JP4027728B2 - Nonwoven fabric made of polyester staple fibers - Google Patents

Nonwoven fabric made of polyester staple fibers Download PDF

Info

Publication number
JP4027728B2
JP4027728B2 JP2002181139A JP2002181139A JP4027728B2 JP 4027728 B2 JP4027728 B2 JP 4027728B2 JP 2002181139 A JP2002181139 A JP 2002181139A JP 2002181139 A JP2002181139 A JP 2002181139A JP 4027728 B2 JP4027728 B2 JP 4027728B2
Authority
JP
Japan
Prior art keywords
polymer
nonwoven fabric
fiber
polyester
web
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2002181139A
Other languages
Japanese (ja)
Other versions
JP2004027377A (en
Inventor
裕憲 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Fibers Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2002181139A priority Critical patent/JP4027728B2/en
Publication of JP2004027377A publication Critical patent/JP2004027377A/en
Application granted granted Critical
Publication of JP4027728B2 publication Critical patent/JP4027728B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/92Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • D04H1/43828Composite fibres sheath-core
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/732Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H13/24Polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core

Description

【0001】
【発明の属する技術分野】
本発明は、ポリエステル系短繊維からなる不織布に関する。
【0002】
【従来の技術】
ポリエステル系短繊維は、力学特性、耐薬品性などに優れているため不織布用途に広く使用されている。しかしながら、ポリエステル系短繊維からなる不織布は、ナイロンやポリオレフィン系短繊維からなる不織布と比べ、軋み感があり、風合も柔軟なものとは言えない。
【0003】
また、短繊維から不織布を成型する方法としては、カード法、湿式抄造法、エアレイド法などにより成型したウェブを、ニードルパンチやウォータージェットで繊維同士を絡合するか、カレンダーやエンボスで繊維同士を熱圧着するか、接着剤エマルジョンをウェブに含浸しさらにこれを乾燥して繊維同士をケミカルボンディングするなどして不織布とすることが知られている。このうち、エアレイド法でウェブ成型する場合、ポリエステル系短繊維はナイロンやポリオレフィン系繊維に比べて繊維表面の平滑性が乏しく、また捲縮を付与した際は捲縮率が大きくなりやすいため、空気中での短繊維の開繊性が悪化し、均一な地合いを有する不織布が得られ難くなる。この傾向は、バインダー繊維として好ましく用いられる、配向度や結晶化度の低い、ポリエステル未延伸糸や共重合ポリエステル繊維でより顕著に表れる。このため、これらのバインダー繊維を用いて、特にかかるバインダー繊維100%で、エアレイド法によりウェブを成型し、均一な地合いを有する不織布を得るのには限界がある。また、カード法、湿式抄造法でウェブを成型する場合においても、エアレイド法と同様に、ポリエステル系短繊維は繊維表面の平滑性が乏しく開繊性が良好でないため、地合いが均一な不織布を得難い傾向にある。上記のようなバインダー繊維を、カード法でウェブに成型した場合、なおさらこの傾向は強くなる。
【0004】
これらは、ポリエステル系短繊維の剛性が高く、繊維間摩擦が大きいことが原因であると考えられる。かかる欠点を改善するためには、例えば、特公昭48−1480号公報に提案されているような方法により、ジメチルシロキサン系化合物や、アミン変成シリコーンを繊維表面に付与し熱架橋する方法が考えられる。
【0005】
しかしながら、このような繊維を用いて前述した方法でウェブを成型しようとした場合、例えば、カード法においては、上記の繊維は繊維間摩擦が極めて低いため、繊維の交絡性が不足してウェブ切れを生じ易くなる。また、湿式抄造法においては、繊維が撥水性であるため水に分散し難くなり、エアレイド法においては、静電気が発生しやすくなり、繊維の分散斑が生じる。さらに、こうした繊維をバインダー繊維として用いた場合、上記の繊維表面加工剤が熱接着の障害となる。
【0006】
【発明が解決しようとする課題】
本発明は上記従来技術を背景になされたものであり、その目的は、柔軟な風合と均一な地合いを有する不織布を提供することにある。特に、エアレイド法によりウェブが成型されており、上記のような優れた品質を有する不織布を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らの研究によれば、ポリオレフィンを混合分散させたポリエステルが繊維表面に存在する短繊維では、適度な繊維間摩擦が得られ、ポリオレフィン系ポリマーの含有量として適正な範囲を選んだとき、風合が柔軟なだけでなく極めて均一な地合いを有する不織布が得られるところがあることを見出した。すなわち、上記本発明の目的は、ポリエステル系ポリマーにポリオレフィン系ポリマーが0.5〜15重量%混合分散されているブレンドポリマーによって、繊維表面積の50%以上が占められており、該ポリオレフィン系ポリマーが高密度ポリエチレン、エチレン・プロピレンランダム共重合体無水マレイン酸をブロック共重合若しくはグラフト共重合させたポリエチレン、又は無水マレイン酸をブロック共重合若しくはグラフト共重合させたポリプロピレンであり、ポリエステル系ポリマーがイソフタル酸共重合ポリエチレンテレフタレートであることを特徴とするポリエステル系短繊維からなる不織布により達成される。
【0008】
【発明の実施の形態】
本発明の不織布に用いる短繊維は、ポリエステル系ポリマーにポリオレフィン系ポリマーが混合分散されているブレンドポリマーによって、繊維表面積の50%以上が占められているポリエステル系短繊維である。
【0009】
本発明に使用されるポリエステル系ポリマーとしては、ポリエステル系ポリマーがイソフタル酸共重合ポリエチレンテレフタレートであることが必要であるが、他にポリエチレンテレフタレートやポリトリメチレンテレフタレート、ポリブチレンテレフタレート等のポリアルキレンテレフタレートやポリエチレンナフタレート等のポリアルキレンナフタレートといった芳香族ジカルボン酸と脂肪族ジオールのポリエステル、ポリアルキレンシクロヘキサンジカルボキシレート等の脂環族カルボン酸と脂肪族ジオールのポリエステル、ポリシクロヘキサンジメタノ−ルテレフタレート等の芳香族カルボン酸と脂環族ジオールのポリエステル、ポリエチレンサクシネートやポリブチレンサクシネート、ポリエチレンアジペートやポリブチレンアジペート等の脂肪族カルボン酸と脂肪族ジオールのポリエステル、ポリ乳酸やポリヒドロキシ安息香酸等のポリヒドロキシカルボン酸、等が併用されるポリエステルの例として例示される。また、目的に応じて、酸成分としてフタル酸、アジピン酸、セバシン酸、α,β−(4−カルボキシフェノキシ)エタン、4,4−ジカルボキシフェニル、5−ナトリウムスルホイソフタル酸、2,6−ナフタレンジカルボン酸、1,4−シクロヘキサンジカルボン酸またはこれらのエステル類、ジオ−ル成分としてジエチレングリコ−ル、1,3−プロパンジオール、1,4−ブタンジオ−ル、1,6−ヘキサンジオ−ル、ネオペンチルグリコ−ル、1,4−シクロヘキサンジメタノ−ル、ポリアルキレングリコ−ル、等を1成分以上共重合させてもよく、さらにペンタエリスリト−ル、トリメチロ−ルプロパン、トリメリット酸、トリメシン酸等の3個以上のカルボン酸成分または水酸基をもつ成分を共重合して分岐をもたせてもよい。また、上記に例示されるような組成の異なるポリエステルの混合物も含まれる。
【0010】
一方、本発明に使用されるポリオレフィン系ポリマーとしては、エチレン、プロピレンの単独重合体、およびブロックまたはランダム共重合体およびその他のブテン−1、4−メチルペンテン−1、等のα−オレフィンとの共重合体、等が例示される。また、目的に応じて、酢酸ビニル等、塩化ビニル、スチレン等とのビニルエステル共重合体、メチルアクリレートやエチルアクリレート、イソプロピルアクリレート、メチルメタアクリレート等との不飽和カルボン酸エステル共重合体、アクリル酸、メタクリル酸、無水マレイン酸等との不飽和カルボン酸共重合体、エチレン−ビニルアルコール共重合体、等の共重合体としてもよいが、主鎖成分の50モル%以上がエチレンおよび/またはプロピレンであるポリオレフィンポリマーを使用することが、繊維表面の平滑性、エアレイド法不織布成型における開繊性を良好とする面で好ましく使用される。中でも、高密度ポリエチレン、エチレン・プロピレンランダム共重合体無水マレイン酸をブロック共重合若しくはグラフト共重合させたポリエチレン、又は無水マレイン酸をブロック共重合若しくはグラフト共重合させたポリプロピレンであることが必要である。
【0011】
また、上述のポリオレフィン系ポリマーから複数を選択して、混合して用いても差し支えない。
【0012】
上記のポリエステルおよび/またはポリオレフィン系ポリマーには、本発明の効果を損なわない範囲で、添加剤、蛍光増白剤、安定剤、難燃剤、難燃助剤、紫外線吸収剤、抗酸化剤、着色のための各種顔料などが含有されていてもよい。
【0013】
本発明においては、ポリエステル系ポリマーに混合分散されているポリオレフィン系ポリマーの量は、両者をブレンドしてなるブレンドポリマーの重量を基準として0.5〜15重量%の範囲とする必要がある。ポリオレフィン系ポリマーの混合量が0.5重量%未満では、本発明の目的とする、柔軟な風合と均一な地合いを有する不織布が得られない。一方、ポリオレフィン系ポリマーの混合量が15重量%を超えても上記効果が得られないだけでなく、溶融紡糸時のポリマーの曳糸性が悪化し、本発明の不織布に用いる短繊維を製造することができなくなる。好ましいポリオレフィン系ポリマーの混合量は1〜10重量%の範囲、より好ましくは2〜7重量%の範囲である。
【0014】
また、本発明においては、短繊維の繊維表面積の50%以上がブレンドポリマーによって占められている必要がある。この割合が50%未満の場合は、柔軟な風合と均一な地合いを有する不織布を得ることができない。かかる短繊維としては、ブレンドポリマー100%からなる短繊維、または、ブレンドポリマーが繊維表面積の50%以上を占めるように配した複合短繊維が挙げられる。複合短繊維の場合、その複合の形態としては、芯鞘型、偏心芯鞘型、サイドバイサイド型、海島型、セグメントパイ型等が例示され、特に、ブレンドポリマーが繊維表面積の100%を占める芯鞘型複合繊維または偏心芯鞘型複合繊維が好ましく挙げられる。
【0015】
本発明の不織布に用いる短繊維は、中実繊維であっても中空繊維であってもよい。また、繊維断面形状も丸断面に限定されることはなく、楕円断面、3〜8葉断面等の多葉断面、3〜8角形等の多角形断面など異形断面でもよい。
【0016】
本発明の不織布は、特に複屈折率が0.05以下または結晶化度が20%以下であるポリエステル系短繊維を用いるときにおいて、その効果を発揮する。ポリエステル系短繊維では、複屈折率が0.05以下または結晶化度が20%以下では、繊維間の摩擦が大きくなる傾向になり、不織布としたときの風合いが低下し、開繊性も低下して均一な地合いの不織布が得られにくくなる傾向が見られる。中でも、ポリアルキレンテレフタレート、または、イソフタル酸共重合ポリアルキレンテレフタレートを溶融紡糸し、紡糸速度2000m/分以下の低速で引き取ることにより得られる低配向糸(未延伸糸)、特に、ポリアルキレンテレフタレートの中でも結晶化度の比較的小さいポリエチレンテレフタレート、または、イソフタル酸を5〜50モル%共重合したポリエチレンテレフタレートにその傾向が強い。これらの短繊維は、熱圧着により不織布とすることができるバインダー繊維に好ましく用いられるものである。つまり、本発明の不織布においては、その短繊維はかかるバインダー繊維として用いても、上記のような問題が発生せず、柔軟な風合を有しかつ均一な地合いの不織布を得ることができるのである。
【0017】
繊度は目的に応じて選択すればよく、特に限定されないが、一般的に0.01〜500デシテックス程度の範囲で用いられる。
【0018】
以上に述べた本発明の不織布に用いる短繊維は、例えば次の方法により製造することができる。ポリエステル系ポリマーとポリオレフィン系ポリマーの溶融ブレンドポリマーを公知の紡糸設備を用いて口金より吐出して、冷却風で空冷しながら速度100〜2000m/分で引き取り、未延伸糸を得る。この際、上記の溶融ブレンドは予め各々溶融したポリエステル系ポリマーとポリオレフィン系ポリマーとをスタティックミキサー、ダイナミックミキサー等で混練するか、もしくは両ポリマーのペレットを所定比率でブレンドし、エクストルーダー等を用いて溶融混練するといった方法で行い、これを紡糸口金へ供給する。複合紡糸の場合は、該溶融ブレンドポリマーと他の溶融ポリマーを別々に複合紡糸口金に供給し、該ブレンドポリマーが繊維表面積の50%以上を占めるように該口金を用いて複合化し吐出させる以外は上記と同様にして未延伸糸を得る。引き続いて得られた未延伸糸の延伸を70〜100℃の温水中あるいは100〜125℃のスチーム中で行い、必要に応じて捲縮を付与し、用途、目的に応じた油剤を付与し、乾燥および弛緩熱処理を行った後、所定の繊維長にカットして、本発明の不織布に用いる短繊維を得る。この際、油剤には本発明の目的を達成する障害とならない量の、または種類のシリコーン系化合物が含まれていてもかまわない。また、複屈折率が0.05以下、または結晶化度が20%以下の繊維は、延伸をせず、油剤のみを付与して、必要に応じて結晶化度が20%を超えない程度の温度、時間で乾燥を施すことによって得ることができる。
【0019】
本発明の不織布に用いる短繊維を不織布とするには、ウェブの製造に応じて次のような繊維長とし捲縮を付与することが好ましい。
【0020】
例えば、エアレイド法でウェブを成型する場合、繊維長は2〜30mmが好ましい。繊維長を2mm以上とすることにより工業的に安定して短繊維を得ることができる。また、繊維長を30mm以下とすることにより、繊維の開繊性がさらに良くなり、ウェブ塊が発生し難くなる。より好ましい繊維長は3〜20mmである。また、捲縮は不織布の目的に応じて、付与しても付与しなくてもよい。つまり、不織布に嵩高性を与えたい場合は捲縮を付与すればよいし、その必要がなく空気開繊性および吐出能力をより向上させたい場合は捲縮を付与しなくてもよい。捲縮を付与する場合は、捲縮数を3〜13山/25mm、捲縮率を3〜15%とすることが好ましい。捲縮数を13山/25mm以下、捲縮率を15%以下とすることで空気開繊性がより良好なものとなる。本発明の短繊維は従来のものに比べて捲縮数および捲縮率が小さくなる傾向にあり、より上記範囲にコントロールしやすい。また、嵩高性を得るためには、捲縮数を3山/25mm以上、捲縮率を3%以上とするのが好ましい。また、捲縮の形態は、平面内に包含される平面ジグザグ型あるいはオメガ型の捲縮が、スパイラル状の3次元捲縮よりも開繊性の点でより好ましい。これらの構成を満たすことによって、エアレイド法で成型されたウェブ中の未開繊成分を5重量%以下とすることができる。
【0021】
また、湿式抄造法でウェブを形成する場合も、上記と同様の理由により繊維長は2〜30mmが好ましく、より好ましくは3〜20mmである。捲縮は不織布の目的に応じて、付与しても付与しなくてもよい。不織布に嵩高性を与えたい場合は捲縮を付与してもよいが、湿式抄造時の水中分散性の点からは捲縮を付与しない方が好ましい。
【0022】
さらに、カード法でウェブを形成する場合、繊維長を30〜200mmとすることが好ましい。繊維長を30mm以上とすることにより、繊維間の絡合不良によるウェブ切れが発生し難くなる。また、繊維長を200mm以下とすることにより、カード上での開繊性がよくなり、ウェブの地合い斑がより生じ難くなる。繊維長は35〜150mmがより好ましく、さらには40〜100mmの範囲がより好適である。カードを通過させるためには短繊維に捲縮の付与されていることが好ましいが、その際、捲縮数は5〜30山/25mm、捲縮率は3〜30%であることが好ましい。捲縮数を30山/25mm以下、捲縮率を30%以下とすることにより、カード上での開繊性が良好となり、ウェブの地合い斑がより生じ難くなる。また、捲縮数を5山/25mm以上、捲縮率を3%以上とすることにより、繊維間の絡合不良によるウェブ切れが発生し難くなる。捲縮の形態は、平面ジグザグ型あるいはオメガ型、スパイラル状の3次元捲縮といった従来知られている捲縮形態をとることができる。
【0023】
本発明の不織布は、風合いが柔軟であり、柔軟さを示す指標であるカンチレバー法による剛軟度が70mm以下を達成することができる。
【0024】
本発明の不織布は、上述の短繊維に他の短繊維を混合した不織布であっても良いし、他の短繊維からなる不織布を積層したのもであってもよいが、特に上述の短繊維のみで成型される不織布は従来のポリエステル短繊維を用いた不織布と異なる独特の柔軟な風合いを呈するため、特に好ましい。
【0025】
【作用】
本発明の不織布に用いるポリエステル系短繊維は、ポリエステル系ポリマーにポリオレフィン系ポリマーが0.5〜15重量%混合分散されているブレンドポリマーによって、繊維表面積の50%が占められていることにより、従来知られるポリエステル系短繊維よりも繊維間の摩擦が低減し、風合いが柔軟となり、また開繊性が良好となり均一な地合いの不織布が得られる。そのメカニズムについては明確ではないが、ポリエステル系ポリマーに非相溶であるポリオレフィン系ポリマーが適量分散混合していることによって、ポリエステル系ポリマーの海にポリオレフィン系ポリマーの島が浮かんだような状態になり、これが繊維表面に島状に露出し起伏ができることによって、短繊維同士の接触機会が少なくなり繊維間摩擦が低減するためと考えられる。
【0026】
【実施例】
以下、実施例により、本発明をさらに具体的に説明する。なお、実施例、比較例における工程調子、力学的特性(一般物性)は下記の方法に測定した。
【0027】
(a)繊度
JIS L 1015 7.5.1 A法に記載の方法により測定した。
【0028】
(b)繊維長
JIS L 1015 7.4.1 C法に記載の方法により測定した。
【0029】
(c)捲縮数、捲縮率
JIS L 1015 7.12に記載の方法により測定した。
【0030】
(d)固有粘度([η])
オルトクロロフェノールを溶媒として、温度35℃で測定した。
【0031】
(e)メルトインデックス(MFR)
JIS K 7210 条件4に記載の方法により測定した。
【0032】
(f)ガラス転移点(Tg)、融点(Tm)
パーキンエルマー社製の示差走査熱量計DSC−7型を使用し、昇温速度20℃/分で測定した。
【0033】
(g)結晶化度
ノルマルヘプタンと四塩化炭素から構成される密度勾配管を使用して25℃中での密度ρ(g/cm3)を測定し、下記関係式にPETの結晶密度ρc(=1.455g/cm3)と非晶密度ρa(=1.335g/cm3)を代入することによって、結晶化度χc(重量%)を算出した。
χc=ρc(ρ−ρa)/ρ(ρc−ρa)
【0034】
(h)複屈折率(Δn)
浸漬液としてブロムナフタリンを使用し、ベレックコンペンセーターを用いてリターデーション法により求めた。(共立出版社発行:高分子実験化学講座 高分子物性II参照)
【0035】
(i)未開繊率
エアレイド法により成型したウェブ10g中から未開繊塊を取り出して、その重量xを測定し、下式により未開繊率uを算出した。
u=x/10×100(%)
【0036】
(j)剛軟度(45°カンチレバー法)
JIS L 1085 5.7A法に記述の方法に従い実施した。数値が小さいほど、柔軟であることを示す。
【0037】
(k)不織布地合い
ウェブの外観を観察し、以下の基準で評価する。
レベル1:未開繊塊や目付斑(濃淡)が見られず、均一な地合いである。
レベル2:未開繊塊は目立たないが、目付斑(濃淡)が目視で確認できる。
レベル3:未開繊塊と目付斑(濃淡)が目立ち、不均一な地合いである。
【0038】
参考例1]
120℃で16時間真空乾燥した固有粘度[η]が0.61、Tmが256℃のポリエチレンテレフタレート(PET)のペレットと、MFRが20g/10分、Tmが131℃の高密度ポリエチレン(HDPE)のペレットを97:3の割合で混合し、これを二軸エクストルーダーで溶融し、280℃の溶融ポリマーとして直径0.3mmの丸穴キャピラリーを600孔有する口金から200g/分の吐出量で押し出した。これを30℃の冷却風で空冷し、1150m/分で巻き取って未延伸糸を得た。この未延伸糸に、押込み型クリンパーで捲縮数が8山/25mm、捲縮率が4%の平面ジグザグ型捲縮を付与し、アルキルホスフェートカリウム塩/ポリオキシエチレン変成シリコーン=80/20からなる油剤を0.25重量%付与し、さらに45℃の温風で乾燥した後、5mmの繊維長にカットした。得られた短繊維の繊度は3.1デシテックス、結晶化度は16%、複屈折率は0.0035であった。
【0039】
この繊維を用い、エアレイド法により目付が50g/m2のウェブを成型した。さらに、このウェブを表面温度が200℃の1対のフラット(カレンダー)ローラーにより線圧80kPa・mで熱接着し、エアレイド法不織布を得た。この不織布の剛軟度は50mm、未開繊率は0.5%、不織布地合いはレベル1であった。
【0040】
[実施例2]
PETの代りに、Tmが220℃のイソフタル酸を10モル%共重合した共重合PETを用いた以外は、実施例1と同様にして短繊維およびエアレイド法不織布を得た。短繊維の繊度は3.4デシテックス、結晶化度は9%、複屈折率は0.0027であった。また、不織布の剛軟度は44mm、未開繊率は0.8%、不織布地合いはレベル1であった。
【0041】
[実施例3]
50℃で24時間真空乾燥した固有粘度[η]が0.55、Tgが65℃のイソフタル酸を40モル%共重合した非晶性共重合PETのチップと、MFRが20g/10分、Tmが131℃のHDPEのチップを95:5の割合で混合し、これを二軸エクストルーダーで溶融し、250℃の溶融ポリマーとした。一方、120℃で16時間真空乾燥した固有粘度[η]が0.61のPETのペレットをエクストルーダーで溶融し、280℃の溶融ポリマーとした。両溶融ポリマーを、前者を鞘成分A、後者を芯成分Bとし、かつ断面積比率がA:B=50:50となるように、直径0.3mmの丸穴キャピラリーを1032孔有する公知の芯鞘型複合紡糸口金から、複合化して溶融吐出させた。この際、口金温度は285℃、吐出量は870g/分であった。さらに、吐出ポリマーを30℃の冷却風で空冷し1150m/分で巻き取り、未延伸糸を得た。この未延伸糸を80℃の温水中で3.75倍に延伸した後、単糸同士が融着しないように直ちに30℃の水バスを通して冷却し、アルキルホスフェートカリウム塩/ポリオキシエチレン変成シリコーン=80/20からなる油剤を0.2重量%付与した後、押込み型クリンパーで捲縮数9山/25mm、捲縮率12%の平面ジグザグ型捲縮を付与し、50℃で乾燥した後、5mmの繊維長にカットした。得られた短繊維の繊度は2.1デシテックスであった。
【0042】
この短繊維を用い、エアレイド法により目付が50g/m2のウェブを成型し、150℃の熱風で2分間熱接着させて、エアレイド法不織布を得た。この不織布の剛軟度は53mm、未開繊率は0.7%、不織布地合いはレベル1であった。
【0043】
[比較例1]
鞘成分Aを、非晶性共重合PETとHDPEとの混合ポリマーから、固有粘度[η]が0.55、Tgが65℃のイソフタル酸を40モル%共重合した非晶性共重合PETのみに変更した以外は、実施例3と同様にして短繊維および不織布を得た。短繊維の繊度は2.1デシテックスであった。また、不織布の剛軟度は83mm、未開繊率は11%、不織布地合いはレベル3であった。
【0044】
[比較例2]
鞘成分Aの非晶性共重合PETとHDPEとのチップ混合割合を95:5から84:16に変更した以外は、実施例3と同様に実施したが、曳糸性不良のため紡糸不能であった。
【0045】
参考例1
鞘成分AのHDPEを、MFRが30g/分、Tmが160℃のアイソタクティックポリプロピレンに変更した以外は、実施例3と同様にして短繊維および不織布を得た。短繊維の繊度は2.2デシテックスであった。また、不織布の剛軟度は58mm、未開繊率は1.3%、不織布地合いはレベル1であった。
【0046】
[実施例5]
鞘成分AのHDPEを、MFRが50g/分、Tmが135℃のエチレン・プロピレンランダム共重合体(共重合モル比、エチレン:プロピレン=37:63)に変更した以外は、実施例3と同様にして短繊維および不織布を得た。短繊維の繊度は2.2デシテックスであった。また、不織布の剛軟度は58mm、未開繊率は1.3%、不織布地合いはレベル1であった。
【0047】
[実施例6]
鞘成分AのHDPEを、MFRが8g/分、Tmが96℃の無水マレイン酸3.5重量%グラフト共重合直鎖状低密度ポリエチレンに変更した以外は、実施例3と同様にして短繊維および不織布を得た。短繊維の繊度は2.2デシテックスであった。また、不織布の剛軟度は52mm、未開繊率は0.8%、不織布地合いはレベル1であった。
【0048】
[実施例7]
芯成分BのPETを、35℃のメタクレゾール溶媒で測定した固有粘度が1.34、Tmが215℃のナイロン−6に変更し、該ポリマーのチップをエクストルーダーで溶融した後の溶融ポリマー温度を240℃、口金温度を250℃、吐出量を500g/分とした。また、得られた未延伸糸は、2.1倍冷延伸後、55℃温水中で1.05倍延伸し、水バスを通して冷却し、油剤を付与した後、捲縮数12山/25mm、捲縮率6.5%の平面ジグザグ型捲縮を付与し、45℃で乾燥し、短繊維にカットした。これ以外は実施例3と同様に行った。得られた短繊維の繊度は2.2デシテックスであった。
【0049】
この短繊維を用い、実施例3と同様にして不織布を得た。この不織布の剛軟度は41mm、未開繊率は0.9%、不織布地合いはレベル1であった。
【0050】
[実施例8]
カット長を5cmから3cmに変更した以外は、実施例3と同様にして短繊維および不織布を得た。この不織布の剛軟度は57mm、未開繊率は1.6%、不織布地合いはレベル1であった。
【0051】
[実施例9]
芯鞘型複合紡糸口金を偏心芯鞘型複合紡糸口金に変更し、捲縮数8山/25m、捲縮率15%の捲縮を付与した以外は、実施例3と同様にして短繊維を得た。この短繊維はオメガ型捲縮を有しており、繊度は2.3デシテックスであった。
【0052】
この短繊維を用い、実施例3と同様にして不織布を得た。この不織布の剛軟度は55mm、未開繊率は0.9%、不織布地合いはレベル1であった。
【0053】
[実施例10]
延伸糸に捲縮の付与を行わなかった以外は、実施例3と同様にして、短繊維および不織布を得た。この不織布の剛軟度は53mm、未開繊率は0.2%、不織布地合いはレベル1であった。
【0054】
[実施例11]
熊谷理機工業株式会社製の角型シートマシンを用い、実施例10で得られた短繊維と、木材パルプとを80:20の重量割合で水中に投入し、よく撹拌・混合して分散させ、大きさが約25cm×約25cmで、目付が50g/m2のシートを作成した。次に、該シートを室温中で一昼夜以上乾燥させた後、孔を開けたテフロンシートの上に載せ、120℃の熱風循環式乾燥機の中で5分間の収縮処理を行い、湿式不織布を得た。この不織布の剛軟度は38mm、不織布地合いはレベル1であった。
【0055】
[比較例3]
延伸糸に捲縮の付与を行わなかった以外は、比較例2と同様にして短繊維を得た。この短繊維を用い、実施例11と同様にして湿式不織布の得た。この不織布の剛軟度は38mm、不織布地合いはレベル2であった。
【0056】
[実施例12]
カット長を5mmから51mmに変更した以外は、実施例3と同様にして短繊維を得た。この短繊維をローラー・カードに通しカード・ウェブを得た。この際、カード通過性は良好であった。このウェブを積層して目付50g/m2とし、実施例3と同様にして熱風で熱接着させて、カード法熱接着不織布を得た。この不織布の剛軟度は58mm、不織布地合いはレベル1であった。
【0057】
[実施例13]
カット長を5mmから51mmに変更した以外は、実施例10と同様にして短繊維を得た。この短繊維を用い、実施例12と同様にして、カード法熱接着不織布を得た。この際、カード通過性は良好であった。この不織布の剛軟度は51mm、不織布地合いはレベル1であった。
【0058】
【発明の効果】
本発明によれば、柔軟な風合と均一な地合いを有する不織布提供することができる。また、本発明によれば、地合いが均一なだけでなく、従来にない柔軟性に優れた不織布を提供することができる。特に、エアレイド法でウェブが成型されている不織布は、未開繊が極めて少なく地合の均一性においても格段に優れており高品質のものである。したがって、本発明は、従来のポリエステル系短繊維からなる不織布の用途を広げるものであり、その工業的価値が極めて高いものである。
[0001]
BACKGROUND OF THE INVENTION
The present invention is a polyester-based short fiber Stay It relates to a non-woven fabric.
[0002]
[Prior art]
Polyester short fibers are widely used for nonwoven fabrics because of their excellent mechanical properties and chemical resistance. However, non-woven fabrics made of polyester short fibers have a feeling of stagnation and cannot be said to be softer than non-woven fabrics made of nylon or polyolefin short fibers.
[0003]
In addition, as a method of forming a nonwoven fabric from short fibers, a web formed by a card method, a wet papermaking method, an airlaid method, or the like is entangled with each other with a needle punch or a water jet, or fibers are formed with a calendar or emboss. It is known to make a nonwoven fabric by thermocompression bonding or by impregnating a web with an adhesive emulsion and drying it to chemically bond the fibers together. Of these, when web forming by the airlaid method, polyester short fibers have poor fiber surface smoothness compared to nylon and polyolefin fibers, and when crimps are applied, the crimp rate tends to increase. The openability of the short fibers in the inside deteriorates, and it becomes difficult to obtain a nonwoven fabric having a uniform texture. This tendency appears more prominently in polyester unstretched yarns and copolymerized polyester fibers that are preferably used as binder fibers and have a low degree of orientation and crystallization. For this reason, there is a limit to obtain a nonwoven fabric having a uniform texture by molding a web by the airlaid method using these binder fibers, particularly with 100% of the binder fibers. In addition, even when the web is formed by the card method or wet papermaking method, as with the airlaid method, it is difficult to obtain a nonwoven fabric with a uniform texture because polyester short fibers have poor fiber surface smoothness and poor openability. There is a tendency. This tendency becomes even more pronounced when the binder fibers as described above are molded into a web by the card method.
[0004]
These are considered to be due to the fact that the polyester-based short fibers have high rigidity and large inter-fiber friction. In order to improve such a defect, for example, a method in which a dimethylsiloxane compound or an amine-modified silicone is applied to the fiber surface and thermally crosslinked by a method as proposed in Japanese Patent Publication No. 48-1480 can be considered. .
[0005]
However, when trying to mold a web using the above-described method using such a fiber, for example, in the card method, the above-mentioned fiber has extremely low inter-fiber friction, so that the entanglement of the fiber is insufficient and the web breaks. Is likely to occur. Further, in the wet papermaking method, the fiber is water repellent, and thus it is difficult to disperse in water. In the airlaid method, static electricity is likely to be generated, and fiber dispersion spots are generated. Furthermore, when such a fiber is used as a binder fiber, the above-described fiber surface processing agent becomes an obstacle to thermal bonding.
[0006]
[Problems to be solved by the invention]
The present invention has been made against the background of the above-described prior art, and the object thereof is a nonwoven fabric having a soft texture and a uniform texture. Cloth It is to provide. In particular, an object is to provide a non-woven fabric having an excellent quality as described above, in which a web is formed by an airlaid method.
[0007]
[Means for Solving the Problems]
According to the study by the present inventors, when short fibers in which a polyester in which a polyolefin is mixed and dispersed are present on the fiber surface, an appropriate inter-fiber friction is obtained, and an appropriate range is selected as the content of the polyolefin polymer. The present inventors have found that there is a place where a non-woven fabric having not only a soft texture but also a very uniform texture can be obtained. That is, the object of the present invention is that 50% or more of the fiber surface area is occupied by a blend polymer in which a polyolefin polymer is mixed and dispersed in a polyester polymer in an amount of 0.5 to 15% by weight. High density polyethylene, Ethylene / propylene random copolymer , maleic anhydride Block copolymerized or graft copolymerized polyethylene, or maleic anhydride This is achieved by a non-woven fabric made of polyester short fibers, characterized in that the block polymer or graft copolymerized polypropylene is used, and the polyester polymer is isophthalic acid copolymerized polyethylene terephthalate.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Of the present invention Used for non-woven fabric The short fiber is a polyester short fiber in which 50% or more of the fiber surface area is occupied by a blend polymer in which a polyolefin polymer is mixed and dispersed in a polyester polymer.
[0009]
As the polyester-based polymer used in the present invention, The polyester polymer must be isophthalic acid copolymerized polyethylene terephthalate. Polyesters of aromatic dicarboxylic acids and aliphatic diols such as polyalkylene terephthalates such as polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and polyalkylene naphthalates such as polyethylene naphthalate, and alicyclic carboxyls such as polyalkylenecyclohexanedicarboxylate Polyester of acid and aliphatic diol, Polyester of aromatic carboxylic acid and alicyclic diol such as polycyclohexanedimethanol terephthalate, Aliphatic carboxylic acid such as polyethylene succinate and polybutylene succinate, polyethylene adipate and polybutylene adipate And aliphatic diol polyester, polyhydroxycarboxylic acid such as polylactic acid and polyhydroxybenzoic acid, etc. As an example of polyester used together Illustrated. Depending on the purpose, the acid component Tehu Taric acid, adipic acid, sebacic acid, α, β- (4-carboxyphenoxy) ethane, 4,4-dicarboxyphenyl, 5-sodium sulfoisophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid Acids or their esters, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, 1,4-cyclohexane as the diol component Dimethanol, polyalkylene glycol, etc. may be copolymerized in one or more components, and more than three carboxylic acid components such as pentaerythritol, trimethylolpropane, trimellitic acid, trimesic acid, etc. A component having a hydroxyl group may be copolymerized to give a branch. Also included are mixtures of polyesters having different compositions as exemplified above.
[0010]
On the other hand, as the polyolefin polymer used in the present invention, ethylene, propylene homopolymer, block or random copolymer, and other α-olefins such as butene-1, 4-methylpentene-1, etc. Examples thereof include copolymers. Depending on the purpose, vinyl ester copolymers with vinyl acetate, vinyl chloride, styrene, etc., unsaturated carboxylic acid ester copolymers with methyl acrylate, ethyl acrylate, isopropyl acrylate, methyl methacrylate, etc., acrylic acid , A copolymer such as an unsaturated carboxylic acid copolymer with methacrylic acid, maleic anhydride, etc., an ethylene-vinyl alcohol copolymer, etc., but 50 mol% or more of the main chain component is ethylene and / or propylene. The use of the polyolefin polymer is preferably used in terms of improving the smoothness of the fiber surface and the opening property in airlaid nonwoven fabric molding. Among them, high density polyethylene, Ethylene / propylene random copolymer , maleic anhydride Block copolymerized or graft copolymerized polyethylene, or maleic anhydride It is necessary to be a polypropylene obtained by block copolymerization or graft copolymerization.
[0011]
In addition, a plurality of the above-mentioned polyolefin polymers may be selected and mixed for use.
[0012]
The above-mentioned polyester and / or polyolefin-based polymer has additives, fluorescent brighteners, stabilizers, flame retardants, flame retardant aids, ultraviolet absorbers, antioxidants, and coloring, as long as the effects of the present invention are not impaired. Various pigments for the purpose may be contained.
[0013]
In the present invention, the amount of the polyolefin polymer mixed and dispersed in the polyester polymer needs to be in the range of 0.5 to 15% by weight based on the weight of the blend polymer obtained by blending both. When the mixing amount of the polyolefin-based polymer is less than 0.5% by weight, a nonwoven fabric having a soft texture and a uniform texture, which is the object of the present invention, cannot be obtained. On the other hand, not only the above effects are not obtained even when the amount of the polyolefin-based polymer exceeds 15% by weight, but also the spinnability of the polymer at the time of melt spinning deteriorates. Used for nonwoven fabric Short fibers cannot be produced. The mixing amount of the preferred polyolefin polymer is in the range of 1 to 10% by weight, more preferably in the range of 2 to 7% by weight.
[0014]
Moreover, in this invention, 50% or more of the fiber surface area of a short fiber needs to be occupied by the blend polymer. When this ratio is less than 50%, a nonwoven fabric having a soft texture and a uniform texture cannot be obtained. Examples of such short fibers include short fibers composed of 100% blend polymer, or composite short fibers arranged such that the blend polymer occupies 50% or more of the fiber surface area. In the case of a composite short fiber, examples of the composite form include a core-sheath type, an eccentric core-sheath type, a side-by-side type, a sea-island type, a segment pie-type, and the like. In particular, the core-sheath occupies 100% of the fiber surface area. Type composite fiber or eccentric core-sheath type composite fiber is preferable.
[0015]
Of the present invention Used for nonwoven fabric The short fiber may be a solid fiber or a hollow fiber. Also, the fiber cross-sectional shape is not limited to a round cross section, and may be an elliptical cross section, a multi-leaf cross section such as a 3-8 leaf cross section, or a deformed cross section such as a polygonal cross section such as a 3-8 octagon.
[0016]
The present invention Non-woven fabric Is a polyester short fiber having a birefringence of 0.05 or less or a crystallinity of 20% or less. When using The effect is demonstrated. When the polyester short fiber has a birefringence of 0.05 or less or a crystallinity of 20% or less, the friction between the fibers tends to increase, the texture of the nonwoven fabric decreases, and the spreadability also decreases. Thus, there is a tendency that it is difficult to obtain a nonwoven fabric having a uniform texture. Among them, polyalkylene terephthalate or isophthalic acid copolymerized polyalkylene terephthalate is melt-spun, and it is a low orientation yarn (undrawn yarn) obtained by pulling at a spinning speed of 2000 m / min or less, especially among polyalkylene terephthalate. This tendency is strong in polyethylene terephthalate having a relatively low crystallinity or polyethylene terephthalate copolymerized with 5 to 50 mol% of isophthalic acid. These short fibers are preferably used for binder fibers that can be made into a nonwoven fabric by thermocompression bonding. That is, the present invention In non-woven fabric, Even when short fibers are used as such binder fibers, the above-mentioned problems do not occur, and a nonwoven fabric having a soft texture and a uniform texture can be obtained.
[0017]
The fineness may be selected according to the purpose and is not particularly limited, but is generally used in a range of about 0.01 to 500 dtex.
[0018]
The present invention described above Used for non-woven fabric The short fiber can be produced, for example, by the following method. A melt blend polymer of a polyester polymer and a polyolefin polymer is discharged from a die using a known spinning equipment and taken up at a speed of 100 to 2000 m / min while cooling with cooling air to obtain an undrawn yarn. At this time, the above-mentioned melt blending is performed by kneading the polyester polymer and the polyolefin polymer previously melted with a static mixer, a dynamic mixer or the like, or blending pellets of both polymers at a predetermined ratio, and using an extruder or the like. It is performed by a method such as melt-kneading, and this is supplied to the spinneret. In the case of compound spinning, the melt blend polymer and other melt polymers are separately supplied to a compound spinneret, and the blend polymer is combined and discharged using the die so that it accounts for 50% or more of the fiber surface area. An undrawn yarn is obtained in the same manner as above. Subsequently, the undrawn yarn obtained is stretched in warm water at 70 to 100 ° C. or in steam at 100 to 125 ° C., crimped as necessary, and an oil agent according to the purpose and purpose is imparted. After performing the drying and relaxation heat treatment, cut into a predetermined fiber length, Used for nonwoven fabric Obtain short fibers. In this case, the oil agent may contain an amount or type of silicone compound that does not hinder the achievement of the object of the present invention. In addition, a fiber having a birefringence of 0.05 or less or a crystallinity of 20% or less is not stretched, only an oil agent is applied, and if necessary, the crystallinity does not exceed 20%. It can be obtained by drying at temperature and time.
[0019]
Of the present invention Used for non-woven fabric In order to make a short fiber into a nonwoven fabric, it is preferable to set the following fiber length according to manufacture of a web, and to give a crimp.
[0020]
For example, when the web is molded by the airlaid method, the fiber length is preferably 2 to 30 mm. By setting the fiber length to 2 mm or more, short fibers can be obtained industrially stably. Further, by setting the fiber length to 30 mm or less, the fiber opening property is further improved, and the web lump is hardly generated. A more preferable fiber length is 3 to 20 mm. Further, crimping may or may not be applied depending on the purpose of the nonwoven fabric. That is, when it is desired to impart bulkiness to the nonwoven fabric, crimping may be imparted, and when there is no need to improve the air opening property and discharge capability, crimping may not be imparted. When crimping is applied, it is preferable that the number of crimps is 3 to 13 peaks / 25 mm, and the crimp rate is 3 to 15%. When the number of crimps is 13 peaks / 25 mm or less and the crimp rate is 15% or less, the air opening property is further improved. The short fibers of the present invention tend to have a smaller number of crimps and a lower crimp rate than conventional fibers, and are more easily controlled within the above range. In order to obtain bulkiness, it is preferable that the number of crimps is 3 peaks / 25 mm or more and the crimp rate is 3% or more. Further, the crimped form is more preferably a flat zigzag crimp or omega crimp included in a plane in terms of spreadability than a spiral three-dimensional crimp. By satisfying these configurations, the unopened component in the web molded by the airlaid method can be 5% by weight or less.
[0021]
Moreover, also when forming a web by a wet papermaking method, 2-30 mm is preferable for the fiber length for the same reason as the above, More preferably, it is 3-20 mm. Crimping may or may not be applied depending on the purpose of the nonwoven fabric. Although crimping may be imparted when it is desired to impart bulkiness to the nonwoven fabric, it is preferable not to impart crimping from the viewpoint of dispersibility in water during wet papermaking.
[0022]
Furthermore, when forming a web by a card method, it is preferable that fiber length shall be 30-200 mm. By setting the fiber length to 30 mm or more, it becomes difficult for the web to break due to poor entanglement between the fibers. Further, by setting the fiber length to 200 mm or less, the spreadability on the card is improved, and the texture of the web is less likely to occur. The fiber length is more preferably 35 to 150 mm, and even more preferably in the range of 40 to 100 mm. In order to allow the card to pass through, it is preferable that crimps are imparted to the short fibers. In this case, the number of crimps is preferably 5 to 30 crests / 25 mm, and the crimp rate is preferably 3 to 30%. By setting the number of crimps to 30 crests / 25 mm or less and the crimping ratio to 30% or less, the spreadability on the card is improved, and the texture of the web is less likely to occur. Further, by setting the number of crimps to 5 crests / 25 mm or more and the crimping ratio to 3% or more, it becomes difficult to cause web breaks due to poor entanglement between fibers. The crimped form may be a conventionally known crimped form such as a planar zigzag type, an omega type, or a spiral three-dimensional crimp.
[0023]
The present invention Incongruity The woven fabric has a soft texture and can achieve a bending resistance of 70 mm or less by a cantilever method, which is an index indicating flexibility.
[0024]
The nonwoven fabric of the present invention is Above Non-woven fabrics in which other short fibers are mixed with other short fibers may be used, and non-woven fabrics composed of other short fibers may be laminated, Above Nonwoven fabrics molded only from these short fibers are particularly preferred because they exhibit a unique soft texture different from conventional nonwoven fabrics using polyester short fibers.
[0025]
[Action]
Of the present invention Used for nonwoven fabric The polyester short fiber is a polyester short fiber known in the art because 50% of the fiber surface area is occupied by a blend polymer in which a polyolefin polymer is mixed and dispersed in a polyester polymer in an amount of 0.5 to 15% by weight. As a result, the friction between the fibers is reduced, the texture becomes soft, the spreadability is good, and a nonwoven fabric having a uniform texture can be obtained. Although the mechanism is not clear, when an appropriate amount of a polyolefin polymer that is incompatible with the polyester polymer is dispersed and mixed, an island of the polyolefin polymer floats in the sea of the polyester polymer. It is considered that this is because islands are exposed on the fiber surface and can be undulated, thereby reducing the chance of contact between short fibers and reducing inter-fiber friction.
[0026]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. In addition, the process tone and mechanical characteristics (general physical properties) in Examples and Comparative Examples were measured by the following methods.
[0027]
(A) Fineness
Measured by the method described in JIS L 1015 7.5.1 A method.
[0028]
(B) Fiber length
It was measured by the method described in JIS L 1015 7.4.1 Method C.
[0029]
(C) Number of crimps and crimp rate
It was measured by the method described in JIS L 1015 7.12.
[0030]
(D) Intrinsic viscosity ([η])
Measurement was performed at a temperature of 35 ° C. using orthochlorophenol as a solvent.
[0031]
(E) Melt index (MFR)
It was measured by the method described in JIS K 7210 Condition 4.
[0032]
(F) Glass transition point (Tg), melting point (Tm)
A differential scanning calorimeter DSC-7 manufactured by Perkin Elmer was used, and the temperature was measured at a heating rate of 20 ° C./min.
[0033]
(G) Crystallinity
Density ρ (g / cm at 25 ° C.) using density gradient tube composed of normal heptane and carbon tetrachloride Three ), And the PET crystal density ρc (= 1.455 g / cm Three ) And amorphous density ρa (= 1.335 g / cm Three ) Was substituted to calculate the crystallinity χc (% by weight).
χc = ρc (ρ−ρa) / ρ (ρc−ρa)
[0034]
(H) Birefringence index (Δn)
Bromine naphthalene was used as the immersion liquid, and it was determined by a retardation method using a Berek compensator. (See Kyoritsu Publishing Co., Ltd .: Polymer Experimental Chemistry Course, Polymer Properties II)
[0035]
(I) Unopened rate
An unopened mass was taken out from 10 g of a web molded by the airlaid method, its weight x was measured, and the unopened rate u was calculated by the following equation.
u = x / 10 × 100 (%)
[0036]
(J) Bending softness (45 ° cantilever method)
This was carried out according to the method described in JIS L 1085 5.7A method. The smaller the value, the more flexible.
[0037]
(K) Non-woven fabric texture
Observe the appearance of the web and evaluate it according to the following criteria:
Level 1: Unopened lumps and spotted spots (shading) are not seen, and the texture is uniform.
Level 2: Unopened lumps are not conspicuous, but spotted spots (shading) can be visually confirmed.
Level 3: Unopened lumps and spotted spots (shading) are conspicuous and the texture is uneven.
[0038]
[ reference Example 1]
Polyethylene terephthalate (PET) pellets having an intrinsic viscosity [η] of 0.61 and Tm of 256 ° C. dried at 120 ° C. for 16 hours, and high density polyethylene (HDPE) having an MFR of 20 g / 10 min and a Tm of 131 ° C. Were mixed at a ratio of 97: 3, melted with a biaxial extruder, and extruded as a molten polymer at 280 ° C. at a discharge rate of 200 g / min from a die having 600 round hole capillaries with a diameter of 0.3 mm. It was. This was air-cooled with cooling air at 30 ° C. and wound at 1150 m / min to obtain an undrawn yarn. To this undrawn yarn, a flat zigzag type crimp having a crimp number of 8 crests / 25 mm and a crimp rate of 4% was imparted by an indentation type crimper, and alkyl phosphate potassium salt / polyoxyethylene modified silicone = 80/20 The resulting oil was applied in an amount of 0.25% by weight, further dried with hot air at 45 ° C., and cut into a fiber length of 5 mm. The short fibers obtained had a fineness of 3.1 dtex, a crystallinity of 16%, and a birefringence of 0.0035.
[0039]
Using this fiber, the basis weight is 50 g / m by the airlaid method. 2 The web was molded. Furthermore, this web was thermally bonded at a linear pressure of 80 kPa · m with a pair of flat (calendar) rollers having a surface temperature of 200 ° C. to obtain an airlaid nonwoven fabric. The nonwoven fabric had a bending resistance of 50 mm, an unopened ratio of 0.5%, and the nonwoven fabric texture was level 1.
[0040]
[Example 2]
Short fibers and an airlaid nonwoven fabric were obtained in the same manner as in Example 1 except that copolymerized PET obtained by copolymerizing 10 mol% of isophthalic acid having a Tm of 220 ° C. was used instead of PET. The fineness of the short fibers was 3.4 dtex, the crystallinity was 9%, and the birefringence was 0.0027. Further, the bending resistance of the nonwoven fabric was 44 mm, the unopened rate was 0.8%, and the nonwoven fabric texture was level 1.
[0041]
[Example 3]
An amorphous copolymer PET chip obtained by copolymerizing 40% by mole of isophthalic acid having an intrinsic viscosity [η] of 0.55 and Tg of 65 ° C., which was vacuum-dried at 50 ° C. for 24 hours, an MFR of 20 g / 10 min, Tm Was mixed at a ratio of 95: 5 HDPE chips having a temperature of 131 ° C., and this was melted with a biaxial extruder to obtain a molten polymer at 250 ° C. On the other hand, PET pellets having an intrinsic viscosity [η] of 0.61 vacuum-dried at 120 ° C. for 16 hours were melted with an extruder to obtain a molten polymer at 280 ° C. A known core having 1032 round-hole capillaries with a diameter of 0.3 mm so that both molten polymers have a sheath component A as the former, a core component B as the latter, and a cross-sectional area ratio of A: B = 50: 50 From a sheath type composite spinneret, it was compounded and melted and discharged. At this time, the die temperature was 285 ° C., and the discharge rate was 870 g / min. Further, the discharged polymer was air-cooled with cooling air at 30 ° C. and wound at 1150 m / min to obtain an undrawn yarn. After this undrawn yarn was drawn 3.75 times in warm water at 80 ° C., it was immediately cooled through a 30 ° C. water bath so that the single yarns were not fused together, and the alkyl phosphate potassium salt / polyoxyethylene modified silicone = After applying 0.2% by weight of an oil agent comprising 80/20, applying a planar zigzag type crimp having a crimp number of 9/25 mm and a crimp rate of 12% with an indentation type crimper, and drying at 50 ° C., Cut to a fiber length of 5 mm. The fineness of the obtained short fiber was 2.1 dtex.
[0042]
Using this short fiber, the basis weight is 50 g / m by the airlaid method. 2 The web was molded and thermally bonded with hot air at 150 ° C. for 2 minutes to obtain an airlaid nonwoven fabric. The nonwoven fabric had a bending resistance of 53 mm, an unopened ratio of 0.7%, and the nonwoven fabric texture was level 1.
[0043]
[Comparative Example 1]
Only the amorphous copolymer PET obtained by copolymerizing the sheath component A from a mixed polymer of amorphous copolymer PET and HDPE with 40 mol% of isophthalic acid having an intrinsic viscosity [η] of 0.55 and Tg of 65 ° C. A short fiber and a non-woven fabric were obtained in the same manner as in Example 3 except for changing to. The fineness of the short fibers was 2.1 dtex. Further, the bending resistance of the nonwoven fabric was 83 mm, the unopened rate was 11%, and the nonwoven fabric texture was level 3.
[0044]
[Comparative Example 2]
The same procedure as in Example 3 was performed except that the chip mixing ratio of the amorphous copolymerized PET and HDPE of the sheath component A was changed from 95: 5 to 84:16. there were.
[0045]
[ Reference example 1 ]
Short fibers and nonwoven fabric were obtained in the same manner as in Example 3 except that the HDPE of the sheath component A was changed to isotactic polypropylene having an MFR of 30 g / min and a Tm of 160 ° C. The fineness of the short fibers was 2.2 dtex. Further, the bending resistance of the nonwoven fabric was 58 mm, the unopened rate was 1.3%, and the nonwoven fabric texture was level 1.
[0046]
[Example 5]
Example 3 except that HDPE of sheath component A was changed to an ethylene / propylene random copolymer (copolymerization molar ratio, ethylene: propylene = 37: 63) having an MFR of 50 g / min and a Tm of 135 ° C. Thus, short fibers and nonwoven fabric were obtained. The fineness of the short fibers was 2.2 dtex. Further, the bending resistance of the nonwoven fabric was 58 mm, the unopened rate was 1.3%, and the nonwoven fabric texture was level 1.
[0047]
[Example 6]
HDPE of sheath component A, maleic anhydride 3.5 weight with MFR 8g / min, Tm 96 ° C % Short fibers and nonwoven fabric were obtained in the same manner as in Example 3 except that the copolymer was changed to a raft copolymerized linear low density polyethylene. The fineness of the short fibers was 2.2 dtex. Further, the bending resistance of the nonwoven fabric was 52 mm, the unopened rate was 0.8%, and the nonwoven fabric texture was level 1.
[0048]
[Example 7]
Polymer temperature after PET of core component B was changed to nylon-6 having an intrinsic viscosity of 1.34 and Tm of 215 ° C. measured with a metacresol solvent at 35 ° C., and the polymer chip was melted with an extruder. Was 240 ° C., the die temperature was 250 ° C., and the discharge rate was 500 g / min. In addition, the obtained undrawn yarn was 2.1 times cold drawn and then drawn 1.05 times in warm water at 55 ° C., cooled through a water bath, and given an oil agent. A flat zigzag crimp having a crimp rate of 6.5% was applied, dried at 45 ° C., and cut into short fibers. Except this, the same procedure as in Example 3 was performed. The fineness of the obtained short fiber was 2.2 dtex.
[0049]
Using this short fiber, a nonwoven fabric was obtained in the same manner as in Example 3. This nonwoven fabric had a bending resistance of 41 mm, an unopened ratio of 0.9%, and the nonwoven fabric texture was level 1.
[0050]
[Example 8]
Short fibers and nonwoven fabrics were obtained in the same manner as in Example 3 except that the cut length was changed from 5 cm to 3 cm. The nonwoven fabric had a bending resistance of 57 mm, an unopened ratio of 1.6%, and the nonwoven fabric texture was level 1.
[0051]
[Example 9]
The short fiber was changed in the same manner as in Example 3 except that the core-sheath type composite spinneret was changed to an eccentric core-sheath type composite spinneret and crimped with a number of crimps of 8/25 m and a crimp rate of 15%. Obtained. This short fiber had an omega type crimp and the fineness was 2.3 dtex.
[0052]
Using this short fiber, a nonwoven fabric was obtained in the same manner as in Example 3. The nonwoven fabric had a bending resistance of 55 mm, an unopened ratio of 0.9%, and the nonwoven fabric texture was level 1.
[0053]
[Example 10]
Short fibers and nonwoven fabric were obtained in the same manner as in Example 3 except that crimping was not applied to the drawn yarn. The nonwoven fabric had a bending resistance of 53 mm, an unopened rate of 0.2%, and the nonwoven fabric texture was level 1.
[0054]
[Example 11]
Using a square sheet machine manufactured by Kumagai Riki Kogyo Co., Ltd., the short fibers obtained in Example 10 and wood pulp are poured into water at a weight ratio of 80:20, and thoroughly stirred and mixed to disperse. The size is about 25cm x about 25cm and the basis weight is 50g / m 2 A sheet of was created. Next, after drying the sheet at room temperature for a day or more, it is placed on a Teflon sheet having holes, and subjected to a shrinking treatment for 5 minutes in a 120 ° C. hot air circulation dryer to obtain a wet nonwoven fabric. It was. The nonwoven fabric had a bending resistance of 38 mm and the nonwoven fabric texture was level 1.
[0055]
[Comparative Example 3]
Short fibers were obtained in the same manner as in Comparative Example 2, except that crimping was not applied to the drawn yarn. Using this short fiber, a wet nonwoven fabric was obtained in the same manner as in Example 11. The nonwoven fabric had a bending resistance of 38 mm and a nonwoven fabric texture of level 2.
[0056]
[Example 12]
Short fibers were obtained in the same manner as in Example 3 except that the cut length was changed from 5 mm to 51 mm. This short fiber was passed through a roller card to obtain a card web. At this time, the card passing property was good. This web is laminated to have a basis weight of 50 g / m. 2 In the same manner as in Example 3, heat-bonding was performed with hot air to obtain a card method heat-bonding nonwoven fabric. The nonwoven fabric had a bending resistance of 58 mm and the nonwoven fabric texture was level 1.
[0057]
[Example 13]
Short fibers were obtained in the same manner as in Example 10 except that the cut length was changed from 5 mm to 51 mm. Using this short fiber, a card method thermobonding nonwoven fabric was obtained in the same manner as in Example 12. At this time, the card passing property was good. The nonwoven fabric had a bending resistance of 51 mm and the nonwoven fabric texture was level 1.
[0058]
【The invention's effect】
According to the present invention, a nonwoven fabric having a soft texture and a uniform texture The Can be provided. In addition, according to the present invention, it is possible to provide a nonwoven fabric that not only has a uniform texture, but also has an unprecedented flexibility. In particular, the nonwoven fabric in which the web is molded by the airlaid method is extremely high in quality because it has very few unopened fibers and is evenly uniform in formation. Therefore, the present invention broadens the use of nonwoven fabrics made of conventional polyester short fibers, and its industrial value is extremely high.

Claims (5)

ポリエステル系ポリマーにポリオレフィン系ポリマーが0.5〜15重量%混合分散されているブレンドポリマーによって、繊維表面積の50%以上が占められており、該ポリオレフィン系ポリマーが高密度ポリエチレン、エチレン・プロピレンランダム共重合体無水マレイン酸をブロック共重合若しくはグラフト共重合させたポリエチレン、又は無水マレイン酸をブロック共重合若しくはグラフト共重合させたポリプロピレンであり、ポリエステル系ポリマーがイソフタル酸共重合ポリエチレンテレフタレートであることを特徴とするポリエステル系短繊維からなり、エアレイド法によりウェブが成型されていることを特徴とする不織布。More than 50% of the fiber surface area is occupied by a blend polymer in which a polyolefin polymer is mixed and dispersed in a polyester polymer in an amount of 0.5 to 15% by weight. The polyolefin polymer is a high-density polyethylene or ethylene / propylene random copolymer. polymers, polyethylene and maleic anhydride is polymerized block copolymerization or graft copolymerization, or maleic anhydride is polypropylene obtained by polymerizing the block copolymer or graft copolymer, the polyester polymer is isophthalic acid copolymerized polyethylene terephthalate A non-woven fabric characterized by comprising a polyester-based short fiber characterized in that a web is molded by an airlaid method. 未開繊率が5%以下である請求項1記載の不織布。  The nonwoven fabric according to claim 1, wherein the unopened rate is 5% or less. ポリエステル系ポリマーにポリオレフィン系ポリマーが0.5〜15重量%混合分散されているブレンドポリマーによって、繊維表面積の50%以上が占められており、該ポリオレフィン系ポリマーが高密度ポリエチレン、エチレン・プロピレンランダム共重合体無水マレイン酸をブロック共重合若しくはグラフト共重合させたポリエチレン、又は無水マレイン酸をブロック共重合若しくはグラフト共重合させたポリプロピレンであり、ポリエステル系ポリマーがイソフタル酸共重合ポリエチレンテレフタレートであることを特徴とするポリエステル系短繊維からなり、湿式抄造法によりウェブが成型されていることを特徴とする不織布。More than 50% of the fiber surface area is occupied by a blend polymer in which a polyolefin polymer is mixed and dispersed in a polyester polymer in an amount of 0.5 to 15% by weight. The polyolefin polymer is a high-density polyethylene or ethylene / propylene random copolymer. polymers, polyethylene and maleic anhydride is polymerized block copolymerization or graft copolymerization, or maleic anhydride is polypropylene obtained by polymerizing the block copolymer or graft copolymer, the polyester polymer is isophthalic acid copolymerized polyethylene terephthalate A non-woven fabric comprising a polyester-based short fiber and a web formed by a wet papermaking method. ポリエステル系ポリマーにポリオレフィン系ポリマーが0.5〜15重量%混合分散されているブレンドポリマーによって、繊維表面積の50%以上が占められており、該ポリオレフィン系ポリマーが高密度ポリエチレン、エチレン・プロピレンランダム共重合体無水マレイン酸をブロック共重合若しくはグラフト共重合させたポリエチレン、又は無水マレイン酸をブロック共重合若しくはグラフト共重合させたポリプロピレンであり、ポリエステル系ポリマーがイソフタル酸共重合ポリエチレンテレフタレートであることを特徴とするポリエステル系短繊維からなり、カード法によりウェブが成型されていることを特徴とする不織布。More than 50% of the fiber surface area is occupied by a blend polymer in which a polyolefin polymer is mixed and dispersed in a polyester polymer in an amount of 0.5 to 15% by weight. The polyolefin polymer is a high-density polyethylene or ethylene / propylene random copolymer. polymers, polyethylene and maleic anhydride is polymerized block copolymerization or graft copolymerization, or maleic anhydride is polypropylene obtained by polymerizing the block copolymer or graft copolymer, the polyester polymer is isophthalic acid copolymerized polyethylene terephthalate A non-woven fabric comprising a polyester-based short fiber and a web formed by a card method. カンチレバー法による剛軟度が70mm以下である請求項1〜4のいずれかに記載の不織布。  The nonwoven fabric according to any one of claims 1 to 4, which has a bending resistance by a cantilever method of 70 mm or less.
JP2002181139A 2002-06-21 2002-06-21 Nonwoven fabric made of polyester staple fibers Active JP4027728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002181139A JP4027728B2 (en) 2002-06-21 2002-06-21 Nonwoven fabric made of polyester staple fibers

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
JP2002181139A JP4027728B2 (en) 2002-06-21 2002-06-21 Nonwoven fabric made of polyester staple fibers
CNB03800884XA CN1320180C (en) 2002-06-21 2003-06-18 Polyester staple fiber and nonwoven fabric composed thereof
DE60330562T DE60330562D1 (en) 2002-06-21 2003-06-18 POLYESTER STAPLE FIBER AND AT LEAST PARTIALLY EXISTING NONWOVEN FABRIC
US10/487,222 US20040265577A1 (en) 2002-06-21 2003-06-18 Polyester staple fiber and nonwoven fabric comprising same
AU2003244268A AU2003244268A1 (en) 2002-06-21 2003-06-18 Polyester staple fiber and nonwoven fabric comprising same
KR10-2004-7002462A KR20050009979A (en) 2002-06-21 2003-06-18 Polyester staple fiber and nonwoven fabric comprising same
EP03760886A EP1516079B1 (en) 2002-06-21 2003-06-18 Polyester staple fiber and nonwoven fabric comprising same
PCT/JP2003/007754 WO2004001108A1 (en) 2002-06-21 2003-06-18 Polyester staple fiber and nonwoven fabric comprising same
TW092116669A TWI303283B (en) 2002-06-21 2003-06-19 Polyester staple fiber and nonwoven fabric comprising same
HK04110295A HK1067389A1 (en) 2002-06-21 2004-12-29 Polyester staple fiber and nonwoven fabric comprising same
US11/641,030 US20070098986A1 (en) 2002-06-21 2006-12-19 Process for producing a nonwoven polyester staple fiber fabric

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006298673A Division JP4323507B2 (en) 2006-11-02 2006-11-02 Polyester short fiber

Publications (2)

Publication Number Publication Date
JP2004027377A JP2004027377A (en) 2004-01-29
JP4027728B2 true JP4027728B2 (en) 2007-12-26

Family

ID=29996620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002181139A Active JP4027728B2 (en) 2002-06-21 2002-06-21 Nonwoven fabric made of polyester staple fibers

Country Status (10)

Country Link
US (2) US20040265577A1 (en)
EP (1) EP1516079B1 (en)
JP (1) JP4027728B2 (en)
KR (1) KR20050009979A (en)
CN (1) CN1320180C (en)
AU (1) AU2003244268A1 (en)
DE (1) DE60330562D1 (en)
HK (1) HK1067389A1 (en)
TW (1) TWI303283B (en)
WO (1) WO2004001108A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513147B2 (en) 2003-06-19 2013-08-20 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US20040260034A1 (en) 2003-06-19 2004-12-23 Haile William Alston Water-dispersible fibers and fibrous articles
US7892993B2 (en) 2003-06-19 2011-02-22 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
JP4831971B2 (en) * 2005-01-11 2011-12-07 日本エステル株式会社 Short fiber for nonwoven fabric and short fiber nonwoven fabric
MY144282A (en) * 2006-02-06 2011-08-29 Teijin Fibers Ltd Manufacturing method of polyester fiber for airlaid nonwoven fabrics
JP4955278B2 (en) * 2006-02-06 2012-06-20 帝人ファイバー株式会社 Polyester fiber for airlaid nonwoven fabric and method for producing the same
JP4881026B2 (en) * 2006-02-06 2012-02-22 帝人ファイバー株式会社 Heat-adhesive conjugate fiber for airlaid nonwoven fabric and method for producing the same
JP5065670B2 (en) * 2006-12-27 2012-11-07 帝人ファイバー株式会社 Nonwoven fabric and sheet
JP5444681B2 (en) * 2007-10-19 2014-03-19 Esファイバービジョンズ株式会社 Polyester-based heat-fusible composite fiber
JP4960908B2 (en) * 2008-03-13 2012-06-27 帝人ファイバー株式会社 Polyethylene naphthalate fiber and short fiber nonwoven fabric comprising the same
US8512519B2 (en) 2009-04-24 2013-08-20 Eastman Chemical Company Sulfopolyesters for paper strength and process
JP2011195978A (en) * 2010-03-18 2011-10-06 Teijin Fibers Ltd Heat-bonding composite fiber for producing wet nonwoven fabric, and method of producing the same
US20120183861A1 (en) 2010-10-21 2012-07-19 Eastman Chemical Company Sulfopolyester binders
CN103168121A (en) * 2010-10-27 2013-06-19 帝人株式会社 Biomass-derived polyester short fibers and wet nonwoven fabric formed from same
KR101908156B1 (en) * 2011-02-23 2018-10-15 도레이 카부시키가이샤 Fiber reinforced composite material
JP5830785B2 (en) * 2011-06-28 2015-12-09 萩原工業株式会社 Connection thread for concrete reinforcement and manufacturing method thereof
JP4945004B2 (en) * 2011-08-22 2012-06-06 帝人ファイバー株式会社 Method for producing polyester fiber for airlaid nonwoven fabric
US8840757B2 (en) 2012-01-31 2014-09-23 Eastman Chemical Company Processes to produce short cut microfibers
JP6077370B2 (en) * 2013-04-05 2017-02-08 帝人株式会社 Thermal adhesive composite fiber
US9617685B2 (en) 2013-04-19 2017-04-11 Eastman Chemical Company Process for making paper and nonwoven articles comprising synthetic microfiber binders
JP6483102B2 (en) * 2013-07-03 2019-03-13 ロウ アンド ボナー ベスローテン フェノーツハップLow & Bonar B.V. Nonwoven material
WO2015005105A1 (en) * 2013-07-10 2015-01-15 テルモ株式会社 Biological lumen graft substrate, production method for biological lumen graft substrate, and biological lumen graft made using biological lumen graft substrate
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
JP6298697B2 (en) * 2014-04-18 2018-03-20 Kbセーレン株式会社 Composite fiber and fabric
JP6731284B2 (en) * 2016-05-30 2020-07-29 Esファイバービジョンズ株式会社 Heat-fusible composite fiber, method for producing the same, and non-woven fabric using the same
JPWO2018225671A1 (en) 2017-06-09 2020-04-09 東洋紡株式会社 Long-fiber nonwoven fabric and filter reinforcing material using the same
CN113827762A (en) * 2020-06-24 2021-12-24 上海清白香环保科技有限公司 Medical dressing for inhibiting harmful microorganism breeding
CN112095230A (en) * 2020-08-15 2020-12-18 福建冠泓工业有限公司 Super-soft super-fluffy spun-bonded non-woven fabric and preparation method thereof

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3531368A (en) * 1966-01-07 1970-09-29 Toray Industries Synthetic filaments and the like
JPS56159340A (en) * 1980-05-09 1981-12-08 Asahi Chemical Ind Production of polyester nonwoven fabric
EP0080274B1 (en) * 1981-11-23 1986-05-14 Imperial Chemical Industries Plc Process of melt spinning of a blend of a fibre-forming polymer and an immiscible polymer and melt spun fibres produced by such process
FI74738C (en) * 1986-05-09 1988-03-10 Outokumpu Oy FOERFARANDE OCH ANORDNING FOER ATT MINSKA STOFTAGGLOMERATER VID BEHANDLING AV GASER AV SMAELTNINGSUGNEN.
US5069970A (en) * 1989-01-23 1991-12-03 Allied-Signal Inc. Fibers and filters containing said fibers
US4908052A (en) * 1987-04-20 1990-03-13 Allied-Signal Inc. Fibers and filters containing said fibers
JPH02500176A (en) * 1987-04-20 1990-01-25
US5082720A (en) * 1988-05-06 1992-01-21 Minnesota Mining And Manufacturing Company Melt-bondable fibers for use in nonwoven web
US6495656B1 (en) * 1990-11-30 2002-12-17 Eastman Chemical Company Copolyesters and fibrous materials formed therefrom
JP2599847B2 (en) * 1991-08-13 1997-04-16 株式会社クラレ Polyethylene terephthalate type melt blown nonwoven fabric and its manufacturing method
DE4412969C1 (en) * 1994-04-14 1995-06-22 Inventa Ag Stretched PET fibres with improved bulk and recovery
US6544455B1 (en) * 1997-12-22 2003-04-08 Kimberly-Clark Worldwide, Inc. Methods for making a biodegradable thermoplastic composition
US5948529A (en) * 1997-02-26 1999-09-07 Hna Holdings, Inc. Bicomponent fiber
US6231976B1 (en) * 1997-08-28 2001-05-15 Eastman Chemical Company Copolyester binder fibers
US6686303B1 (en) * 1998-11-13 2004-02-03 Kimberly-Clark Worldwide, Inc. Bicomponent nonwoven webs containing splittable thermoplastic filaments and a third component
AU765059B2 (en) * 1999-04-30 2003-09-04 Kimberly-Clark Worldwide, Inc. Stretchable nonwoven material
WO2001010929A1 (en) * 1999-08-06 2001-02-15 Eastman Chemical Company Polyesters having a controlled melting point and fibers formed therefrom
US6855422B2 (en) * 2000-09-21 2005-02-15 Monte C. Magill Multi-component fibers having enhanced reversible thermal properties and methods of manufacturing thereof
JP3778808B2 (en) * 2001-04-04 2006-05-24 帝人ファイバー株式会社 Polyester-based heat-adhesive conjugate fiber and method for producing the same

Also Published As

Publication number Publication date
EP1516079A4 (en) 2006-05-24
KR20050009979A (en) 2005-01-26
JP2004027377A (en) 2004-01-29
DE60330562D1 (en) 2010-01-28
AU2003244268A1 (en) 2004-01-06
US20070098986A1 (en) 2007-05-03
WO2004001108A1 (en) 2003-12-31
CN1545573A (en) 2004-11-10
EP1516079B1 (en) 2009-12-16
TWI303283B (en) 2008-11-21
EP1516079A1 (en) 2005-03-23
CN1320180C (en) 2007-06-06
HK1067389A1 (en) 2005-04-08
TW200402485A (en) 2004-02-16
US20040265577A1 (en) 2004-12-30

Similar Documents

Publication Publication Date Title
JP4027728B2 (en) Nonwoven fabric made of polyester staple fibers
TWI248994B (en) Machine-crimped synthetic fibers having latent three-dimensional crimping property and process for producing same
JP4820211B2 (en) Self-extensible thermoadhesive conjugate fiber and method for producing the same
JP5021938B2 (en) Thermal adhesive composite fiber and method for producing the same
WO2007091662A1 (en) Heat-bondable conjugated fiber and process for production thereof
JP4323507B2 (en) Polyester short fiber
JP2003171860A (en) Fiber for air laid nonwoven fabric
WO2007091665A1 (en) Process for production of polyester fiber for air-laid nonwoven fabrics
JP3892748B2 (en) Short fiber nonwoven fabric
JP4310170B2 (en) Thermal adhesive composite fiber for airlaid nonwoven fabric
JP2544783B2 (en) Composite fiber and manufacturing method thereof
JP2013133571A (en) Thermally adhesive conjugated fiber having high mechanical crimping performance and method for producing the same
JP4955278B2 (en) Polyester fiber for airlaid nonwoven fabric and method for producing the same
JPH1150337A (en) Production of hot-melt conjugated fiber
JP2006118067A (en) Method for producing thermoadhesive conjugate fiber
JP2011195978A (en) Heat-bonding composite fiber for producing wet nonwoven fabric, and method of producing the same
JP4945004B2 (en) Method for producing polyester fiber for airlaid nonwoven fabric
JP2911060B2 (en) Composite fiber aggregate
JP2020070530A (en) Modified cross-section crimped hollow filament
JP2009287157A (en) Staple fiber nonwoven fabric
JP2000073267A (en) Conjugated nonwoven fabric and its production
JP2009108461A (en) Staple fiber nonwoven fabric
JP2009263816A (en) Staple fiber nonwoven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4027728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350