JP3692931B2 - POLYESTER SHORT FIBER HAVING LATIN CRIMMING CHARACTERISTICS AND PROCESS FOR PRODUCING THE SAME - Google Patents

POLYESTER SHORT FIBER HAVING LATIN CRIMMING CHARACTERISTICS AND PROCESS FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP3692931B2
JP3692931B2 JP2000376515A JP2000376515A JP3692931B2 JP 3692931 B2 JP3692931 B2 JP 3692931B2 JP 2000376515 A JP2000376515 A JP 2000376515A JP 2000376515 A JP2000376515 A JP 2000376515A JP 3692931 B2 JP3692931 B2 JP 3692931B2
Authority
JP
Japan
Prior art keywords
polyester
fiber
polymer
composite
crimp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000376515A
Other languages
Japanese (ja)
Other versions
JP2002180333A (en
Inventor
克彦 望月
明 木代
裕平 前田
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2000376515A priority Critical patent/JP3692931B2/en
Publication of JP2002180333A publication Critical patent/JP2002180333A/en
Application granted granted Critical
Publication of JP3692931B2 publication Critical patent/JP3692931B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、優れた捲縮発現能力により布帛に適度な伸縮性を与えることのできる潜在捲縮発現性を有するポリエステル系短繊維に関するものである。
【0002】
【従来の技術】
ポリエステルは機械的特性をはじめ、様々な優れた特性を有しているため衣料用途のみならず幅広く展開されている。また、近年のストレッチブームによりポリエステル系布帛にもストレッチ性を与えるため、種々の方法が採用されている。
【0003】
例えば、織物中にポリウレタン系の弾性繊維を混用し、ストレッチ性を付与する方法がある。しかしながら、ポリウレタン系繊維を混用した場合、ポリウレタン固有の性質として風合いが硬く、織物の風合いやドレープ性が低下すると共に、ポリエステル用の分散染料には染まり難く、汚染の問題がつきまとう。そのため、還元洗浄の強化など染色工程が複雑になるばかりか、所望の色彩に染色することが困難であった。
【0004】
一方、ポリウレタン系繊維を用いない方法として、サイドバイサイド複合を利用した潜在捲縮発現性ポリエステル繊維が種々提案されている。潜在捲縮発現性ポリエステル繊維とは、熱処理により捲縮が発現するか、あるいは熱処理前より微細な捲縮が発現する能力を有するポリエステル繊維のことを言う。
【0005】
例えば、特公昭44−2504号公報や特開平4−308271号公報には固有粘度差あるいは極限粘度差を有するポリエチレンテレフタレート(以下PETと略す)のサイドバイサイド複合繊維、特開平5−295634号公報にはホモPETとそれより高収縮性の共重合PETのサイドバイサイド複合繊維が記載されている。このような潜在捲縮発現性ポリエステル繊維を用いれば、確かにある程度のストレッチ性を得ることはできるが、織物にした際のストレッチ性が不充分となり、満足なストレッチ性織物が得られにくいという問題があった。これは、上記したようなサイドバイサイド複合繊維は織物拘束中での捲縮発現能力が低い、あるいは捲縮が外力によりヘタリ易いためである。サイドバイサイド複合繊維はポリウレタン系繊維のように繊維自身の伸縮によるストレッチ性を利用しているのではなく、複合ポリマ間の収縮率差によって生じる3次元コイルの伸縮をストレッチ性に利用している。このため、例えば、ポリマーの収縮が制限される織物拘束下で熱処理を受けるとそのまま熱固定され、それ以上の収縮能を失うためコイルが十分に発現せず、上記問題が発生すると考えられる。
【0006】
また、特公昭43−19108号公報や特開平11−158733号公報にはポリトリメチレンテレフタレートを利用したサイドバイサイド型の短繊維が記載されている。本願記載の方法を用いれば、適度なストレッチ性を与えることができるが、短繊維間のコイル捲縮が会合し合う傾向が強いために布帛表面にシワや斑が発現しやすく、品位が悪いものしかできないという問題がある。また、特公昭43−19108号公報に記載の方法を本発明者らが追試したところ、紡糸速度が低いことに起因すると思われる糸斑により染色斑が発生した。
【0007】
【発明が解決しようとする課題】
本発明は、紡糸、延伸等の製糸性やカード工程通過性が良好で、ポリウレタン混用で問題となる染料汚染がなく、従来のポリエステル系潜在捲縮性繊維で問題となっている織物拘束下での捲縮発現能力を改善し、伸縮性に優れるとともに、布帛表面のシワや斑、染め斑の発生が少ない高品位の布帛を得ることができる潜在捲縮発現性を有するポリエステル系短繊維を提供するものである。
【0008】
【課題を解決するための手段】
前記した課題を解決するため本発明は、次の構成を採用する。すなわち、
(1)2種類のポリエステル系重合体A及びBが繊維長さ方向に沿ってサイドバイサイド型に貼り合わされた複合繊維において、ポリエステル系重合体Aがポリトリメチレンテレフタレートを主体としたポリエステルであり、ポリエステル系重合体Bが平均粒子径0.01〜2μmの粒子を0.1重量%以上含有する繊維形成性ポリエステルであって、該複合繊維の断面形状が短軸方向に複合界面を有する扁平形状であるとともに、断面の長軸/短軸の比で表される扁平度が1.4〜6であることを特徴とする潜在捲縮発現性を有するポリエステル系短繊維。
【0010】
)収縮応力の極大を示す温度が110℃以上で、かつ収縮応力の極大値が0.15cN/dtex以上であることを特徴とする(1)記載の潜在捲縮発現性を有するポリエステル系短繊維。
【0011】
)カット長が3〜150mmであり、繊度が0.5〜6dtexであることを特徴とする(2)記載の潜在捲縮発現性を有するポリエステル系短繊維。
【0012】
)繊維断面の形状が、ポリエステル系重合体Bの外周形状が略円形であり、ポリエステル系重合体Aの外周形状が略楕円形又は略方形である扁平断面であることを特徴とする()〜()のいずれか1項記載の潜在捲縮発現性を有するポリエステル系短繊維。
【0013】
)ポリエステル系重合体Bがポリトリメチレンテレフタレートを主体としたポリエステルであることを特徴とする(1)〜()のいずれか1項記載の潜在捲縮発現性を有するポリエステル系短繊維。
【0014】
)ポリエステル系重合体Bがポリブチレンテレフタレートを主体としたポリエステルであることを特徴とする(1)〜()のいずれか1項記載の潜在捲縮発現性を有するポリエステル系短繊維。
【0015】
)ポリエステル系重合体Aにポリトリメチレンテレフタレートを主体としたポリエステルを配し、ポリエステル系重合体Bに平均粒子径0.01〜2μmの粒子を0.1重量%以上含有する繊維形成性ポリエステルを配して複合紡糸するに際し、各々の固有粘度(IV)が次式(1)〜(3)を満たす組み合わせで複合流を形成し、該複合流をスリットの短軸方向が複合界面になるようスリットしてから吐出して引き取り、延伸工程で処理温度110〜200℃で熱処理した後、油剤を付与し、カット長3〜150mmにカットすることを特徴とする潜在捲縮発現性を有するポリエステル系短繊維の製造方法
【0016】
0.30X≦Y≦0.45X+0.30 ・・・(1)
0.45≦Y ・・・(2)
0.8≦X≦2.0 ・・・(3)
(ただし、Y:ポリエステル系重合体Bの固有粘度(IV)
X:ポリエステル系重合体Aの固有粘度(IV))
)(1)〜()のいずれか1項記載の潜在捲縮発現性を有するポリエステル系短繊維を少なくとも一部に用いて成ることを特徴とする伸縮性に優れたポリエステル系布帛。
【0017】
【発明の実施の形態】
本発明のポリエステル系短繊維は、粘度の異なる2種類のポリエステル系重合体が繊維長さ方向に沿ってサイドバイサイド型に貼り合わされた特定の形状を有する扁平断面繊維である。粘度が異なる重合体を前記複合形態にすることによって、紡糸、延伸時に高粘度側に応力が集中するため、各成分間で内部歪みが異なる。そのため、延伸後の弾性回復率差および布帛の熱処理工程での熱収縮率差により高粘度側が大きく収縮し、単繊維内で歪みが生じて3次元コイル捲縮の形態をとる。この3次元コイルの径および単位繊維長当たりのコイル数は、高収縮成分と低収縮成分との収縮差(弾性回復率差と熱収縮率差を足し合わせた値)によって決まるといってもよく、収縮差が大きいほどコイル径が小さく、単位繊維長当たりのコイル数が多くなる。
【0018】
ストレッチ素材として要求されるコイル捲縮は、コイル径が小さく、単位繊維長当たりのコイル数が多い(伸長特性に優れ、見映えが良い)、コイルの耐へたり性が良い(伸縮回数に応じたコイルのへたり量が小さく、ストレッチ保持性に優れる)、さらにはコイルの伸長回復時におけるヒステリシスロスが小さい(弾発性に優れ、フィット感がよい)等である。これらの要求を満足しつつ、ポリエステルとしての特性を有することで、トータルバランスに優れたストレッチ素材とすることができる。
【0019】
ここで、前記のコイル特性を満足するためには高収縮成分(本発明ではポリエステル系重合体A)の特性が重要となる。コイルの伸縮特性は、低収縮成分を支点とした高収縮成分の伸縮特性が支配的となるため、高収縮成分に用いる重合体には特に高い伸長性および回復性が要求される。そこで、本発明者らはポリエステルの特性を損なうことなく前記特性を満足させるために鋭意検討した結果、ポリエステル系重合体Aにポリトリメチレンテレフタレート(以下PTTと略記する)を主体としたポリエステルを用いることを見出した。PTT繊維は、代表的なポリエステル繊維であるポリエチレンテレフタレート(以下PETと略記する)やポリブチレンテレフタレート(以下PBTと略記する)繊維と同等の力学的特性や化学的特性を有しつつ、伸長回復性が極めて優れている。これは、PTTの結晶構造においてアルキレングリコール部のメチレン鎖がゴーシュ−ゴーシュの屈曲構造であること、さらにはベンゼン環同士の相互作用(スタッキング、並列)による拘束点密度が低く、フレキシビリティーが高いことから、メチレン鎖の回転により分子鎖が容易に伸長・回復するためと考えている。
【0020】
ここで、本発明のPTTとは、テレフタル酸を主たる酸成分とし、1,3−プロパンジオールを主たるグリコール成分として得られるポリエステルである。ただし、20モル%、より好ましくは10モル%以下の割合で他のエステル結合の形成が可能な共重合成分を含むものであってもよい。共重合可能な化合物として、例えばイソフタル酸、コハク酸、シクロヘキサンジカルボン酸、アジピン酸、ダイマ酸、セバシン酸、5−ナトリウムスルホイソフタル酸などのジカルボン酸類、エチレングリコール、ジエチレングリコール、ブタンジオール、ネオペンチルグリコール、シクロヘキサンジメタノール、ポリエチレングリコール、ポリプロピレングリコールなどのジオール類を挙げることができるが、これらに限定されるものではない。
【0021】
また、本発明の低収縮成分(本発明ではポリエステル系重合体B)には高収縮成分であるPTTとの界面接着性が良好で、製糸性が安定している繊維形成性ポリエステルであれば特に限定されるものではない。ただし、力学的特性、化学的特性および原料価格を考慮すると、繊維形成能のあるPTT、PET、PBTが好ましい。さらにポリエステル系重合体A(高収縮成分)との融点、ガラス転移点を合わせることで、紡糸工程でより高収縮成分に応力を集中させ、収縮率差を大きくできる点で、PTT、PBTがより好ましい。また、PTTやPBTとすることで繊維のヤング率を低くできるので、よりソフトで弾発性に優れた布帛が得られるという利点もある。なお、本発明でいう粘度とは固有粘度(IV)を指し、オルソクロロフェノール中に試料を溶かして測定した値である。
【0022】
また、製糸やカード通過性、テキスタイル加工での工程通過性を高めて安定した製造を行うために、滑剤としてコイル捲縮の外側成分となるポリエステル系重合体Bに平均粒子径0.01〜2μmの粒子を0.1重量%以上含有することが必要である。平均粒子径が0.01μm未満では、滑剤としての効果が小さく、工程通過性を改善することができない。一方、平均粒子径が2μm以上では粒子が欠点として働いて繊維強度が低くなるため、製糸での糸切れ頻度が高くなる。
【0023】
また、粒子含有量が0.1重量%未満では、前記の工程通過性を向上させる効果が小さく、粒子含有量が3重量%を越えると製糸におけるパックライフの短縮や、ガイド、ローラー等の摩耗が激しくなる等の問題が発生する。好ましい粒子含有量は0.2〜3.0重量%であり、より好ましい粒子含有量は0.3〜2.0重量%である。粒子種としては、二酸化チタン、シリカ、アルミナ、カオリナイト、炭酸カルシウム等の微粒子が好ましく用いられるが、これらに限定されるものではない。また、さらなる工程通過性の向上や、防透け性を高めるために、コイルの内側成分となるPTTにも粒子を含有させることが好ましい。また、抗酸化剤としてヒンダードフェノール誘導体、着色顔料などを添加してもよい。
【0024】
また、本発明の複合繊維は短軸方向に複合界面を有する扁平形状で、断面の長軸/短軸の比で表される扁平度が1.4〜6であることが必要である。扁平断面繊維は丸断面繊維と異なり、曲げに対して断面異方性を有しており、扁平断面の短軸方向に曲がりやすく、長軸方向には曲がりにくいといった特徴をもつ。よって短軸方向に複合界面を与えた場合、曲げ剛性の高い方向に収縮差に伴う曲げが生じるため、コイル捲縮にねじれが加わる。そのため単繊維間でコイル捲縮の会合が生じにくく、各々独立して捲縮が発現するため、嵩高度が高く、適度なふくらみを与えるとともに、ソフトで反発感のある布帛とすることができる。また、隣り合う繊維間で捲縮位相がずれることで、コイル捲縮によるトルクの分散効果を高めることができるため、シワや斑のないフラットで高品位な布帛とすることができる。
【0025】
また、扁平度は前記の位相ずらし効果を与えつつ、製糸やテキスタイル加工での工程通過性、強度等の機械的特性、良好な発色性を満足するために、好ましくは扁平度1.5〜6であり、より好ましくは1.6〜4、さらに好ましくは1.7〜2.5である。
【0026】
また、繊維間会合の抑制による位相ずらし効果は、2種類のポリエステル系重合体間で非対称形状となるような特定の断面とすることでより発揮される。図1は本発明の好ましい実施態様を示した繊維断面であるが、例えば2種類のポリエステル系重合体A(図の白抜き部)及びポリエステル系重合体B(図の斜線部)は、ポリエステル系重合体Bの外周形状が略円形であり、ポリエステル系重合体Aの外周形状が略楕円形又は略方形である扁平断面である。このような断面とすることで、図2に示すように繊維間で断面が同方向に揃うことなく、外力による再配列(断面が同方向に並び、繊維間で会合が進む)を抑制することができるため、製品のライフサイクルを飛躍的に伸ばすことができる。
【0027】
また、2成分間の複合比率は製糸性および繊維長さ方向のコイルの寸法均質性の点で、高収縮成分:低収縮成分=70:30〜35:65(重量%)の範囲が好ましく、60/40〜45/55の範囲がより好ましい。
【0028】
また、布帛拘束力に打ち勝って、安定的にコイル捲縮を発現させるためには、収縮応力および収縮応力の極大を示す温度が重要な特性となる。収縮応力は高いほど布帛拘束下での捲縮発現性がよく、収縮応力の極大を示す温度が高いほど仕上げ工程での取り扱いが容易となる。したがって、布帛の熱処理工程で捲縮発現性を高めるには、収縮応力の極大を示す温度は好ましくは110℃以上であり、より好ましくは130℃以上、さらに好ましくは150℃以上である。また、収縮応力の極大値は好ましくは0.15cN/dtex以上であり、より好ましくは0.20cN/dtex以上、さらに好ましくは0.25cN/dtex以上である。
【0029】
また、本発明のポリエステル系短繊維は、ヤング率が60cN/dtex以下、伸度3〜10%での微分ヤング率の最小値が15cN/dtex以下であることが好ましい。これら諸特性はすべて布帛におけるソフト性、反発性、弾性回復性に関わっており、いずれの特性もソフトストレッチ性を与えるためには低い値であるほうがよい。そのため、ヤング率は40cN/dtex以下であることがより好ましい。同様に、伸度3〜10%での微分ヤング率の最小値は10cN/dtex以下であることがより好ましい。
【0030】
また、本発明者らの実験では、結晶化度が高いほど捲縮回復能が高く、伸縮弾性率も高くなることがわかっている。したがって、結晶化度は高いほどよく、好ましくは35%以上、より好ましくは40%以上である。
【0031】
ここで、結晶化度の測定はJIS L1013(化学繊維フィラメント糸試験方法)7.14.2の密度勾配管法に従い密度を測定し、結晶化度は次式によって求めた(ただし、dc、daの値はPTTのものであり、ポリエステル系重合体A及びポリエステル系重合体Bの両成分がPTTのときの結晶化度である)。
【0032】
Xc[%] = {dc×(d−da)}/{d×(dc−da)}×100
Xc:結晶化度(%)、
d:実測糸密度、
dc:完全結晶部の密度
da:完全非晶部の密度
ここで、dc:1.387g/cm3 、da:1.295g/cm3 を用いた。
【0033】
本発明のポリエステル短繊維のカット長は、3〜150mmであることが好ましく、10〜100mmであることがより好ましい。この範囲とすることで、カード工程や紡績工程での通過性を向上させるとともに、繊維末端からの素抜けを抑制し、製品とした際に良好な強度を保持することができる。また、繊度はカード通過性を良好にするために0.5dtex以上にすることが好ましく、柔軟性のある風合いとするために6dtex以下にすることが好ましい。より好ましくは1〜4dtexである。
【0034】
本発明のポリエステル系短繊維の160℃における乾熱収縮率は18%以下であることが好ましい。乾熱収縮率が18%を越えると、布帛にした際に収縮が入りすぎて粗硬感のある風合いとなってしまう。より好ましい収縮率は15%以下である。
【0035】
また、高速化が要請されるカードに対応するためには、強度は2.5cN/dtex以上が好ましく、3cN/dtexがより好ましい。更にウェブの絡合性を十分にし、ウェブ切れを抑制するために捲縮率は10%以上が好ましく、20%以上がより好ましい。
【0036】
こうして得られた本発明のポリエステル系短繊維は、布帛の一部あるいは全部に用いることにより、ソフト性、ふくらみ感、適度な反発感、ストレッチ性を与えることができる。また、本発明のポリエステル系短繊維は、本発明の繊維とは異なる合成繊維や化学繊維、綿、麻、レーヨン、ポリノジックやキュプラ等のセルロース繊維、絹、ウールと混用することで、他繊維の風合いや吸放湿性、吸水性、制電性、保温性を付与でき、着用快適性が向上するため好ましい。
【0037】
本発明の布帛形態は、織物、編物、不織布、さらにはクッション材など、目的に応じて適宜選択でき、インナーやシャツ、ブラウス、パンツ、スーツ、ブルゾン、スポーツウェア、裏地、抄紙等に好適に用いることができる。
【0038】
次に、本発明のポリエステル系短繊維の好ましい製法を説明する。
【0039】
本発明のポリエステル系短繊維は、2種類のポリエステル系重合体からなるサイドバイサイド複合繊維である。高収縮成分となるポリエステル系重合体AにはPTTを主体としたポリエステルを配し、低収縮成分となるポリエステル系重合体Bにはポリエステル系重合体Aよりも低粘度であり、平均粒子径0.01〜2μmの粒子を0.1重量%以上含有する繊維形成性を有するポリエステルを配し、例えば図3に示すような構造を有する口金を用い、吐出孔上部で合流させ、サイドバイサイド複合流を形成させた後、所望の断面形状を得るための吐出孔、例えば図4に示すスリットの短軸方向に複合界面が形成される様に吐出することで得られる。ただし、本発明の断面形状が得られるのであれば、口金形状はこれに限定されるものではない。また、吐出された糸条は冷風等により強制冷却され、固化した後、ローラーによって引き取られ未延伸糸を得る。
【0040】
ここで、本発明の目的を達成しつつ、安定して紡糸するためには、各成分として用いるポリマの固有粘度および、各成分間の固有粘度差が重要となってくる。複合繊維といえども、片側成分の粘度が低すぎて繊維形成能がなかったり、逆に高すぎて特殊な紡糸装置が必要になるようでは実用的ではない。また、各成分間の粘度差により、吐出孔直下での糸条のベンディング(曲がり現象)の度合いが決まる。吐出孔直下でのベンディングが大きいと、吐出流の不整脈(ピクツキ)が生じやすく、紡糸性を悪化させる原因になる。そのため、本発明の目的を達成しつつ、製糸性を良好なものにするために、各成分の固有粘度(IV)は、次式を満たす組み合わせであることが好ましい。
【0041】
0.30X≦Y≦0.45X+0.30 ・・・(1)
0.45≦Y ・・・(2)
0.8≦X≦2.0 ・・・(3)
(ただし、Y:ポリエステル系重合体Bの固有粘度(IV)
X:ポリエステル系重合体Aの固有粘度(IV))
複合紡糸を行う際、繊維形成性のポリエステル系重合体Bの固有粘度(IV)を0.45以上にすることで、安定した製糸性が得られ好ましい。より好ましくは0.50以上である。さらに高い捲縮特性を得るためには、0.7以下であることが好ましい。一方、ポリトリメチレンテレフタレートを主体としたポリエステル系重合体Aを安定して溶融押出するために、固有粘度は0.8〜2.0の範囲が好ましく、より好ましくは1.1〜1.7である。
【0042】
また、2成分の固有粘度の組み合わせとして、Y=0.30XよりもYの値を大きくすることで、紡糸糸条が高粘度成分側に過度にベンディングするのを抑え、長時間に渡って安定して製糸することができるため好ましい。一方、Y=0.45X+0.30よりもYの値を小さくすることで、得られる糸の捲縮特性を目的とするレベルにすることができ好ましい。
【0043】
また、紡糸温度はポリエステル系重合体BがPTTやPBTの場合で245〜270℃、PETの場合で265〜290℃とすることが好ましく、必要に応じて口金下に2〜20cmの加熱筒やモノマー、オリゴマー等の吸引装置、ポリマ酸化劣化あるいは口金孔汚れ防止用の空気、スチーム、N2などの不活性ガス発生装置を設置してもよい。
【0044】
また、糸の太さ斑を小さくし、品位の高い布帛を得るために、紡糸速度は1000m/分以上にすることが好ましく、より好ましくは1200m/分以上、さらに好ましくは1400m/分以上である。
【0045】
延伸は、本発明の目的である高い伸縮性を付与するために、高倍率で行うことが有効となる。したがって、延伸倍率は最大延伸倍率の65%以上の倍率で延伸することが好ましく、70%以上の倍率で延伸することがより好ましい。ここで、最大延伸倍率とは複合紡糸によって得られた未延伸糸をオリエンテック(株)社製引張試験機UCT−100にて常温で低速延伸し、強度が最大を示す点の伸度(%)から次式によって求めた値である。なお、測定は5回行い、平均伸度をEとした。
【0046】
最大延伸倍率(倍)=(E/100)+1
また、延伸は2段以上の多段で行うことが好ましく、液浴温度50〜100℃で延伸し、延伸トウとする。液浴温度はポリエステル系重合体BがPTTやPBTの場合で50〜80℃、PETの場合で60〜98℃とすることが好ましい。
【0047】
また、本発明の狙いとする収縮応力のピーク温度及び乾熱収縮率とするために、延伸後に熱処理を行う必要がある。処理温度は110〜200℃で行うことが好ましく、130〜180℃で行うことがより好ましい。PTTの融点は230℃近傍にあるため、糸温度が210℃を越える条件では実質熱処理は不可能である。延伸して得たトウは、油剤を付与し必要に応じて座屈捲縮を付与し、さらにこのトウを使用目的に合わせたカット長(3〜150mm)に切断し、短繊維とする。
【0048】
本発明のポリエステル系繊維の表面処理用油剤としては、例えばポリアルキレングリコール及び/またはその誘導体を挙げることができる。ポリアルキレングリコールとしては、ポリエチレンオキシド、ポリプロピレンオキシド、ポリテトラメチレンオキシド等が好ましく用いられる。上記誘導体としては、それらの末端に酸成分を縮重合したものであり、酸成分としては、テレフタル酸成分、イソフタル酸成分、ベンゼンスルホン酸アルカリ金属塩成分、高級脂肪酸成分、モノカルボン酸成分等が例示できる。
【0049】
【実施例】
以下、本発明を実施例にて詳細に説明する。なお、実施例中の測定方法は以下の方法を用いた。
【0050】
A.固有粘度
オルソクロロフェノール(以下OCPと略記する)10ml中に試料ポリマを0.8g溶かし、25℃にてオストワルド粘度計を用いて相対粘度ηrを下式により求め、IVを算出した。
【0051】
ηr=η/η0 =(t×d)/(t0 ×d0
IV=0.0242ηr+0.2634
ここで、η:ポリマ溶液の粘度、
η0 :OCPの粘度、
t:溶液の落下時間(秒)、
d:溶液の密度(g/cm3 )、
0 :OCPの落下時間(秒)、
0:OCPの密度(g/cm3 )。
【0052】
B.収縮応力
カネボウエンジニアリング(株)社製熱応力測定器で、昇温速度150℃/分で測定した。サンプルは10cm×2のループとし、初期張力は繊度(dtex)×0.9×(1/10)gfとした。
【0053】
C.強伸度、ヤング率(初期引張抵抗度)
単糸をオリエンテック(株)社製 TENSILON UCT−100でJIS L1015(化学繊維ステープル試験方法)に示される定速伸長条件で測定した。なお、破断伸度はS−S曲線における最大強力を示した点の伸びから求めた。また、ヤング率はJIS L1015(化学繊維ステープル試験方法)の初期引張抵抗度に示される条件で測定した。
【0054】
D.微分ヤング率
C項で得られたS−S曲線の各点の応力を図5のように伸度で微分して求めた。
【0055】
E.結晶化度
JIS L1013(化学繊維フィラメント糸試験方法)7.14.2の密度勾配管法に従い密度を測定し、結晶化度は次式によって求めた。
【0056】
Xc[%] = {dc×(d−da)}/{d×(dc−da)}×100
Xc:結晶化度(%)、
d:実測糸密度、
dc:完全結晶部の密度
da:完全非晶部の密度
ここで、dc:1.387g/cm3、da:1.295g/cm3を用いた。
【0057】
F.溶融粘度
東洋精機(株)社製キャピログラフ1Bを用い、チッソ雰囲気下において温度280℃、歪み速度1216sec-1での測定を3回行い平均値を溶融粘度とした。
【0058】
G.最大延伸倍率
未延伸糸をオリエンテック(株)社製 TENSILON UCT−100で伸長させ、得られたS−S曲線における最大強力を示した点の伸度Eから求めた。なお、伸長条件は、つかみ間隔50mm、引張速度400mm/分とし、測定は5回行いその平均をEとした。
【0059】
最大延伸倍率(倍)=(E/100)+1
H.50%伸長回復率
短繊維をスラリー濃度が0.15%となるように水中に分散させた後、水を抜き、シート状とする。その後ウォーターパンチによって繊維を交絡させた後、160℃で1分間熱処理を行い、目付約30g/m2、 厚み約0.3mmの伸縮性不織布を作成する。作成した不織布を25×200mmの試験片とし、オリエンテック(株)社製TENSILON UCT−100でつかみ間隔100mm、引張速度100mm/分で50mm引っ張り、同速度で元の位置に戻しヒステリシスカーブを描かせ、戻り点の伸びa(荷重ゼロ点)を用い、次式から50%伸長回復率を求めた。
【0060】
50%伸長回復率(%)=(50−a)/50×100
実施例1
平均粒子径が0.4μmの酸化チタンを0.35重量%含有した固有粘度(IV)が1.50(溶融粘度1340poise)のホモPTTをポリエステル系重合体Aとし、平均粒子径が0.4μmの酸化チタンを0.35重量%含有した固有粘度(IV)が0.52(溶融粘度570poise)のホモPETをポリエステル重合体Bとして、それぞれ別々に溶融し、紡糸温度275℃で図3に示す構造を有する口金装置及び図4(a)に示す吐出孔を有する複合紡糸口金から複合比(重量%)50:50で吐出し、紡糸速度1400m/分で引取り、サイドバイサイド型複合構造未延伸糸を得た。またその断面形状は、図1(a)に示すPTTの外周形状が略楕円形、PETの外周形状が略円形である非対称性の扁平形状であり、その扁平度(長軸/短軸の比)は1.8であった。また、該未延伸糸の最大延伸倍率は4.8倍であった。さらに未延伸糸を70℃の温浴中で延伸倍率3.15倍で延伸、引き続いてスチームによる100℃の湿熱下で1.02倍に延伸(1段目、2段目合わせて最大延伸倍率の67%)し、さらに160℃で緊張熱処理を行い、ポリエチレンオキシドを主成分とする油剤を付与し、繊維長35mmにカットして2.5dtexの短繊維を得た。
【0061】
該短繊維は沸騰水処理を行うことでコイル径が約250μmの細かい捲縮を呈した。さらに不織布として50%伸長回復率を測定したところ、81%と極めて良好な伸長回復性を示した。
【0062】
実施例2、実施例3
平均粒子径が0.4μmの酸化チタンを0.35重量%含有した固有粘度(IV)が0.48(溶融粘度450poise)のホモPET、又は平均粒子径が0.4μmの酸化チタンを0.35重量%含有した固有粘度(IV)が0.65(溶融粘度1190poise)のホモPETをポリエステル系重合体Bに用いた以外は実施例1と同様の方法で評価した。結果を表1に示す。固有粘度(IV)が0.48のホモPETを用いた実施例2は、実施例1同様、良好な伸縮性を示した。また、固有粘度(IV)が0.65のホモPETを用いた実施例3は、口金直下のベンディングも小さく、紡糸性が良好であった。また、実施例1と比較してやや伸縮性に劣るが、従来品のPET/PET系バイメタル糸よりも優れていた。
【0063】
実施例4
艶消し剤として平均粒子径0.4μmの酸化チタンを0.1重量%含有した固有粘度(IV)が1.02(溶融粘度900poise)のホモPTTをポリエステル系重合体Aに用いた以外は実施例1と同様の方法で評価した。結果を表1に示す。実施例4は紡糸、延伸とも製糸性は良好であり、糸切れは発生しなかった。また、実施例1と比較して伸縮特性はやや劣っていたが、ストレッチ素材として十分使用できるポテンシャルを有していた。
【0064】
実施例5
艶消し剤として平均粒子径0.4μmの酸化チタンを0.1重量%含有した固有粘度(IV)が1.72(溶融粘度1420poise)のホモPTTをポリエステル系重合体Aとし、1段目の延伸倍率を3.0倍(最大延伸倍率の68%)とした以外は実施例1と同様の方法で評価した。結果を表1に示す。実施例5は紡糸、延伸とも製糸性は良好であり、糸切れは発生しなかった。また、実施例1と同様、優れた伸縮特性を示した。
【0065】
比較
口金の吐出孔を円形とした以外は実施例3と同じ方法で評価した。比較の断面形状はほぼ円形(扁平度1)であった。比較は紡糸、延伸とも製糸性は良好であり、糸切れは発生しなかった。また、実施例1と同様、優れた伸縮特性を示した。ただし、不織布表面には部分的にシワが発生し、品位面で若干劣るものであった。
【0066】
比較例
延伸工程での緊張熱処理の温度を35℃とした以外は実施例1と同様の方法で評価した。比較例の原糸は160℃の乾熱収縮率が23%と高く、収縮応力の最大値を示すピーク温度も92℃と低いため、不織布の乾熱処理工程で急激な収縮が入ってシワが寄り、表面品位の悪いものとなった。また、得られた不織布は粗硬感があるとともに伸縮特性も低く、ストレッチ素材としてのポテンシャルに欠けるものであった。
【0067】
比較例
平均粒子径が0.4μmの酸化チタンを0.35重量%含有した固有粘度(IV)が0.4のホモPET(溶融粘度250poise)をポリエステル重合体Bとした以外は実施例1と同様の方法で評価した結果を表1に示す。比較例のポリマ組み合わせでは口金直下でのベンディングがひどく、安定して紡糸することができなかった。
【0068】
実施例
艶消し剤として平均粒子径が0.4μmの酸化チタンを0.35重量%含有した固有粘度(IV)が0.65のホモPTT(溶融粘度260poise)をポリエステル系重合体Bに用い、紡糸温度265℃で紡糸、さらに未延伸糸を60℃の温浴中で延伸倍率3.0倍(最大延伸倍率の70%)とした以外は実施例1と同様の方法で評価した。結果を表1に示す。実施例6の製糸性は良好であった。また、原糸の低いヤング率及び微分ヤング率に起因するソフトな伸縮性(ソフトストレッチ性)を有しているとともに、実施例1よりも50%伸縮回復率が高いものであった。
【0069】
実施例
艶消し剤として平均粒子径が0.4μmの酸化チタンを0.1重量%含有した固有粘度(IV)が0.75のホモPBT(溶融粘度440poise)をポリエステル系重合体Bに用いた以外は実施例7と同様の方法で評価した。結果を表1に示す。実施例8の製糸性は良好であった。また、ソフトストレッチ性、50%伸長回復率が実施例1よりも優れていた。
【0070】
実施例8
吐出孔形状を図4(d)とした以外は実施例1と同様の方法で評価した結果を表1に示す。実施例の断面形状は図1(d)に示すようにPETの外周形状が略円形、PTTの外周形状が略方形である非対称性の扁平形状であり、その扁平度は1.6であった。実施例は実施例1と比較してややソフト性が低いものであったが、表面品位は良好であった。
【0071】
実施例
紡糸速度を920m/分としてサイドバイサイド型複合構造未延伸糸とし、延伸工程での1段目の延伸倍率を3.7倍(最大延伸倍率の69%)とした以外は実施例1と同様の方法で評価した。実施例は実施例1と同様、優れたソフト性およびストレッチ特性を示したが、不織布を染色すると糸斑に起因すると思われる染め斑が発生し、品位面でやや劣るものであった。
【0072】
比較例
平均粒子径が0.4μmの酸化チタンを0.35重量%含有した固有粘度(IV)が0.85(溶融粘度3000poise)のホモPETをポリエステル系重合体Aとし、紡糸温度290℃で紡糸、90℃の温浴中で延伸した以外は実施例1と同様の方法で評価した。比較例3は紡糸性、延伸性は良好であるものの、ソフト性、伸縮特性ともに低く、ストレッチ素材としてのポテンシャルに欠けるものであった。
【0073】
比較例5
ポリエステル系重合体A及びポリエステル系重合体Bに粒子を添加しなかった(粒子含有量ゼロ)以外は実施例1と同様の方法で評価した。比較例は製糸工程でのガイド、ローラーに対する摩擦抵抗が大きいために糸切れが多発するとともに、ガイド、ローラー表面の摩耗が大きいものであった。また、カード通過性が悪く、ネップが発生しやすかった。
【0074】
【表1】
【0075】
【発明の効果】
本発明のポリエステル系短繊維を用いることにより、ソフトタッチで優れたストレッチ性を与えるとともに、ポリウレタン混用で問題となる染料汚染がなく、高品位な布帛を得ることができるものである。
【図面の簡単な説明】
【図1】本発明の複合糸を構成する単繊維の繊維横断面形状を示す図である。
【図2】本発明の複合糸の断面方向の配列を示す図である。
【図3】本発明の繊維を製造するために好ましく用いられる口金の縦断面図である。
【図4】本発明の繊維を製造するために好ましく用いられる吐出孔形状を示す図である。
【図5】本発明(実施例1)の繊維の応力及び微分ヤング率−伸度曲線である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyester-based short fiber having latent crimping property capable of imparting appropriate stretchability to a fabric due to its excellent crimp-producing ability.
[0002]
[Prior art]
Polyester has various excellent properties including mechanical properties, so it is widely used not only for clothing. In addition, various methods have been employed in order to give stretchability to polyester fabrics by a recent stretch boom.
[0003]
For example, there is a method of imparting stretch properties by mixing polyurethane-based elastic fibers in a woven fabric. However, when polyurethane fibers are mixed, the texture inherent to polyurethane is hard, the texture and drape of the fabric is reduced, and it is difficult to disperse in the disperse dye for polyester, resulting in a problem of contamination. For this reason, not only the dyeing process such as enhancement of reduction cleaning is complicated, but also it is difficult to dye in a desired color.
[0004]
On the other hand, as a method not using polyurethane-based fibers, various latent crimp-expressing polyester fibers using a side-by-side composite have been proposed. The latent crimp-expressing polyester fiber refers to a polyester fiber that has the ability to develop crimps by heat treatment or to produce finer crimps than before heat treatment.
[0005]
For example, Japanese Patent Publication No. 44-2504 and Japanese Patent Laid-Open No. 4-308271 disclose a side-by-side composite fiber of polyethylene terephthalate (hereinafter abbreviated as PET) having an intrinsic viscosity difference or an intrinsic viscosity difference, and Japanese Patent Laid-Open No. 5-295634. Side-by-side bicomponent fibers of homo-PET and copolymer PET with higher shrinkage are described. If such a latently crimpable polyester fiber is used, a certain degree of stretchability can surely be obtained, but the stretchability when made into a woven fabric is insufficient, and it is difficult to obtain a satisfactory stretchable woven fabric. was there. This is because the above-described side-by-side conjugate fiber has a low crimping ability in restraining the fabric, or the crimping is easily lost due to external force. The side-by-side composite fiber does not use the stretch property due to the expansion and contraction of the fiber itself like the polyurethane fiber, but uses the expansion and contraction of the three-dimensional coil caused by the difference in contraction rate between the composite polymers for the stretch property. For this reason, for example, when subjected to heat treatment under fabric restraint where the shrinkage of the polymer is limited, the heat is fixed as it is, and the coil is not sufficiently developed because it loses the shrinkage further, so that the above problem is considered to occur.
[0006]
Japanese Patent Publication No. 43-19108 and Japanese Patent Laid-Open No. 11-158733 describe side-by-side short fibers using polytrimethylene terephthalate. If the method described in the present application is used, an appropriate stretch property can be provided, but since the tendency of the coil crimps between short fibers to associate with each other is strong, wrinkles and spots are likely to appear on the fabric surface, and the quality is poor. There is a problem that can only be done. In addition, when the present inventors additionally tried the method described in Japanese Patent Publication No. 43-19108, stained spots were generated due to thread spots that were probably caused by a low spinning speed.
[0007]
[Problems to be solved by the invention]
The present invention has good yarn-making properties such as spinning and drawing and carding property passing property, and there is no dye contamination which becomes a problem when mixed with polyurethane. Provides polyester-based staple fibers with latent crimp development properties that can improve the crimp development ability of the fabric, have excellent stretchability, and can produce a high-quality fabric with less wrinkles, spots and dyed spots on the fabric surface To do.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention employs the following configuration. That is,
(1) In a composite fiber in which two types of polyester polymers A and B are bonded side-by-side along the fiber length direction, the polyester polymer A is a polyester mainly composed of polytrimethylene terephthalate. What fiber-forming polyester der the system polymer B contains particles having an average particle diameter of 0.01 to 2 [mu] m 0.1 wt% or more, flat shape that the sectional shape of the conjugate fiber has a composite surface in the minor axis direction with it, polyester staple fibers having latent crimp of the flatness represented by a ratio of long axis / short axis of the cross section and wherein from 1.4 to 6 der Rukoto.
[0010]
(2) at a temperature showing the maximum shrinkage stress is 110 ° C. or higher, and the maximum value of shrinkage stress is characterized in that at 0.15 cN / dtex or more (1) Symbol polyester having latent crimp of the mounting Short fiber.
[0011]
(3) cut length is 3~150Mm, fineness characterized in that it is a 0.5~6Dtex (2) Symbol mounting latent crimp polyester staple fibers having.
[0012]
( 4 ) The cross-sectional shape of the fiber is a flat cross section in which the outer peripheral shape of the polyester-based polymer B is substantially circular and the outer peripheral shape of the polyester-based polymer A is approximately elliptical or substantially rectangular ( 1 )-( 3 ) The polyester staple fiber which has the latent crimp expression of any one of ( 3 ).
[0013]
( 5 ) The polyester-based short fiber having latent crimping property according to any one of (1) to ( 4 ), wherein the polyester-based polymer B is a polyester mainly composed of polytrimethylene terephthalate. .
[0014]
( 6 ) The polyester staple fiber according to any one of (1) to ( 4 ), wherein the polyester polymer B is a polyester mainly composed of polybutylene terephthalate.
[0015]
( 7 ) A fiber forming property in which a polyester mainly composed of polytrimethylene terephthalate is arranged in the polyester polymer A, and the polyester polymer B contains 0.1% by weight or more of particles having an average particle diameter of 0.01 to 2 μm. When performing composite spinning with polyester, a composite flow is formed with a combination in which each of the intrinsic viscosities (IV) satisfies the following formulas (1) to (3), and the minor axis direction of the slit is the composite interface. After having been slit so as to be discharged, it is taken out and subjected to a heat treatment at a treatment temperature of 110 to 200 ° C. in the stretching process, and then an oil agent is applied, and has a potential crimp expression characteristic of being cut into a cut length of 3 to 150 mm. A method for producing polyester-based short fibers.
[0016]
0.30X ≦ Y ≦ 0.45X + 0.30 (1)
0.45 ≦ Y (2)
0.8 ≦ X ≦ 2.0 (3)
(However, Y: Intrinsic viscosity of polyester polymer B (IV)
X: Intrinsic viscosity (IV) of polyester polymer A)
( 8 ) A polyester-based fabric excellent in stretch, characterized in that it comprises at least a portion of the polyester-based short fibers having latent crimp development as described in any one of (1) to ( 6 ).
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The polyester short fiber of the present invention is a flat cross-section fiber having a specific shape in which two types of polyester polymers having different viscosities are bonded in a side-by-side manner along the fiber length direction. By making polymers having different viscosities into the composite form, stress concentrates on the high viscosity side during spinning and stretching, so that the internal strain differs among the components. Therefore, the high-viscosity side contracts greatly due to the difference in elastic recovery rate after stretching and the heat shrinkage rate difference in the heat treatment process of the fabric, and distortion occurs in the single fiber to take the form of a three-dimensional coil crimp. It can be said that the diameter of the three-dimensional coil and the number of coils per unit fiber length are determined by the shrinkage difference between the high shrinkage component and the low shrinkage component (the value obtained by adding the elastic recovery rate difference and the heat shrinkage rate difference). As the shrinkage difference increases, the coil diameter decreases and the number of coils per unit fiber length increases.
[0018]
The coil crimp required as a stretch material has a small coil diameter, a large number of coils per unit fiber length (excellent stretch characteristics and good appearance), and good coil sag resistance (depending on the number of stretches) The amount of sag of the coil is small and the stretch retention is excellent), and the hysteresis loss at the time of recovery of extension of the coil is small (excellent elasticity and good fit). By satisfying these requirements and having the characteristics as a polyester, it is possible to obtain a stretch material excellent in total balance.
[0019]
Here, in order to satisfy the coil characteristics described above, the characteristics of the high shrinkage component (polyester polymer A in the present invention) are important. Since the stretch characteristics of the coil are dominated by the stretch characteristics of the high shrinkage component with the low shrinkage component as a fulcrum, the polymer used for the high shrinkage component is required to have particularly high extensibility and recoverability. Accordingly, as a result of intensive studies to satisfy the above-mentioned characteristics without impairing the characteristics of the polyester, the present inventors use a polyester mainly composed of polytrimethylene terephthalate (hereinafter abbreviated as PTT) as the polyester-based polymer A. I found out. PTT fibers have the same mechanical and chemical properties as polyethylene terephthalate (hereinafter abbreviated as PET) and polybutylene terephthalate (hereinafter abbreviated as PBT) fibers, which are typical polyester fibers, and are stretch-recoverable. Is very good. This is because the methylene chain of the alkylene glycol part in the crystal structure of PTT is a Gauche-Gauche bent structure, and further, the constraint point density due to the interaction (stacking, parallel) of the benzene rings is low, and the flexibility is high. For this reason, it is considered that the molecular chain is easily elongated and recovered by the rotation of the methylene chain.
[0020]
Here, the PTT of the present invention is a polyester obtained using terephthalic acid as the main acid component and 1,3-propanediol as the main glycol component. However, it may contain a copolymer component capable of forming another ester bond at a ratio of 20 mol%, more preferably 10 mol% or less. Examples of the copolymerizable compound include dicarboxylic acids such as isophthalic acid, succinic acid, cyclohexanedicarboxylic acid, adipic acid, dimer acid, sebacic acid, 5-sodium sulfoisophthalic acid, ethylene glycol, diethylene glycol, butanediol, neopentyl glycol, Although diols, such as cyclohexane dimethanol, polyethylene glycol, polypropylene glycol, can be mentioned, it is not limited to these.
[0021]
In addition, the low shrinkage component of the present invention (polyester polymer B in the present invention) is particularly a fiber-forming polyester that has good interfacial adhesion with PTT, which is a high shrinkage component, and has stable yarn-making properties. It is not limited. However, in consideration of mechanical properties, chemical properties, and raw material prices, PTT, PET, and PBT having fiber forming ability are preferable. Furthermore, by combining the melting point and glass transition point with the polyester polymer A (high shrinkage component), stress can be concentrated on the high shrinkage component in the spinning process, and the difference in shrinkage rate can be increased. preferable. Moreover, since the Young's modulus of the fiber can be lowered by using PTT or PBT, there is also an advantage that a softer and more elastic fabric can be obtained. In addition, the viscosity as used in the field of this invention refers to intrinsic viscosity (IV), and is a value measured by dissolving a sample in orthochlorophenol.
[0022]
In addition, in order to increase the processability in yarn production, card passing property and textile processing and to make stable production, the polyester polymer B which is an outer component of the coil crimp as a lubricant has an average particle diameter of 0.01 to 2 μm. It is necessary to contain 0.1% by weight or more of the particles. When the average particle size is less than 0.01 μm, the effect as a lubricant is small, and the process passability cannot be improved. On the other hand, when the average particle diameter is 2 μm or more, the particles act as defects and the fiber strength is lowered, so that the frequency of yarn breakage during yarn production increases.
[0023]
In addition, if the particle content is less than 0.1% by weight, the effect of improving the process passability is small, and if the particle content exceeds 3% by weight, the pack life in the yarn production is shortened, and the wear of guides, rollers, etc. The problem of becoming intense occurs. A preferable particle content is 0.2 to 3.0% by weight, and a more preferable particle content is 0.3 to 2.0% by weight. As the particle type, fine particles such as titanium dioxide, silica, alumina, kaolinite, and calcium carbonate are preferably used, but are not limited thereto. Further, in order to further improve the process passability and to improve the see-through property, it is preferable that the PTT which is an inner component of the coil also contains particles. Moreover, you may add a hindered phenol derivative, a coloring pigment, etc. as an antioxidant.
[0024]
Further, the conjugate fiber of the present invention needs to have a flat shape having a conjugate interface in the minor axis direction, and the flatness expressed by the ratio of major axis / minor axis of the cross section is 1.4 to 6. Unlike the round cross-section fiber, the flat cross-section fiber has a cross-section anisotropy with respect to bending, and is characterized by being easily bent in the minor axis direction of the flat section and not easily bent in the major axis direction. Therefore, when a composite interface is provided in the minor axis direction, bending due to the shrinkage difference occurs in a direction with high bending rigidity, and thus twist is added to the coil crimp. For this reason, coil crimps are unlikely to associate with each other, and the crimps are independently expressed. Therefore, the bulkiness is high, an appropriate bulge is provided, and a soft and repulsive fabric can be obtained. In addition, since the crimping phase is shifted between adjacent fibers, the effect of distributing torque by coil crimping can be enhanced, so that a flat and high-quality fabric free from wrinkles and spots can be obtained.
[0025]
Further, the flatness is preferably 1.5 to 6 in order to satisfy the mechanical properties such as process passability, strength, and the like and good color developability in yarn production and textile processing while giving the above-mentioned phase shifting effect. More preferably, it is 1.6-4, More preferably, it is 1.7-2.5.
[0026]
In addition, the effect of shifting the phase due to the suppression of the association between fibers is more exhibited by setting a specific cross section so as to have an asymmetric shape between the two types of polyester polymers. FIG. 1 is a cross-sectional view of a fiber showing a preferred embodiment of the present invention. For example, two types of polyester-based polymer A (white area in the figure) and polyester-based polymer B (shaded area in the figure) are polyester-based. The outer peripheral shape of the polymer B is a substantially circular shape, and the outer peripheral shape of the polyester-based polymer A is a flat cross section having a substantially elliptical shape or a substantially rectangular shape. By making such a cross section, as shown in FIG. 2, the cross section between fibers is not aligned in the same direction, and re-arrangement due to external force (the cross section is aligned in the same direction and the association proceeds between fibers) is suppressed. Therefore, the product life cycle can be dramatically extended.
[0027]
In addition, the composite ratio between the two components is preferably in the range of high shrinkage component: low shrinkage component = 70: 30 to 35:65 (% by weight) in terms of yarn production and dimensional homogeneity of the coil in the fiber length direction. The range of 60/40 to 45/55 is more preferable.
[0028]
Further, in order to overcome the fabric restraining force and to stably develop the coil crimp, the shrinkage stress and the temperature indicating the maximum shrinkage stress are important characteristics. The higher the shrinkage stress is, the better the crimp developability under fabric restraint is, and the higher the temperature at which the maximum shrinkage stress is, the easier the handling in the finishing process. Therefore, in order to increase the crimp development in the heat treatment step of the fabric, the temperature at which the shrinkage stress is maximized is preferably 110 ° C. or higher, more preferably 130 ° C. or higher, and further preferably 150 ° C. or higher. Further, the maximum value of the shrinkage stress is preferably 0.15 cN / dtex or more, more preferably 0.20 cN / dtex or more, and further preferably 0.25 cN / dtex or more.
[0029]
The polyester short fibers of the present invention preferably have a Young's modulus of 60 cN / dtex or less and a minimum differential Young's modulus at an elongation of 3 to 10% of 15 cN / dtex or less. All of these characteristics are related to softness, resilience, and elastic recovery in the fabric, and any of these characteristics should have a low value in order to give soft stretchability. Therefore, the Young's modulus is more preferably 40 cN / dtex or less. Similarly, the minimum value of the differential Young's modulus at an elongation of 3 to 10% is more preferably 10 cN / dtex or less.
[0030]
Further, in the experiments by the present inventors, it has been found that the higher the crystallinity, the higher the crimp recovery ability and the higher the elastic modulus of elasticity. Therefore, the higher the crystallinity, the better, preferably 35% or more, more preferably 40% or more.
[0031]
Here, the crystallinity was measured according to the density gradient tube method of JIS L1013 (chemical fiber filament yarn test method) 7.14.2, and the crystallinity was obtained by the following equation (however, dc, da Is the value of PTT, and is the degree of crystallinity when both components of polyester polymer A and polyester polymer B are PTT).
[0032]
Xc [%] = {dc × (d−da)} / {d × (dc−da)} × 100
Xc: crystallinity (%),
d: measured yarn density,
dc: density of complete crystal part da: density of complete amorphous part Here, dc: 1.387 g / cm 3 and da: 1.295 g / cm 3 were used.
[0033]
The cut length of the polyester staple fiber of the present invention is preferably 3 to 150 mm, and more preferably 10 to 100 mm. By setting it as this range, while improving the permeability | transmittance in a card | curd process or a spinning process, it can suppress the omission from a fiber terminal and can maintain favorable intensity | strength when it is set as a product. The fineness is preferably 0.5 dtex or more in order to improve the card passing property, and preferably 6 dtex or less in order to obtain a flexible texture. More preferably, it is 1-4 dtex.
[0034]
The polyester-based short fiber of the present invention preferably has a dry heat shrinkage at 160 ° C. of 18% or less. When the dry heat shrinkage rate exceeds 18%, the fabric is too shrunk when it is made into a fabric, resulting in a texture with a feeling of coarseness. A more preferable shrinkage ratio is 15% or less.
[0035]
In order to cope with a card that requires high speed, the strength is preferably 2.5 cN / dtex or more, and more preferably 3 cN / dtex. Furthermore, the crimp ratio is preferably 10% or more, and more preferably 20% or more in order to make the web entangled sufficiently and suppress web breakage.
[0036]
The polyester-based short fibers of the present invention thus obtained can give softness, swelling feeling, moderate resilience, and stretchability when used in part or all of the fabric. The polyester short fibers of the present invention are mixed with synthetic fibers and chemical fibers different from those of the present invention, cotton, hemp, rayon, cellulose fibers such as polynosic and cupra, silk, wool, and other fibers. A texture, moisture absorption / release properties, water absorption, antistatic properties, and heat retention properties can be imparted, and wearing comfort is improved, which is preferable.
[0037]
The fabric form of the present invention can be appropriately selected according to the purpose, such as a woven fabric, a knitted fabric, a nonwoven fabric, and a cushion material, and is suitably used for an inner, shirt, blouse, pants, suit, blouson, sportswear, lining, papermaking, and the like. be able to.
[0038]
Next, the preferable manufacturing method of the polyester-type short fiber of this invention is demonstrated.
[0039]
The polyester short fiber of the present invention is a side-by-side composite fiber composed of two types of polyester polymers. Polyester polymer A, which is a high shrinkage component, is provided with a polyester mainly composed of PTT, and polyester polymer B, which is a low shrinkage component, has a lower viscosity than polyester polymer A and has an average particle size of 0. A polyester having a fiber-forming property containing 0.1 to 2 μm or more of particles of 0.01 to 2 μm is arranged, and, for example, using a die having a structure as shown in FIG. After forming, it is obtained by discharging so that a composite interface is formed in the short axis direction of a discharge hole for obtaining a desired cross-sectional shape, for example, a slit shown in FIG. However, the shape of the die is not limited to this as long as the cross-sectional shape of the present invention can be obtained. The discharged yarn is forcibly cooled by cold air or the like and solidified, and then taken up by a roller to obtain an undrawn yarn.
[0040]
Here, in order to achieve stable spinning while achieving the object of the present invention, the intrinsic viscosity of the polymer used as each component and the intrinsic viscosity difference between the components are important. Even in the case of a composite fiber, the viscosity of one side component is too low to have fiber forming ability, or conversely, it is too practical to require a special spinning device because it is too high. Moreover, the degree of yarn bending (bending phenomenon) just below the discharge hole is determined by the difference in viscosity between the components. If the bending just under the discharge hole is large, irregularities in the discharge flow are likely to occur, which causes the spinnability to deteriorate. Therefore, in order to achieve the object of the present invention and to improve the spinning property, the intrinsic viscosity (IV) of each component is preferably a combination satisfying the following formula.
[0041]
0.30X ≦ Y ≦ 0.45X + 0.30 (1)
0.45 ≦ Y (2)
0.8 ≦ X ≦ 2.0 (3)
(However, Y: Intrinsic viscosity of polyester polymer B (IV)
X: Intrinsic viscosity (IV) of polyester polymer A)
When performing composite spinning, it is preferable that the intrinsic viscosity (IV) of the fiber-forming polyester polymer B is 0.45 or more because stable spinning can be obtained. More preferably, it is 0.50 or more. In order to obtain higher crimp characteristics, it is preferably 0.7 or less. On the other hand, in order to stably melt-extrude the polyester-based polymer A mainly composed of polytrimethylene terephthalate, the intrinsic viscosity is preferably in the range of 0.8 to 2.0, more preferably 1.1 to 1.7. It is.
[0042]
In addition, as a combination of the intrinsic viscosity of the two components, the value of Y is made larger than Y = 0.30X, so that the spun yarn is prevented from excessive bending to the high viscosity component side, and stable for a long time. It is preferable because it can be made into yarns. On the other hand, by making the value of Y smaller than Y = 0.45X + 0.30, it is preferable that the crimp characteristics of the obtained yarn can be brought to a target level.
[0043]
Further, the spinning temperature is preferably 245 to 270 ° C. when the polyester polymer B is PTT or PBT, and preferably 265 to 290 ° C. when PET is used. A suction device for monomers, oligomers, etc., an inert gas generator such as air, steam, N2 for preventing polymer oxidation deterioration or nozzle hole contamination may be installed.
[0044]
Further, in order to reduce the thickness variation of the yarn and obtain a high-quality fabric, the spinning speed is preferably 1000 m / min or more, more preferably 1200 m / min or more, and further preferably 1400 m / min or more. .
[0045]
Stretching is effectively performed at a high magnification in order to impart high stretchability, which is an object of the present invention. Accordingly, the stretching ratio is preferably stretched at a ratio of 65% or more of the maximum stretch ratio, and more preferably stretched at a ratio of 70% or more. Here, the maximum draw ratio is the degree of elongation (%) at which the undrawn yarn obtained by composite spinning is drawn at low speed at room temperature using a tensile tester UCT-100 manufactured by Orientec Co., Ltd. ) From the following equation. The measurement was performed 5 times and the average elongation was E.
[0046]
Maximum draw ratio (times) = (E / 100) +1
Moreover, it is preferable to perform extending | stretching by two or more steps | paragraphs, and it extends | stretches at liquid bath temperature 50-100 degreeC, and is set as extending | stretching tow. The liquid bath temperature is preferably 50 to 80 ° C. when the polyester polymer B is PTT or PBT, and preferably 60 to 98 ° C. when PET is used.
[0047]
In order to obtain the peak temperature of shrinkage stress and the dry heat shrinkage rate which are the targets of the present invention, it is necessary to perform heat treatment after stretching. The treatment temperature is preferably 110 to 200 ° C, more preferably 130 to 180 ° C. Since the melting point of PTT is in the vicinity of 230 ° C., substantial heat treatment is impossible under conditions where the yarn temperature exceeds 210 ° C. The tow obtained by stretching is imparted with an oil agent and imparted with buckling crimp as necessary, and the tow is further cut into cut lengths (3 to 150 mm) according to the purpose of use to obtain short fibers.
[0048]
Examples of the surface treatment oil for the polyester fiber of the present invention include polyalkylene glycol and / or a derivative thereof. As the polyalkylene glycol, polyethylene oxide, polypropylene oxide, polytetramethylene oxide and the like are preferably used. The derivatives are those obtained by polycondensation of acid components at their ends, and the acid components include terephthalic acid components, isophthalic acid components, benzenesulfonic acid alkali metal salt components, higher fatty acid components, monocarboxylic acid components, and the like. It can be illustrated.
[0049]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples. In addition, the measuring method in an Example used the following method.
[0050]
A. 0.8 g of the sample polymer was dissolved in 10 ml of intrinsic viscosity orthochlorophenol (hereinafter abbreviated as OCP), and the relative viscosity ηr was determined by the following equation using an Ostwald viscometer at 25 ° C., and IV was calculated.
[0051]
ηr = η / η 0 = (t × d) / (t 0 × d 0 )
IV = 0.0242ηr + 0.2634
Where η: the viscosity of the polymer solution,
η 0 : viscosity of OCP,
t: Solution drop time (seconds),
d: density of the solution (g / cm 3 ),
t 0 : OCP fall time (seconds),
d 0 : OCP density (g / cm 3 ).
[0052]
B. Shrinkage stress was measured with a thermal stress measuring instrument manufactured by Kanebo Engineering Co., Ltd. at a heating rate of 150 ° C./min. The sample was a 10 cm × 2 loop, and the initial tension was fineness (dtex) × 0.9 × (1/10) gf.
[0053]
C. Strong elongation, Young's modulus (initial tensile resistance)
The single yarn was measured with a TENSILON UCT-100 manufactured by Orientec Co., Ltd. under the constant speed elongation conditions shown in JIS L1015 (chemical fiber staple test method). The elongation at break was determined from the elongation at the point showing the maximum strength in the SS curve. The Young's modulus was measured under the conditions indicated by the initial tensile resistance of JIS L1015 (chemical fiber staple test method).
[0054]
D. The stress at each point of the SS curve obtained with the differential Young's modulus C term was determined by differentiating the elongation as shown in FIG.
[0055]
E. Crystallinity The density was measured according to the density gradient tube method of JIS L1013 (chemical fiber filament yarn test method) 7.14.2, and the crystallinity was determined by the following equation.
[0056]
Xc [%] = {dc × (d−da)} / {d × (dc−da)} × 100
Xc: crystallinity (%),
d: measured yarn density,
dc: density of complete crystal part da: density of complete amorphous part Here, dc: 1.387 g / cm 3 and da: 1.295 g / cm 3 were used.
[0057]
F. Melt Viscosity Using Capillograph 1B manufactured by Toyo Seiki Co., Ltd., measurement was performed three times at a temperature of 280 ° C. and a strain rate of 1216 sec −1 in a nitrogen atmosphere, and the average value was taken as the melt viscosity.
[0058]
G. The unstretched yarn with the maximum draw ratio was stretched with TENSILON UCT-100 manufactured by Orientec Co., Ltd., and the elongation was determined from the elongation E of the point showing the maximum strength in the obtained SS curve. The stretching conditions were a grip interval of 50 mm, a tensile speed of 400 mm / min, the measurement was performed 5 times, and the average was E.
[0059]
Maximum draw ratio (times) = (E / 100) +1
H. After 50% elongation recovery rate short fibers are dispersed in water so that the slurry concentration becomes 0.15%, water is drained to form a sheet. Thereafter, the fibers are entangled by a water punch, followed by heat treatment at 160 ° C. for 1 minute to produce a stretchable nonwoven fabric having a basis weight of about 30 g / m 2 and a thickness of about 0.3 mm. Using the prepared nonwoven fabric as a 25 x 200 mm test piece, pull it 50 mm at a gripping interval of 100 mm and a pulling speed of 100 mm / min with Orientec Co., Ltd. TENSILON UCT-100, return to the original position at the same speed, and draw a hysteresis curve Using the return point elongation a (zero load point), a 50% elongation recovery rate was determined from the following equation.
[0060]
50% elongation recovery rate (%) = (50−a) / 50 × 100
Example 1
Homo PTT containing 0.35% by weight of titanium oxide having an average particle size of 0.4 μm and an intrinsic viscosity (IV) of 1.50 (melt viscosity of 1340 poise) is designated as polyester polymer A, and the average particle size is 0.4 μm. Homo PET containing 0.35% by weight of titanium oxide and having an intrinsic viscosity (IV) of 0.52 (melt viscosity of 570 poise) was melted separately as polyester polymer B, and shown in FIG. 3 at a spinning temperature of 275 ° C. The composite spinneret having the structure and the composite spinneret having the discharge holes shown in FIG. 4A are discharged at a composite ratio (% by weight) of 50:50 and taken up at a spinning speed of 1400 m / min. Got. The cross-sectional shape is an asymmetrical flat shape in which the outer peripheral shape of the PTT shown in FIG. 1A is substantially elliptical and the outer peripheral shape of PET is substantially circular, and the flatness (ratio of major axis / minor axis). ) Was 1.8. The maximum draw ratio of the undrawn yarn was 4.8 times. Further, the undrawn yarn was drawn in a warm bath at 70 ° C. at a draw ratio of 3.15 times, and then drawn to 1.02 times under steam and heat at 100 ° C. (the first draw and the second step were combined with the maximum draw ratio). 67%) and further subjected to tension heat treatment at 160 ° C. to give an oil agent mainly composed of polyethylene oxide, and cut to a fiber length of 35 mm to obtain 2.5 dtex short fibers.
[0061]
The short fibers were subjected to boiling water treatment to exhibit fine crimps with a coil diameter of about 250 μm. Furthermore, when the 50% elongation recovery rate was measured as a nonwoven fabric, it showed an extremely good elongation recovery property of 81%.
[0062]
Example 2 and Example 3
A homo-PET having an intrinsic viscosity (IV) of 0.48 (melt viscosity of 450 poise) containing 0.35% by weight of titanium oxide having an average particle diameter of 0.4 μm, or titanium oxide having an average particle diameter of 0.4 μm is 0.00. Evaluation was conducted in the same manner as in Example 1 except that homopoly PET containing 35% by weight and having an intrinsic viscosity (IV) of 0.65 (melt viscosity 1190 poise) was used for the polyester polymer B. The results are shown in Table 1. Example 2 using homo-PET having an intrinsic viscosity (IV) of 0.48 showed good stretchability as in Example 1. Further, in Example 3 using homo-PET having an intrinsic viscosity (IV) of 0.65, the bending just under the die was small and the spinnability was good. Further, although slightly inferior in elasticity as compared with Example 1, it was superior to the conventional PET / PET bimetal yarn.
[0063]
Example 4
Except for using as a matting agent a polyester polymer A, a homo-PTT containing 0.1% by weight of titanium oxide having an average particle size of 0.4 μm and an intrinsic viscosity (IV) of 1.02 (melt viscosity of 900 poise) was used. Evaluation was performed in the same manner as in Example 1. The results are shown in Table 1. In Example 4, the spinning property was good in both spinning and stretching, and no yarn breakage occurred. Moreover, although the expansion-contraction characteristic was a little inferior compared with Example 1, it had the potential which can be sufficiently used as a stretch material.
[0064]
Example 5
The polyester polymer A is a homo-PTT having an intrinsic viscosity (IV) of 1.72 (melt viscosity 1420 poise) containing 0.1% by weight of titanium oxide having an average particle size of 0.4 μm as a matting agent. Evaluation was performed in the same manner as in Example 1 except that the draw ratio was 3.0 times (68% of the maximum draw ratio). The results are shown in Table 1. In Example 5, the spinning property and spinning property were both good and no yarn breakage occurred. Further, as in Example 1, excellent stretch properties were exhibited.
[0065]
Comparative Example 1
Evaluation was performed in the same manner as in Example 3 except that the discharge port of the die was circular. The cross-sectional shape of Comparative Example 1 was almost circular (flatness 1). In Comparative Example 1, the spinning property was good for both spinning and stretching, and no yarn breakage occurred. Further, as in Example 1, excellent stretch properties were exhibited. However, wrinkles were partially generated on the nonwoven fabric surface, and the quality was slightly inferior.
[0066]
Comparative Example 2
Evaluation was performed in the same manner as in Example 1 except that the temperature of the tension heat treatment in the stretching process was set to 35 ° C. The raw yarn of Comparative Example 2 has a high dry heat shrinkage rate of 160 ° C. at 23% and a peak temperature showing the maximum value of the shrinkage stress is also low at 92 ° C. The surface quality was poor. Further, the obtained non-woven fabric had a rough feeling and low stretch properties, and lacked potential as a stretch material.
[0067]
Comparative Example 3
Example 1 except that homopolymer PET (melt viscosity 250 poise) having an intrinsic viscosity (IV) of 0.45% containing 0.35% by weight of titanium oxide having an average particle size of 0.4 μm was used as the polyester polymer B. The results evaluated by the method are shown in Table 1. In the polymer combination of Comparative Example 3 , the bending just under the die was so severe that stable spinning could not be performed.
[0068]
Example 6
As a matting agent, a homo-PTT (melt viscosity of 260 poise) having an intrinsic viscosity (IV) of 0.65 containing 0.35% by weight of titanium oxide having an average particle size of 0.4 μm is used as the polyester polymer B, and the spinning temperature. Spinning was performed at 265 ° C., and the undrawn yarn was evaluated in the same manner as in Example 1 except that the draw ratio was 3.0 times (70% of the maximum draw ratio) in a 60 ° C. warm bath. The results are shown in Table 1. The yarn forming property of Example 6 was good. Further, it had soft stretchability (soft stretch property) due to the low Young's modulus and differential Young's modulus of the raw yarn, and had a 50% stretch recovery rate higher than that of Example 1.
[0069]
Example 7
Except for using as a matting agent a homo-PBT (melting viscosity 440 poise) having an intrinsic viscosity (IV) of 0.75% containing 0.1% by weight of titanium oxide having an average particle size of 0.4 μm for the polyester polymer B. Evaluation was performed in the same manner as in Example 7. The results are shown in Table 1. The yarn forming property of Example 8 was good. Further, the soft stretch property and 50% elongation recovery rate were superior to those of Example 1.
[0070]
Example 8
Table 1 shows the results of evaluation performed in the same manner as in Example 1 except that the discharge hole shape was changed to that shown in FIG. As shown in FIG. 1 (d), the cross-sectional shape of Example 8 is an asymmetric flat shape in which the outer peripheral shape of PET is substantially circular and the outer peripheral shape of PTT is substantially square, and the flatness is 1.6. It was. Example 8 was slightly lower in softness than Example 1, but the surface quality was good.
[0071]
Example 9
A method similar to Example 1 except that the spinning speed was set to 920 m / min to obtain a side-by-side composite structure undrawn yarn, and the draw ratio of the first stage in the drawing process was set to 3.7 times (69% of the maximum draw ratio). It was evaluated with. As in Example 1, Example 9 showed excellent softness and stretch properties, but when the nonwoven fabric was dyed, dyed spots thought to be caused by thread spots were generated, and the quality was somewhat inferior.
[0072]
Comparative Example 4
A homo-PET having an intrinsic viscosity (IV) of 0.35% by weight of titanium oxide having an average particle diameter of 0.4 μm and an intrinsic viscosity (IV) of 0.85 (melt viscosity of 3000 poise) is designated as polyester polymer A, and spinning is performed at a spinning temperature of 290 ° C. Evaluation was performed in the same manner as in Example 1 except that the film was stretched in a 90 ° C. warm bath. In Comparative Example 3, spinnability and stretchability were good, but both softness and stretchability were low, and lacked potential as a stretch material.
[0073]
Comparative Example 5
Evaluation was performed in the same manner as in Example 1 except that no particles were added to the polyester polymer A and the polyester polymer B (particle content zero). In Comparative Example 5 , the frictional resistance against the guide and roller in the yarn making process was large, so that yarn breakage occurred frequently, and the wear of the guide and roller surfaces was large. In addition, the card passing property was poor and it was easy for neps to occur.
[0074]
[Table 1]
[0075]
【The invention's effect】
By using the polyester short fiber of the present invention, it is possible to obtain a high-quality fabric without giving a stain property which is a problem when mixed with polyurethane while giving excellent stretchability by soft touch.
[Brief description of the drawings]
FIG. 1 is a diagram showing a fiber cross-sectional shape of a single fiber constituting a composite yarn of the present invention.
FIG. 2 is a diagram showing an arrangement in a cross-sectional direction of the composite yarn of the present invention.
FIG. 3 is a longitudinal sectional view of a die preferably used for producing the fiber of the present invention.
FIG. 4 is a view showing a discharge hole shape preferably used for producing the fiber of the present invention.
FIG. 5 is a stress and differential Young's modulus-elongation curve of the fiber of the present invention (Example 1).

Claims (8)

  1. 2種類のポリエステル系重合体A及びBが繊維長さ方向に沿ってサイドバイサイド型に貼り合わされた複合繊維において、ポリエステル系重合体Aがポリトリメチレンテレフタレートを主体としたポリエステルであり、ポリエステル系重合体Bが平均粒子径0.01〜2μmの粒子を0.1重量%以上含有する繊維形成性ポリエステルであって、該複合繊維の断面形状が短軸方向に複合界面を有する扁平形状であるとともに、断面の長軸/短軸の比で表される扁平度が1.4〜6であることを特徴とする潜在捲縮発現性を有するポリエステル系短繊維。In a composite fiber in which two types of polyester polymers A and B are bonded side-by-side along the fiber length direction, the polyester polymer A is a polyester mainly composed of polytrimethylene terephthalate, and the polyester polymer B I is an average particle diameter of fiber-forming polyesters der containing particles 0.1 wt% or more of 0.01 to 2 [mu] m, with the cross-sectional shape of the composite fiber is a flat shape having a composite surface in the minor axis direction , polyester staple fibers having latent crimp of the flatness represented by a ratio of long axis / short axis of the cross section and wherein from 1.4 to 6 der Rukoto.
  2. 収縮応力の極大を示す温度が110℃以上で、かつ収縮応力の極大値が0.15cN/dtex以上であることを特徴とする請求項1記載の潜在捲縮発現性を有するポリエステル系短繊維。At a temperature showing the maximum shrinkage stress is 110 ° C. or higher, and polyester-based local maximum value of shrinkage stress having latent crimp of claim 1 Symbol mounting, characterized in that at 0.15 cN / dtex or more short fibers .
  3. カット長が3〜150mmであり、繊度が0.5〜6dtexであることを特徴とする請求項2記載の潜在捲縮発現性を有するポリエステル系短繊維。Cut length is 3~150Mm, polyester staple fiber fineness having latent crimp of claim 2 Symbol mounting characterized in that it is a 0.5~6Dtex.
  4. 繊維断面の形状が、ポリエステル系重合体Bの外周形状が略円形であり、ポリエステル系重合体Aの外周形状が略楕円形又は略方形である扁平断面であることを特徴とする請求項1〜3のいずれか1項記載の潜在捲縮発現性を有するポリエステル系短繊維。The shape of the fiber cross section is a flat cross section in which the outer peripheral shape of the polyester-based polymer B is substantially circular, and the outer peripheral shape of the polyester-based polymer A is approximately elliptical or substantially rectangular . polyester staple fiber having a latent crimp of any one of claims 3.
  5. ポリエステル系重合体Bがポリトリメチレンテレフタレートを主体としたポリエステルであることを特徴とする請求項1〜のいずれか1項記載の潜在捲縮発現性を有するポリエステル系短繊維。The polyester-based short fiber having latent crimping property according to any one of claims 1 to 4 , wherein the polyester-based polymer B is a polyester mainly composed of polytrimethylene terephthalate.
  6. ポリエステル系重合体Bがポリブチレンテレフタレートを主体としたポリエステルであることを特徴とする請求項1〜のいずれか1項記載の潜在捲縮発現性を有するポリエステル系短繊維。Polyester staple fiber having a latent crimp of any one of claims 1-4, characterized in that polyester-based polymer B is a polyester mainly composed of polybutylene terephthalate.
  7. ポリエステル系重合体Aにポリトリメチレンテレフタレートを主体としたポリエステルを配し、ポリエステル系重合体Bに平均粒子径0.01〜2μmの粒子を0.1重量%以上含有する繊維形成性ポリエステルを配して複合紡糸するに際し、各々の固有粘度(IV)が次式(1)〜(3)を満たす組み合わせで複合流を形成し、該複合流をスリットの短軸方向が複合界面になるようスリットしてから吐出して引き取り、延伸工程で処理温度110〜200℃で熱処理した後、油剤を付与し、カット長3〜150mmにカットすることを特徴とする潜在捲縮発現性を有するポリエステル系短繊維の製造方法
    0.30X≦Y≦0.45X+0.30 ・・・(1)
    0.45≦Y ・・・(2)
    0.8≦X≦2.0 ・・・(3)
    (ただし、Y:ポリエステル系重合体Bの固有粘度(IV)
    X:ポリエステル系重合体Aの固有粘度(IV))
    Polyester based on polytrimethylene terephthalate is disposed on polyester polymer A, and fiber-forming polyester containing 0.1% by weight or more of particles having an average particle diameter of 0.01 to 2 μm is disposed on polyester polymer B. When performing composite spinning, a composite flow is formed by a combination of the intrinsic viscosities (IV) satisfying the following formulas (1) to (3), and the composite flow is slit so that the minor axis direction of the slit becomes a composite interface. Then, it is discharged and taken out, and after heat treatment at a treatment temperature of 110 to 200 ° C. in the stretching process, an oil agent is applied, and the polyester-based short having a potential crimp expression is characterized by being cut into a cut length of 3 to 150 mm. A method for producing fibers.
    0.30X ≦ Y ≦ 0.45X + 0.30 (1)
    0.45 ≦ Y (2)
    0.8 ≦ X ≦ 2.0 (3)
    (However, Y: Intrinsic viscosity of polyester polymer B (IV)
    X: Intrinsic viscosity (IV) of polyester polymer A)
  8. 請求項1〜のいずれか1項記載の潜在捲縮発現性を有するポリエステル系短繊維を少なくとも一部に用いて成ることを特徴とする伸縮性に優れたポリエステル系布帛。A polyester-based fabric excellent in stretchability, comprising at least a portion of the polyester-based short fiber having latent crimp development property according to any one of claims 1 to 6 .
JP2000376515A 2000-12-11 2000-12-11 POLYESTER SHORT FIBER HAVING LATIN CRIMMING CHARACTERISTICS AND PROCESS FOR PRODUCING THE SAME Expired - Fee Related JP3692931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000376515A JP3692931B2 (en) 2000-12-11 2000-12-11 POLYESTER SHORT FIBER HAVING LATIN CRIMMING CHARACTERISTICS AND PROCESS FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000376515A JP3692931B2 (en) 2000-12-11 2000-12-11 POLYESTER SHORT FIBER HAVING LATIN CRIMMING CHARACTERISTICS AND PROCESS FOR PRODUCING THE SAME

Publications (2)

Publication Number Publication Date
JP2002180333A JP2002180333A (en) 2002-06-26
JP3692931B2 true JP3692931B2 (en) 2005-09-07

Family

ID=18845361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000376515A Expired - Fee Related JP3692931B2 (en) 2000-12-11 2000-12-11 POLYESTER SHORT FIBER HAVING LATIN CRIMMING CHARACTERISTICS AND PROCESS FOR PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP3692931B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002485A (en) * 2003-06-10 2005-01-06 Solotex Corp Warp knitted fabric
US7195819B2 (en) * 2004-04-23 2007-03-27 Invista North America S.A.R.L. Bicomponent fiber and yarn comprising same
US8513146B2 (en) 2005-09-29 2013-08-20 Invista North America S.ár.l. Scalloped oval bicomponent fibers with good wicking, and high uniformity spun yarns comprising such fibers
JP6004759B2 (en) * 2012-06-08 2016-10-12 日本エステル株式会社 Latent crimped composite fiber
KR101594290B1 (en) * 2015-11-16 2016-02-16 티씨케이텍스타일 주식회사 Stretch fabric comprising polyester latent crimp staple fiber and preparation method thereof
KR102073484B1 (en) * 2018-07-18 2020-02-04 도레이첨단소재 주식회사 Polyester complexfiber with highly elasticity and method for manufacturing thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62223322A (en) * 1986-03-24 1987-10-01 Unitika Ltd Modified cross-section combined filament yarn having difference shrinkage
JPH02160921A (en) * 1988-12-13 1990-06-20 Mitsubishi Rayon Co Ltd Far infrared ray emitting polyester staple fiber
JPH09217241A (en) * 1995-12-04 1997-08-19 Nippon Ester Co Ltd Production of heat-self elongation-type polyester staple fiber
JPH11217732A (en) * 1998-01-29 1999-08-10 Toray Ind Inc Polyester conjugate fiber
JP4018251B2 (en) * 1998-08-07 2007-12-05 東洋紡績株式会社 High elastic composite monofilament, high elastic fabric using the same, and manufacturing method thereof
JP2000136440A (en) * 1998-11-04 2000-05-16 Toray Ind Inc Latent crimp-expressing polyester fiber and its production
JP4115029B2 (en) * 1999-02-19 2008-07-09 ユニチカ株式会社 Polyester composite fiber for stretch woven and knitted fabric
JP2000328382A (en) * 1999-03-15 2000-11-28 Teijin Ltd Elastic spun yarn

Also Published As

Publication number Publication date
JP2002180333A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
JP3859672B2 (en) Composite fiber and method for producing the same
JP4581725B2 (en) Leather-like sheet and manufacturing method thereof
KR100469108B1 (en) Spun yarn
JP2007262610A (en) Combined filament yarn
JP3485070B2 (en) Highly crimpable polyester-based composite fiber, method for producing the same, and fabric
JP3690274B2 (en) Polyester-based composite yarn, method for producing the same, and fabric
JP2006214056A (en) Woven fabric
JP3692931B2 (en) POLYESTER SHORT FIBER HAVING LATIN CRIMMING CHARACTERISTICS AND PROCESS FOR PRODUCING THE SAME
JP3885468B2 (en) Bulky polyester composite yarn, production method thereof and fabric
JP2001348735A (en) Sea-island conjugate yarn and combined filament yarn
JP3582466B2 (en) High stretch polyester composite fiber
JP4130035B2 (en) Multi-divided hollow polyester fiber and woven / knitted fabric, artificial leather and nonwoven fabric using the fiber
JP2002339169A (en) Latently crimpable polyester conjugate yarn and method for producing the same, latently crimpable polyester conjugate yarn package
JP4233245B2 (en) Polyester composite fiber and method for producing the same
JP2000220032A (en) Ultrafine polyester multifilament yarn, combined filament yarn and woven or knitted fabric
JP2004036035A (en) Conjugate fiber and textile structure
JP2002129433A (en) Highly strechable polyester-based conjugated fiber
JP2000226734A (en) Conjugate fiber, combined filament yarn and woven or knitted fabric
JP2011157647A (en) Wiping cloth
JP4699072B2 (en) Stretch polyester composite fiber
JP4021794B2 (en) Composite fiber for textile and its manufacturing method
JP2003342843A5 (en)
JP2001200442A (en) Method for producing polyester combined filament yarn with different shrinkage
JPH08246245A (en) Core-sheath conjugate short fiber for nonwoven fabric
JP2005133252A (en) Conjugate fiber for high speed false twist and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees