KR100510156B1 - Polyester based thermally adhesive composite short fiber and process for producing the same - Google Patents

Polyester based thermally adhesive composite short fiber and process for producing the same Download PDF

Info

Publication number
KR100510156B1
KR100510156B1 KR10-2002-7016303A KR20027016303A KR100510156B1 KR 100510156 B1 KR100510156 B1 KR 100510156B1 KR 20027016303 A KR20027016303 A KR 20027016303A KR 100510156 B1 KR100510156 B1 KR 100510156B1
Authority
KR
South Korea
Prior art keywords
fiber
polyester
heat
component
composite short
Prior art date
Application number
KR10-2002-7016303A
Other languages
Korean (ko)
Other versions
KR20030005134A (en
Inventor
고다히로노리
다시로미끼오
Original Assignee
데이진 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 데이진 가부시키가이샤 filed Critical 데이진 가부시키가이샤
Publication of KR20030005134A publication Critical patent/KR20030005134A/en
Application granted granted Critical
Publication of KR100510156B1 publication Critical patent/KR100510156B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/507Polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2904Staple length fiber
    • Y10T428/2907Staple length fiber with coating or impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2904Staple length fiber
    • Y10T428/2909Nonlinear [e.g., crimped, coiled, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

치수 안정성이 양호하며, 고온 분위기하에서 사용해도 변형이 잘 일어나기 않는 고품위의 섬유 구조체를 얻을 수 있는 폴리에스테르계 열접착성 복합 단섬유는 유리 전이점이 50 ∼ 100 ℃ 이고 또한 결정 융점을 갖지 않는 비정성 폴리에스테르를 열접착성 성분으로 하고, 융점이 220 ℃ 이상인 폴리알킬렌테레프탈레이트를 섬유 형성성 성분으로 하는, 권축수가 3 ∼ 40 개/25㎜, 권축률이 3 ∼ 40 %, 웹 면적 수축률이 20 % 이하인 특성을 갖는 것이다.Polyester-based heat-adhesive composite short fibers, which have good dimensional stability and can obtain a high quality fiber structure that does not easily deform even when used in a high-temperature atmosphere, are amorphous having a glass transition point of 50 to 100 ° C. and no crystal melting point. The number of crimps is 3-40 pieces / 25mm, the crimp rate is 3-40%, and the web area shrinkage rate makes polyester as a heat-adhesive component, and makes polyalkylene terephthalate whose melting point is 220 degreeC or more as a fiber formation component. It has a characteristic of 20% or less.

단, 웹 면적 수축율 (%) 은 열접착성 복합 단섬유 100 % 로 이루어지는 면적이 A0, 단위 면적당 중량이 30 g/㎡ 인 커드 웹 부직포 (card web non-woven fabric)를 150 ℃ 로 유지한 열풍 건조기 속에 2 분간 방치하고, 그 후의 부직포의 면적 A1 으로 하였을 때, (A0 - A1) / A0 ×100 로 표현된다.However, the web area shrinkage rate (%) is maintained at 150 ° C. with a card web non-woven fabric having an area of 100% of heat-adhesive composite short fiber A 0 and a weight of 30 g / m 2 per unit area. allowed to stand 2 minutes in a hot air dryer, and when the area a 1 of the subsequent non-woven fabric, - is represented by (a 0 a 1) / a 0 × 100.

Description

폴리에스테르계 열접착성 복합 단섬유 및 그 제조 방법{POLYESTER BASED THERMALLY ADHESIVE COMPOSITE SHORT FIBER AND PROCESS FOR PRODUCING THE SAME}Polyester-based heat-adhesive composite short fibers and its manufacturing method {POLYESTER BASED THERMALLY ADHESIVE COMPOSITE SHORT FIBER AND PROCESS FOR PRODUCING THE SAME}

본 발명은 부직포나 메우는 솜 등의 섬유 구조체의 접착용으로서 적합한 폴리에스테르계 열접착성 복합 단섬유 및 그 제조 방법에 관한 것이다. 더욱 상세하게 설명하면, 비교적 저온에서 열고착할 수 있고, 또한 치수 안정성이 양호한 섬유 구조체를 안정되게 얻을 수 있는 열접착성 복합 단섬유 및 그 제조 방법에 관한 것이다.The present invention relates to a polyester-based heat-adhesive composite short fiber suitable for bonding a fiber structure such as a nonwoven fabric or a cotton wool, and a method for producing the same. More specifically, the present invention relates to a heat-adhesive composite short fiber which can be heat-bonded at a relatively low temperature and stably obtains a fiber structure having good dimensional stability, and a method for producing the same.

종래, 폴리에스테르계 열접착성 복합 섬유로는, 폴리에틸렌테레프탈레이트 등의 폴리알킬렌테레프탈레이트를 코어 성분으로 하고, 이소프탈산 성분이나 테레프탈산 성분 등을 구성 산성분으로 하는 결정 융점을 갖지 않는 비정성(非晶性) 폴리에스테르를 시스 성분으로 한 복합 섬유가 120 ∼ 150 ℃ 라는 비교적 저온에서 열고착할 수 있고, 고온의 열처리를 필요로 하지 않고 섬유 구조체를 성형할 수 있는 점에서 널리 사용되고 있다.Conventionally, as polyester-based heat-adhesive composite fibers, there is a non-crystalline non-crystalline melting point having polyalkylene terephthalate such as polyethylene terephthalate as a core component and an isophthalic acid component, a terephthalic acid component, or the like as a constituent acid component. It is widely used in the point that the composite fiber which uses a non-polyester as a sheath component can heat-settle at 120-150 degreeC comparatively low temperature, and can shape a fiber structure, without requiring high temperature heat processing.

그러나 이러한 폴리에스테르계 열접착성 복합 섬유에는, 비교적 저온에서 섬유 구조체를 성형할 수 있는 반면, 얻어진 섬유 구조체를 고온 분위기하에서 사용하면 치수 안정성이 나빠 변형이 크다는 문제가 있다.However, the polyester-based heat-adhesive composite fiber has a problem in that the fiber structure can be molded at a relatively low temperature, while the obtained fiber structure is used under a high temperature atmosphere, resulting in poor dimensional stability and large deformation.

본 발명자들은 이러한 문제를 해소하고자 열접착성 섬유 자체의 치수 안정성을 향상시키기 위해 고온에서의 연신이나 열처리를 실시하는 것을 시도하였으나, 비정성 폴리에스테르의 유리 전이점 이상의 온도에서는 섬유끼리가 교착하여 제사가 어렵다는 문제가 있음이 판명되었다.The present inventors attempted to perform stretching or heat treatment at high temperature in order to improve the dimensional stability of the heat-adhesive fiber itself to solve this problem, but at the temperature above the glass transition point of the amorphous polyester, fibers are interlaced and sacrificed. Proved to be a difficult problem.

이러한 사정에서 비정성 폴리에스테르 특히 유리 전이점이 50 ∼ 100 ℃ 인 비정성 폴리에스테르를 열접착성 성분으로 하는 열접착성 복합 섬유에서 그 치수 안정성이 우수한 것은 종래부터 아직까지 제안되어 있지 않은 실정이다.Under these circumstances, it has not been proposed until now that the thermally stable composite fiber having amorphous polyester having a glass transition point of 50 to 100 ° C. as the heat adhesive component has excellent dimensional stability.

본 발명이 목적으로 하는 바는, 고온의 열처리를 필요로 하지 않고 비교적 저온에서 열고착할 수 있고, 또한 고온 분위기하에서 사용해도 치수 안정성이 양호하여 변형이 잘 일어나기 않으며 고품위의 부직포나 메우는 솜 등의 섬유 구조체를 얻을 수 있는 폴리에스테르계 열접착성 복합 단섬유 및 그 제조 방법을 제공하는 데 있다.It is an object of the present invention to be heat-sealable at a relatively low temperature without the need for high temperature heat treatment, and to have good dimensional stability even when used in a high temperature atmosphere, so that deformation does not easily occur, and high-quality nonwoven fabrics and filling cotton, etc. It is to provide a polyester-based heat-adhesive composite short fibers capable of obtaining a fiber structure and a method for producing the same.

본 발명자들은 상기 목적을 달성하기 위해서는, 유리 전이점이 50 ∼ 100 ℃ 인 비정성 폴리에스테르를 열접착성 성분으로 하고, 폴리알킬렌테레프탈레이트를 섬유 형성성 성분으로 함과 동시에 그 열연신 조건을 선택하는 것이 유효함을 발견하여 본 발명을 완성하기에 이르렀다.MEANS TO SOLVE THE PROBLEM In order to achieve the said objective, the present inventors make amorphous polyester which has a glass transition point of 50-100 degreeC as a heat-adhesive component, selects polyalkylene terephthalate as a fiber forming component, and selects the heat-extending conditions. It has been found to be effective to complete the present invention.

즉 상기 목적을 달성할 수 있는 본 발명의 폴리에스테르계 열접착성 복합 단섬유는, 유리 전이점이 50 ∼ 100 ℃ 이고 또한 결정 융점을 갖지 않는 비정성 폴리에스테르를 열접착성 성분으로 하고, 융점이 220 ℃ 이상인 폴리알킬렌테레프탈레이트를 섬유 형성성 성분으로 하는 열접착성 복합 단섬유로서, 그 권축수가 3 ∼ 40 개/25㎜, 권축률이 3 ∼ 40 % 및 하기에 정의하는 웹 면적 수축률이 20 % 이하인 것을 특징으로 한다.That is, the polyester-based heat-adhesive composite short fibers of the present invention, which can achieve the above object, have a non-crystalline polyester having a glass transition point of 50 to 100 ° C and no crystal melting point as a heat-adhesive component, and the melting point A heat-adhesive composite short fiber comprising, as a fiber-forming component, a polyalkylene terephthalate having a temperature of 220 ° C. or higher, wherein the number of crimps is 3-40 pieces / 25 mm, the crimp rate is 3-40%, and the web area shrinkage defined below. It is characterized by being 20% or less.

〈웹 면적 수축률〉<Web area shrinkage>

열접착성 복합 단섬유 100 % 로 이루어진, 면적이 A0, 단위 면적당 중량이 30 g/㎡ 인 커드 웹 부직포 (card web non-woven fabric)를 150 ℃ 로 유지한 열풍 건조기 속에 2 분간 방치하고, 그 후의 부직포의 면적 A1 을 측정하여 하기 식으로 구한다.A card web non-woven fabric having an area A 0 and a weight of 30 g / m 2 per unit area consisting of 100% of heat-adhesive composite short fibers was allowed to stand for 2 minutes in a hot air dryer kept at 150 ° C. The area A 1 of the nonwoven fabric after that is measured and calculated | required by the following formula.

웹 면적 수축률 (%) = (A0 - A1) / A0 ×100Web area shrinkage (%) = (A 0 -A 1 ) / A 0 × 100

또한 본 발명의 다른 목적인 폴리에스테르계 열접착성 복합 단섬유의 제조 방법은, 유리 전이점이 50 ∼ 100 ℃ 이고 또한 결정 융점을 갖지 않는 비정성 폴리에스테르와 융점이 220 ℃ 이상인 폴리알킬렌테레프탈레이트를 용융·복합 토출하고, 이 복합 토출(吐出) 사조를 냉각 고화시킨 후 속도 1500 m/분 이하에서 인취하여 미연신 복합 섬유로 하고, 이어서 이 미연신 복합 섬유에 폴리에테르폴리에스테르 블록 공중합체를 상기 섬유 중량에 대해 0.03 중량% 이상 부여한 후에 T1 ∼ (T2 + 30℃) 의 온도에서 냉각시 최대 연신 배율의 0.72 ∼ 1.25 배로 연신하고, 권축수가 3 ∼ 40 개/25㎜, 권축률이 3 ∼ 40 % 가 되도록 권축을 부여하는 것을 특징으로 한다.Moreover, the manufacturing method of the polyester type heat-adhesive composite short fiber which is another objective of this invention is a non-crystalline polyester which has a glass transition point of 50-100 degreeC, and does not have a crystalline melting point, and the polyalkylene terephthalate whose melting point is 220 degreeC or more. After melt-and-composite discharge and cooling and solidifying this composite discharge yarn, it pulls out at the speed of 1500 m / min or less, and makes it an unstretched composite fiber, Then, the polyether polyester block copolymer is mentioned to this unstretched composite fiber. after granted higher than 0.03% by weight based on the fiber weight T 1 ~ number (T 2 + 30 ℃) 0.72 ~ 1.25 times the stretch, and up to the draw ratio during the cooling at a temperature of 3-40 crimps / 25㎜, the crimp ratio is 3 Crimping is provided so that it may become-40%.

여기에서 T1 은 비정성 폴리에스테르의 유리 전이점과 폴리알킬렌테레프탈레이트의 유리 전이점 중 어느 한 높은 쪽의 온도, T2 는 비정성 폴리에스테르의 유리 전이점이다.Herein, T 1 is the temperature of either the glass transition point of the amorphous polyester or the glass transition point of the polyalkylene terephthalate, and T 2 is the glass transition point of the amorphous polyester.

발명을 실시하기 위한 최선의 형태Best Mode for Carrying Out the Invention

본 발명의 폴리에스테르계 열접착성 복합 단섬유의 섬유 형성성 성분으로는, 융점이 220 ℃ 이상인 폴리알킬렌테레프탈레이트를 사용한다. 섬유 형성성 성분인 폴리에스테르의 융점이 220 ℃ 미만이 되면, 복합 섬유를 안정되게 제사하기가 어려워질 뿐만 아니라, 열접착 처리시의 안정성이 저하된다. 폴리알킬렌테레프탈레이트의 구체예로는, 폴리에틸렌테레프탈레이트나 폴리부틸렌테레프탈레이트가 바람직하고, 이들 특성을 해치지 않는 범위라면 소량의 공중합 성분이나 광택 제거제, 착색제, 활제 등의 첨가제를 함유할 수도 있다. 그 중에서도 폴리에틸렌테레프탈레이트는 저렴하며 범용이기 때문에 보다 바람직하다.As the fiber-forming component of the polyester-based heat-adhesive composite short fibers of the present invention, a polyalkylene terephthalate having a melting point of 220 ° C. or more is used. When melting | fusing point of polyester which is a fiber formation component becomes less than 220 degreeC, not only it becomes difficult to stably produce a composite fiber, but also the stability at the time of a heat bonding process falls. As a specific example of polyalkylene terephthalate, polyethylene terephthalate or polybutylene terephthalate is preferable, and if it is a range which does not impair these characteristics, it may contain a small amount of additives, such as a copolymerization component, a gloss remover, a coloring agent, a lubricating agent. . Among them, polyethylene terephthalate is more preferable because it is inexpensive and general purpose.

한편 열접착성 성분이 되는 비정성 폴리에스테르로는, 유리 전이점이 50 ∼ 100 ℃ 이고 또한 결정 융점을 갖지 않는 폴리에스테르를 사용한다. 이 폴리에스테르의 유리 전이점이 50 ℃ 미만인 경우에는, 후술하는 제조 방법의 연신시에 섬유가 교착되기 쉽고, 또한 면적 수축률이 20 % 이하인 치수 안정성이 우수한 복합 섬유를 얻을 수 없게 되므로 바람직하지 못하다. 한편 유리 전이점이 100 ℃ 를 넘는 경우에는 120 ∼ 150 ℃ 라는 저온에서의 열고착성이 나빠지므로 바람직하지 못하다.On the other hand, as amorphous polyester which becomes a heat-adhesive component, polyester which has a glass transition point of 50-100 degreeC and does not have a crystalline melting point is used. When the glass transition point of this polyester is less than 50 degreeC, it is unpreferable since the fiber tends to interlock at the time of extending | stretching the below-mentioned manufacturing method, and the composite fiber excellent in the dimensional stability whose area shrinkage is 20% or less cannot be obtained. On the other hand, when a glass transition point exceeds 100 degreeC, since the heat setability in the low temperature of 120-150 degreeC will worsen, it is unpreferable.

이러한 비정성 폴리에스테르로는, 예컨대 테레프탈산, 이소프탈산, 2,6-나프탈렌디카르복실산, 5-나트륨술포이소프탈산, 아디프산, 세바스산, 아젤라인산, 도데칸디카르복실산, 1,4-시클로헥산디카르복실산 등의 산 성분과, 에틸렌글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,5-펜탄디올, 1,6-헥산디올, 디에틸렌글리콜, 1,4-시클로헥산디올, 1,4-시클로헥산디메탄올 등의 디올 성분의 랜덤 또는 블록 공중합체를 들 수 있다. 그 중에서도 테레프탈산 성분, 이소프탈산 성분, 에틸렌글리콜 성분 및 디에틸렌글리콜 성분으로 구성된 비정성 공중합 폴리에스테르가 비용면이나 취급성의 관점에서 바람직하다.Such amorphous polyesters include, for example, terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, adipic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid, 1, Acid components such as 4-cyclohexanedicarboxylic acid, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, diethylene glycol, 1, Random or block copolymers of diol components, such as 4-cyclohexanediol and 1, 4- cyclohexane dimethanol, are mentioned. Especially, amorphous co-polyester comprised from a terephthalic acid component, an isophthalic acid component, an ethylene glycol component, and a diethylene glycol component is preferable from a cost point or a handleability viewpoint.

열접착성 성분으로서, 상기 테레프탈산 성분, 이소프탈산 성분, 에틸렌글리콜 성분 및 디에틸렌글리콜 성분으로 이루어진 공중합 폴리에스테르를 사용하는 경우에는, 유리 전이점이 상기 범위내로 되도록 공중합 비율을 설정할 필요가 있으나, 테레프탈산 성분과 이소프탈산 성분의 몰비는 50 : 50 ∼ 80 : 20 의 범위가 적당하고, 한편 에틸렌글리콜과 디에틸렌글리콜의 몰비는 0 : 100 ∼ 100 : 0 의 범위에서 임의로 선택할 수 있다.As a heat-adhesive component, when using the copolyester which consists of the said terephthalic acid component, the isophthalic acid component, the ethylene glycol component, and the diethylene glycol component, it is necessary to set a copolymerization ratio so that a glass transition point may exist in the said range, but a terephthalic acid component The molar ratio of the isophthalic acid component is in the range of 50:50 to 80:20, while the molar ratio of ethylene glycol and diethylene glycol can be arbitrarily selected in the range of 0: 100 to 100: 0.

그리고 본 발명의 폴리에스테르계 열접착성 복합 단섬유에 있어서는, 열접착성 성분이 섬유 표면의 전부 또는 일부 (바람직하게는 섬유 표면적의 40 % 이상, 특히 60 % 이상) 를 차지하고 있으면, 코어 시스형, 편심 코어 시스형, 사이드 바이 사이드형, 해도형, 할섬형(割纖型) 등에서 어느 한 복합 형태를 취해도 된다. 그 중에서도 코어 시스형, 편심 코어 시스형, 사이드 바이 사이드형이 보다 바람직하다.In the polyester-based heat-adhesive short fibers of the present invention, if the heat-adhesive component occupies all or part of the fiber surface (preferably 40% or more, particularly 60% or more of the fiber surface area), the core sheath type The eccentric core sheath type, the side by side type, the island-in-the-sea type, and the split-shape type may be taken in any one composite form. Especially, a core sheath type, an eccentric core sheath type, and a side by side type are more preferable.

이어서 본 발명의 열접착성 복합 단섬유는, 그 권축수가 3 ∼ 40 개/25㎜, 권축률이 3 ∼ 40 % 일 필요가 있다. 권축수가 3 개/25㎜ 미만 또는 권축률이 3 % 미만인 경우에는 단섬유간의 얽힘성이 부족하여 커드 통과성이 나빠지기 때문에, 고품위의 섬유 구조체를 얻을 수 없게 되므로 바람직하지 못하다. 한편 권축수가 40 개/25㎜ 를 넘거나 권축률이 40 % 를 넘는 경우에는 단섬유간의 얽힘이 지나치게 커져서 커드에서 충분한 소면(梳綿)을 이룰 수 없고, 고품위의 섬유 구조체를 얻을 수 없게 되므로 바람직하지 못하다. 보다 바람직한 권축의 범위로는 권축수가 5 ∼ 30 개/25㎜ 범위, 권축률은 5 ∼ 30 % 범위이다. 권축의 형태는 기계 권축이어도 입체 권축이어도 되며, 용도나 목적에 맞게 적절히 선택하여 설정하면 된다.Next, the heat-adhesive composite short fiber of this invention needs to be 3-40 pieces / 25 mm of crimp numbers, and 3 to 40% of a crimp rate. If the number of crimps is less than 3/25 mm, or the crimp rate is less than 3%, the entanglement between the short fibers is insufficient and the curd permeability deteriorates, which is not preferable because a high quality fiber structure cannot be obtained. On the other hand, when the number of crimps exceeds 40/25 mm or the crimp rate exceeds 40%, the entanglement between the short fibers becomes excessively large, so that sufficient carding cannot be achieved in the curd, and a high quality fiber structure cannot be obtained. I can't. As a more preferable range of crimp, the crimp number is in the range of 5 to 30 pieces / 25 mm, and the crimp rate is in the range of 5 to 30%. The crimp may be a mechanical crimp or a three-dimensional crimp, and may be appropriately selected and set in accordance with the intended use or purpose.

그리고 섬유 길이나 단사 섬도는 특별히 한정할 필요는 없고, 용도나 목적에 맞게 적절히 설정하면 된다.And fiber length and single yarn fineness do not need to specifically limit, What is necessary is just to set suitably according to a use and a purpose.

본 발명의 열접착성 복합 단섬유에 있어서는, 상기 요건에 더하여 하기에 정의하는 웹 면적 수축률이 20 % 이하일 것이 중요하다. 그럼으로써 상기 복합 섬유를 100 % 또는 다른 섬유와 혼면하여 고온 분위기하에서도 치수 안정성이 우수한 섬유 구조체를 얻을 수 있다. 이 수축률이 20 % 를 넘는 경우에는, 고온 분위기하에서의 치수 안정성이 우수한 섬유 구조체를 얻을 수 없다. 보다 바람직한 웹 면적 수축률은 10 % 이하이다.In the heat-adhesive composite short fibers of the present invention, in addition to the above requirements, it is important that the web area shrinkage defined below is 20% or less. Thereby, the composite fiber can be blended with 100% or other fibers to obtain a fiber structure excellent in dimensional stability even in a high temperature atmosphere. When this shrinkage rate exceeds 20%, the fiber structure excellent in dimensional stability in a high temperature atmosphere cannot be obtained. More preferred web area shrinkage is 10% or less.

〈웹 면적 수축률〉<Web area shrinkage>

열융착성 단섬유 100 % 로 이루어진, 면적이 A0, 단위 면적당 중량이 30 g/㎡ 인 커드 웹 부직포를 150 ℃ 로 유지한 열풍 건조중에 2 분간 방치하고, 그 후의 부직포의 면적 A1 을 측정하여 하기 식으로 구한다.A curd web nonwoven fabric consisting of 100% of heat-sealable short fibers and having an area of A 0 and a weight of 30 g / m 2 per unit area was left to stand for 2 minutes during hot air drying at 150 ° C., and the area A 1 of the subsequent nonwoven fabric was measured. To obtain the following formula.

웹 면적 수축률 (%) = (A0 - A1) / A0 ×100Web area shrinkage (%) = (A 0 -A 1 ) / A 0 × 100

이상에 설명한 본 발명의 폴리에스테르계 열접착성 복합 단섬유는, 예컨대 이하의 방법에 따라 효율적으로 생산할 수 있다. 즉 전술한 비정성 폴리에스테르와 폴리알킬렌테레프탈레이트를 복합화, 바람직하게는 코어 시스형, 편심 코어 시스형 또는 사이드 바이 사이드형으로 복합화하여 용융 토출하고, 이 토출 사조를 속도 1500 m/분 이하에서 인취하여 미연신 복합 섬유로 한다. 이어서 얻어진 미연신 복합 섬유에 폴리에테르폴리에스테르 블록 공중합체를 상기 섬유 중량에 대해 0.03 중량% 이상 부여한 후, T1 ∼ (T2 + 30℃) 의 온도에서 냉각시 최대 연신 배율의 0.72 ∼ 1.25 배로 연신하고, 추가로 권축수가 3 ∼ 40 개/25㎜, 권축률이 3 ∼ 40 % 가 되도록 권축을 부여하고, 원하는 길이로 커트함으로써 제조할 수 있다. 여기에서 T1 은 비정성 폴리에스테르의 유리 전이점과 폴리알킬렌테레프탈레이트의 유리 전이점 중 어느 한 높은 쪽의 온도, T2 는 비정성 폴리에스테르의 유리 전이점을 말한다.The polyester-based heat-adhesive composite short fibers of the present invention described above can be produced efficiently by, for example, the following method. That is, the above-mentioned amorphous polyester and polyalkylene terephthalate are compounded, preferably a core sheath, an eccentric core sheath, or a side by side type, which are melt-discharged, and the discharge thread is discharged at a speed of 1500 m / min or less. It is taken out to give an unoriented composite fiber. Then, the polyether polyester block copolymer was added 0.03% by weight or more to the weight of the fiber, and then 0.72 to 1.25 times the maximum draw ratio upon cooling at a temperature of T 1 to (T 2 + 30 ° C). It extends | stretches, and can further manufacture by crimping | crimping so that crimp number may be 3-40 pieces / 25 mm, and a crimp rate may be 3-40%, and it cuts to a desired length. Where T 1 is the amorphous polyester and the glass transition point of the polyalkylene terephthalate, the glass transition temperature of any one of high-side of the, T 2 refers to the glass transition point of the amorphous polyester.

여기에서 인취 속도가 1500 m/분을 넘는 경우에는, 얻어지는 미연신 복합 섬유를 상기 조건으로 연신하여도 웹면 수축률을 20 % 이하로 할 수 없으므로 바람직하지 못하다.In the case where the take-off speed exceeds 1500 m / min, even if the unstretched composite fiber obtained is stretched under the above conditions, the web surface shrinkage cannot be made 20% or less, which is not preferable.

상기 제조 방법에 있어서의 제 1 포인트는, 인취된 미연신 복합 섬유를 연신하기 전 단계에서, 이 복합 섬유 표면에 폴리에테르폴리에스테르 블록 공중합체를 부여하는 데 있다. 이와 같이 함으로써, 비정성 폴리에스테르의 유리 전이점 (T2 ; 즉, 비정성 공중합 폴리에스테르의 연화점에 상당) 이상의 고온에서 연신하여도, 연신 온도가 T2 + 30 ℃ 이하의 온도라면 연신 공정에서의 섬유간 교착을 발생시키지 않고 웹면 수축률이 20 % 이하인 폴리에스테르계 열접착성 복합 단섬유를 얻을 수 있다. 또한 상기 폴리에테르폴리에스테르 블록 공중합체가 복합 섬유 표면에 부착되어 있어도 열접착성은 그다지 저하되지 않기 때문에, 기계적 특성이 우수한 섬유 구조체를 얻을 수 있다.The 1st point in the said manufacturing method is to give a polyether polyester block copolymer to the surface of this composite fiber in the step before extending | stretching the drawn unstretched composite fiber. By doing this, the non-crystalline glass transition point of the polyester; if also stretched at temperatures higher than (T 2 that is, non-crystalline copolymer corresponding to the softening point of the polyester), the stretching temperature T a temperature not higher than the 2 + 30 ℃ in the drawing process It is possible to obtain a polyester-based heat-adhesive composite short fiber having a web surface shrinkage of 20% or less without causing interfiber interlocking. Moreover, even if the said polyether polyester block copolymer adheres to the surface of a composite fiber, heat adhesiveness does not fall so much, and the fiber structure excellent in mechanical property can be obtained.

이러한 교착 방지 효과와 열접착성 유지 효과의 동시 달성은, 단섬유 제조용 유제로서 통상 사용되고 있는 음이온계 계면활성제 또는 그 폴리옥시알킬렌 부가물, 양이온계 계면활성제, 비이온계 계면활성제, 광물유 등으로는 할 수 없고, 또한 폴리실록산계 처리제로도 할 수 없다.Simultaneous achievement of the anti-adhesion effect and the heat-adhesive retention effect is achieved by anionic surfactants or polyoxyalkylene adducts thereof, cationic surfactants, nonionic surfactants, mineral oils and the like which are commonly used as oils for producing short fibers. It cannot be used, nor can it be used as a polysiloxane treatment agent.

바람직하게 사용되는 폴리에테르폴리에스테르 블록 공중합체로는, 특히 디카르복실산 성분이 테레프탈산 성분과 이소프탈산 성분 및/또는 알칼리 금속염 술포이소프탈산 성분으로 이루어지고 그 몰비가 40 : 60 ∼ 100 : 0 이고, 글리콜 성분이 에틸렌글리콜이고, 또한 수평균분자량이 600 ∼ 10000 의 범위에 있는 폴리알킬렌글리콜을 20 ∼ 95 중량% 공중합시킨 것을 들 수 있고, 특히 수계 에멀션 안정성이나 연신 공정에서의 교착 발생 방지 효과의 관점에서 바람직하다. 단, 아디프산, 세바스산, 아젤라인산, 도데칸디카르복실산, 1,4-시클로헥산디카르복실산 등의 산 성분이나, 1,3-프로판디올, 1,4-부탄디올, 1,5-펜탄디올, 1,6-헥산디올, 디에틸렌글리콜, 1,4-시클로헥산디올, 1,4-시클로헥산디메탄올 등의 디올 성분이 소량 공중합되어 있어도 되며, 또한 분자량을 조정하기 위해 폴리알킬렌글리콜의 한 쪽 말단기가 모노메틸에테르, 모노에틸에테르, 모노페닐에테르와 같은 에테르 결합에 의해 봉쇄되어 있어도 무방하다. 그리고 폴리알킬렌글리콜으로는, 예컨대 폴리에틸렌글리콜, 에틸렌옥사이드ㆍ프로필렌옥사이드 공중합체, 폴리프로필렌글리콜, 폴리테트라메틸렌글리콜 등을 들 수 있고, 그 중에서도 폴리에틸렌글리콜이 바람직하다.As the polyether polyester block copolymer to be preferably used, in particular, the dicarboxylic acid component is composed of a terephthalic acid component, an isophthalic acid component and / or an alkali metal salt sulfoisophthalic acid component, and the molar ratio thereof is 40:60 to 100: 0. And copolymerization of 20 to 95% by weight of a polyalkylene glycol having a glycol component of ethylene glycol and a number average molecular weight in the range of 600 to 10000. Particularly, the effect of preventing the occurrence of deadlock in the aqueous emulsion stability and the stretching process is mentioned. It is preferable at the point of view. However, acid components such as adipic acid, sebacic acid, azelaic acid, dodecanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-propanediol, 1,4-butanediol, 1,5 A small amount of diol components such as -pentanediol, 1,6-hexanediol, diethylene glycol, 1,4-cyclohexanediol, and 1,4-cyclohexanedimethanol may be copolymerized, and polyalkyl is used to adjust the molecular weight. One end group of len glycol may be blocked by ether bonds, such as monomethyl ether, monoethyl ether, and monophenyl ether. And as polyalkylene glycol, polyethyleneglycol, an ethylene oxide propylene oxide copolymer, polypropylene glycol, polytetramethylene glycol etc. are mentioned, for example, polyethyleneglycol is especially preferable.

폴리에테르폴리에스테르 블록 공중합체의 수평균분자량은 3000 ∼ 20000 의 범위가 보다 높은 교착 방지 효과를 얻을 수 있으므로 바람직하다.Since the number average molecular weight of a polyether polyester block copolymer can obtain the higher anti-adhesion effect of the range of 3000-20000, it is preferable.

이러한 폴리에테르폴리에스테르 블록 공중합체의 미연신 섬유에 대한 부착량은, 상기 미연신 섬유에 대해 0.03 중량% 이상일 필요가 있고, 0.03 중량% 미만인 경우에는 후술하는 연신시에 충분한 교착 방지 효과를 얻을 수 없으므로 바람직하지 못하다. 한편 부착량을 많게 해도 그 교착 방지 효과는 한계에 달해 증대하지 않게 되므로, 0.5 중량% 이하로 하는 것이 적당하다. 특히 0.05 ∼ 0.3 중량% 의 범위가 적당하다.The amount of adhesion of the polyether polyester block copolymer to the unstretched fiber needs to be 0.03 wt% or more with respect to the unstretched fiber, and if it is less than 0.03 wt%, sufficient anti-sticking effect is not obtained at the time of stretching described later. Not desirable On the other hand, even if the adhesion amount is increased, the anti-deadlock effect reaches the limit and does not increase, so it is appropriate to be 0.5% by weight or less. Especially the range of 0.05 to 0.3 weight% is suitable.

폴리에테르폴리에스테르 블록 공중합체를 미연신 복합 섬유 표면에 부착시키는 방법은 특별히 한정되지 않으며, 종래 공지된 임의의 방법으로 부여할 수 있는데, 통상 수계 에멀션 용액으로서 부여된다. 이 때 이 에멀션 용액을 안정화시키기 위한 유화제 외에 제전제, 평활제, 녹 방지제, 곰팡이 방지제, 항균제 등의 첨가제를 함유하고 있어도 무방하다.The method for attaching the polyether polyester block copolymer to the surface of the unstretched composite fiber is not particularly limited, and can be given by any conventionally known method, but is usually given as an aqueous emulsion solution. At this time, in addition to the emulsifier for stabilizing this emulsion solution, it may contain additives such as an antistatic agent, a leveling agent, a rust inhibitor, an antifungal agent, and an antibacterial agent.

이어서 상기 제조 방법에 있어서의 제 2 포인트는 연신 온도이다. 연신 온도는 T2 (비정성 폴리에스테르의 유리 전이점) 이상으로 설정하는 것은 물론이지만, 동시에 섬유 형성성 성분인 폴리알킬렌테레프탈레이트를 열고정하기 위해, 폴리알킬렌테레프탈레이트의 유리 전이점 이상의 온도로 설정할 필요가 있다. 미리 미연신 복합 섬유 표면에 상기 폴리에테르폴리에스테르 블록 공중합체를 부여해도, 연신 온도가 비정성 공중합 폴리에스테르와 폴리알킬렌테레프탈레이트의 유리 전이점 중 어느 한쪽보다 하회하는 경우에는, 본 발명이 목적으로 하는 치수 안정성이 우수한 열접착성 복합 단섬유는 얻을 수 없다. 그리고 연신 온도를 T2 (비정성 폴리에스테르의 유리 전이점) + 30 ℃ 를 넘는 고온으로 하지 않는 것도 중요하다. 만약, 연신 온도가 T2 + 30 ℃ 를 넘는 경우, 비정성 폴리에스테르의 교착을 충분히 방지할 수 없어 융착 섬유속이 발생하거나 압입 클림퍼에 의해 권축을 부여할 때의 클림퍼 안정성이 악화되므로 바람직하지 못하다.Next, the 2nd point in the said manufacturing method is extending | stretching temperature. The stretching temperature is, of course, set to T 2 (glass transition point of amorphous polyester) or higher, but at the same time, the temperature above the glass transition point of polyalkylene terephthalate in order to heat-set the polyalkylene terephthalate which is a fiber forming component. You need to set it to. Even if the said polyether polyester block copolymer is previously given to the unstretched composite fiber surface, when extending | stretching temperature is less than either of the glass transition point of an amorphous copolyester and a polyalkylene terephthalate, this invention aims at The heat-adhesive composite short fibers excellent in dimensional stability can not be obtained. And it is also important not to the stretching temperature to a high temperature exceeding T 2 (the glass transition point of the amorphous polyester) + 30 ℃. If the stretching temperature exceeds T 2 + 30 ° C., it is not preferable because the interlocking of the amorphous polyester cannot be sufficiently prevented and the fusion fiber bundle is generated or the crimp stability when imparting crimp by the indentation crimp is deteriorated. Can not do it.

연신 온도가 상기 온도 범위내에 있으면, 상기 연신은 1 단 연신이어도 2 단 이상의 다단 연신이어도 되지만, 전체 연신 배율을 냉연신 배율의 0.72 ∼ 1.25 배로 할 필요가 있다. 이 연신 배율이 냉연신 배율의 0.72 배 미만인 경우에는 섬유 구조체로 하였을 때의 치수 안정성이 저하되고, 한편 냉연신 배율의 1.25 배를 넘는 경우에는 연신성이 악화될 뿐만 아니라 열접착성도 저하되므로 바람직하지 못하다. 그리고 여기에서 말하는 미연신 섬유의 냉연신 배율이란, 방사 직후부터 5분 이내에 채취한 미연신 복합 섬유를 25 ℃, 상대 습도 65 % 의 공기중에서 척 길이 10 ㎝ 로 하여 5 ㎝/초의 속도로 연신하여 더 이상 늘어나지 않는 시점의 척 길이 간격 (㎝) 을 초기 척 길이 (10 ㎝) 로 나눈 값으로 얻어지는 것이다.When extending | stretching temperature exists in the said temperature range, although the said extending | stretching may be single stage extending | stretching or multistage stretching of 2 or more stages, it is necessary to make total draw ratio 0.72-1.25 times the cold draw ratio. When the draw ratio is less than 0.72 times the cold draw ratio, the dimensional stability of the fiber structure is lowered. On the other hand, when the draw ratio is more than 1.25 times the draw ratio, the drawability is not only deteriorated but also the thermal adhesiveness is not preferable. Can not do it. In addition, the cold drawing ratio of the unstretched fiber referred to herein means that the unstretched composite fiber collected within 5 minutes immediately after spinning is stretched at a speed of 5 cm / sec with a chuck length of 10 cm in air at 25 ° C. and 65% relative humidity. It is obtained by dividing the chuck length spacing (cm) by the point which no longer extends by the initial chuck length (10 cm).

본 발명에 있어서는, 상기 연신을 T1 (비정성 공중합 폴리에스테르의 유리 전이점과 폴리알킬렌테레프탈레이트의 유리 전이점 중 어느 한 높은 쪽의 온도) ∼ (T1 + 10℃) 의 온도에서 미연신 복합 섬유의 냉연신 배율의 0.7 ∼ 1.0 배로 연신한 후, (T1 + 10℃) ∼ (T2 (비정성 공중합 폴리에스테르의 유리 전이점) + 30℃) 의 온도에서 1.03 ∼ 1.25 배로 연신하는 것이, 치수 안정성을 향상시키는 면에서 보다 효과적이고 교착을 방지하는 점에서도 보다 효과적이다.In the present invention, the stretching is performed by T 1 (the temperature of either the glass transition point of the amorphous copolyester and the glass transition point of the polyalkylene terephthalate) ~ (T 1 + 10 ℃) After the non-stretched composite fiber Cold new scale 0.7 ~ 1.0-fold stretching in at a temperature of, (T 1 + 10 ℃) ~ (T 2 ( the glass transition of the amorphous copolymerizable polyester advantage) Stretching at 1.03 to 1.25 times at a temperature of + 30 ° C) is more effective in terms of improving dimensional stability and is more effective in preventing deadlocks.

그리고 연신 가온 매체로는 온수를 사용하는 것이 특히 유효하다.And it is especially effective to use hot water as an extended heating medium.

연신된 복합 섬유는, 종래 공지된 방법에 따라 권축수가 3 ∼ 40 개/25㎜, 권축률이 3 ∼ 40 % 가 되는 조건에서 권축을 부여한 후, 원하는 길이로 커트한다. 즉 권축 형태가 기계 권축인 경우에는, 예컨대 압입식 클림퍼를 사용하여 그 압입압이나 온도 조건을 적절히 제어하면 된다. 한편 입체 권축의 경우에는 복합 섬유의 복합 구조를 선택하거나 방사시의 냉각 조건을 적절히 선택하면 된다.The stretched composite fiber is cut to a desired length after crimping is applied under conditions in which the number of crimps is 3-40 pieces / 25 mm and the crimp rate is 3-40% according to a conventionally known method. In other words, when the crimped form is a mechanical crimp, the press-fit pressure and temperature conditions may be appropriately controlled using, for example, a press-fit crimp. On the other hand, in the case of three-dimensional crimping, the composite structure of the composite fiber may be selected or the cooling conditions during spinning may be appropriately selected.

이렇게 해서 얻어지는 본 발명의 폴리에스테르계 열접착성 복합 단섬유는, 치수 안정성이 양호하고, 부직포나 경면(硬綿) 등의 섬유 구조체용으로서 적합하다. 그리고 이러한 열접착성 복합 단섬유는 단독으로 부직포 등의 섬유 구조체로 해도 되고, 또한 다른 섬유를 주체 섬유로 하여 상기 열접착성 복합 섬유와 혼면하여 부직포 등의 섬유 구조체로 해도 된다.The polyester-based heat-adhesive composite short fibers of the present invention thus obtained have good dimensional stability and are suitable for use in fiber structures such as nonwoven fabrics and mirror surfaces. The heat-adhesive composite short fibers may be used alone as a fiber structure such as a nonwoven fabric, or may be mixed with the heat-adhesive composite fiber as another main fiber to form a fiber structure such as a nonwoven fabric.

이하, 실시예를 들어 본 발명을 더욱 구체적으로 설명한다. 그리고 실시예에 있어서의 각 평가 항목은 이하의 방법에 따랐다.Hereinafter, an Example is given and this invention is demonstrated further more concretely. And each evaluation item in the Example followed the following method.

(a) 유리 전이점 (Tg), 융점 (Tm)(a) Glass transition point (Tg), melting point (Tm)

퍼킨엘머사 제조의 시차 주사 열량계 DSC-7 형을 사용하여 승온 속도 20 ℃/분으로 측정하였다.It measured at the temperature increase rate of 20 degree-C / min using the differential scanning calorimeter DSC-7 type | mold by the Perkin Elmer company.

(b) 고유 점도([η])(b) intrinsic viscosity ([η])

오르토클로로페놀을 용매로 하여 온도 35 ℃ 에서 측정하였다.It measured at 35 degreeC with orthochlorophenol as a solvent.

(c) 권축수, 권축률(c) crimp number, crimp rate

JIS L 1015 7.12 에 기재된 방법에 따라 측정하였다.It measured according to the method described in JIS L 1015 7.12.

(d) 섬도(d) fine island

JIS L 1015 7.5.1 A 법에 기재된 방법에 따라 측정하였다.It measured according to the method described in JIS L 1015 7.5.1 A method.

(e) 섬유 길이(e) fiber length

JIS L 1015 7.4.1 C 법에 기재된 방법에 따라 측정하였다.It measured according to the method described in JIS L 1015 7.4.1 C method.

(f) 유제 부착률(f) emulsion adhesion rate

소정 섬유 중량에 대해 섬유로부터 30 ℃ 의 메탄올에 의해 욕비 1 : 20 으로 10 분간 추출한 찌꺼기의 중량을 측정하여 소정 섬유 중량으로 나눈 값을 사용하였다.The weight of the residue extracted for 10 minutes at a bath ratio of 1:20 with 30 ° C methanol from the fiber was measured and the value divided by the predetermined fiber weight was used.

(g) 웹 면적 수축률 및 섬유 구조체의 변형(g) web area shrinkage and deformation of the fiber structure

단위 면적당 중량 30 g/㎡, 면적 A0 (25 ㎝ × 25 ㎝ = 625 ㎠) 의 열접착성 복합 단섬유 100 % 로 이루어진 커드 웹을 성형하고, 이것을 150 ℃ 로 유지한 열풍 건조기 (사다케 화학기계공업(주) 제조 열풍 순환 항온 건조기 : 41-S4) 속에 2 분간 방치하고, 열처리후의 커드 웹의 면적 A1 으로부터 하기 식에 의해 면적 수축률을 구했다. 그리고 면적 수축률이 20 % 이하인 것을 합격으로 하였다.Hot air dryer (Sadake Chemical Machinery) which formed a curd web composed of 100% of heat-adhesive composite short fibers having a weight of 30 g / m 2 and an area A 0 (25 cm × 25 cm = 625 cm 2) per unit area, and maintained at 150 ° C. industries, producing hot air circulating constant-temperature drier: allowed to stand 2 minutes in a 41-S4), and the area shrinkage percentage was determined by the following formula from the area a 1 of the web after the heat treatment the curd. And it was set as the thing whose area shrinkage rate is 20% or less.

면적 수축률 (%) = (625 - A1) / 625 ×100Area shrinkage (%) = (625-A 1 ) / 625 × 100

(h) 교착(h) deadlock

연신시에 교착이 발생하여 생산 불능 또는 커드 웹중에 교착 결속이 확인된 경우를 불량으로 하고, 그 이외를 양호로 하였다.The case where the deadlock occurred at the time of extending | stretching and the deadlock was confirmed in the incapacity or the curd web was made into defect, and the other was made favorable.

[실시예 1]Example 1

섬유 형성성 성분으로서 고유 점도 0.64, Tg 67 ℃, Tm 256 ℃ 의 폴리에틸렌테레프탈레이트, 열접착성 성분으로서 산 성분이 몰비로 테레프탈산 성분 : 이소프탈산 성분 = 60 : 40, 디올 성분이 몰비로 에틸렌글리콜 : 디에틸렌글리콜 = 95 : 5 의 비율로 공중합된, 고유 점도 0.56, Tg 64 ℃ 의 비정성 공중합 폴리에스테르를 사용하고, 각각의 펠릿을 감압 건조시킨 후, 코어 시스형 복합 용융 방사 장치에 공급하고, 체적비 50 / 50 의 복합 비율, 방사 온도 290 ℃, 토출량 650 g/분으로 방사구멍 수 450 의 방사구금으로부터 용융 방출하였다. 상기 방출 사조를 30 ℃ 의 냉풍으로 냉각하고, 산 성분이 몰비로 테레프탈산 성분 : 이소프탈산 성분 = 80 / 20, 글리콜 성분이 에틸렌글리콜이고, 수평균분자량이 3000인 폴리에틸렌글리콜 70 중량% 를 공중합한 수평균분자량이 10000인 폴리에테르폴리에스테르 블록 공중합체의 에멀션으로 이루어진 처리제를, 섬유 중량에 대한 순분(純分) 부착량이 0.1 중량% 가 되도록 오일링 롤러를 사용하여 부여하고, 900 m/분으로 인취하여 미연신 코어 시스형 복합 섬유를 얻었다. 그리고 이 미연신 섬유의 냉각시 최대 연신 배율 (이하, CDR 이라 함) 은 4.5 배였다.Polyethylene terephthalate having an intrinsic viscosity of 0.64, Tg 67 ° C, and Tm 256 ° C as a fiber-forming component, and an acid component as a molar ratio as an acid component as a heat-adhesive component: terephthalic acid component: isophthalic acid component = 60: 40, and a diol component in a molar ratio of ethylene glycol: Each pellet was dried under reduced pressure using amorphous copolymer polyester having an intrinsic viscosity of 0.56 and Tg 64 ° C., copolymerized at a ratio of diethylene glycol = 95: 5, and then supplied to a core sheath type composite melt spinning apparatus, Melt-release was carried out from the spinneret having a spin hole number of 450 at a complex ratio of volume ratio 50/50, spinning temperature of 290 ° C., and discharge amount of 650 g / min. The release sand was cooled by cold air at 30 ° C., and the acid component was copolymerized with 70% by weight of polyethylene glycol having a terephthalic acid component: isophthalic acid component = 80/20 and a glycol component of ethylene glycol and a number average molecular weight of 3000. A treatment agent consisting of an emulsion of a polyether polyester block copolymer having an average molecular weight of 10000 was given using an oiling roller so that the net amount of adhesion to the fiber weight was 0.1% by weight, and the phosphorus at 900 m / min. To obtain an unstretched core sheath composite fiber. And the maximum draw ratio (hereinafter referred to as CDR) at the time of cooling this unstretched fiber was 4.5 times.

이 미연신 복합 섬유를 집속하고, 11만 dtex (10 만 데니어) 의 토우로 하여 우선 72 ℃ 의 온수중에서 3.5 배 (CDR 의 0.78 배) 로 연신한 후, 80 ℃ 의 온수중에서 다시 1.15 배로 연신하고 (전체 연신 배율 4.0 배 : CDR 의 0.89 배), 라우릴포스페이트칼륨염으로 이루어진 방적용 유제를 부여한 후, 35 ℃ 까지 자연스럽게 냉각된 압입식 클림퍼로 권축을 부여하고, 섬유 길이 51 ㎜ 로 절단하여 단사 섬도 4.4 dtex, 권축수 10 개/25㎜, 권축률 15 % 의 열접착성 복합 단섬유를 얻었다.The unstretched composite fiber was concentrated, stretched to 3.5 times (0.78 times CDR) in hot water at 72 ° C. with 110,000 dtex (100,000 denier) tow, and then stretched to 1.15 times in hot water at 80 ° C. (4.0 times the total draw ratio: 0.89 times the CDR), after impregnating a spinning emulsion consisting of lauryl phosphate potassium salt, crimped with a press-fit crimp that was naturally cooled to 35 ° C, and cut into a fiber length of 51 mm. The heat-adhesive composite short fiber of 4.4 dtex of single yarn fineness, 10 crimp numbers / 25 mm, and a crimp rate of 15% was obtained.

[실시예 2 ∼ 10, 비교예 1 ∼ 6][Examples 2 to 10 and Comparative Examples 1 to 6]

열접착성 성분, 섬유 형성성 성분, 처리제, 연신 배율, 연신 온도를 변경한 것 이외에는 실시예 1 과 동일한 조건으로 하여, 단사 섬도 4.4 dtex, 섬유 길이 51 ㎜, 권축수 10 개/25㎜, 권축률 15 % 의 열접착성 복합 단섬유를 얻었다.Except for changing the heat-adhesive component, the fiber-forming component, the treatment agent, the draw ratio, and the draw temperature, under the same conditions as in Example 1, single yarn fineness 4.4 dtex, fiber length 51 mm, number of crimps 10/25 mm, crimp A heat-adhesive composite short fiber having a rate of 15% was obtained.

이들 실시예 및 비교예의 섬유 구성을 표 1, 처리제 종류를 표 2, 방사 연신 조건을 표 3, 섬유 평가 결과를 표 4 에 나타낸다. Table 1 shows the fiber configuration of these examples and comparative examples, Table 2 shows the treatment agent types, Table 3 shows the spinning and stretching conditions, and Table 4 shows the results of the fiber evaluation.

복합 수준Compound level F1F1 F2F2 F3F3 F4F4 F5F5 F6F6 열접착성성분Thermal Adhesive Ingredients 산성분Acid TATA 6060 6060 5555 7070 7575 6060 IAIA 4040 4040 4040 3030 2525 4040 SASA -- -- 55 -- -- -- 글리콜성분Glycol Ingredients EGEG 9595 100100 100100 6262 4444 9595 DEGDEG 55 -- -- 88 66 55 HMGHMG -- -- -- 3030 5050 -- Tg ℃Tg ℃ 6464 6969 5959 5555 4040 6464 Tm ℃Tm ℃ -- -- -- -- -- -- [η][η] 0.560.56 0.570.57 0.550.55 0.560.56 0.560.56 0.560.56 섬유형성성성분Fiber Forming Ingredients 종류Kinds PETPET PETPET PETPET PETPET PETPET PBTPBT Tg ℃Tg ℃ 6767 6767 6767 6767 6767 2525 Tm ℃Tm ℃ 256256 256256 256256 256256 256256 228228 [η][η] 0.640.64 0.640.64 0.640.64 0.640.64 0.640.64 0.870.87 TA : 테레프탈산 IA : 이소프탈산 SA : 세바스산 EG : 에틸렌글리콜 DEG : 디에틸렌글리콜 HMG : 헥사메틸렌글리콜 PET : 폴리에틸렌테레프탈레이트 PBT : 폴리부틸렌테레프탈레이트 TA: terephthalic acid IA: isophthalic acid SA: sebacic acid EG: ethylene glycol DEG: diethylene glycol HMG: hexamethylene glycol PET: polyethylene terephthalate PBT: polybutylene terephthalate

처리제 수준 Processor level O1O1 O2O2 O3O3 O4O4 O5O5 폴리에테르폴리에스테르 블록 공중합체 성분Polyether Polyester Block Copolymer Component -- -- 산성분Acid TATA 8080 9090 7272 IAIA 2020 1010 1818 SIASIA -- -- 1010 글리콜성분Glycol Ingredients EGEG 100100 100100 100100 폴리알킬렌글리콜Polyalkylene glycol 종류Kinds PEG3000PEG3000 M-PEG3000M-PEG3000 PEG4000PEG4000 공중합량%Copolymerization% 7070 8080 7070 수평균분자량Number average molecular weight 1000010000 90009000 1100011000 그 외 성분Other ingredients -- -- -- 포스페이트1Phosphate 1 포스페이트2Phosphate 2 TA : 테레프탈산 IA : 이소프탈산 SIA : 5-나트륨술포이소프탈산 PEG3000 : 평균분자량 3000의 폴리에틸렌글리콜 PEG4000 : 평균분자량 4000의 폴리에틸렌글리콜 M-PEG3000 : 평균분자량 3000의 폴리에틸렌글리콜모노페닐에테르 포스페이트 1 : 라우릴포스페이트칼륨염 포스페이트 2 : 평균 에틸렌옥사이드 부가수가 5 몰인 라우릴알코올의 부분 인산에스테르칼륨염 TA: terephthalic acid IA: isophthalic acid SIA: 5-sodium sulfoisophthalic acid PEG3000: polyethylene glycol with an average molecular weight of 3000 PEG4000: polyethylene glycol with an average molecular weight of 4000 M-PEG3000: polyethylene glycol monophenyl ether phosphate with an average molecular weight of 3000 1: lauryl Phosphate Potassium Salt Phosphate 2: Partial Phosphate Potassium Phosphate Salt of Lauryl Alcohol with an average number of 5 moles of ethylene oxide

방사radiation 연신Stretch 복합수준Compound level 처리제수준Treatment level CDRCDR 제1단First stage 제2단2nd stage 전체연신배율Total draw ratio 온도Temperature 배율/CDRMagnification / CDR 온도Temperature 배율/CDRMagnification / CDR 배율(CDR)Magnification (CDR) 실시예 1Example 1 F1F1 O1O1 4.54.5 7272 0.780.78 7272 1.151.15 4.00(0.89)4.00 (0.89) 비교예 1Comparative Example 1 F1F1 O1O1 4.54.5 6565 0.780.78 6060 1.151.15 4.00(0.89)4.00 (0.89) 비교예 2Comparative Example 2 F1F1 O4O4 4.54.5 6565 0.780.78 6060 1.151.15 4.00(0.89)4.00 (0.89) 비교예 3Comparative Example 3 F1F1 O4O4 4.54.5 7272 0.780.78 7272 1.151.15 4.00(0.89)4.00 (0.89) 비교예 4Comparative Example 4 F1F1 O5O5 4.54.5 7272 0.780.78 7272 1.151.15 4.00(0.89)4.00 (0.89) 실시예 2Example 2 F1F1 O1O1 4.54.5 7272 0.780.78 8080 1.151.15 4.00(0.89)4.00 (0.89) 실시예 3Example 3 F1F1 O1O1 4.54.5 7272 0.780.78 8585 1.151.15 4.00(0.89)4.00 (0.89) 실시예 4Example 4 F1F1 O1O1 4.54.5 7272 0.960.96 8080 1.051.05 4.54(1.01)4.54 (1.01) 비교예 5Comparative Example 5 F1F1 O1O1 4.54.5 7272 0.600.60 7272 1.151.15 3.10(0.69)3.10 (0.69) 실시예 5Example 5 F1F1 O2O2 4.54.5 7272 0.780.78 7272 1.151.15 4.00(0.89)4.00 (0.89) 실시예 6Example 6 F1F1 O3O3 4.54.5 7272 0.780.78 7272 1.151.15 4.00(0.89)4.00 (0.89) 실시예 7Example 7 F2F2 O1O1 4.54.5 7272 0.780.78 7272 1.151.15 4.00(0.89)4.00 (0.89) 실시예 8Example 8 F3F3 O1O1 4.54.5 7272 0.780.78 7272 1.151.15 4.00(0.89)4.00 (0.89) 실시예 9Example 9 F4F4 O1O1 4.54.5 7272 0.780.78 7272 1.151.15 4.00(0.89)4.00 (0.89) 비교예 6Comparative Example 6 F5F5 O1O1 4.54.5 7272 0.780.78 7272 1.151.15 4.00(0.89)4.00 (0.89) 실시예10Example 10 F6F6 O1O1 3.83.8 7272 0.780.78 7272 1.151.15 3.38(0.89)3.38 (0.89)

섬유 평가Fiber evaluation 교착 상태Deadlock 웹 면적 수축률(%)Web area shrinkage (%) 수축후의 웹 품위Web quality after shrinkage 실시예 1Example 1 양호Good 18.518.5 양호Good 비교예 1Comparative Example 1 양호Good 73.973.9 불량Bad 비교예 2Comparative Example 2 양호Good 55.355.3 불량Bad 비교예 3Comparative Example 3 불량Bad 연신불능Inability to stretch -- 비교예 4Comparative Example 4 불량Bad 연신불능Inability to stretch -- 실시예 2Example 2 양호Good 8.18.1 양호Good 실시예 3Example 3 양호Good 5.15.1 양호Good 실시예 4Example 4 양호Good 6.86.8 양호Good 비교예 5Comparative Example 5 불량Bad 연신불능Inability to stretch -- 실시예 5Example 5 양호Good 17.517.5 양호Good 실시예 6Example 6 양호Good 18.118.1 양호Good 실시예 7Example 7 양호Good 18.318.3 양호Good 실시예 8Example 8 양호Good 16.316.3 양호Good 실시예 9Example 9 양호Good 16.116.1 양호Good 비교예 6Comparative Example 6 불량Bad 연신불능Inability to stretch -- 실시예 10Example 10 양호Good 14.814.8 양호Good

본 발명의 폴리에스테르계 열접착성 복합 단섬유는, 비교적 저온에서 섬유 구조체로 성형할 수 있음에도 불구하고, 치수 안정성이 양호하고 고온 분위기하에서 사용해도 변형이 잘 일어나지 않는 고품위의 섬유 구조체를 제공할 수 있다. 또한 본 발명의 제조 방법에 따르면, 교착을 일으키지 않고 상기 열접착성 복합 단섬유를 매우 안정되고 쉽게 제조할 수 있다.Although the polyester-based heat-adhesive composite short fibers of the present invention can be formed into a fiber structure at a relatively low temperature, it is possible to provide a high-quality fiber structure having good dimensional stability and hardly being deformed even when used in a high temperature atmosphere. have. In addition, according to the production method of the present invention, it is possible to produce the heat-adhesive composite short fibers very stably and easily without causing the deadlock.

Claims (8)

유리 전이점이 50 ∼ 100 ℃ 이고 또한 결정 융점을 갖지 않는 비정성 폴리에스테르를 열접착성 성분으로 하고, 융점이 220 ℃ 이상인 폴리알킬렌테레프탈레이트를 섬유 형성성 성분으로 하는 열접착성 복합 단섬유로서, 그 권축수가 3 ∼ 40 개/25㎜, 권축률이 3 ∼ 40 % 및 하기에 정의하는 웹 면적 수축률이 20 % 이하인 것을 특징으로 하는 폴리에스테르계 열접착성 복합 단섬유.As heat-adhesive composite short fibers having a non-crystalline polyester having a glass transition point of 50 to 100 ° C and no crystal melting point as a heat-adhesive component, and a polyalkylene terephthalate having a melting point of 220 ° C or higher as a fiber-forming component. The polyester type heat-adhesive composite short fiber characterized by the crimp number being 3-40 pieces / 25mm, the crimp rate being 3-40%, and the web area shrinkage rate defined below. 〈웹 면적 수축률〉<Web area shrinkage> 열접착성 복합 단섬유 100 % 로 이루어진, 면적이 A0, 단위 면적당 중량이 30 g/㎡ 인 커드 웹 부직포를 150 ℃ 로 유지한 열풍 건조기 속에 2 분간 방치하고, 그 후의 부직포의 면적 A1 을 측정하여 하기 식으로 구한다.A curd web nonwoven fabric consisting of 100% of heat-adhesive composite short fibers and having an area of A 0 and a weight of 30 g / m 2 per unit area was left to stand in a hot air dryer maintained at 150 ° C. for 2 minutes, and then the area A 1 of the nonwoven fabric thereafter. Measured and obtained by the following formula. 웹 면적 수축률 (%) = (A0 - A1) / A0 ×100Web area shrinkage (%) = (A 0 -A 1 ) / A 0 × 100 제 1 항에 있어서, 섬유 표면에, 섬유 중량에 대해 폴리에테르폴리에스테르 블록 공중합체가 0.03 내지 0.5 중량% 부착되어 있는 폴리에스테르계 열접착성 복합 단섬유.The polyester-based heat-adhesive composite short fiber according to claim 1, wherein 0.03 to 0.5% by weight of a polyether polyester block copolymer is attached to the fiber surface with respect to the fiber weight. 제 1 항 또는 제 2 항에 있어서, 열접착성 성분이 이소프탈산 성분, 테레프탈산 성분, 에틸렌글리콜 성분 및 디에틸렌글리콜 성분으로 구성되는 비정성(非晶性) 공중합 폴리에스테르인 폴리에스테르계 열접착성 복합 단섬유.The polyester-based heat adhesive according to claim 1 or 2, wherein the heat adhesive component is an amorphous copolyester composed of an isophthalic acid component, terephthalic acid component, ethylene glycol component, and diethylene glycol component. Composite short fibers. 제 1 항 또는 제 2 항에 있어서, 섬유 형성성 성분이 폴리에틸렌테레프탈레이트인 폴리에스테르계 열접착성 복합 단섬유.The polyester type heat-adhesive composite short fiber according to claim 1 or 2, wherein the fiber-forming component is polyethylene terephthalate. 유리 전이점이 50 ∼ 100 ℃ 이고 또한 결정 융점을 갖지 않는 비정성 폴리에스테르와 융점이 220 ℃ 이상인 폴리알킬렌테레프탈레이트를 용융ㆍ복합 토출하고, 이 복합 토출 사조를 냉각 고화후, 속도 1500 m/분 이하에서 인취하여 미연신 복합 섬유로 하고, 이어서 이 미연신 복합 섬유에 폴리에테르폴리에스테르 블록 공중합체를 상기 섬유 중량에 대해 0.03 내지 0.5 중량% 부여한 후에 T1 ∼ (T2 + 30℃) 의 온도에서 냉각시 최대 연신 배율의 0.72 ∼ 1.25 배로 연신하고, 또한 권축수가 3 ∼ 40 개/25㎜, 권축률이 3 ∼ 40 % 가 되도록 권축을 부여하는 것을 특징으로 하는 폴리에스테르계 열접착성 복합 단섬유의 제조 방법.After melting and compounding the amorphous polyester having a glass transition point of 50 to 100 ° C. and no melting point and a polyalkylene terephthalate having a melting point of 220 ° C. or higher, the composite discharge yarn was cooled and solidified, and then the speed was 1500 m / min. Taken below, it is taken as an unstretched composite fiber, and then, after imparting 0.03 to 0.5% by weight of the polyether polyester block copolymer to the fiber weight, the temperature of T 1 to (T 2 + 30 ° C.) is given. At the time of cooling at 0.72 to 1.25 times the maximum draw ratio, and further crimped to give a crimp so that the crimp number is 3-40 pieces / 25mm, and the crimp rate is 3-40%. Method of making fibers. 여기에서 T1 은 비정성 폴리에스테르의 유리 전이점과 폴리알킬렌테레프탈레이트의 유리 전이점 중 어느 한 높은 쪽의 온도, T2 는 비정성 폴리에스테르의 유리 전이점이다.Herein, T 1 is the temperature of either the glass transition point of the amorphous polyester or the glass transition point of the polyalkylene terephthalate, and T 2 is the glass transition point of the amorphous polyester. 제 5 항에 있어서, 연신이, T1 ∼ (T1 + 10℃) 의 온도에서 냉각시 최대 연신 배율의 0.70 ∼ 1.00 배로 연신하고, 또한 (T1 + 10℃) ∼ (T2 + 30℃) 의 온도에서 1.03 ∼ 1.25 배로 연신하는 2 단 연신인 폴리에스테르계 열접착성 복합 단섬유의 제조 방법.The stretching according to claim 5, wherein the stretching is performed at a temperature of T 1 to (T 1 + 10 ° C) at a temperature of 0.70 to 1.00 times the maximum draw ratio at the time of cooling, and further, (T 1 + 10 ° C) to (T 2 + 30 ° C. The manufacturing method of the polyester type heat-adhesive composite short fiber which is the two stage extending | stretching extended | stretched 1.03 to 1.25 times at the temperature of (). 제 5 항 또는 제 6 항에 있어서, 연신에 이용하는 가열 매체가 온수인 폴리에스테르계 열접착성 복합 단섬유의 제조 방법.The manufacturing method of the polyester type heat-adhesive composite short fiber of Claim 5 or 6 whose heating medium used for extending | stretching is hot water. 제 5 항 또는 제 6 항에 있어서, 폴리에테르폴리에스테르 블록 공중합체가, 산 성분이 테레프탈산 성분과 이소프탈산 성분, 알칼리 금속염 술포이소프탈산 성분, 또는 이소프탈산 성분 및 알칼리 금속염 술포이소프탈산 성분으로 이루어지고 그 몰비가 40 : 60 ∼ 100 : 0 이고, 글리콜 성분이 에틸렌글리콜이고, 또한 수평균분자량이 600 ∼ 10000 인 폴리알킬렌글리콜이 20 ∼ 95 중량% 공중합된 것인 폴리에스테르계 열접착성 복합 단섬유의 제조 방법.The polyether polyester block copolymer according to claim 5 or 6, wherein the acid component is a terephthalic acid component, an isophthalic acid component, an alkali metal salt sulfoisophthalic acid component, or an isophthalic acid component and an alkali metal salt sulfoisophthalic acid component. Polyester-based thermal adhesiveness obtained by copolymerizing 20 to 95% by weight of a polyalkylene glycol having a molar ratio of 40:60 to 100: 0, a glycol component of ethylene glycol, and a number average molecular weight of 600 to 10000. Method for producing composite short fibers.
KR10-2002-7016303A 2001-04-04 2002-03-20 Polyester based thermally adhesive composite short fiber and process for producing the same KR100510156B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2001-00105623 2001-04-04
JP2001105623A JP3778808B2 (en) 2001-04-04 2001-04-04 Polyester-based heat-adhesive conjugate fiber and method for producing the same
PCT/JP2002/002694 WO2002081794A1 (en) 2001-04-04 2002-03-20 Polyester based thermally adhesive composite short fiber

Publications (2)

Publication Number Publication Date
KR20030005134A KR20030005134A (en) 2003-01-15
KR100510156B1 true KR100510156B1 (en) 2005-08-25

Family

ID=18958280

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-7016303A KR100510156B1 (en) 2001-04-04 2002-03-20 Polyester based thermally adhesive composite short fiber and process for producing the same

Country Status (11)

Country Link
US (1) US20030134115A1 (en)
EP (1) EP1405937B1 (en)
JP (1) JP3778808B2 (en)
KR (1) KR100510156B1 (en)
CN (1) CN1229530C (en)
AT (1) ATE334240T1 (en)
CA (1) CA2421709C (en)
DE (1) DE60213418T2 (en)
HK (1) HK1058952A1 (en)
TW (1) TW591140B (en)
WO (1) WO2002081794A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4027728B2 (en) * 2002-06-21 2007-12-26 帝人ファイバー株式会社 Nonwoven fabric made of polyester staple fibers
JP4537701B2 (en) * 2003-12-26 2010-09-08 日本エステル株式会社 Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP2005254482A (en) * 2004-03-09 2005-09-22 Teijin Fibers Ltd Base material for vehicle interior finish, its production method, and vehicle interior material
JP4881026B2 (en) * 2006-02-06 2012-02-22 帝人ファイバー株式会社 Heat-adhesive conjugate fiber for airlaid nonwoven fabric and method for producing the same
EP1988201A1 (en) * 2006-02-06 2008-11-05 Teijin Fibers Limited Process for production of polyester fiber for air-laid nonwoven fabrics
JP4955278B2 (en) * 2006-02-06 2012-06-20 帝人ファイバー株式会社 Polyester fiber for airlaid nonwoven fabric and method for producing the same
JP4820211B2 (en) * 2006-05-12 2011-11-24 帝人ファイバー株式会社 Self-extensible thermoadhesive conjugate fiber and method for producing the same
TWI382924B (en) * 2009-11-20 2013-01-21 Univ Feng Chia Pet reinforced composite, manufacturing method thereof and application thereof
JP4945004B2 (en) * 2011-08-22 2012-06-06 帝人ファイバー株式会社 Method for producing polyester fiber for airlaid nonwoven fabric
JP2013133571A (en) * 2011-12-27 2013-07-08 Teijin Ltd Thermally adhesive conjugated fiber having high mechanical crimping performance and method for producing the same
US9505196B2 (en) * 2012-03-28 2016-11-29 Thomas Miller Laminate facing for fiber reinforced materials and composite materials formed therefrom
CN104198523B (en) * 2014-08-29 2017-01-25 东莞市正新包装制品有限公司 Method and device for testing shrink rate through hot air
KR102043372B1 (en) * 2014-09-05 2019-11-11 주식회사 휴비스 Copolymerized Polyester for Low-melting Binder with Excellent Touch and Color and Polyester Binder Fiber Using Same
CN105648654A (en) * 2015-12-29 2016-06-08 江苏苏博特新材料股份有限公司 Polyoxy methylene fiber needle-punched non-woven geotechnical cloth and manufacturing method thereof
KR20190031205A (en) 2016-07-19 2019-03-25 도레이 카부시키가이샤 Copolyester polyester and conjugated fiber containing it
JP6313841B1 (en) * 2016-12-13 2018-04-18 ユニチカ株式会社 Manufacturing method of semi-finished products for automobile equipment
JP6671690B2 (en) 2017-04-19 2020-03-25 ユニチカ株式会社 Manufacturing method of fiber board
WO2018199959A1 (en) * 2017-04-27 2018-11-01 Covestro Llc Structured filaments used in 3d printing
JP7187559B2 (en) * 2018-07-11 2022-12-12 株式会社カネカ Polyester fiber, pile fabric using the same, and method for producing the same
EP3889203B1 (en) * 2018-11-30 2024-08-28 Huvis Corporation Polyester resin having improved adhesion strength for binder and polyester fiber using same
JP7448194B2 (en) 2020-03-23 2024-03-12 日本エステル株式会社 Polyester core-sheath composite fiber
TWI803790B (en) * 2020-11-24 2023-06-01 遠東新世紀股份有限公司 Sheath-core type heat-bonding fiber and non-woven fabric
CN112760739B (en) * 2020-12-31 2021-10-29 扬州富威尔复合材料有限公司 Low-melting-point polyester fiber for automotive interior and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN168824B (en) * 1986-10-21 1991-06-15 Du Pont
GB8806419D0 (en) * 1988-03-18 1988-04-20 Du Pont Improvements relating to fibres
JPH073534A (en) * 1993-06-11 1995-01-06 Toyobo Co Ltd Thermally bondable yarn having low shrinkage
JP3190485B2 (en) * 1993-07-15 2001-07-23 帝人株式会社 Binder fiber
JP3879289B2 (en) * 1998-12-15 2007-02-07 東レ株式会社 Method for producing polyester short fiber for cushion material and method for producing cushion material
JP4312867B2 (en) * 1999-02-04 2009-08-12 日本エステル株式会社 Thermal adhesive conjugate fiber, nonwoven fabric using the same, and method for producing the nonwoven fabric
JP2001003256A (en) * 1999-06-22 2001-01-09 Unitika Ltd Filament non-woven fabric and its production
JP3856617B2 (en) * 2000-04-04 2006-12-13 帝人ファイバー株式会社 False twisting polyester fiber

Also Published As

Publication number Publication date
HK1058952A1 (en) 2004-06-11
TW591140B (en) 2004-06-11
EP1405937A1 (en) 2004-04-07
CA2421709A1 (en) 2003-03-07
DE60213418D1 (en) 2006-09-07
JP3778808B2 (en) 2006-05-24
CN1229530C (en) 2005-11-30
EP1405937A4 (en) 2005-11-09
CA2421709C (en) 2009-01-20
CN1460136A (en) 2003-12-03
JP2002302833A (en) 2002-10-18
ATE334240T1 (en) 2006-08-15
DE60213418T2 (en) 2007-02-15
US20030134115A1 (en) 2003-07-17
EP1405937B1 (en) 2006-07-26
KR20030005134A (en) 2003-01-15
WO2002081794A1 (en) 2002-10-17

Similar Documents

Publication Publication Date Title
KR100510156B1 (en) Polyester based thermally adhesive composite short fiber and process for producing the same
JP3247176B2 (en) Biodegradable latently crimpable composite filament and nonwoven fabric thereof
JP3692931B2 (en) POLYESTER SHORT FIBER HAVING LATIN CRIMMING CHARACTERISTICS AND PROCESS FOR PRODUCING THE SAME
US6737004B2 (en) Process of making splittable microfiber substrate
JP4418869B2 (en) Biodegradable composite short fiber, method for producing the same, and heat-bonding nonwoven fabric using the same
JP6132532B2 (en) Polyester composite fiber
JP4076369B2 (en) Polyester-based heat-bondable hollow composite short fiber and nonwoven fabric
JP3157644B2 (en) Humidity-controlling fiber and method for producing the same
JP6110144B2 (en) Short cut composite fiber for wet nonwoven fabric
JP2021147738A (en) Polyester-based sheath-core type conjugate fiber
JP2008163511A (en) Crimped polylactic acid yarn and method for producing the same
JP2000314036A (en) Hollow false twist textured yarn and its production
JP2008214771A (en) Method for producing low-shrinkage heat-bonding conjugated fiber
JP2870712B2 (en) Heat-fusible conjugate fiber with excellent durability and hydrophilicity
JP2008045241A (en) Heat-adhesive conjugate fiber and fiber assembly
JP2003119626A (en) Divided-type polyester conjugate fiber
JP4495874B2 (en) Split hollow polyester fiber
JP2005048339A (en) Method and apparatus for producing polylactic acid filament nonwoven fabric
JPH07119011A (en) Polyester-based heat-resistant nonwoven fabric and its production
JP2001115340A (en) Polyester hot-melting type conjugated staple fiber and non-woven fabric therefrom
JP2011195978A (en) Heat-bonding composite fiber for producing wet nonwoven fabric, and method of producing the same
JPH01260018A (en) Conjugate fiber
JPH11217731A (en) Thermoadhesive conjugate fiber and its production
JP3759236B2 (en) Spinned yarn containing latently crimped fibers
JP2000170069A (en) Production of nonwoven fabric and nonwoven fabric

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090818

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee