KR100524606B1 - 칼슘-알루미늄 합금철을 이용한 고청정 알루미늄-킬드강제조방법 - Google Patents

칼슘-알루미늄 합금철을 이용한 고청정 알루미늄-킬드강제조방법 Download PDF

Info

Publication number
KR100524606B1
KR100524606B1 KR10-2001-0079856A KR20010079856A KR100524606B1 KR 100524606 B1 KR100524606 B1 KR 100524606B1 KR 20010079856 A KR20010079856 A KR 20010079856A KR 100524606 B1 KR100524606 B1 KR 100524606B1
Authority
KR
South Korea
Prior art keywords
molten steel
steel
alloy
alloy iron
killed
Prior art date
Application number
KR10-2001-0079856A
Other languages
English (en)
Other versions
KR20030049612A (ko
Inventor
박종화
이창현
김웅래
이계영
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR10-2001-0079856A priority Critical patent/KR100524606B1/ko
Publication of KR20030049612A publication Critical patent/KR20030049612A/ko
Application granted granted Critical
Publication of KR100524606B1 publication Critical patent/KR100524606B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/06Deoxidising, e.g. killing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

본 발명은 Al탈산강에 적용이 가능한 Ca-Al 합금철을 제조하여 이를 Al탈산 용강에 투입함으로써 Al2O3 개재물을 저융점화하여 용강으로부터 제거 및 구형화를 용이하게 하고, 용강중 Ca 잔류량을 기존의 Fe-Ca 혼합분체 취입방법에 비해 크게 향상시킨 고청정 Al-Killed강 제조 방법에 관한 것이다.
본 발명은 [C]≤100ppm, [Si]≤0.03% 를 기본조성으로 하는 Al-killed 극저탄소강에 Ca-Al 합금철을 투입하여 고청정강을 제조하는 방법으로서, 탈탄 및 Al 탈산조업 실시공정인 RH 공정을 수행하고, 상온에서 중량비로 Ca을 15%~75%, Al을 25%~85%로 혼합한 후 외부 공기와 차단된 챔버내의 Al2O3 도가니에서 두 금속을 완전 용해, 혼합하고, 상기 도가니를 650℃ ~ 1050℃ 온도에서 1시간이상 유지시켜 제조한 Ca-Al 합금철을 용강중에 투입하여 용강 중의 Al2O3를 저융점화하여 제거 및 구형화하는 것을 포함하되, 상기 Ca-Al 합금철은 용강중 [Ca]/[Al]농도비가 0.010 ~ 0.115가 되도록 투입되는 것을 특징으로 하는 Ca-Al 합금철을 이용한 고청정 Al-Killed강 제조 방법을 제공한다.

Description

칼슘-알루미늄 합금철을 이용한 고청정 알루미늄-킬드강 제조방법{METHOD FOR MANUFACTURING HIGH QUALITY AL-KILLED STEEL UTILIZING CA-AL ALLOY}
본 발명은 Ca-Al 합금철을 이용하여 고청정 Al-Killed강을 제조하는 방법에 관한 것이다.
제철소에서는 냉연강판을 대량으로 생산하기 위해 연속소둔공정(CAL: Continuous Annealing Line)을 채택하고 있으며, 연속소둔공정에 사용될 철판은 잘 늘어나는 성질인 연성을 지니고 있어야 하기 때문에 용강내 탄소함량이 100ppm 미만이어야 한다. 용광로에서 철광석을 녹여 제조한 용선에는 탄소함량이 매우 높기 때문에, 탄소 제거를 위해서 제강공정에서는 용선을 전로에 담고 순산소를 취입함으로써 일정 함량(약 0.04%)까지 용선내 탄소를 제거(이하 "탈탄"이라 함)하며, 이렇게 탄소가 일정 함량까지 제거된 용선을 용강이라고 한다. 전로공정을 마친 용강은 진공 탈가스설비인 RH-TOB(POSB) 설비로 이송되어 진공상태에서 강한 교반과 함께 순산소를 취입하여 탄소를 100ppm이하로 제거한다. 순산소를 용강에 불어 넣어 탈탄을 하기 때문에 탈탄을 마치면 용강에는 많은 양의 산소가 남게 되므로, 알루미늄(Aluminum)을 투입하여 용강내에 남아있는 용존산소를 제거하는 탈산조업을 한다. 이때 탈산반응에 대한 반응물로서 고체의 작은 알갱이인 알루미나(Al2O3)가 발생한다. 이와 같이, 제강공정에서 알루미늄은 용강내의 용존산소([O])를 제거하는 가장 일반적인 탈산제로 사용되지만, 탈산생성물로 Al2O3를 형성하기 때문에 이것이 용강으로부터 제거되지 않고 잔류할 경우, 연속주조시 노즐 막힘을 유발하여 실수율 저하와 조업 부하를 초래하게 된다. 특히, 용강 내부에 잔류하는 Al2O3는 냉간압연과정에서 발현하여 표면흠이나 판파단을 유발하고, 최종 제품의 기계적 성질 및 도색 불량등 품질을 저하시킨다
최근에 용강중의 Al2O3를 제거하기 위한 용강내 Ca투입 방법이 지속적으로 모색되고 있는데, Ca투입의 Al2O3 제거 원리는 아래와 같다.
도1은 Al 탈산에 의해 형성된 Al2O3(녹는점 2050℃)가 CaO와 결합하여 저융점의 복합개재물(12CaO·7Al2O3)(녹는점 1413℃)로 변하는 상태도를 나타낸 것이다. 즉, Al2O3 개재물이 산소(O)와 결합력이 매우 큰 Ca과 반응하여 융점이 낮은 개재물로 변하고 이것이 용강 상부의 슬래그로 흡착됨으로써 제거되며, 이렇게 변한 개재물은 용융점이 용강온도영역인 1600℃보다 낮은 개재물이기 때문에 용강에 잔류하더라도 액상으로 존재하게 되어 외형상 구형을 유지하게 된다. 코일내 존재하는 구형 개재물은 압연시 압연방향과 같은 방향으로 늘어나기 때문에 결함으로 발생되지 않는다. 아래 반응식은 용강에 용해된 Ca이 용강중 산소 또는 슬래그, 탈산개재물의 산소와 반응하여 CaO를 형성하고, 그것이 Al2O3와 반응하는 과정을 나타낸 것이다.
[Ca] + [O] 또는 (O) = (CaO) -------- (1)
12(CaO) + 7(Al2O3) = (12CaO·7Al2O3) -------- (2)
그러나, Ca은 증기압이 높아서 Ca자체를 단독으로 용강에 투입할 경우 대부분 증발하기 때문에 산업적으로 그 활용이 극히 제한적인 실정이다. 대부분의 철강사에서는 용강내 유황 제거와 탈산개재물을 구형화시킬 목적으로 Si 탈산강에 대해서 Ca-Si합금을 Ar가스를 통해 용강중으로 취입하고 있으나, Ca-Si합금은 용강중 Si을 잔류시켜 가공성을 저하시키기 때문에 냉연소재인 Al탈산 극저탄소강에 대해서는 사용할 수가 없다. 따라서, Al2O3 개재물을 제거하고 그 형태를 구형으로 만들기 위해 Fe와 Ca을 일정비율로 혼합한 분체를 Al탈산 극저탄소강에 적용한 예가 있으나, Ca의 기화반응으로 인한 증발로 그 실수율이 매우 저조하였고, 격렬한 반응 및 폭발로 설비에 부담을 주기 때문에 활용하고 있지 않은 상태이다.
이에, 본 발명자들은 Al탈산강에 적용이 가능한 Ca-Al 합금을 직접 제조하여, 그것을 Al탈산 용강에 투입함으로써 Al2O3 개재물을 저융점화하여 용강으로부터 제거 및 구형화를 용이하게 하고, 용강중 Ca 잔류량을 기존의 Fe-Ca 혼합분체 취입방법에 비해 크게 향상시킨 고청정강 제조기술을 개발하여 본 발명에 이르게 되었다.
앞서 언급한 바와 같이 기존의 Ca을 이용한 청정강 제조기술은, Al-Si복합탈산강을 대상으로 Ca-Si분체를 Ar 가스와 함께 내화물 랜스를 통해 취입하는 방법과 Al-탈산강을 대상으로 Ca-Fe혼합분체를 와이어(Wire)를 통해 투입하는 방법이 있을 뿐 Ca-Al합금을 이용한 Ca처리방법은 기존에 보고된 바가 없다. 이중 본 발명에서 대상으로 하고 있는 냉연소재용 Al-탈산 극저탄소강에 적용될 수 있는 방법은 후자인 Ca-Fe 분체를 이용한 방법이다.
청정강 제조를 위해 Ca-Si 분체를 취입할 경우에는 Ca-Si 분체중 Si에 의해 용강에 Si이 0.03%이상 잔류하게 된다. Si은 강의 강도는 증가시키지만, 가공성과 도금 부착성을 저하시키는 특성을 나타내기 때문에 냉연소재에는 사용할 수 없으며, 따라서 Al 탈산강에는 적용이 불가능하다. 표1에 Ca-Si분체의 조성을 나타내었으며, 도2에 Ca-Si 분체 취입량에 따른 용강중 [Ca]과 [Si]의 농도변화를 나타내었다. 용강중에 Al2O3를 저융점화시키기 위해서는 용강중에 Ca이 10ppm이상 존재하여야 하는데, Ca-Si을 이용하여 Ca을 10ppm이상 잔류시키면 그에 따라 Si농도도 0.03% 이상 잔류하게 되어, 앞서 언급한 바와 같이 Al탈산강에는 사용할 수가 없음을 알 수 있다.
위와 같은 문제에 대응하기 위해 Al 탈산강에 적용이 가능하도록 Ca-Fe을 일정한 비율로 혼합한 분체를 용강에 취입하는 제조방법이 본 발명자들에 의해 시도되었다. Ca-Fe 분체는 가공성이 좋은 철로 만들어진 파이프내에 채워져서 RH공정에서 래이들내 용강에 투입된다. 표1에 Ca-Fe분체의 조성을 나타내었다. Ca은 Fe와 거의 섞이지 않으므로 두 금속을 합금으로 만들 수 없다. 따라서, Ca-Fe는 두 금속을 각각 분체로 만든 후 단지 혼합한 형태이며, Ca을 단독으로 투입하는 경우와 상이한 점이 없다. 도3에 Ca-Fe 투입량에 따른 용강중 [Ca]농도를 나타내었다. Ca은 1600℃에서 증기압이 약 1.8기압이므로 대기중에서 용강으로 투입된 Ca은 대부분 기화되어 손실되고 미량만이 용강에 잔류하게 된다. 따라서, Al2O3 개재물과 반응하여 Al2O3 개재물을 저융점으로 변화시키는 효과가 거의 없음을 알 수 있었다.
Ca-Si 분체 및 Ca-Fe 분체의 조성
성분(%)종류 Ca Si Fe 기타
Ca-Si 분체 36 60 - 4
Ca-Fe 분체 30 - 65 5
상술한 바와 같이 제강공정에서는 Al으로 용강을 탈산할 때 생성되는 Al2O3 개재물의 효과적인 제거를 위해 Ca 합금철을 용강에 투입하고 있으나, Ca은 증기압이 높아서 단독으로 용강에 투입될 경우 대부분 증발하여 그 실수율이 매우 저조하며, 증발시 용강 비산 및 격렬한 반응으로 인해 설비에 부담이 가해지므로 산업적으로 그 활용 예가 거의 없는 실정이다. 또한, Si 탈산강등 일부 강종에 대해서만 Ca-Si합금 분체를 용강중으로 취입하고 있으나, 이것은 용강중 Si성분을 증가시키므로 냉연소재인 Al탈산강에 대해서는 사용할 수가 없다.
따라서, 본 발명은 Al탈산강에 적용이 가능하도록 Ca과 Al이 일정한 성분으로 용융 혼합된 Ca-Al합금을 제조하고, 그것을 용강에 투입하여 용강에 [Si]을 증가시키지 않으면서 용강에 Ca을 다량 잔류시킴으로써 Al2O3 개재물을 효과적으로 제거하여 용강의 고청정성 확보가 가능할 뿐 아니라, Ca투입시 발생하는 용강 비산등을 방지하여 설비 이상을 유발하지 않는 Al 탈산 극저탄소 고청정강 제조방법을 제공하는 것을 그 목적으로 한다
본 발명은 냉연용 소재인 Al 탈산 극저탄소강([C] 100ppm이하)을 대상으로 한다.
전로정련을 종료하고 래이들(Ladle)로 담겨진 용강에는 용존산소([O])가 약 300ppm ~ 800ppm 남아 있게 된다. 이렇게 용존산소를 제거(Killng)하지 않고 남겨두는 이유는, 이차정련인 RH공정에서 용강중에 있는 탄소([C])를 제거하기 위해서이다. 용강중의 산소는 탄소와 결합하여 CO가스를 형성하게 되고, RH에서는 용강을 진공상태에서 교반하므로 CO가스를 용강밖으로 뽑아내게 된다. 이 과정을 탈탄이라고 한다. 용강으로부터 탈탄이 완료되고 남은 용존산소는 약 200~400ppm정도가 되는데, 이 잔류한 산소를 제거하기 위해서 RH에서는 탈탄종료시점에 용강에 Al을 투입한다. 이 과정을 탈산이라고 한다. 탈탄 및 탈산 반응식을 아래에 나타내었다.
[C] + [O] = CO (g) -------- (3)
3[O] + 2[Al] = Al2O3 (s) -------- (4)
전술한 바와 같이 Al탈산후에는 반응생성물로 Al2O3가 형성되는데, 이것이 용강으로부터 제거되지 않고 잔류할 경우, 연속주조시 노즐 막힘을 유발하고 냉간압연과정에서 발현하여 표면흠이나 판파단을 초래한다. 따라서, 이러한 문제점을 해결하기 위해서는 고체인 Al2O3을 저융점화하여 액상으로 만들어 주어야 한다. 액상의 개재물은 노즐에 부착되지 않으며, 용강상부로 부상되어 슬래그에 흡착되므로 제거가 용이하다. 또한, 용강에 잔류하더라도 액상이므로 구형으로 존재하게 되어 후공정에서 결함으로 발현되는 경우가 적다.
본 발명자들은 Al2O3을 저융점화하는 방법으로 앞서 말한 냉연소재용 극저탄소강 생산시, RH공정에서 처리종료 후에 Ca-Al합금철을 투입하는 방법을 개발하였다.
도4에 Ca함량이 상이한 Ca-Al합금철 25g을 용강 25kg에 투입하여, Ca함유율에 따른 Ca 실수율(%) 변화를 조사한 실험결과를 나타내었다. 이 결과로부터 Ca-Al합금철의 실수율이 기존에 공지된 Ca-Fe 분체 취입방법에 비해 높은 실수율을 나타내는 양호한 조성은 Ca 15%~75%, Al 25%~85%임을 알 수 있었는데, 이는 Ca 함유율이 상기 범위보다 높으면 Ca의 기화에 의한 격렬한 반응으로 증발하므로 그 실수율이 감소하기 때문이다.
Ca-Al 합금철은 다음의 방법으로 제조한다. 상온에서 두 합금철을 상기의 조성(Ca 15%~75%, Al 25%~85%)으로 혼합하여 외부 공기와 차단된 챔버(Chamber)내의 Al2O3 도가니에서 1079℃이상으로 가열하여 용해시킨 후, 두 금속이 완전 용해가 되면 Al2O3 Bar를 이용하여 잘 저어줌으로써 균일하게 혼합한다. 그 후 도가니의 온도 650℃ ~ 1050℃에서 응고시키고 그 온도에서 1시간정도 유지시킨다. 이는 급냉할 경우, 양 성분이 균일하게 혼합되지 않고 각각의 성분으로 분리될 수 있기 때문이다. 이렇게 만든 Ca-Al합금철을 입도 1mm이하로 분쇄하여 [C]함량 0.02%이하의 연강재 철피로 제조된 직경 18mm이하의 파이프내에 넣어, Ca-Al 코어드 와이어(Cored Wire)를 제작하여 용강내에 고속으로 투입한다. 이와 같은 코어드 와이어는 상업적으로 널리 사용되고 있다.
Ca-Al 와이어 투입시기를 포함해서, Ca-Al 합금철을 이용한 고청정강 제조공정은 다음과 같다.
전로출강후 RH로 이송된 용강은 탈탄 및 탈산을 마치고 처리를 종료한 후, 래이들을 RH 침적관 하단부까지 하강시킨다. 이 위치에서 래이들내 용강에 Ca-Al 합금철을 200~350m/분(40~75kg/분)의 속도로 투입한다. 와이어의 투입속도가 이보다 느리면, 투입된 와이어가 고온의 용강에 의해 용융되어 연화되면서 용강내부로 침투하지 못하고 용강과의 비중차이에 의해 래이들 상부에 떠 있게 되는 반면에, 와이어의 투입속도가 빠르면 단시간에 많은 양의 Ca-Al 합금철이 용강내부로 투입되어 Ca 기화에 의한 용강 비산이 발생하여 설비에 부담을 초래함과 함께 안전상의 문제를 야기할 수 있다. Ca-Al 투입량은 용강내 [Al]성분에 의하여 결정되는데, [Ca]/[Al] 비가 0.010~0.115가 되도록 Ca-Al을 투입하여야 한다. 도5에 [Ca]/[Al]의 농도비에 따른 개재물의 상태변화를 나타내었다. [Ca]/[Al] 비가 0.010 미만이면 Al2O3가 Ca과 충분한 반응을 하지 못하여 Al2O3가 완전히 저융점화되지 못하고 고상과 액상의 중간성질을 띠게 되어 점성이 큰 개재물을 만들게 되므로 오히려 연주 노즐막힘을 가중시키게 되며, [Ca]/[Al]비가 0.115이상이면 반응하고 남은 [Ca]이 Al2O3 질의 내화물과 반응하여 침식시키므로 설비 사고를 유발할 수 있다. 제철소에서 생산하는 극저탄소강은 대개 [Al]의 농도가 0.04%인데, 이 때 필요한 용강중 [Ca]농도는 약 40ppm이상이 되어야 한다. Ca-Al 와이어를 투입한 후에는 래이들의 바닥으로부터 Ar을 1.0~1.2Nm3/분 유량으로 3~5분간 버블링(Bubbling)을 실시하여 개재물의 부상과 투입된 [Ca]과 Al2O3 의 반응을 촉진시킨다. Ca-Al 와이어를 투입한 후에 용강을 RH에서 다시 진공처리하면 Ca이 증발되어 개재물 저융점화 효과를 나타낼 수 없으므로, Ca-Al 와이어를 투입한 후에는 진공처리를 하지 않는다. 도6에 본 발명의 공정개요를 나타내었다.
제조공정: 전로-> RH(탈탄-탈산) -> Ca-Al wire투입 -> 래이들 Bottom Bubbling -> 주조
실시예
[C]≤100ppm, [Si]≤0.03% 을 기본조성으로 하는 Al탈산 극저탄소강에 대해 Ca처리를 통한 Al2O3 개재물 저융점화 실험을 실시하였다. Ca-Al합금 취입에 의한 청정강 생산결과를 본 발명자들이 실시했던 기존의 Ca-Fe 취입방법과 비교하였다.
RH 탈가스처리(탈탄 및 탈산)를 마친 용강에 Ca-Al 와이어를 250~350kg 취입한 경우, 취입후 용강중 [Ca]농도는 40~45ppm으로 기존의 Ca-Fe취입후 [Ca]농도인 10~20ppm의 약 2배 가까운 실적을 보였다. 이와 함께, 투입시 용강 상부 탕면은 본 발명재의 경우 매우 양호한 반면, 기존재의 경우는 심한 분진과 격렬한 반응으로 용강 탕면이 불안정하여 적용이 곤란하였다. Ca 처리후 용강 청정도를 나타내는 Tot.[O]수치는 본 발명의 경우 8~12ppm인 반면, 기존재의 경우는 30~40ppm으로 본 발명에 비해 높은 Tot.[O]수치를 나타내었는데, 이것으로부터 용강 청정도에 있어서 본 발명에 의한 방법이 기존 방법에 비해 우수하다는 것을 알 수 있었다. Ca-Al 와이어투입후 용강중 [Ca]과 Tot.[O]성분 거동을 도7에 나타내었다. 새로운 공정으로 생산한 용강과 기존 방법으로 생산한 용강에서 발견한 개재물 사진을 각각 도8에 비교하였다. Ca-Al을 투입한 경우의 개재물은 완전한 구형형태이며 개재물 성분중 Ca함량이 10%이상인 반면, Ca-Fe를 투입한 경우의 개재물 형태는 각형을 나타내고 있으며 성분중 Ca함량이 1%이하임을 알 수 있었으며, 이것으로부터 본 발명에 의한 방법이 기존 방법에 비해 Al2O3 개재물을 저융점화하는 능력이 우수함을 알 수 있었다.
상술한 바와 같이 Al 탈산 극저탄소강의 고청정성 확보를 위해 개발된 본 발명의 방법은 Ca-Al 합금을 사용함으로써 Al 탈산강에 적용이 가능하며, Al2O3개재물의 저융점화 효과가 기존의 Ca-Fe 분체 투입방법과 대비 탁월한 효과를 나타낸다. 따라서, 본 Ca-Al 합금을 사용한 제조방법의 유형 효과로서는 용강중 Al2O3개재물을 저융점으로 만들어 부상분리를 촉진하고 구형으로 잔류케 함으로써 용강 품질을 향상시켜 생산성 및 제품의 실수율을 향상시킬 수 있으며, 무형의 효과로서는 안정된 반응으로 설비에 부담을 줄여 제강공정의 조업부하 감소와 작업성 향상이 가능한 효과가 있다.
도1은 CaO 와 Al2O3 조성에 따른 온도별 상태 변화도,
도2는 Ca-Si분체 취입량에 따른 용강중 [Ca]과 [Si]의 농도변화도,
도3은 Ca-Fe Wire 투입량에 따른 용강중 [Ca]과 Tot.[O] 농도변화도,
도4는 Ca-Al합금중 Ca 함유율(%)에 따른 [Ca] 실수율 변화도,
도5는 용강중 [Ca]/[Al] 의 농도비에 따른 개재물의 상태변화도,
도6은 Ca-Al합금을 이용한 Al탈산 극저탄소 고청정강 제조 공정도,
도7는 Ca-Al Wire 투입량에 따른 용강중 [Ca]과 Tot.[O]농도변화도,
도8은 발명재와 기존재의 용강중 개재물 비교 사진.

Claims (4)

  1. [C]≤100ppm, [Si]≤0.03% 를 기본조성으로 하는 Al-killed 극저탄소강에 Ca-Al 합금철을 투입하여 고청정강을 제조하는 방법으로서,
    탈탄 및 Al 탈산조업 실시공정인 RH 공정을 수행하고,
    상온에서 중량비로 Ca을 15%~75%, Al을 25%~85%로 혼합한 후 외부 공기와 차단된 챔버내의 Al2O3 도가니에서 두 금속을 완전 용해, 혼합하고, 상기 도가니를 650℃ ~ 1050℃ 온도에서 1시간이상 유지시켜 제조한 Ca-Al 합금철을 용강중에 투입하여 용강 중의 Al2O3를 저융점화하여 제거 및 구형화하는 것을 포함하되,
    상기 Ca-Al 합금철은 용강중 [Ca]/[Al]농도비가 0.010 ~ 0.115가 되도록 투입되는 것을 특징으로 하는 Ca-Al 합금철을 이용한 고청정 Al-Killed강 제조 방법.
  2. 제1항에 있어서, 상기 Ca-Al 합금철을 용강 중에 투입하는 것은, 상기 Ca-Al 합금철을 입도 1mm이하의 분체로 파쇄하여 [C]함량 0.02%이하의 연강재 철피로 제조된 직경 18mm이하의 파이프 내에 넣어 코어드 와이어를 제작한 후, 상기 코어드 와이어를 상기 RH 공정 후 래이들 내 용강속으로 200~350m/분의 양으로 투입하는 것을 포함하는 것을 특징으로 하는 Ca-Al 합금철을 이용한 고청정 Al-Killed강 제조 방법.
  3. 삭제
  4. 제2항에 있어서, 상기 Ca-Al 와이어를 투입한 후 래이들의 바닥으로부터 Ar을 1.0~1.2Nm3/분 유량으로 3~5분간 버블링을 실시하여 투입된 [Ca]과 Al2O3 의 반응을 촉진시키는 것을 특징으로 하는 Ca-Al 합금철을 이용한 고청정 Al-killed강 제조 방법.
KR10-2001-0079856A 2001-12-15 2001-12-15 칼슘-알루미늄 합금철을 이용한 고청정 알루미늄-킬드강제조방법 KR100524606B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0079856A KR100524606B1 (ko) 2001-12-15 2001-12-15 칼슘-알루미늄 합금철을 이용한 고청정 알루미늄-킬드강제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0079856A KR100524606B1 (ko) 2001-12-15 2001-12-15 칼슘-알루미늄 합금철을 이용한 고청정 알루미늄-킬드강제조방법

Publications (2)

Publication Number Publication Date
KR20030049612A KR20030049612A (ko) 2003-06-25
KR100524606B1 true KR100524606B1 (ko) 2005-11-02

Family

ID=29575410

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0079856A KR100524606B1 (ko) 2001-12-15 2001-12-15 칼슘-알루미늄 합금철을 이용한 고청정 알루미늄-킬드강제조방법

Country Status (1)

Country Link
KR (1) KR100524606B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100728131B1 (ko) * 2005-12-19 2007-06-13 주식회사 포스코 칼슘 덩어리 및 이를 이용하여 제조된 강재
CN105369112B (zh) * 2015-10-21 2017-03-08 吉林建龙钢铁有限责任公司 超低碳钢的制备工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR860002324A (ko) * 1984-09-12 1986-04-24 고준식 연질(軟質) 박강판용 연주주편(延鑄鑄片)의 제조방법
JPH07268439A (ja) * 1994-03-29 1995-10-17 Nkk Corp 溶鋼中の非金属介在物の形態制御方法
JPH09263820A (ja) * 1996-03-25 1997-10-07 Kawasaki Steel Corp クラスターのないAlキルド鋼の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR860002324A (ko) * 1984-09-12 1986-04-24 고준식 연질(軟質) 박강판용 연주주편(延鑄鑄片)의 제조방법
JPH07268439A (ja) * 1994-03-29 1995-10-17 Nkk Corp 溶鋼中の非金属介在物の形態制御方法
JPH09263820A (ja) * 1996-03-25 1997-10-07 Kawasaki Steel Corp クラスターのないAlキルド鋼の製造方法

Also Published As

Publication number Publication date
KR20030049612A (ko) 2003-06-25

Similar Documents

Publication Publication Date Title
EP4227431A1 (en) V-n microalloyed steel and method for producing v-n microalloyed and surface-crack-free continuous casting blank
KR100941841B1 (ko) 오스테나이트계 스테인리스강 제조방법
WO2023062856A1 (ja) 表面性状に優れたNi基合金およびその製造方法
JP4280163B2 (ja) 低炭素鋼板、低炭素鋼鋳片およびその製造方法
JP5891826B2 (ja) 溶鋼の脱硫方法
KR100524606B1 (ko) 칼슘-알루미늄 합금철을 이용한 고청정 알루미늄-킬드강제조방법
JP2009113086A (ja) 極低炭素鋼の連続鋳造方法
CN114737010A (zh) 一种防止高硅铝脱氧钢大包粘渣的造渣方法
KR100729123B1 (ko) 저탄소 오스테나이트계 스테인레스강의 제조방법
KR100368239B1 (ko) 고청정강의 정련방법
JP5131827B2 (ja) 溶鋼の加熱方法および圧延鋼材の製造方法
JP2008266706A (ja) フェライト系ステンレス鋼連続鋳造スラブの製造法
JPH04218644A (ja) 清浄性およびエッチング穿孔性に優れたFe−Ni系合金冷延板およびその製造方法 
JP7369266B1 (ja) 表面性状に優れたFe-Cr-Ni系合金およびその製造方法
JP4710180B2 (ja) 高清浄度鋼の製造方法
JP2002105527A (ja) 高清浄度鋼の製造方法
JP7288130B1 (ja) 表面性状に優れたNi-Cu合金およびその製造方法
JP6040739B2 (ja) チタン含有極低炭素鋼の製造方法
CN113930584B (zh) 一种提高高硅铝镇静钢的生产稳定性的方法
CN115747621B (zh) 一种高铝或高硅电工钢的超低钛冶炼方法
KR100900650B1 (ko) 용강중 칼슘 성분 조정용 와이어 및 이를 이용한 용강중칼슘 성분 조정방법
JP7031634B2 (ja) 耐サワー鋼材の製造方法
KR20000019208A (ko) 감압 처리에 의한 고청정강의 제조 방법
KR101018235B1 (ko) 용강내 바나듐 첨가방법
JP4418119B2 (ja) 溶鋼中の微細酸化物分散方法

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121022

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20131021

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20141020

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20151021

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20161021

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20171023

Year of fee payment: 13

LAPS Lapse due to unpaid annual fee