절 음향파 커플러를 포함하는 것을 특징으로 하는 음향 터치 감지 장치.
  27. 제 1항에 있어서, 상기 제 1 파는, 상기 표면상으로의 투영이 상기 제 2 파의 전파 축과 다른 전파 축을 가지는 것을 특징으로 하는 음향 터치 감지 장치.
  28. 제 1항에 있어서, 상기 제 1 파는 압력 모드(pressure mode), 수직 전단 모드(vertical shear mode) 및 수평 전단 모드(horizontal shear mode)로 이루어진 그룹으로부터 선택된 하나 이상의 진동 성분을 가지는 것을 특징으로 하는 음향 터치 감지 장치.
  29. 제 1항에 있어서, 상기 제 2 파는 길이방향 모드, 수평으로 편광된 전단 모드 및 수직으로 편광된 전단 모드로 이루어진 그룹으로부터 선택된 하나 이상의 진동 성분을 가지는 것을 특징으로 하는 음향 터치 감지 장치.
  30. 제 1항에 있어서, 상기 제 2 파는 레일리(Rayleigh)형 파를 포함하는 것을 특징으로 하는 음향 터치 감지 장치.
  31. 제 1항에 있어서, 상기 제 2 파는 러브(Love)형 파를 포함하는 것을 특징으로 하는 음향 터치 감지 장치.
  32. 제 1항에 있어서, 상기 기판은 불균일 음향 특성을 가지는 것을 특징으로 하는 음향 터치 감지 장치.
  33. 제 1항에 있어서, 상기 기판은 다른 음향 특성을 가지는 상기 표면에 평행한 층을 포함하는 것을 특징으로 하는 음향 터치 감지 장치.
  34. 제 1항에 있어서, 상기 제 1 파는 교차점에서 상기 표면에 접하는 평면에 대하여 적어도 약 |π/8| 라디안의 기울기를 가지는 축을 따라 전파되는 것을 특징으로 하는 음향 터치 감지 장치.
  35. 제 1항에 있어서, 상기 제 1 파는 전단 모드 성분을 포함하고, 그 크기가 상기 제 2 파의 전파 축에 대하여 적어도 약 45°인 각도를 가지는 전파 축의 투영을 가지는 것을 특징으로 하는 음향 터치 감지 장치.
  36. 제 1항에 있어서, 상기 음향파 트랜스듀서는 압력 모드 벌크파에 결합하고, 상기 제 2 파는 수평으로 편광된 전단 파를 포함하는 것을 특징으로 하는 음향 터치 감지 장치.
  37. 제 1항에 있어서, 상기 표면과 교차하는 상기 축에 평행하게 전파되는 상기 제 1 파만이 특정 음향 주파수에서 상기 회절 음향파 모드 커플러의 브래그 산란 조건의 수평 성분을 실질적으로 만족시키는 것을 특징으로 하는 음향 터치 감지 장치.
  38. 제 1항에 있어서, 상기 회절 음향파 모드 커플러는 유리 프릿(glass frit)을 포함하는 조성물로부터 상기 표면상에 형성된 일련의 엘리먼트를 포함하는 것을 특징으로 하는 음향 터치 감지 장치.
  39. 제 1항에 있어서, 상기 회절 음향파 모드 커플러는 중합체 매트릭스를 포함하는 조성물로부터 상기 표면상에 형성된 일련의 엘리먼트를 포함하는 것을 특징으로 하는 음향 터치 감지 장치.
  40. 제 1항에 있어서, 상기 회절 음향파 모드 커플러는 중합체로 채워진 고밀도의 무기 조성물로부터 상기 표면상에 형성된 일련의 엘리먼트를 포함하는 것을 특징으로 하는 음향 터치 감지 장치.
  41. 제 1항에 있어서, 상기 회절 음향파 모드 커플러는 상기 표면에 형성된 일련의 홈(groove)을 포함하는 것을 특징으로 하는 음향 터치 감지 장치.
  42. 제 1항에 있어서, 상기 회절 음향파 모드 커플러는 음향 렌즈로서 작용하는 것을 특징으로 하는 음향 터치 감지 장치.
  43. 제 1항에 있어서, 상기 회절 음향파 모드 커플러는, 각각 상기 표면에서 상당한 에너지를 가지며 상기 표면에 평행한 축을 따라 전파되는 전환된 파 모드를 가지는 적어도 두 개의 유용한 파에, 적어도 두 개의 벌크파를 결합시키기 위해 브래그 산란 조건을 만족하는 것을 특징으로 하는 음향 터치 감지 장치.
  44. 제 1항에 있어서, 상기 음향파 트랜듀서는 상기 기판에서 상기 표면에 실질적으로 수직인 전파 축을 가지는 상기 제 1 파에 결합하는 것을 특징으로 하는 음향 터치 감지 장치.
  45. 제 1항에 있어서, 상기 제 1 파는 상기 기판에서 공진하는 것을 특징으로 하는 음향 터치 감지 장치.
  46. 제 1항에 있어서, 일부 음향파 경로가 총계 2π라디안의 대략 정수배인 반사 각을 가지는 부분 음향 반사를 포함하는 것을 특징으로 하는 음향 터치 감지 장치.
  47. 제 1항에 있어서, 상기 음향파 트랜스듀서는 신호와 결합되고 상기 기판은 어떤 주파수에서 음향 공진을 나타내고, 상기 음향파 트랜스듀는 상기 주파수에서 상기 음향 공진에 결합됨으로써, 상기 제 1 파와 주어진 신호 크기를 가진 상기 신호 사이의 비교적 최대의 음향 전력 결합 효율을 실질적으로 달성하는 것을 특징으로 하는 음향 터치 감지 장치.
  48. 제 1항에 있어서, 상기 기판은 소다 석회 유리, 붕규산 유리, 크라운 유리, 바륨 함유 유리, 스트론튬 함유 유리, 붕소 함유 유리, 러브파 전파가 가능한 유리 적층부; 세라믹, 알루미늄, 러브파 전파가 가능한 코팅된 알루미늄 기판, 및 낮은 음향 감쇠의 중합체로 이루어진 그룹으로부터 선택된 재료인 것을 특징으로 하는 음향 터치 감지 장치.
  49. 제 1항에 있어서, 상기 회절 음향파 모드 커플러를 형성하는 동작과 일체적인 동작 과정에서 형성된 엘리먼트의 배열을 포함하는 증가적으로 변화하는 일련의 파로서 상기 제 2 파의 일부를 반사하기 위한 수단을 더 포함하는 것을 특징으로 하는 음향 터치 감지 장치.
  50. 제 1항에 있어서, 상기 기판을 통하여 전파되는 일련의 분산된 파로서 상기 제 2 파의 일부를 선택적으로 반사하기 위한 수단을 더 포함하고, 상기 선택적인 반사 수단은 상기 제 1 벌크파 중 전화되지 않은 부분에 불충분하게 결합하는 일련의 푸리에 성분을 가지는 것을 특징으로 하는 음향 터치 감지 장치.
  51. 제 1항에 있어서, 상기 회절 음향파 모드 커플러는 상기 제 2파의 전파 축을 따라 비대칭 프로파일을 가지는 적어도 하나의 엘리먼트를 포함하는 것을 특징으로 하는 음향 터치 감지 장치.
  52. 제 1항에 있어서, 상기 음향파 트랜스듀서는 세라믹 압전 엘리먼트를 포함하는 것을 특징으로 하는 음향 터치 감지 장치.
  53. 제 1항에 있어서, 상기 음향파 트랜스듀서는 중합체 압전 엘리먼트를 포함하는 것을 특징으로 하는 음향 터치 감지 장치.
  54. 제 1항에 있어서, 상기 음향파 트랜스듀서는 상기 기판에 의해 적어도 두 개의 측면으로 기계적으로 보호된 영역에서 상기 기판에 장착되는 것을 특징으로 하는 음향 터치 감지 장치.
  55. 영역 및 표면을 가지는 음향 감지 장치용 기판으로서,
    (a) 상기 기판에서 상기 표면과 교차하는 전파 축을 가지는 벌크파와 결합하는 음향 트랜스듀서;
    (b) 상기 표면에 근접하여 형성되고, 벌크파의 음향파 에너지를 상기 표면에 평행한 축을 따라 전파되는 파로 전환하는데 적합한 회절 음향파 모드 결합 구조물; 및
    (c) 섭동 위치를 결정하는데 적합한 방식으로 음향 전환된 음향파 에너지를 검출하기 위한 수단을 포함하는 것을 특징으로 하는 음향 감지 장치용 기판.
  56. 제 55항에 있어서, 상기 검출 수단은 상기 영역을 통하여 전파되는 증가적으로 변화하는 일련의 분산된 파와 전환된 음향파 에너지를 결합하기 위한 수단을 포함하는 것을 특징으로 하는 음향 감지 장치용 기판.
  57. 제 55항에 있어서, 상기 기판에서 벌크파에 각각 결합된 다수의 음향 트랜스듀서를 더 포함하고, 각각의 벌크파는 증가적으로 변화하는 오프셋에서 상기 표면과 교차하는 전파 축을 가지는 것을 특징으로 하는 음향 감지 장치용 기판.
  58. 표면을 가지는 기판상에서의 터치를 감지하는 방법으로서,
    상기 표면과 교차하는 축을 따라 상기 기판을 통하여 전파되는 기판내 벌크파를 변환하는(transducing) 단계;
    상기 벌크파의 에너지를, 표면에서 상다한 에너지를 갖는 전환된 파 모드를 가지며 표면에 평행한 축을 따라 전파하는 파와 회절 결합시키는 단계; 및
    전환된 파 모드를 가지는 파의 섭동을 검출하는 단계를 포함하는, 표면을 가지는 기판상에서의 터치를 감지하는 방법.
  59. 제 58항에 있어서, 상기 벌크파의 모드는 상기 변환 단계 및 상기 회절 결합 단계 사이에서 전환되는 것을 특징으로 하는, 표면을 가지는 기판상에서의 터치를 감지하는 방법.
  60. 제 58항에 있어서, 상기 변환 단계 및 상기 회절 결합 단계 사이에 상기 벌크파를 반사하는 단계를 더 포함하는 것을 특징으로 하는, 표면을 가지는 기판상에서의 터치를 감지하는 방법.
  61. 제 58항에 있어서, 상기 전환된 파 모드를 갖는 파를 모으는(focusing) 단계를 더 포함하는 것을 특징으로 하는, 표면을 가지는 기판상에서의 터치를 감지하는 방법.
  62. 제 58항에 있어서, 일련의 시간적으로 변화하는 분산된 파로서 전환된 파 모드를 가지는 파의 에너지의 일부를 반사하여, 방향을 바꾼 축을 따라 상기 표면에 평행하게 각각 전파시키는 단계를 더 포함하는 것을 특징으로 하는, 표면을 가지는 기판상에서의 터치를 감지하는 방법.
  63. 제 62항에 있어서, 시간적으로 변화하는 분산된 파의 에너지의 적어도 일부를 공통 수신기를 향해 반사하는 단계를 더 포함하는 것을 특징으로 하는, 표면을 가지는 기판상에서의 터치를 감지하는 방법.
  64. 제 63항에 있어서, 공통 수신기에 의해 수신된 에너지의 섭동을 분석하는 단계를 더 포함하는 것을 특징으로 하는, 표면을 가지는 기판상에서의 터치를 감지하는 방법.
  65. 제 58항에 있어서, 기판에서 벌크파를 공진하는 단계를 더 포함하는 것을 특징으로 하는, 표면을 가지는 기판상에서의 터치를 감지하는 방법.
  66. 제 58항에 있어서, 전환된 파 모드를 가지는 파를, 터치를 감지하는데 적합한 영역에 걸쳐 분산시키는 단계 및 터치를 감지하는데 적합한 영역을 가로지른 후 상기 분산된 파를 수렴시키는(condensing) 단계를 더 포함하는 것을 특징으로 하는, 표면을 가지는 기판상에서의 터치를 감지하는 방법.
  67. 제 66항에 있어서, 수렴된 분산 파의 적어도 일부를 벌크파에 회절 결합하여 상기 결합된 수렴된 분산 파를 변환하는 단계를 더 포함하는 것을 특징으로 하는, 표면을 가지는 기판상에서의 터치를 감지하는 방법.
  68. 제 58항에 있어서, 검출된 섭동의 위치를 분석하는 단계를 더 포함하는 것을 특징으로 하는, 표면을 가지는 기판상에서의 터치를 감지하는 방법.
  69. 제 58항에 있어서, 상기 벌크파의 에너지는 적어도 하나의 산란 중심에 의해 전환된 파 모드를 가지는 파를 포함하는 다수의 파 모드로 산란되며, 전환된 파 모드를 가지는 파를 선택적으로 식별하는 단계를 더 포함하는 것을 특징으로 하는, 표면을 가지는 기판상에서의 터치를 감지하는 방법.
  70. 제 69항에 있어서, 상기 전환된 파 모드를 가지는 파를, 적어도 하나의 산란 중심과 음향파 간섭을 선택적으로 생성하기 위하여 산란 중심에 대하여 배향된 추가의 산란 중심을 가지고, 벌크파의 음향 에너지의 상호작용에 의해 선택적으로 식별하는 것을 특징으로 하는, 표면을 가지는 기판상에서의 터치를 감지하는 방법.
KR1019970073127A 1996-12-25 1997-12-24 음향터치스크린용격자트랜스듀서 KR100542801B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP34581296 1996-12-25
JP1996-345812 1996-12-25

Publications (2)

Publication Number Publication Date
KR19980064569A KR19980064569A (ko) 1998-10-07
KR100542801B1 true KR100542801B1 (ko) 2006-08-04

Family

ID=18379158

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970073127A KR100542801B1 (ko) 1996-12-25 1997-12-24 음향터치스크린용격자트랜스듀서

Country Status (13)

Country Link
US (1) US6091406A (ko)
EP (1) EP0950234B1 (ko)
JP (1) JP3800274B2 (ko)
KR (1) KR100542801B1 (ko)
CN (1) CN1161726C (ko)
AU (1) AU715056B2 (ko)
BR (1) BR9714435B1 (ko)
CA (1) CA2273956C (ko)
DE (1) DE69729317T2 (ko)
HK (1) HK1024772A1 (ko)
IL (1) IL130345A0 (ko)
TW (1) TW490632B (ko)
WO (1) WO1998029853A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080870A1 (ko) * 2018-10-19 2020-04-23 삼성전자(주) 디스플레이장치 및 그 제어방법

Families Citing this family (372)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE40891E1 (en) * 1991-11-26 2009-09-01 Sandio Technology Corp. Methods and apparatus for providing touch-sensitive input in multiple degrees of freedom
US6597347B1 (en) * 1991-11-26 2003-07-22 Itu Research Inc. Methods and apparatus for providing touch-sensitive input in multiple degrees of freedom
US6613410B1 (en) 1999-09-23 2003-09-02 National Label Company Extended wrap label
US20070148393A1 (en) * 2003-08-05 2007-06-28 Sellars Neil G Reactive labels and methods of making and using the same
US20070065619A1 (en) * 2003-08-05 2007-03-22 Sellars Neil G Reactive labels and methods of making and using the same
US6274236B1 (en) * 1995-06-12 2001-08-14 National Label Company Labels and method of making same
JP3624070B2 (ja) * 1997-03-07 2005-02-23 キヤノン株式会社 座標入力装置及びその制御方法
JP3715080B2 (ja) * 1997-07-11 2005-11-09 株式会社リコー 座標入力装置
JP2000043484A (ja) * 1998-07-30 2000-02-15 Ricoh Co Ltd 電子黒板システム
JP4024933B2 (ja) * 1998-08-18 2007-12-19 タッチパネル・システムズ株式会社 タッチパネル
GB9818827D0 (en) * 1998-08-29 1998-10-21 Ncr Int Inc Surface wave touch screen
JP2000214884A (ja) * 1999-01-22 2000-08-04 Olympus Optical Co Ltd 音声記録装置
US6225985B1 (en) * 1999-03-26 2001-05-01 Elo Touchsystems, Inc. Acoustic touchscreen constructed directly on a cathode ray tube
US6210128B1 (en) * 1999-04-16 2001-04-03 The United States Of America As Represented By The Secretary Of The Navy Fluidic drive for miniature acoustic fluidic pumps and mixers
JP2001014092A (ja) * 1999-06-30 2001-01-19 Touch Panel Systems Kk 音響的接触検出装置
JP2001014094A (ja) * 1999-06-30 2001-01-19 Touch Panel Systems Kk 音響的接触検出装置
JP2001014093A (ja) * 1999-06-30 2001-01-19 Touch Panel Systems Kk 音響的接触検出装置
US6396484B1 (en) 1999-09-29 2002-05-28 Elo Touchsystems, Inc. Adaptive frequency touchscreen controller using intermediate-frequency signal processing
US6473075B1 (en) 1999-09-29 2002-10-29 Elo Touchsystems, Inc. Adaptive frequency touchscreen controller employing digital signal processing
US6630929B1 (en) 1999-09-29 2003-10-07 Elo Touchsystems, Inc. Adaptive frequency touchscreen controller
US6366277B1 (en) * 1999-10-13 2002-04-02 Elo Touchsystems, Inc. Contaminant processing system for an acoustic touchscreen
US7157649B2 (en) * 1999-12-23 2007-01-02 New Transducers Limited Contact sensitive device
US6864882B2 (en) 2000-05-24 2005-03-08 Next Holdings Limited Protected touch panel display system
WO2001091511A1 (en) * 2000-05-25 2001-11-29 Gn Netcom A/S Acoustic transmission connection, headset with acoustic transmission connection, and uses of the acoustic transmission connection
US6360486B1 (en) * 2000-06-16 2002-03-26 Meritor Light Vehicle Technology, Llc Window object detection system with vibration compensation
US6690363B2 (en) 2000-06-19 2004-02-10 Next Holdings Limited Touch panel display system
US6803906B1 (en) * 2000-07-05 2004-10-12 Smart Technologies, Inc. Passive touch system and method of detecting user input
JP4723732B2 (ja) * 2000-07-12 2011-07-13 セイコーインスツル株式会社 脈検出装置及び超音波診断装置
US7006081B2 (en) * 2000-10-20 2006-02-28 Elo Touchsystems, Inc. Acoustic touch sensor with laminated substrate
US7106310B2 (en) 2001-01-18 2006-09-12 Texzec, Inc. Acoustic wave touch actuated switch
US7463249B2 (en) * 2001-01-18 2008-12-09 Illinois Tool Works Inc. Acoustic wave touch actuated switch with feedback
DE10113788A1 (de) * 2001-03-21 2002-09-26 Zeiss Carl Beugungsoptische Komponente, Beleuchtungssystem und Belichtungssystem mit einer solchen beugungsoptischen Komponente und Belichtungsverfahren unter Verwendung eines solchen Belichtungssystems
EP1398727A4 (en) * 2001-03-29 2005-11-16 Dechao Zhong TOUCH SCREEN WITH ACOUSTIC SURFACE WHOSE THICKNESS AND LENGTH DO NOT INCREASE
GB0116310D0 (en) * 2001-07-04 2001-08-29 New Transducers Ltd Contact sensitive device
US6741237B1 (en) 2001-08-23 2004-05-25 Rockwell Automation Technologies, Inc. Touch screen
US7360242B2 (en) * 2001-11-19 2008-04-15 Stonesoft Corporation Personal firewall with location detection
US7265746B2 (en) * 2003-06-04 2007-09-04 Illinois Tool Works Inc. Acoustic wave touch detection circuit and method
JP4052880B2 (ja) * 2002-05-29 2008-02-27 富士通株式会社 タッチパネル装置
JP4052884B2 (ja) * 2002-06-24 2008-02-27 富士通株式会社 タッチパネル装置
JP3871991B2 (ja) * 2002-09-30 2007-01-24 Smk株式会社 タッチパネル
JP2004127073A (ja) * 2002-10-04 2004-04-22 Smk Corp 指示入力装置
JP2004163262A (ja) * 2002-11-13 2004-06-10 Touch Panel Systems Kk 音響波型接触検出装置
JP4090329B2 (ja) * 2002-11-13 2008-05-28 タッチパネル・システムズ株式会社 音響波型接触検出装置
US6954197B2 (en) 2002-11-15 2005-10-11 Smart Technologies Inc. Size/scale and orientation determination of a pointer in a camera-based touch system
JP3970168B2 (ja) 2002-11-19 2007-09-05 富士通株式会社 タッチパネル装置
US6871149B2 (en) * 2002-12-06 2005-03-22 New Transducers Limited Contact sensitive device
CN1306386C (zh) * 2002-12-19 2007-03-21 刘新斌 直射式表面声波触摸屏
US8508508B2 (en) 2003-02-14 2013-08-13 Next Holdings Limited Touch screen signal processing with single-point calibration
US7629967B2 (en) 2003-02-14 2009-12-08 Next Holdings Limited Touch screen signal processing
US8456447B2 (en) 2003-02-14 2013-06-04 Next Holdings Limited Touch screen signal processing
US7000474B2 (en) 2003-02-28 2006-02-21 Elo Touchsystems, Inc. Acoustic device using higher order harmonic piezoelectric element
US7532206B2 (en) 2003-03-11 2009-05-12 Smart Technologies Ulc System and method for differentiating between pointers used to contact touch surface
US7116315B2 (en) * 2003-03-14 2006-10-03 Tyco Electronics Corporation Water tolerant touch sensor
US20040217702A1 (en) * 2003-05-02 2004-11-04 Garner Sean M. Light extraction designs for organic light emitting diodes
US7307627B2 (en) * 2003-05-12 2007-12-11 Illinois Tool Works, Inc. Individual acoustic wave switch
US20040233174A1 (en) * 2003-05-19 2004-11-25 Robrecht Michael J. Vibration sensing touch input device
US7119800B2 (en) 2003-06-24 2006-10-10 Tyco Electronics Corporation Acoustic touch sensor with low-profile diffractive grating transducer assembly
US7053529B2 (en) * 2003-07-01 2006-05-30 Texzec, Inc. Torsional acoustic wave sensor
US7026943B2 (en) * 2003-07-01 2006-04-11 Texzec, Inc. Acoustic wave ice and water detector
US7411575B2 (en) 2003-09-16 2008-08-12 Smart Technologies Ulc Gesture recognition method and touch system incorporating the same
US7274356B2 (en) 2003-10-09 2007-09-25 Smart Technologies Inc. Apparatus for determining the location of a pointer within a region of interest
TW200532171A (en) * 2003-11-12 2005-10-01 Elo Touchsystems Inc Acoustic wave contact detecting apparatus
US7800595B2 (en) * 2003-12-18 2010-09-21 3M Innovative Properties Company Piezoelectric transducer
US7315300B2 (en) * 2003-12-31 2008-01-01 3M Innovative Properties Company Touch sensitive device employing impulse reconstruction
US7277087B2 (en) * 2003-12-31 2007-10-02 3M Innovative Properties Company Touch sensing with touch down and lift off sensitivity
US7355593B2 (en) 2004-01-02 2008-04-08 Smart Technologies, Inc. Pointer tracking across multiple overlapping coordinate input sub-regions defining a generally contiguous input region
US7274358B2 (en) * 2004-01-06 2007-09-25 Tyco Electronics Corporation Focusing-shaped reflector arrays for acoustic touchscreens
CN102103443B (zh) * 2004-04-14 2013-02-27 电子触控产品解决方案公司 接触式传感器、接触式传感器系统和检测接触的方法
AU2005236440A1 (en) * 2004-04-14 2005-11-03 Tyco Electronics Corporation Acoustic touch sensor
US7545365B2 (en) 2004-04-14 2009-06-09 Tyco Electronics Corporation Acoustic touch sensor
US7460110B2 (en) 2004-04-29 2008-12-02 Smart Technologies Ulc Dual mode touch system
US7538759B2 (en) 2004-05-07 2009-05-26 Next Holdings Limited Touch panel display system with illumination and detection provided from a single edge
US8120596B2 (en) 2004-05-21 2012-02-21 Smart Technologies Ulc Tiled touch system
ES2267363B1 (es) * 2004-11-22 2008-03-01 Gamesa Desarrollos Aeronauticos, S.A. Aplicacion de piezotransductores.
JP4614742B2 (ja) * 2004-11-25 2011-01-19 富士通コンポーネント株式会社 電子機器
US7969422B2 (en) * 2005-07-15 2011-06-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Pattern detection system
WO2007111909A2 (en) * 2006-03-24 2007-10-04 Northwestern University Haptic device with indirect haptic feedback
US7764276B2 (en) * 2006-04-18 2010-07-27 Schermerhorn Jerry D Touch control system and apparatus with multiple acoustic coupled substrates
TWI315842B (en) * 2006-07-10 2009-10-11 Egalax Empia Technology Inc Surface acoustic wave touch panel with interdigital transducers
US7626579B2 (en) * 2006-11-01 2009-12-01 Immersion Corporation Sanitizing a touch panel surface
US9442607B2 (en) 2006-12-04 2016-09-13 Smart Technologies Inc. Interactive input system and method
WO2008128096A2 (en) 2007-04-11 2008-10-23 Next Holdings, Inc. Touch screen system with hover and click input methods
TWI383313B (zh) * 2007-06-13 2013-01-21 Egalax Empia Technology Inc 表面聲波式觸控面板之感測裝置
US8094137B2 (en) 2007-07-23 2012-01-10 Smart Technologies Ulc System and method of detecting contact on a display
AU2008280952A1 (en) 2007-08-30 2009-03-19 Next Holdings Ltd Low profile touch panel systems
WO2009029767A1 (en) 2007-08-30 2009-03-05 Next Holdings, Inc. Optical touchscreen with improved illumination
US20110084941A1 (en) * 2007-09-20 2011-04-14 Egalax_Empia Technology Inc. Sensing device of surface acoustic wave touch panel
US20090079709A1 (en) * 2007-09-20 2009-03-26 Egalax_Empia Technology Inc. Sensing device of surface acoustic wave touch panel
US8405636B2 (en) 2008-01-07 2013-03-26 Next Holdings Limited Optical position sensing system and optical position sensor assembly
JP2011510413A (ja) * 2008-01-25 2011-03-31 センシティブ オブジェクト タッチ感応パネル
CA2713923C (en) * 2008-02-19 2017-11-28 Dingnan Han Multi-point touch screen and touch detection method
US7795781B2 (en) * 2008-04-24 2010-09-14 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonator with reduced energy loss
WO2009137355A2 (en) * 2008-05-06 2009-11-12 Next Holdings, Inc. Systems and methods for resolving multitouch scenarios using software filters
US20090278795A1 (en) * 2008-05-09 2009-11-12 Smart Technologies Ulc Interactive Input System And Illumination Assembly Therefor
US8902193B2 (en) 2008-05-09 2014-12-02 Smart Technologies Ulc Interactive input system and bezel therefor
US20090289921A1 (en) * 2008-05-23 2009-11-26 Microsoft Corporation Communications-enabled display console
US8228306B2 (en) * 2008-07-23 2012-07-24 Flextronics Ap, Llc Integration design for capacitive touch panels and liquid crystal displays
US9128568B2 (en) * 2008-07-30 2015-09-08 New Vision Display (Shenzhen) Co., Limited Capacitive touch panel with FPC connector electrically coupled to conductive traces of face-to-face ITO pattern structure in single plane
US8743091B2 (en) * 2008-07-31 2014-06-03 Apple Inc. Acoustic multi-touch sensor panel
US20100103140A1 (en) * 2008-10-27 2010-04-29 Sony Ericsson Mobile Communications Ab Touch sensitive device using optical gratings
US8339378B2 (en) 2008-11-05 2012-12-25 Smart Technologies Ulc Interactive input system with multi-angle reflector
KR101073285B1 (ko) * 2008-12-01 2011-10-12 삼성모바일디스플레이주식회사 터치 스크린 패널
US8209861B2 (en) * 2008-12-05 2012-07-03 Flextronics Ap, Llc Method for manufacturing a touch screen sensor assembly
US8274486B2 (en) * 2008-12-22 2012-09-25 Flextronics Ap, Llc Diamond pattern on a single layer
US20100156811A1 (en) * 2008-12-22 2010-06-24 Ding Hua Long New pattern design for a capacitive touch screen
US20100156846A1 (en) * 2008-12-23 2010-06-24 Flextronics Ap, Llc Single substrate capacitive touch panel
KR101350573B1 (ko) * 2008-12-30 2014-01-10 엘지디스플레이 주식회사 전기영동 표시장치
DE102009003990A1 (de) * 2009-01-07 2010-07-08 Wincor Nixdorf International Gmbh Berührungssensitive Eingabevorrichtung
GB0905692D0 (en) * 2009-04-02 2009-05-20 Tno Touch sensitive device
CN101943978B (zh) * 2009-07-06 2012-12-26 弗莱克斯电子有限责任公司 电容触摸屏面板及其制造方法、电容触摸传感器
US8730182B2 (en) 2009-07-30 2014-05-20 Immersion Corporation Systems and methods for piezo-based haptic feedback
WO2011024713A1 (ja) * 2009-08-31 2011-03-03 日本写真印刷株式会社 振動機能付きタッチパネルの実装構造
US20110095989A1 (en) * 2009-10-23 2011-04-28 Smart Technologies Ulc Interactive input system and bezel therefor
JP5287998B2 (ja) * 2009-11-19 2013-09-11 株式会社村田製作所 タッチパネル付き電子機器
US20110199328A1 (en) * 2010-02-18 2011-08-18 Flextronics Ap, Llc Touch screen system with acoustic and capacitive sensing
US20110233894A1 (en) * 2010-03-25 2011-09-29 Bravo Sports Wheel guard
US8576202B2 (en) * 2010-03-25 2013-11-05 Elo Touch Solutions, Inc. Bezel-less acoustic touch apparatus
US9285929B2 (en) 2010-03-30 2016-03-15 New Vision Display (Shenzhen) Co., Limited Touchscreen system with simplified mechanical touchscreen design using capacitance and acoustic sensing technologies, and method therefor
JP5485041B2 (ja) * 2010-06-18 2014-05-07 オリンパス株式会社 内視鏡装置
DE102010039867A1 (de) * 2010-08-27 2012-03-01 Deutsche Telekom Ag Anzeigevorrichtung und Verfahren zu deren Betrieb
US8988087B2 (en) 2011-01-24 2015-03-24 Microsoft Technology Licensing, Llc Touchscreen testing
US9965094B2 (en) 2011-01-24 2018-05-08 Microsoft Technology Licensing, Llc Contact geometry tests
US9542092B2 (en) 2011-02-12 2017-01-10 Microsoft Technology Licensing, Llc Prediction-based touch contact tracking
US8982061B2 (en) 2011-02-12 2015-03-17 Microsoft Technology Licensing, Llc Angular contact geometry
US8773377B2 (en) 2011-03-04 2014-07-08 Microsoft Corporation Multi-pass touch contact tracking
US9189109B2 (en) 2012-07-18 2015-11-17 Sentons Inc. Detection of type of object used to provide a touch contact input
US11327599B2 (en) 2011-04-26 2022-05-10 Sentons Inc. Identifying a contact type
US9477350B2 (en) 2011-04-26 2016-10-25 Sentons Inc. Method and apparatus for active ultrasonic touch devices
US10198097B2 (en) 2011-04-26 2019-02-05 Sentons Inc. Detecting touch input force
US9639213B2 (en) 2011-04-26 2017-05-02 Sentons Inc. Using multiple signals to detect touch input
GB201106971D0 (en) * 2011-04-27 2011-06-08 Elliptic Laboratories As Interaction surfaces
KR101776089B1 (ko) 2011-07-08 2017-09-08 삼성전자주식회사 표면탄성파 센서 시스템 및 다중울림파를 이용한 측정 방법
US8913019B2 (en) 2011-07-14 2014-12-16 Microsoft Corporation Multi-finger detection and component resolution
US9378389B2 (en) 2011-09-09 2016-06-28 Microsoft Technology Licensing, Llc Shared item account selection
US8681128B2 (en) * 2011-10-14 2014-03-25 Elo Touch Solutions, Inc. Acoustic touch apparatus
US8823685B2 (en) * 2011-10-14 2014-09-02 Elo Touch Solutions, Inc. Acoustic touch apparatus
US9785281B2 (en) * 2011-11-09 2017-10-10 Microsoft Technology Licensing, Llc. Acoustic touch sensitive testing
WO2013074686A1 (en) * 2011-11-14 2013-05-23 Street Smart Sensors Llc Acoustic array sensor
US9348467B2 (en) 2011-11-15 2016-05-24 Elo Touch Solutions, Inc. Radial layout for acoustic wave touch sensor
US9304629B2 (en) 2011-11-15 2016-04-05 Elo Touch Solutions, Inc. Radial transducer for acoustic wave touch sensor
KR101960836B1 (ko) 2011-11-18 2019-03-22 센톤스 아이엔씨. 국소형 햅틱 피드백
US10235004B1 (en) 2011-11-18 2019-03-19 Sentons Inc. Touch input detector with an integrated antenna
US9594450B2 (en) 2011-11-18 2017-03-14 Sentons Inc. Controlling audio volume using touch input force
TWI448381B (zh) 2012-01-10 2014-08-11 私立中原大學 Process Method and System of PVDF Piezoelectric Film without Metallization Electrode
US8525955B2 (en) 2012-01-31 2013-09-03 Multek Display (Hong Kong) Limited Heater for liquid crystal display
US8914254B2 (en) 2012-01-31 2014-12-16 Microsoft Corporation Latency measurement
US9201546B2 (en) * 2012-03-09 2015-12-01 Elo Touch Solutions, Inc. Acoustic touch apparatus with multi-touch capability
US9164627B2 (en) 2012-03-09 2015-10-20 Elo Touch Solutions, Inc. Acoustic touch apparatus with variable thickness substrate
US9348468B2 (en) 2013-06-07 2016-05-24 Sentons Inc. Detecting multi-touch inputs
US9078066B2 (en) 2012-07-18 2015-07-07 Sentons Inc. Touch input surface speaker
US9524063B2 (en) 2012-07-18 2016-12-20 Sentons Inc. Detection of a number of touch contacts of a multi-touch input
US9069414B2 (en) 2012-08-02 2015-06-30 Nano-Optic Devices, Llc Touchscreen sensor for touchscreen display unit
US9317147B2 (en) 2012-10-24 2016-04-19 Microsoft Technology Licensing, Llc. Input testing tool
US9128567B2 (en) * 2012-11-20 2015-09-08 Elo Touch Solutions, Inc. Segmented waveguide core touch sensor systems and methods
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US9507464B2 (en) * 2013-03-15 2016-11-29 Elo Touch Solutions, Inc. Acoustic touch apparatus and methods using touch sensitive lamb waves
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9229612B2 (en) 2013-08-27 2016-01-05 Industrial Technology Research Institute Electronic device, controlling method for screen, and program storage medium thereof
US9588552B2 (en) 2013-09-11 2017-03-07 Sentons Inc. Attaching electrical components using non-conductive adhesive
US9459715B1 (en) 2013-09-20 2016-10-04 Sentons Inc. Using spectral control in detecting touch input
US9880671B2 (en) 2013-10-08 2018-01-30 Sentons Inc. Damping vibrational wave reflections
KR102092944B1 (ko) 2013-10-23 2020-03-25 삼성디스플레이 주식회사 터치스크린 패널 및 이를 이용한 터치 위치 검출 방법
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
CN107918508B (zh) * 2014-02-28 2021-03-09 南京优触电子科技有限公司 一种选择性激发和接收非对称声波的交互装置
US20170115765A1 (en) * 2014-03-31 2017-04-27 Hewlett-Packard Development Company, L.P. Interaction with surface acoustic wave touchscreens
US9640171B2 (en) * 2014-06-15 2017-05-02 William M. Robertson Acoustic lens using extraordinary acoustic transmission
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9613246B1 (en) 2014-09-16 2017-04-04 Apple Inc. Multiple scan element array ultrasonic biometric scanner
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9952095B1 (en) 2014-09-29 2018-04-24 Apple Inc. Methods and systems for modulation and demodulation of optical signals
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9607203B1 (en) 2014-09-30 2017-03-28 Apple Inc. Biometric sensing device with discrete ultrasonic transducers
US9979955B1 (en) 2014-09-30 2018-05-22 Apple Inc. Calibration methods for near-field acoustic imaging systems
US9747488B2 (en) 2014-09-30 2017-08-29 Apple Inc. Active sensing element for acoustic imaging systems
US9904836B2 (en) 2014-09-30 2018-02-27 Apple Inc. Reducing edge effects within segmented acoustic imaging systems
US10133904B2 (en) 2014-09-30 2018-11-20 Apple Inc. Fully-addressable sensor array for acoustic imaging systems
US9984271B1 (en) * 2014-09-30 2018-05-29 Apple Inc. Ultrasonic fingerprint sensor in display bezel
US9824254B1 (en) 2014-09-30 2017-11-21 Apple Inc. Biometric sensing device with discrete ultrasonic transducers
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
KR102309863B1 (ko) * 2014-10-15 2021-10-08 삼성전자주식회사 전자 장치, 그 제어 방법 및 기록 매체
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
CN105761623B (zh) * 2014-12-29 2019-03-08 乐金显示有限公司 显示装置
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
CN107533408B (zh) 2015-04-21 2020-05-05 富士通株式会社 电子设备
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US11048902B2 (en) 2015-08-20 2021-06-29 Appple Inc. Acoustic imaging system architecture
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10048811B2 (en) 2015-09-18 2018-08-14 Sentons Inc. Detecting touch input provided by signal transmitting stylus
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US10275633B1 (en) 2015-09-29 2019-04-30 Apple Inc. Acoustic imaging system for spatial demodulation of acoustic waves
US11036318B2 (en) 2015-09-30 2021-06-15 Apple Inc. Capacitive touch or proximity detection for crown
US10671222B2 (en) 2015-09-30 2020-06-02 Apple Inc. Touch sensor pattern for edge input detection
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
WO2018023080A2 (en) 2016-07-29 2018-02-01 Apple Inc. Methodology and application of acoustic touch detection
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
CN106448651B (zh) * 2016-09-08 2019-09-27 哈尔滨工程大学 一种波导高阶模式转换器
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10908741B2 (en) 2016-11-10 2021-02-02 Sentons Inc. Touch input detection along device sidewall
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10296144B2 (en) 2016-12-12 2019-05-21 Sentons Inc. Touch input detection with shared receivers
FR3061568B1 (fr) * 2017-01-04 2021-09-10 Hap2U Dalle tactile vibrante
US20180217414A1 (en) 2017-01-30 2018-08-02 The Charles Stark Draper Laboratory, Inc. Electro-Holographic Light Field Generators and Displays
US10126877B1 (en) 2017-02-01 2018-11-13 Sentons Inc. Update of reference data for touch input detection
US10585522B2 (en) 2017-02-27 2020-03-10 Sentons Inc. Detection of non-touch inputs using a signature
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10606418B2 (en) 2017-03-31 2020-03-31 Apple Inc. Ultrasonic touch detection on stylus
US11157115B2 (en) 2017-03-31 2021-10-26 Apple Inc. Composite cover material for sensitivity improvement of ultrasonic touch screens
US11144158B2 (en) 2017-05-24 2021-10-12 Apple Inc. Differential acoustic touch and force sensing
US11334196B2 (en) * 2017-05-24 2022-05-17 Apple Inc. System and method for acoustic touch and force sensing
CN108932084B (zh) 2017-05-24 2022-05-27 苹果公司 用于声学触摸和力感测的系统和方法
PL3421945T3 (pl) * 2017-06-29 2021-04-19 Diehl Metering Gmbh Sposób i urządzenie pomiarowe do określania wielkości opisującej płyn
CN107687907B (zh) * 2017-07-17 2020-03-24 东北大学 一种基于液体填充空芯环状光纤光栅的温度传感方法
US11580829B2 (en) 2017-08-14 2023-02-14 Sentons Inc. Dynamic feedback for haptics
US11009411B2 (en) 2017-08-14 2021-05-18 Sentons Inc. Increasing sensitivity of a sensor using an encoded signal
US10949030B2 (en) 2017-09-26 2021-03-16 Apple Inc. Shear-poled curved piezoelectric material
US10802651B2 (en) 2018-01-30 2020-10-13 Apple Inc. Ultrasonic touch detection through display
US11366552B2 (en) 2018-02-06 2022-06-21 Apple, Inc. Ultrasonic polarizer
CN108228008A (zh) * 2018-03-20 2018-06-29 南京优触电子科技有限公司 一种基于弹性波识别的人形机器人触觉外壳的实现方法
CN110497425A (zh) * 2018-05-17 2019-11-26 张家港市光武智能科技有限公司 一种基于兰姆波与瑞利波的机器人皮肤
WO2019235988A1 (en) * 2018-06-04 2019-12-12 Fingerprint Cards Ab Acoustic biometric imaging system with acoustic impedance matched opaque masking layer, and manufacturing method
US10725573B2 (en) 2018-08-06 2020-07-28 Apple Inc. Annular piezoelectric structure for ultrasonic touch sensing
TWI683197B (zh) * 2019-03-19 2020-01-21 東元電機股份有限公司 移動平台圖資校正系統
US11950512B2 (en) 2020-03-23 2024-04-02 Apple Inc. Thin-film acoustic imaging system for imaging through an exterior surface of an electronic device housing
US11231816B2 (en) * 2020-06-30 2022-01-25 Apple Inc. Ultrasonic water-agnostic touch detection sensor
US11422113B2 (en) 2020-06-30 2022-08-23 Apple Inc. Ultrasonic water-agnostic touch detection sensor
US11320938B1 (en) * 2021-04-26 2022-05-03 Texzec, Inc. Acoustic mode touch panels with selectable characteristics
WO2022272217A1 (en) * 2021-06-23 2022-12-29 Boston Scientific Scimed, Inc. Ultrasound transducer
CN114895403A (zh) * 2022-05-19 2022-08-12 西安理工大学 一种抛物线型波导高效光栅耦合器及其设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239322A (ja) * 1985-02-05 1986-10-24 ゼニス、エレクトロニクス、コ−ポレ−シヨン タツチパネル装置
JPS63263517A (ja) * 1987-04-22 1988-10-31 Hitachi Ltd 超音波応用タブレツト
WO1996033479A1 (en) * 1995-04-19 1996-10-24 Elo Touchsystems, Inc. Acoustic touch position sensor using higher order horizontally polarized shear wave propagation
US5573077A (en) * 1990-11-16 1996-11-12 Knowles; Terence J. Acoustic touch position sensor
JPH08305482A (ja) * 1995-04-28 1996-11-22 Tatsuchi Panel Syst Kk タッチ入力装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US33151A (en) * 1861-08-27 Improvement in shoe-pegging machines
US3673327A (en) * 1970-11-02 1972-06-27 Atomic Energy Commission Touch actuable data input panel assembly
FR2220930B1 (ko) * 1973-03-09 1976-05-21 Thomson Csf
US4700176A (en) * 1985-02-05 1987-10-13 Zenith Electronis Corporation Tough control arrangement for graphics display apparatus
US4791416A (en) * 1985-02-05 1988-12-13 Zenith Electronics Corporation Touch control system for controllable apparatus
USRE33151E (en) 1985-02-05 1990-01-23 Zenith Electronics Corporation Touch control system for controllable apparatus
US4644100A (en) * 1985-03-22 1987-02-17 Zenith Electronics Corporation Surface acoustic wave touch panel system
US4746914A (en) * 1985-02-05 1988-05-24 Zenith Electronics Corporation Cathode ray tube for use in a touch panel display system
US4642423A (en) * 1985-08-30 1987-02-10 Zenith Electronics Corporation Touch control system for use with or having a three-dimensionally curved touch surface
US4645870A (en) * 1985-10-15 1987-02-24 Zenith Electronics Corporation Touch control system for use with a display panel or other touch controlled device
US5400788A (en) * 1989-05-16 1995-03-28 Hewlett-Packard Apparatus that generates acoustic signals at discrete multiple frequencies and that couples acoustic signals into a cladded-core acoustic waveguide
US5243148A (en) * 1990-11-16 1993-09-07 Exzec, Inc. Touch panel for an acoustic touch position sensor using shear wave propagation
US5260521A (en) * 1990-11-16 1993-11-09 Exzec, Inc. Acoustic touch position sensor using shear wave propagation
US5072427A (en) * 1990-11-16 1991-12-10 Exzec Inc. Acoustic touch position sensor with shear to lamb wave conversion
US5329070A (en) * 1990-11-16 1994-07-12 Carroll Touch Inc. Touch panel for an acoustic touch position sensor
US5162618A (en) * 1990-11-16 1992-11-10 Exzec, Inc. Acoustic touch position sensor with first order lamb wave reflective arrays
US5177327A (en) * 1990-11-16 1993-01-05 Exzec, Inc. Acoustic touch position sensor using shear wave propagation
EP0651902A1 (en) * 1992-07-24 1995-05-10 TODA, Kohji Ultrasonic touch system
AU7970094A (en) * 1993-10-18 1995-05-08 Carroll Touch, Inc. Acoustic wave touch panel for use with a non-active stylus
TW241352B (en) * 1994-03-30 1995-02-21 Whitaker Corp Reflective mode ultrasonic touch sensitive switch
US5708461A (en) * 1995-01-24 1998-01-13 Elo Touchsystems, Inc. Acoustic touch position sensor using a low-loss transparent substrate
JPH08305481A (ja) * 1995-04-28 1996-11-22 Tatsuchi Panel Syst Kk タッチ入力装置
US5648643A (en) * 1995-06-16 1997-07-15 Knowles; Terence J. Acoustic wave touch panel with inlayed, etched arrays and method of making the panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239322A (ja) * 1985-02-05 1986-10-24 ゼニス、エレクトロニクス、コ−ポレ−シヨン タツチパネル装置
JPS63263517A (ja) * 1987-04-22 1988-10-31 Hitachi Ltd 超音波応用タブレツト
US5573077A (en) * 1990-11-16 1996-11-12 Knowles; Terence J. Acoustic touch position sensor
WO1996033479A1 (en) * 1995-04-19 1996-10-24 Elo Touchsystems, Inc. Acoustic touch position sensor using higher order horizontally polarized shear wave propagation
JPH08305482A (ja) * 1995-04-28 1996-11-22 Tatsuchi Panel Syst Kk タッチ入力装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020080870A1 (ko) * 2018-10-19 2020-04-23 삼성전자(주) 디스플레이장치 및 그 제어방법
KR20200044453A (ko) * 2018-10-19 2020-04-29 삼성전자주식회사 디스플레이장치 및 그 제어방법
KR102476559B1 (ko) * 2018-10-19 2022-12-12 삼성전자주식회사 디스플레이장치 및 그 제어방법
US11599225B2 (en) 2018-10-19 2023-03-07 Samsung Electronics Co., Ltd. Display apparatus and control method thereof

Also Published As

Publication number Publication date
CN1242096A (zh) 2000-01-19
EP0950234A1 (en) 1999-10-20
WO1998029853A1 (en) 1998-07-09
US6091406A (en) 2000-07-18
EP0950234B1 (en) 2004-05-26
DE69729317T2 (de) 2005-06-02
CA2273956C (en) 2002-04-30
JP3800274B2 (ja) 2006-07-26
CA2273956A1 (en) 1998-07-09
BR9714435A (pt) 2000-05-02
BR9714435B1 (pt) 2010-07-27
AU5903298A (en) 1998-07-31
CN1161726C (zh) 2004-08-11
JPH10240443A (ja) 1998-09-11
TW490632B (en) 2002-06-11
DE69729317D1 (de) 2004-07-01
EP0950234A4 (en) 2001-03-14
IL130345A0 (en) 2000-06-01
AU715056B2 (en) 2000-01-13
KR19980064569A (ko) 1998-10-07
HK1024772A1 (en) 2000-10-20

Similar Documents

Publication Publication Date Title
KR100542801B1 (ko) 음향터치스크린용격자트랜스듀서
JP2936210B2 (ja) 高次水平偏波シャー波伝搬を用いた音波式タッチポジョンセンサー
JP5037334B2 (ja) 弾性波タッチスクリーン
JP4989461B2 (ja) 弾性波タッチスクリーン
US5739479A (en) Gentle-bevel flat acoustic wave touch sensor
US8854339B2 (en) Acoustic touch sensor
US20050156911A1 (en) Acoustic wave touch detecting apparatus
CN104272229A (zh) 具有可变厚度基板的声学触摸设备
MXPA99005934A (en) Grating transducer for acoustic touchscreen
JP4628367B2 (ja) 音波タッチ検出装置
JP3749608B2 (ja) タッチ式座標入力装置
Kent et al. Reflecting love waves by 90 degrees
WO2001002943A1 (fr) Capteur tactile acoustique

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111226

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20130103

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee