JP3778808B2 - Polyester-based heat-adhesive conjugate fiber and method for producing the same - Google Patents

Polyester-based heat-adhesive conjugate fiber and method for producing the same Download PDF

Info

Publication number
JP3778808B2
JP3778808B2 JP2001105623A JP2001105623A JP3778808B2 JP 3778808 B2 JP3778808 B2 JP 3778808B2 JP 2001105623 A JP2001105623 A JP 2001105623A JP 2001105623 A JP2001105623 A JP 2001105623A JP 3778808 B2 JP3778808 B2 JP 3778808B2
Authority
JP
Japan
Prior art keywords
polyester
fiber
conjugate fiber
component
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001105623A
Other languages
Japanese (ja)
Other versions
JP2002302833A (en
Inventor
裕憲 合田
幹雄 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Fibers Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2001105623A priority Critical patent/JP3778808B2/en
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to PCT/JP2002/002694 priority patent/WO2002081794A1/en
Priority to DE60213418T priority patent/DE60213418T2/en
Priority to KR10-2002-7016303A priority patent/KR100510156B1/en
Priority to US10/312,260 priority patent/US20030134115A1/en
Priority to AT02705398T priority patent/ATE334240T1/en
Priority to CA002421709A priority patent/CA2421709C/en
Priority to EP02705398A priority patent/EP1405937B1/en
Priority to CNB028010647A priority patent/CN1229530C/en
Priority to TW091106723A priority patent/TW591140B/en
Publication of JP2002302833A publication Critical patent/JP2002302833A/en
Priority to HK04101755A priority patent/HK1058952A1/en
Application granted granted Critical
Publication of JP3778808B2 publication Critical patent/JP3778808B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/53Polyethers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/507Polyesters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2904Staple length fiber
    • Y10T428/2907Staple length fiber with coating or impregnation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2904Staple length fiber
    • Y10T428/2909Nonlinear [e.g., crimped, coiled, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2929Bicomponent, conjugate, composite or collateral fibers or filaments [i.e., coextruded sheath-core or side-by-side type]

Abstract

Polyester-based heat-bonding conjugate staple fibers capable of giving a high grade fiber structure which has good dimensional stability and is hardly deformed, even when used under a high temperature atmosphere, comprises an amorphous polyester having a glass transition point of 50 to 100° C. and not having a crystal-melting point as a heat-bonding component and a polyalkylene terephthalate having a melting point of not less than 220° C. as a fiber-forming component, have characteristics comprising the number of crimps of 3 to 40 crimps/25 mm, a crimp percent of 3 to 40% and a web area shrinkage percent of not more than 20%. Herein, the web area shrinkage percent (%) is represented by the expression: (A0-A1)/A0x100, wherein a card web nonwoven fabric comprising 100% of the heat-bonding conjugate staple fibers and having an area of A0 and a basis weight of 30 g/m2 is left in a hot air dryer maintained at 150° C. for two minutes, and the area of the left nonwoven fabric is A1.

Description

【0001】
【発明の属する技術分野】
本発明は、不織布や詰綿等の繊維構造体の接着用として好適なポリエステル系の熱接着性複合繊維およびその製造方法に関するものである。
【0002】
【従来の技術】
従来、ポリエステル系熱接着性複合繊維としては、ポリエチレンテレフタレート(PET)等のポリアルキレンテレフタレートを芯成分とし、イソフタル酸成分やテレフタル酸成分等を構成成分とする結晶融点を持たない非晶性ポリエステル系重合体を鞘成分とした繊維が、120〜150℃といった比較的低温で熱固着でき、高温の熱処理を必要とせずに繊維構造体を成形できることから、広く使用されている。
【0003】
しかしながら、上記のポリエステル系熱接着性複合繊維には、上記のように比較的低温で繊維構造体を成形できる反面、該繊維構造体を高温雰囲気下で使用すると、寸法安定性が悪く変形が大きいといった問題がある。
【0004】
本発明者等は、このような問題を解消せんと熱接着性繊維自身の寸法安定性を向上させるために高温での延伸や熱処理を行うこと試みたが、非晶性ポリエステルのガラス移転点以上の温度では繊維同士が膠着してしまい、製糸が困難になるという問題のあることが判明した。
【0005】
かかる事情から、非晶性ポリエステル、特にガラス転移点が50〜100℃の非晶性ポリエステルを熱接着成分とする熱接着性複合繊維でその寸法安定性に優れたものは、従来まだ提案されていないのが実情である。
【0006】
【発明が解決しようとする課題】
本発明は、ポリアルキレンテレフタレートを繊維形成性成分とし、ガラス転移点が50〜100℃である非晶性ポリエステルを熱接着成分とするポリエステル系複合繊維において、寸法安定性が良好であり、高温雰囲気下での使用においても変形が起こり難く、品位の高い繊維構造体を得ることができるポリエステル系熱接着性複合繊維およびその製造方法を提供することを課題とする。
【0007】
【課題を解決するための手段】
本発明者らの研究によれば、上記課題は、以下のポリエステル系熱接着性複合繊維およびその製造方法により達成できることが見出された。
【0008】
すなわち、本発明によれば、ガラス転移点が50〜100℃でかつ結晶融点を持たない非晶性ポリエステルと、融点が220℃以上のポリアルキレンテレフタレートとを複合化して溶融吐出し、該吐出糸条を速度1500m/分以下で引き取って未延伸複合繊維となし、次いで、該未延伸複合繊維にジカルボン酸成分としてテレフタル酸成分とイソフタル酸成分および/またはアルカリ金属塩スルホイソフタル酸成分を40:60〜100:0のモル比で含有し、グリコール成分がエチレングリコールであり、かつ数平均分子量が600〜10000の範囲にあるポリアルキレングリコールを20〜95重量%共重合させたポリエーテルポリエステル共重合体を該繊維重量に対して0.03重量%以上付与した後T 1 〜(T 2 +30℃)の温度で冷時最大延伸倍率の0.72〜1.25倍に延伸し、さらに捲縮数が3〜40個/25mm、捲縮率が3〜40%となるように捲縮を付与することを特徴とするポリエステル系熱接着性複合繊維の製造方法、が提供される。
ここで、T 1 は非晶性ポリエステルのガラス転移点とポリアルキレンテレフタレートのガラス転移点のうちいずれか高い方の温度、T 2 は非晶性ポリエステルのガラス転移点をいう。
【0009】
また、請求項1記載の製造方法により製造されたポリエステル系熱接着性複合繊維であり、下記に定義するウェブ面積収縮率が20%以下であることを特徴とするポリエステル系熱接着性複合繊維、が提供される。
<ウェブ面積収縮率>
該熱接着性複合繊維100%からなる、面積がA 0 、目付が30g/m 2 のカードウェブ不織布を、150℃に維持した熱風乾燥機中に2分間放置し、その後の不織布の面積A 1 を測定し、下記式より求めた。
ウェブ面積収縮率(%)=(A 0 −A 1 )/A 0 ×100
【0010】
【発明の実施の形態】
本発明の複合繊維は、後述する製造方法により製造されたポリエステル系熱接着性複合繊維であり、繊維形成性成分として融点220℃以上のポリアルキレンテレフタレートを用いることが必要である。繊維形成性成分のポリエステルの融点が220℃未満になると、複合繊維を安定して製糸することが困難となるばかりでなく、熱接着処理時の安定性が低下する。ポリアルキレンテレフタレートの具体例としては、PETやポリブチレンテレフタレート(PBT)が好ましく、その特性を損なわない範囲であれば少量の共重合成分や艶消剤、着色剤、滑剤等の添加剤を含有していてもよい。中でも、ポリエチレンテレフタレートは安価で汎用であるため、より好ましい。
【0011】
一方、熱接着成分となる非晶性ポリエステルとしては、ガラス転移点が50〜100℃でかつ結晶融点を持たないポリエステルが適用される。ガラス転移点が50℃未満の場合には、後述する製造方法でも延伸時に繊維が膠着しやすく、また面積収縮率が20%以下の寸法安定性に優れた複合繊維を得ることができないので好ましくない。一方、ガラス転移点が100℃を超える場合には、120〜150℃といった低温での熱固着性が悪くなるので好ましくない。
【0012】
このような非晶性ポリエステルとしては、例えば、テレフタル酸、イソフタル酸、2,6−ナフタレンジカルボン酸、5−ナトリウムスルホイソフタル酸、アジピン酸、セバシン酸、アゼライン酸、ドデカン酸、1,4−シクロヘキサンジカルボン酸などの酸成分と、エチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ジエチレングリコール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール等のジオール成分のランダムまたはブロック共重合体があげられる。中でも、従来広く用いられている、テレフタル酸成分、イソフタル酸成分、エチレングリコール成分およびジエチレングリコール成分から構成された非晶性共重合ポリエステルが、コスト面や取扱い性の点で好ましい。
【0013】
熱接着成分として、上記のようなテレフタル酸成分、イソフタル酸成分、エチレングリコール成分およびジエチレングリコール成分からなる共重合ポリエステルを使用する場合には、ガラス転移点が前記の範囲内となるように選定する必要があるが、テレフタル酸成分とイソフタル酸成分のモル比は50:50〜80:20の範囲が適当であり、一方エチレングリコールとジエチレングリコールのモル比は、0:100〜100:0の範囲で任意に選ぶことができる。
【0014】
なお、本発明の熱接着性複合繊維は、熱接着成分が単繊維の表面の全部または一部(好ましくは繊維表面積の40%以上、特に60%以上)を占めていれば、芯鞘型、偏心芯鞘型、サイドバイサイド型、海島型、割繊型等のいずれの複合形態をとっていてもよい。なかでも、芯鞘型、偏心芯鞘型、サイドバイサイド型がより好ましい。
【0015】
次に、本発明の熱接着性複合繊維は、捲縮数が3〜40個/25mm、捲縮率が3〜40%である必要がある。捲縮数が3個/25mm未満または捲縮率が3%未満の場合には、短繊維間の絡合が不足してカード通過性が悪くなり、品位の高い繊維構造体が得られなくなるので好ましくない。一方、捲縮数が40個/25mmを超えるか捲縮率が40%を超える場合には、短繊維間の絡合が大きくなりすぎてカードで十分な梳綿をなすことができず、品位の高い繊維構造体が得られなくなるので好ましくない。より好ましい捲縮の範囲としては、捲縮数は5〜30個/25mmの範囲、捲縮率は5〜30%の範囲である。捲縮の形態は機械捲縮であっても立体捲縮であってもよく、用途や目的に応じて適宜選択設定すればよい。
【0016】
本発明の熱接着性複合繊維においては、上記要件に加えて、下記に定義するウェブ面積収縮率が20%以下であることが肝要であり、これによって、該複合繊維を100%あるいは他の繊維と混綿して、高温雰囲気下でも寸法安定性に優れた繊維構造体を得ることができる。この収縮率が20%を超える場合には、高温雰囲気下での寸法安定性に優れた繊維構造体を得ることができない。より好ましいウェブ面積収縮率は10%以下である。
【0017】
<ウェブ面積収縮率>
上記熱融着性繊維100%からなる、面積がA0、目付が30g/m2のカードウェブ不織布を、150℃に維持した熱風乾燥機中に2分間放置し、その後の不織布の面積A1を測定し、下記式より求めた。
ウェブ面積収縮率(%)=(A0−A1)/A0×100
【0018】
本発明のポリエステル系熱接着性複合繊維の製造方法は、前述した非晶性ポリエステルとポリアルキレンテレフタレートとを複合化、好ましくは芯鞘型、偏心芯鞘型、サイドバイサイド型に複合化して溶融吐出し、該吐出糸条を速度1500m/分以下で引き取って未延伸複合繊維となし、次いで、該未延伸複合繊維にポリエーテルポリエステル共重合体を該繊維重量に対して0.03重量%以上付与した後T1〜(T2+30℃)の温度で冷時最大延伸倍率の0.72〜1.25倍に延伸し、さらに捲縮数が3〜40個/25mm、捲縮率が3〜40%となるように捲縮を付与する方法である。ここで、T1は非晶性ポリエステルのガラス転移点とポリアルキレンテレフタレートのガラス転移点のうちいずれか高い方の温度、T2は非晶性ポリエステルのガラス転移点をいう。
【0019】
ここで、引取速度が1500m/分を超える場合には、得られた複合未延伸繊維を上記の条件で延伸しても、ウェブ面収縮率を20%以下とすることができないので好ましくない。
【0020】
本発明に係る上記製造方法における第1のポイントは、上記で引取られた未延伸複合繊維を延伸する前の段階で、該複合繊維表面にポリエーテルポリエステル共重合体を付与することにある。かくすることにより、非晶性ポリエステルのガラス転移点T2(すなわち非晶性共重合ポリエステルの軟化点に相当)以上の高温で延伸しても、該延伸温度がT2+30℃以下の温度であれば、該延伸工程での繊維間膠着を発生させることなく、ウェブ面収縮率が20%以下のポリエステル系複合繊維を得ることができる。しかも、該ポリエーテルポリエステル共重合体が複合繊維表面に付着していても熱接着性はそれほど低下しないため、機械的特性に優れた繊維構造体を得ることができる。
【0021】
このような膠着防止効果と熱接着性維持効果との同時達成は、一般的に短繊維製造用油剤として使用されている、アニオン系界面活性剤またはそのポリオキシアルキレン付加物、カチオン系界面活性剤、ポリエーテルポリエステル共重合体以外のノニオン系界面活性剤、鉱物油等ではできず、また、ポリシロキサン系処理剤でもできない。
【0022】
このようなポリエーテルポリエステル共重合体としては、特にジカルボン酸成分としてテレフタル酸成分とイソフタル酸成分および/またはアルカリ金属塩スルホイソフタル酸成分を40:60〜100:0のモル比で含有し、グリコール成分がエチレングリコールであり、かつ数平均分子量が600〜10000の範囲にあるポリアルキレングリコールを20〜95重量%共重合させたものである必要があり、水系エマルジョン安定性や延伸工程での膠着発生防止効果の点から好ましい。但し、アジピン酸、セバシン酸、アゼライン酸、ドデカン酸、1,4−シクロヘキサンジカルボン酸などの酸成分や、1,3−プロパンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ジエチレングリコール、1,4−シクロヘキサンジオール、1,4−シクロヘキサンジメタノール等のジオール成分が少量共重合されていてもよく、また、分子量を調整するために、ポリアルキレングリコールの片方の末端基が、モノメチルエーテル、モノエチルエーテル、モノフェニルエーテルのようなエーテル結合により封鎖されていても差し支えない。一方、ポリアルキレングリコールとしては、例えば、ポリエチレングリコール、エチレンオキサイド・プロピレンオキサイド共重合体、ポリプロピレングリコール、ポリテトラメチレングリコール等があげられ、中でもポリエチレングリコールが好ましい。
【0023】
ポリエーテルポリエステル共重合体の数平均分子量は3000〜20000の範囲が、より高い膠着防止効果が得られるので好ましい。
【0024】
かかるポリエーテルポリエステル共重合体の未延伸繊維に対する付着量は、該未延伸繊維に対して0.03重量%以上であることが必要であり、0.03重量%未満の場合には、後述する延伸時に十分な膠着防止効果が得られないので好ましくない。
【0025】
上記のポリエーテルポリエステル共重合体を未延伸複合繊維表面に付着させる方法は特に限定されず、任意の方法で付与することができるが、通常水系エマルジョン溶液として付与される。その際、該エマルジョン溶液を安定化させるための乳化剤の他に、制電剤、平滑剤、防錆剤、防黴剤、抗菌剤等の添加剤を含んでいても差し支えなく、
上記製造方法における第2のポイントは、延伸温度である。延伸温度は、T2(非晶性ポリエステルのガラス転移点)以上に設定することはもちろんのことであるが、同時に繊維形成性成分であるポリアルキレンテレフタレートの熱固定をするために、ポリアルキレンテレフタレートのガラス転移点以上の温度に設定すること必要である。予め未延伸複合繊維表面にポリエーテルポリエステル共重合体を付与していても、延伸温度が、非晶性共重合ポリエステルとポリアルキレンテレフタレートのガラス転移点のいずれか一方より下回っている場合には、本発明の目的とする寸法安定性に優れた熱接着性複合繊維は得られない。さらに、延伸温度をT2(非晶性ポリエステルのガラス転移点)+30℃を超える高温にしないことも大切である。もし、延伸温度がT2+30℃を超える場合には、非晶性ポリエステルの膠着が十分防止できず、融着繊維束が発生したり、押込みクリンパーにより捲縮を付与する際のクリンパー安定性が悪化するので好ましくない。
【0026】
延伸温度が上記範囲内にあれば、上記延伸は1段延伸でも、2段以上の延伸でもよいが、全延伸倍率を冷延伸倍率の0.72〜1.25倍とする必要がある。この延伸倍率が、冷延伸倍率の0.72倍未満の場合には繊維構造体とした際の寸法安定性が低下し、一方、冷延伸倍率の1.25倍を超える場合には延伸性が悪化するだけでなく、熱接着性も低下するので好ましくない。ここでいう未延伸繊維の冷延伸倍率とは、紡糸直後から5分以内に採取した未延伸複合繊維を、25℃、相対湿度65%の空気中で、チャック長10cmとして5cm/秒の速度で延伸して、これ以上伸びなくなる時点のチャック長間隔(cm)を初期チャック長(10cm)で除した値として得られるものである。
【0027】
本発明においては、上記延伸を、T1(非晶性共重合ポリエステルのガラス転移点とポリアルキレンテレフタレートのガラス転移点のうちいずれか高い方の温度)〜(T1+10℃)の温度で未延伸複合繊維の冷延伸倍率の0.7〜1.0倍で延伸した後、(T1+10℃)〜(T2(非晶性共重合ポリエステルのガラス転移点)+30℃)の温度で1.03〜1.25倍に延伸することが、より寸法安定性を向上させる上で効果的であり、膠着を防止する点でもより効果的である。
なお、延伸加温媒体としては温水を使用することが特に有効である。
【0028】
延伸された複合繊維は、従来公知の方法により、捲縮数が3〜40個/25mm、捲縮率が3〜40%となる条件で捲縮を付与する。すなわち、例えば捲縮形態が機械捲縮の場合には、例えば押し込み式クリンパーを用い、その押し込み圧や温度の条件を適宜制御すればよい。一方、立体捲縮の場合には、複合繊維の複合構造を選択したり、紡糸時の冷却条件を選択すればよい。
【0029】
このようにして得られる本発明の熱接着性複合繊維は、寸法安定性が良好であり、不織布や硬綿等の繊維構造体用として好適である。なお、かかる熱接着性複合繊維は単独で不織布等の繊維構造体としてもよく、また他の繊維を主体繊維として該熱接着性複合繊維と混綿して不織布等の繊維構造体としてもよい。
【0030】
【実施例】
次に、本発明を実施例により具体的に説明するが、本発明はこれらによって限定されるものではない。なお、実施例における各評価は次の方法で行った。
(a)ガラス転移点(Tg)、融点(Tm)
パーキンエルマー社製の示差走査熱量計DSC−7型を使用し、昇温速度20℃/分で測定した。
(b)固有粘度(〔η〕)
オルトクロロフェノールを溶媒として、温度35℃で測定した。
(c)捲縮数、捲縮率
JIS L 1015 7.12に記載の方法により測定した。
(d)繊度
JIS L 1015 7.5.1 A法に記載の方法により測定した。
(e)繊維長
JIS L 1015 7.4.1 C法に記載の方法により測定した。
(f)油剤付着率
所定繊維重量に対し、繊維から30℃のメタノールによって浴比1:20で10分間抽出した残査の重量を測定し、所定繊維重量で除した値を用いた。
(g)ウェブ面積収縮率および繊維構造体の変形
目付30g/m2、面積A0(25×25cm=625cm2)の熱接着性複合短繊維100%からなるカードウェブを成型し、これを150℃に維持した熱風乾燥機(佐竹化学機械工業株式会社製熱風循環恒温乾燥器:41−S4)中に2分間放置し、熱処理後のカードウェブの面積A 1 から下記式により面積収縮率を求めた。なお、面積収縮率が20%以下であるものを合格とした。
面積収縮率(%)=(625−A1)/625×100
(h)膠着
延伸時に膠着が発生して生産不能もしくはカードウェブ中に膠着結束が確認された場合を不良とし、それ以外を良好とした。
【0031】
[実施例1]
繊維形成性成分として固有粘度0.64、Tg67℃、Tm256℃のPET、熱接着成分として酸成分がモル比でテレフタル酸成分:イソフタル酸成分=60:40、ジオール成分がモル比でエチレングリコール:ジエチレングリコール=95:5の割合で共重合された、固有粘度0.56、Tg64℃の非晶性共重合ポリエステルを用い、各々のペレットを減圧乾燥した後、芯鞘型複合溶融紡糸装置に供給し、体積比50/50の複合比率で、紡糸温度290℃、吐出量650g/分で、紡糸孔数450の紡糸口金から溶融紡出した。該紡出糸条を30℃の冷風で冷却し、紡糸油剤として、酸成分がモル比でテレフタル酸成分:イソフタル酸成分=80/20、グリコール成分がエチレングリコールで、数平均分子量が3000のポリエチレングリコール70重量%を共重合した数平均分子量が10000のポリエーテルポリエステル共重合体のエマルジョンを油剤付着率が0.1重量%となるようにオイリングローラーを用いて付与し、900m/分で引き取って未延伸芯鞘型複合繊維を得た。なお、この未延伸繊維の冷時最大延伸倍率(以下、CDRと表わす)は4.5倍であった。
【0032】
この未延伸繊維を集束し、11万dtex(10万デニール)のトウにして、まず72℃の温水中で3.5倍(CDRの0.78倍)に延伸した後、80℃の温水中で更に1.15倍に延伸し(全延伸倍率4.0倍:CDRの0.89倍)、ラウリルホスフェートカリウム塩からなる紡績用油剤を付与した後、35℃まで自然に冷却された押し込み式クリンパーで捲縮を付与し、繊維長51mmに切断して単糸繊度4.4dtexの熱接着性複合短繊維を得た。このときの捲縮数は10個/25mm、捲縮率は15%であった。
【0033】
[実施例2〜10、比較例1〜6]
熱接着成分、繊維形成性成分、紡糸油剤、延伸倍率、延伸温度を変更した以外は実施例1と同じ条件とし、単糸繊度4.4dtex、繊維長51mm、捲縮数10個/25mm、捲縮率15%の熱接着性複合短繊維を得た。
【0034】
これらの実施例および比較例の繊維構成を表1、紡糸油剤組成を表2、紡糸延伸条件および繊維評価結果を表3に示す。
【0035】
【表1】

Figure 0003778808
【0036】
【表2】
Figure 0003778808
【0037】
【表3】
Figure 0003778808
【0038】
【発明の効果】
本発明の熱接着性複合繊維によれば、比較的低温で繊維構造体に成形できるにもかかわらず、寸法安定性が良好であり、高温雰囲気下で使用しても変形が起こり難く、かつ品位の高い繊維構造体を提供することができる。また、本発明の製造方法によれば、膠着を起こさず上記の熱接着性複合繊維を安定して製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polyester-based heat-adhesive conjugate fiber suitable for bonding a fiber structure such as a nonwoven fabric or stuffed cotton, and a method for producing the same.
[0002]
[Prior art]
Conventionally, as polyester-based heat-adhesive conjugate fibers, amorphous polyester-based polyesters having a crystalline melting point having polyalkylene terephthalate such as polyethylene terephthalate (PET) as a core component and isophthalic acid component or terephthalic acid component as constituent components A fiber having a polymer as a sheath component is widely used because it can be thermally fixed at a relatively low temperature of 120 to 150 ° C. and a fiber structure can be formed without requiring a high-temperature heat treatment.
[0003]
However, in the above-mentioned polyester-based heat-adhesive conjugate fiber, a fiber structure can be molded at a relatively low temperature as described above. However, when the fiber structure is used in a high-temperature atmosphere, the dimensional stability is poor and the deformation is large. There is a problem.
[0004]
The present inventors tried to perform stretching and heat treatment at a high temperature in order to solve such problems and improve the dimensional stability of the heat-adhesive fiber itself, but more than the glass transition point of the amorphous polyester. It has been found that there is a problem in that the fibers are stuck together at this temperature, which makes it difficult to produce the yarn.
[0005]
Under such circumstances, non-crystalline polyesters, in particular, non-crystalline polyesters having a glass transition point of 50 to 100 ° C. and heat-adhesive composite fibers having excellent dimensional stability have been proposed. There is no actual situation.
[0006]
[Problems to be solved by the invention]
The present invention is a polyester-based composite fiber having polyalkylene terephthalate as a fiber-forming component and amorphous polyester having a glass transition point of 50 to 100 ° C. as a heat-bonding component. It is an object of the present invention to provide a polyester-based heat-adhesive conjugate fiber that is less likely to be deformed even when used underneath and can obtain a high-quality fiber structure and a method for producing the same.
[0007]
[Means for Solving the Problems]
According to the study by the present inventors, it has been found that the above-mentioned problems can be achieved by the following polyester-based heat-adhesive conjugate fiber and a production method thereof.
[0008]
That is, according to the present invention, a non-crystalline polyester having a glass transition point of 50 to 100 ° C. and having no crystalline melting point and a polyalkylene terephthalate having a melting point of 220 ° C. or more are combined and melt discharged, and the discharged yarn The strip is taken at a speed of 1500 m / min or less to form an unstretched composite fiber, and then a terephthalic acid component and an isophthalic acid component and / or an alkali metal salt sulfoisophthalic acid component are added to the unstretched composite fiber as a dicarboxylic acid component. A polyether polyester copolymer obtained by copolymerizing 20 to 95% by weight of a polyalkylene glycol which is contained in a molar ratio of ˜100: 0, the glycol component is ethylene glycol, and the number average molecular weight is in the range of 600 to 10,000. the temperature of the T 1 ~ after the application 0.03 wt% or more based on the fiber weight of (T 2 + 30 ℃) And extending to 0.72 to 1.25 times the maximum draw ratio during cold, and further applying crimp so that the number of crimps is 3 to 40 pieces / 25 mm and the crimp rate is 3 to 40%. A method for producing a polyester-based heat-adhesive conjugate fiber is provided.
Here, T 1 is the higher one of the glass transition point of amorphous polyester and the glass transition point of polyalkylene terephthalate, and T 2 is the glass transition point of amorphous polyester.
[0009]
A polyester-based heat-adhesive conjugate fiber produced by the production method according to claim 1, wherein the web-area shrinkage rate defined below is 20% or less, Is provided.
<Web area shrinkage>
Consisting of 100% heat-adhesive composite fibers, area A 0, basis weight of the carded web nonwoven 30 g / m 2, for 2 minutes in a hot air dryer maintained at 0.99 ° C., followed by the area A 1 of the nonwoven fabric Was determined from the following formula.
Web area shrinkage (%) = (A 0 −A 1 ) / A 0 × 100
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The conjugate fiber of the present invention is a polyester-based thermoadhesive conjugate fiber produced by a production method described later, and it is necessary to use a polyalkylene terephthalate having a melting point of 220 ° C. or more as a fiber-forming component. When the melting point of the polyester of the fiber-forming component is less than 220 ° C., not only is it difficult to stably produce the composite fiber, but the stability during the thermal bonding treatment is lowered. As specific examples of polyalkylene terephthalate, PET and polybutylene terephthalate (PBT) are preferable, and they contain a small amount of additives such as a copolymer component, a matting agent, a colorant, and a lubricant as long as the characteristics are not impaired. It may be. Among these, polyethylene terephthalate is more preferable because it is inexpensive and widely used.
[0011]
On the other hand, a polyester having a glass transition point of 50 to 100 ° C. and not having a crystalline melting point is applied as the amorphous polyester serving as the heat bonding component. When the glass transition point is less than 50 ° C., it is not preferable because the fiber is easily stuck by stretching even in the production method described later, and a composite fiber excellent in dimensional stability with an area shrinkage rate of 20% or less cannot be obtained. . On the other hand, when the glass transition point exceeds 100 ° C., it is not preferable because the heat sticking property at a low temperature of 120 to 150 ° C. is deteriorated.
[0012]
Examples of such amorphous polyesters include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 5-sodium sulfoisophthalic acid, adipic acid, sebacic acid, azelaic acid, dodecanoic acid, and 1,4-cyclohexane. An acid component such as dicarboxylic acid, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, diethylene glycol, 1,4-cyclohexanediol, 1, Examples thereof include random or block copolymers of diol components such as 4-cyclohexanedimethanol. Among these, amorphous copolymer polyesters composed of a terephthalic acid component, an isophthalic acid component, an ethylene glycol component, and a diethylene glycol component, which are widely used in the past, are preferable in terms of cost and handling.
[0013]
When using a copolyester comprising the terephthalic acid component, isophthalic acid component, ethylene glycol component and diethylene glycol component as described above as the thermal adhesive component, it is necessary to select the glass transition point to be within the above range. However, the molar ratio of the terephthalic acid component to the isophthalic acid component is suitably in the range of 50:50 to 80:20, while the molar ratio of ethylene glycol to diethylene glycol is arbitrary in the range of 0: 100 to 100: 0. You can choose to.
[0014]
The heat-adhesive conjugate fiber of the present invention has a core-sheath type if the heat-adhesive component occupies all or part of the surface of the single fiber (preferably 40% or more, particularly 60% or more of the fiber surface area), Any composite form such as an eccentric core-sheath type, a side-by-side type, a sea-island type, and a split-fiber type may be used. Of these, a core-sheath type, an eccentric core-sheath type, and a side-by-side type are more preferable.
[0015]
Next, the heat-adhesive conjugate fiber of the present invention needs to have a number of crimps of 3 to 40/25 mm and a crimp rate of 3 to 40%. When the number of crimps is less than 3/25 mm or the crimp rate is less than 3%, the entanglement between short fibers is insufficient, the card passing property is deteriorated, and a high-quality fiber structure cannot be obtained. It is not preferable. On the other hand, when the number of crimps exceeds 40 pieces / 25 mm or the crimp rate exceeds 40%, the entanglement between the short fibers becomes too large to allow sufficient carding to be achieved with the card, and the quality This is not preferable because a fiber structure having a high height cannot be obtained. As a more preferable range of crimps, the number of crimps is in the range of 5-30 pieces / 25 mm, and the crimp rate is in the range of 5-30%. The form of the crimp may be a mechanical crimp or a three-dimensional crimp, and may be appropriately selected and set according to the application and purpose.
[0016]
In addition to the above-mentioned requirements, it is important that the web area shrinkage rate defined below is 20% or less in the heat-adhesive conjugate fiber of the present invention. To obtain a fiber structure having excellent dimensional stability even in a high-temperature atmosphere. When the shrinkage rate exceeds 20%, a fiber structure excellent in dimensional stability under a high temperature atmosphere cannot be obtained. A more preferable web area shrinkage rate is 10% or less.
[0017]
<Web area shrinkage>
A card web nonwoven fabric composed of 100% of the above heat-fusible fiber and having an area of A 0 and a basis weight of 30 g / m 2 is left in a hot air dryer maintained at 150 ° C. for 2 minutes, and then the nonwoven fabric area A 1 Was determined from the following formula.
Web area shrinkage (%) = (A 0 −A 1 ) / A 0 × 100
[0018]
The method for producing a polyester-based heat-adhesive conjugate fiber of the present invention is a method in which the above-described amorphous polyester and polyalkylene terephthalate are compounded, preferably compounded into a core-sheath type, an eccentric core-sheath type, and a side-by-side type, and melt discharged. The discharged yarn was taken at a speed of 1500 m / min or less to form an unstretched composite fiber, and then a polyether polyester copolymer was applied to the unstretched composite fiber by 0.03% by weight or more based on the fiber weight. Thereafter, the film is stretched at a temperature of T 1 to (T 2 + 30 ° C.) to a maximum stretching ratio of 0.72 to 1.25 times in the cold state, 3 to 40 crimps / 25 mm, and a crimp ratio of 3 to 40 It is a method of imparting crimps so as to be%. Here, T 1 is the higher one of the glass transition point of amorphous polyester and the glass transition point of polyalkylene terephthalate, and T 2 is the glass transition point of amorphous polyester.
[0019]
Here, when the take-up speed exceeds 1500 m / min, even if the obtained composite unstretched fiber is stretched under the above conditions, the web surface shrinkage cannot be reduced to 20% or less, which is not preferable.
[0020]
The first point in the production method according to the present invention is to give a polyether polyester copolymer to the surface of the composite fiber at a stage before the undrawn composite fiber taken above is drawn. As a result, even if the amorphous polyester is stretched at a temperature higher than the glass transition point T 2 of the amorphous polyester (that is, equivalent to the softening point of the amorphous copolymer polyester), the stretching temperature is T 2 + 30 ° C. or lower. If there is, a polyester composite fiber having a web surface shrinkage of 20% or less can be obtained without causing interfiber sticking in the stretching step. In addition, even if the polyether polyester copolymer is attached to the surface of the composite fiber, the thermal adhesiveness is not so lowered, so that a fiber structure having excellent mechanical properties can be obtained.
[0021]
The simultaneous achievement of such an anti-sticking effect and a thermal adhesiveness maintaining effect is generally achieved by using an anionic surfactant or its polyoxyalkylene adduct, a cationic surfactant, which is used as an oil for producing short fibers. Further, nonionic surfactants other than polyether polyester copolymers, mineral oils, etc. cannot be used, and polysiloxane processing agents cannot be used.
[0022]
Such a polyether polyester copolymer contains a terephthalic acid component, an isophthalic acid component and / or an alkali metal salt sulfoisophthalic acid component as a dicarboxylic acid component in a molar ratio of 40:60 to 100: 0. The component is ethylene glycol, and it is necessary to copolymerize 20 to 95% by weight of a polyalkylene glycol having a number average molecular weight in the range of 600 to 10000, resulting in aqueous emulsion stability and occurrence of sticking in the stretching process. It is preferable from the point of prevention effect. However, acid components such as adipic acid, sebacic acid, azelaic acid, dodecanoic acid, 1,4-cyclohexanedicarboxylic acid, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1, A small amount of a diol component such as 6-hexanediol, diethylene glycol, 1,4-cyclohexanediol, or 1,4-cyclohexanedimethanol may be copolymerized. In order to adjust the molecular weight, one of the polyalkylene glycols may be copolymerized. The end group may be blocked by an ether bond such as monomethyl ether, monoethyl ether, monophenyl ether. On the other hand, examples of the polyalkylene glycol include polyethylene glycol, ethylene oxide / propylene oxide copolymer, polypropylene glycol, polytetramethylene glycol, and the like, among which polyethylene glycol is preferable.
[0023]
The number average molecular weight of the polyether polyester copolymer is preferably in the range of 3000 to 20000 because a higher anti-sticking effect can be obtained.
[0024]
The amount of the polyether polyester copolymer attached to the unstretched fibers needs to be 0.03% by weight or more with respect to the unstretched fibers. Since a sufficient anti-sticking effect cannot be obtained at the time of stretching, it is not preferable.
[0025]
The method for adhering the polyether polyester copolymer to the surface of the unstretched composite fiber is not particularly limited, and can be applied by any method, but is usually applied as an aqueous emulsion solution. In that case, in addition to the emulsifier for stabilizing the emulsion solution, it may contain additives such as antistatic agent, smoothing agent, rust preventive agent, antifungal agent, antibacterial agent,
The second point in the production method is the stretching temperature. The stretching temperature is of course set to T 2 (the glass transition point of the amorphous polyester) or higher, but at the same time, in order to heat-fix the polyalkylene terephthalate which is a fiber-forming component, the polyalkylene terephthalate is used. It is necessary to set the temperature to be equal to or higher than the glass transition point. Even if the polyether polyester copolymer has been imparted to the unstretched composite fiber surface in advance, when the stretching temperature is lower than one of the glass transition point of the amorphous copolymer polyester and polyalkylene terephthalate, The heat-adhesive conjugate fiber excellent in dimensional stability as the object of the present invention cannot be obtained. It is also important that the stretching temperature is not higher than T 2 (a glass transition point of amorphous polyester) + 30 ° C. If the stretching temperature exceeds T 2 + 30 ° C., the sticking of the amorphous polyester cannot be sufficiently prevented, a fused fiber bundle is generated, or the crimper stability when crimping is imparted by an indentation crimper. Since it deteriorates, it is not preferable.
[0026]
If the stretching temperature is within the above range, the stretching may be one-stage stretching or two-stage stretching, but the total stretching ratio needs to be 0.72 to 1.25 times the cold stretching ratio. When the draw ratio is less than 0.72 times the cold draw ratio, the dimensional stability when the fiber structure is obtained is lowered. On the other hand, when the draw ratio exceeds 1.25 times the cold draw ratio, the drawability is reduced. This is not preferable because it not only deteriorates but also decreases the thermal adhesiveness. The cold drawing ratio of undrawn fiber here refers to undrawn composite fiber collected within 5 minutes immediately after spinning in air at 25 ° C. and relative humidity of 65% at a speed of 5 cm / sec with a chuck length of 10 cm. It is obtained as a value obtained by dividing the chuck length interval (cm) when stretched and no longer stretched by the initial chuck length (10 cm).
[0027]
In the present invention, the above stretching, at a temperature of T 1 ~ (either higher temperature among the glass transition point of the glass transition point and a polyalkylene terephthalate amorphous copolymerizable polyester) (T 1 + 10 ℃) Not After drawing at 0.7 to 1.0 times the cold draw ratio of the drawn composite fiber, the temperature is 1 at a temperature of (T 1 + 10 ° C.) to (T 2 (glass transition point of amorphous copolymer polyester) + 30 ° C.). Stretching by 0.03 to 1.25 times is effective in improving the dimensional stability, and more effective in preventing sticking.
It is particularly effective to use warm water as the stretching and heating medium.
[0028]
The stretched conjugate fiber is crimped under the conditions that the number of crimps is 3 to 40 pieces / 25 mm and the crimp rate is 3 to 40% by a conventionally known method. That is, for example, when the crimped form is a mechanical crimp, for example, an indentation type crimper is used, and the indentation pressure and temperature conditions may be appropriately controlled. On the other hand, in the case of three-dimensional crimping, a composite structure of composite fibers may be selected, or cooling conditions during spinning may be selected.
[0029]
The heat-adhesive conjugate fiber of the present invention thus obtained has good dimensional stability and is suitable for fiber structures such as nonwoven fabrics and hard cotton. Such a heat-adhesive conjugate fiber may be used alone as a fiber structure such as a nonwoven fabric, or may be blended with the heat-adhesive conjugate fiber using other fibers as main fibers to form a fiber structure such as a nonwoven fabric.
[0030]
【Example】
EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these. In addition, each evaluation in an Example was performed with the following method.
(A) Glass transition point (Tg), melting point (Tm)
A differential scanning calorimeter DSC-7 manufactured by Perkin Elmer was used, and the temperature was measured at a heating rate of 20 ° C./min.
(B) Intrinsic viscosity ([η])
Measurement was performed at a temperature of 35 ° C. using orthochlorophenol as a solvent.
(C) Number of crimps and crimp ratio Measured by the method described in JIS L 1015 7.12.
(D) Fineness Measured by the method described in JIS L 1015 7.5.1 Method A.
(E) Fiber length Measured by the method described in JIS L 1015 7.4.1 C method.
(F) Oil agent adhesion rate With respect to the predetermined fiber weight, the weight of the residue extracted from the fiber with methanol at 30 ° C. at a bath ratio of 1:20 for 10 minutes was measured, and the value divided by the predetermined fiber weight was used.
(G) A card web made of 100% heat-adhesive composite staple fibers having a web area shrinkage ratio and a fiber structure deformation basis weight of 30 g / m 2 and an area A 0 (25 × 25 cm = 625 cm 2 ) was molded. It is left for 2 minutes in a hot air dryer (Satake Chemical Machinery Co., Ltd. hot air circulating constant temperature dryer: 41-S4) maintained at ℃, and the area shrinkage is obtained from the area A 1 of the card web after heat treatment by the following formula. It was. In addition, the thing whose area shrinkage rate is 20% or less was set as the pass.
Area shrinkage rate (%) = (625−A 1 ) / 625 × 100
(H) A case in which agglutination occurred at the time of agglutination and production was not possible, or a case where an agglomeration was confirmed in the card web was regarded as defective, and the others were regarded as good.
[0031]
[Example 1]
PET having an intrinsic viscosity of 0.64, Tg of 67 ° C. and Tm of 256 ° C. as a fiber-forming component, and an acid component as a thermal bonding component in a molar ratio of terephthalic acid component: isophthalic acid component = 60: 40, a diol component in a molar ratio of ethylene glycol: Amorphous copolyester having an intrinsic viscosity of 0.56 and a Tg of 64 ° C., copolymerized in a ratio of diethylene glycol = 95: 5, was dried under reduced pressure, and then supplied to a core-sheath type compound melt spinning apparatus. The melt was spun from a spinneret having a spinning hole number of 450 at a spinning ratio of 290 ° C. and a discharge rate of 650 g / min at a volume ratio of 50/50. The spun yarn is cooled with cold air at 30 ° C., and as a spinning oil agent, the acid component is in a molar ratio of terephthalic acid component: isophthalic acid component = 80/20, the glycol component is ethylene glycol, and the number average molecular weight is 3000. An emulsion of a polyether polyester copolymer having a number average molecular weight of 10,000 copolymerized with 70% by weight of glycol was applied using an oiling roller so that the oil agent adhesion rate was 0.1% by weight, and was taken out at 900 m / min. An unstretched core-sheath type composite fiber was obtained. The undrawn fiber had a maximum cold draw ratio (hereinafter referred to as CDR) of 4.5 times.
[0032]
The unstretched fibers are bundled to form a 110,000 dtex (100,000 denier) tow, and then first stretched 3.5 times (0.78 times the CDR) in warm water at 72 ° C., and then warm water at 80 ° C. Further, it was stretched to 1.15 times (total stretch ratio: 4.0 times: 0.89 times the CDR), and after applying a spinning oil comprising lauryl phosphate potassium salt, it was naturally cooled to 35 ° C. Crimping was applied with a crimper, and the fiber length was cut to 51 mm to obtain a heat-adhesive composite staple fiber having a single yarn fineness of 4.4 dtex. The number of crimps at this time was 10 pieces / 25 mm, and the crimp rate was 15%.
[0033]
[Examples 2 to 10, Comparative Examples 1 to 6]
The conditions are the same as in Example 1 except that the thermal adhesive component, fiber-forming component, spinning oil agent, draw ratio, and draw temperature are changed, and the single yarn fineness is 4.4 dtex, the fiber length is 51 mm, the number of crimps is 10/25 mm, the wrinkles A heat-adhesive composite staple fiber having a shrinkage of 15% was obtained.
[0034]
The fiber configurations of these examples and comparative examples are shown in Table 1, the spinning oil composition is shown in Table 2, the spinning drawing conditions and the fiber evaluation results are shown in Table 3.
[0035]
[Table 1]
Figure 0003778808
[0036]
[Table 2]
Figure 0003778808
[0037]
[Table 3]
Figure 0003778808
[0038]
【The invention's effect】
According to the heat-adhesive conjugate fiber of the present invention, although it can be formed into a fiber structure at a relatively low temperature, it has good dimensional stability, hardly deforms even when used in a high-temperature atmosphere, and has a high quality. High fiber structure can be provided. Further, according to the production method of the present invention, the above-mentioned heat-adhesive conjugate fiber can be produced stably without causing sticking.

Claims (7)

ガラス転移点が50〜100℃でかつ結晶融点を持たない非晶性ポリエステルと、融点が220℃以上のポリアルキレンテレフタレートとを複合化して溶融吐出し、該吐出糸条を速度1500m/分以下で引き取って未延伸複合繊維となし、次いで、該未延伸複合繊維にジカルボン酸成分としてテレフタル酸成分とイソフタル酸成分および/またはアルカリ金属塩スルホイソフタル酸成分を40:60〜100:0のモル比で含有し、グリコール成分がエチレングリコールであり、かつ数平均分子量が600〜10000の範囲にあるポリアルキレングリコールを20〜95重量%共重合させたポリエーテルポリエステル共重合体を該繊維重量に対して0.03重量%以上付与した後TA non-crystalline polyester having a glass transition point of 50 to 100 ° C. and having no crystalline melting point and a polyalkylene terephthalate having a melting point of 220 ° C. or more are combined and melt-discharged, and the discharge yarn is fed at a speed of 1500 m / min or less. The unstretched composite fiber is taken to form an unstretched composite fiber, and then the terephthalic acid component and the isophthalic acid component and / or the alkali metal salt sulfoisophthalic acid component as the dicarboxylic acid component in a molar ratio of 40:60 to 100: 0. A polyether polyester copolymer containing 20 to 95% by weight of a polyalkylene glycol which is contained and has a glycol component of ethylene glycol and a number average molecular weight of 600 to 10,000 is 0% of the fiber weight. 0.03% by weight or more after application 11 〜(T~ (T 22 +30℃)の温度で冷時最大延伸倍率の0.72〜1.25倍に延伸し、さらに捲縮数が3〜40個/25mm、捲縮率が3〜40%となるように捲縮を付与することを特徴とするポリエステル系熱接着性複合繊維の製造方法。+ 30 ° C.) at a temperature of 0.72 to 1.25 times the maximum draw ratio when cold, and further crimped so that the number of crimps is 3-40 pieces / 25 mm and the crimp rate is 3-40%. A process for producing a polyester-based heat-adhesive conjugate fiber, characterized in that
ここで、TWhere T 11 は非晶性ポリエステルのガラス転移点とポリアルキレンテレフタレートのガラス転移点のうちいずれか高い方の温度、TIs the higher of the glass transition temperature of amorphous polyester and the glass transition temperature of polyalkylene terephthalate, T 22 は非晶性ポリエステルのガラス転移点をいう。Refers to the glass transition point of amorphous polyester.
延伸が、TStretching is T 11 〜(T~ (T 11 +10℃)の温度で冷時最大延伸倍率の0.70〜1.00倍に延伸し、さらに(T+ 10 ° C.) at a temperature of 0.70 to 1.00 times the maximum draw ratio during cold, and further (T 11 +10℃)〜(T+ 10 ° C) to (T 22 +30℃)の温度で1.03〜1.25倍に延伸する2段延伸である請求項1記載のポリエステル系熱接着性複合繊維の製造方法。The method for producing a polyester-based thermoadhesive conjugate fiber according to claim 1, wherein the polyester-based heat-adhesive conjugate fiber is a two-stage drawing that is drawn by 1.03 to 1.25 times at a temperature of + 30 ° C. 延伸に用いる加熱媒体が温水である請求項1または2記載のポリエステル系熱接着性複合繊維の製造方法。The method for producing a polyester-based thermoadhesive conjugate fiber according to claim 1 or 2, wherein the heating medium used for stretching is warm water. 請求項1記載の製造方法により製造された、ガラス転移点が50〜100℃でかつ結晶融点を持たない非晶性ポリエステルを熱接着成分とし、融点が220℃以上のポリアルキレンテレフタレートを繊維形成性成分とする熱接着性複合繊維であり、該複合繊維の捲縮数が3〜40個/25mm、捲縮率が3〜40%、および、下記に定義するウェブ面積収縮率が20%以下であることを特徴とするポリエステル系熱接着性複合繊維。A non-crystalline polyester having a glass transition point of 50 to 100 ° C. and having no crystalline melting point produced by the production method according to claim 1 is used as a heat-bonding component, and polyalkylene terephthalate having a melting point of 220 ° C. or more is fiber-forming property. It is a heat-adhesive conjugate fiber as a component, and the number of crimps of the conjugate fiber is 3 to 40/25 mm, the crimp rate is 3 to 40%, and the web area shrinkage rate defined below is 20% or less. A polyester-based heat-adhesive conjugate fiber characterized by being.
<ウェブ面積収縮率><Web area shrinkage>
該熱接着性複合繊維100%からなる、面積がAThe area composed of 100% of the heat-adhesive conjugate fiber is A 00 、目付が30g/m, The basis weight is 30g / m 22 のカードウェブ不織布を、150℃に維持した熱風乾燥機中に2分間放置し、その後の不織布の面積AThe card web nonwoven fabric was left in a hot air dryer maintained at 150 ° C. for 2 minutes, and then the nonwoven fabric area A 11 を測定し、下記式より求めた。Was determined from the following formula.
ウェブ面積収縮率(%)=(AWeb area shrinkage (%) = (A 00 −A-A 11 )/A) / A 00 ×100× 100
ポリエステル系熱接着性複合繊維表面に、該繊維重量に対してポリエーテルポリエステル共重合体が0.005重量%以上付着している請求項4記載のポリエステル系熱接着性複合繊維。The polyester-based thermoadhesive conjugate fiber according to claim 4, wherein a polyether polyester copolymer is adhered to the surface of the polyester-based thermoadhesive conjugate fiber in an amount of 0.005% by weight or more based on the weight of the fiber. 熱接着成分が、イソフタル酸成分、テレフタル酸成分、エチレングリコール成分、および、ジエチレングリコール成分から構成される非晶性共重合ポリエステルである請求項4または5に記載のポリエステル系熱接着性複合繊維。The polyester thermoadhesive conjugate fiber according to claim 4 or 5, wherein the thermal adhesive component is an amorphous copolyester composed of an isophthalic acid component, a terephthalic acid component, an ethylene glycol component, and a diethylene glycol component. 繊維形成性成分がポリエチレンテレフタレートである請求項4〜6のいずれかに記載のポリエステル系熱接着性複合繊維。The polyester thermoadhesive conjugate fiber according to any one of claims 4 to 6, wherein the fiber-forming component is polyethylene terephthalate.
JP2001105623A 2001-04-04 2001-04-04 Polyester-based heat-adhesive conjugate fiber and method for producing the same Expired - Fee Related JP3778808B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2001105623A JP3778808B2 (en) 2001-04-04 2001-04-04 Polyester-based heat-adhesive conjugate fiber and method for producing the same
CNB028010647A CN1229530C (en) 2001-04-04 2002-03-20 Polyester based thermally adhesive composite short fiber
KR10-2002-7016303A KR100510156B1 (en) 2001-04-04 2002-03-20 Polyester based thermally adhesive composite short fiber and process for producing the same
US10/312,260 US20030134115A1 (en) 2001-04-04 2002-03-20 Polyester based thermally adhesive composite short fiber
AT02705398T ATE334240T1 (en) 2001-04-04 2002-03-20 POLYESTER-BASED THERMOADHESIVE COMPOSITE SHORT FIBER
CA002421709A CA2421709C (en) 2001-04-04 2002-03-20 Polyester-based heat-bonding conjugate staple fiber and method for producing the same
PCT/JP2002/002694 WO2002081794A1 (en) 2001-04-04 2002-03-20 Polyester based thermally adhesive composite short fiber
DE60213418T DE60213418T2 (en) 2001-04-04 2002-03-20 THERMOADHESIVE POLYESTER BASED BRANCHING FIBER
EP02705398A EP1405937B1 (en) 2001-04-04 2002-03-20 Polyester based thermally adhesive composite short fiber
TW091106723A TW591140B (en) 2001-04-04 2002-04-03 Polyester-based heat-bonding conjugate staple fibers and production method thereof
HK04101755A HK1058952A1 (en) 2001-04-04 2004-03-10 Polyester-based thermally adhesive composite shortfiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001105623A JP3778808B2 (en) 2001-04-04 2001-04-04 Polyester-based heat-adhesive conjugate fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2002302833A JP2002302833A (en) 2002-10-18
JP3778808B2 true JP3778808B2 (en) 2006-05-24

Family

ID=18958280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001105623A Expired - Fee Related JP3778808B2 (en) 2001-04-04 2001-04-04 Polyester-based heat-adhesive conjugate fiber and method for producing the same

Country Status (11)

Country Link
US (1) US20030134115A1 (en)
EP (1) EP1405937B1 (en)
JP (1) JP3778808B2 (en)
KR (1) KR100510156B1 (en)
CN (1) CN1229530C (en)
AT (1) ATE334240T1 (en)
CA (1) CA2421709C (en)
DE (1) DE60213418T2 (en)
HK (1) HK1058952A1 (en)
TW (1) TW591140B (en)
WO (1) WO2002081794A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4027728B2 (en) * 2002-06-21 2007-12-26 帝人ファイバー株式会社 Nonwoven fabric made of polyester staple fibers
JP4537701B2 (en) * 2003-12-26 2010-09-08 日本エステル株式会社 Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP2005254482A (en) * 2004-03-09 2005-09-22 Teijin Fibers Ltd Base material for vehicle interior finish, its production method, and vehicle interior material
JP4881026B2 (en) * 2006-02-06 2012-02-22 帝人ファイバー株式会社 Heat-adhesive conjugate fiber for airlaid nonwoven fabric and method for producing the same
JP4955278B2 (en) * 2006-02-06 2012-06-20 帝人ファイバー株式会社 Polyester fiber for airlaid nonwoven fabric and method for producing the same
MY144282A (en) * 2006-02-06 2011-08-29 Teijin Fibers Ltd Manufacturing method of polyester fiber for airlaid nonwoven fabrics
JP4820211B2 (en) * 2006-05-12 2011-11-24 帝人ファイバー株式会社 Self-extensible thermoadhesive conjugate fiber and method for producing the same
TWI382924B (en) * 2009-11-20 2013-01-21 Univ Feng Chia Pet reinforced composite, manufacturing method thereof and application thereof
JP4945004B2 (en) * 2011-08-22 2012-06-06 帝人ファイバー株式会社 Method for producing polyester fiber for airlaid nonwoven fabric
JP2013133571A (en) * 2011-12-27 2013-07-08 Teijin Ltd Thermally adhesive conjugated fiber having high mechanical crimping performance and method for producing the same
US9505196B2 (en) * 2012-03-28 2016-11-29 Thomas Miller Laminate facing for fiber reinforced materials and composite materials formed therefrom
CN104198523B (en) * 2014-08-29 2017-01-25 东莞市正新包装制品有限公司 Method and device for testing shrink rate through hot air
KR102043372B1 (en) * 2014-09-05 2019-11-11 주식회사 휴비스 Copolymerized Polyester for Low-melting Binder with Excellent Touch and Color and Polyester Binder Fiber Using Same
CN105648654A (en) * 2015-12-29 2016-06-08 江苏苏博特新材料股份有限公司 Polyoxy methylene fiber needle-punched non-woven geotechnical cloth and manufacturing method thereof
WO2018016468A1 (en) 2016-07-19 2018-01-25 東レ株式会社 Copolymer polyester and composite fiber containing same
JP6313841B1 (en) * 2016-12-13 2018-04-18 ユニチカ株式会社 Manufacturing method of semi-finished products for automobile equipment
JP6671690B2 (en) 2017-04-19 2020-03-25 ユニチカ株式会社 Manufacturing method of fiber board
CN110637113A (en) * 2017-04-27 2019-12-31 科思创有限公司 Structured filaments for 3-D printing
WO2020012843A1 (en) * 2018-07-11 2020-01-16 株式会社カネカ Polyester-based fiber and pile fabric cloth using same, and methods respectively for producing these products
CN113166381B (en) * 2018-11-30 2023-05-02 汇维仕股份公司 Polyester resin for adhesive with improved adhesive strength and polyester fiber using the same
JP7448194B2 (en) 2020-03-23 2024-03-12 日本エステル株式会社 Polyester core-sheath composite fiber
TWI803790B (en) * 2020-11-24 2023-06-01 遠東新世紀股份有限公司 Sheath-core type heat-bonding fiber and non-woven fabric
CN112760739B (en) * 2020-12-31 2021-10-29 扬州富威尔复合材料有限公司 Low-melting-point polyester fiber for automotive interior and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN168824B (en) * 1986-10-21 1991-06-15 Du Pont
GB8806419D0 (en) * 1988-03-18 1988-04-20 Du Pont Improvements relating to fibres
JPH073534A (en) * 1993-06-11 1995-01-06 Toyobo Co Ltd Thermally bondable yarn having low shrinkage
JP3190485B2 (en) * 1993-07-15 2001-07-23 帝人株式会社 Binder fiber
JP3879289B2 (en) * 1998-12-15 2007-02-07 東レ株式会社 Method for producing polyester short fiber for cushion material and method for producing cushion material
JP4312867B2 (en) * 1999-02-04 2009-08-12 日本エステル株式会社 Thermal adhesive conjugate fiber, nonwoven fabric using the same, and method for producing the nonwoven fabric
JP2001003256A (en) * 1999-06-22 2001-01-09 Unitika Ltd Filament non-woven fabric and its production
JP3856617B2 (en) * 2000-04-04 2006-12-13 帝人ファイバー株式会社 False twisting polyester fiber

Also Published As

Publication number Publication date
EP1405937A1 (en) 2004-04-07
TW591140B (en) 2004-06-11
DE60213418D1 (en) 2006-09-07
CN1460136A (en) 2003-12-03
KR20030005134A (en) 2003-01-15
EP1405937A4 (en) 2005-11-09
JP2002302833A (en) 2002-10-18
EP1405937B1 (en) 2006-07-26
CA2421709A1 (en) 2003-03-07
DE60213418T2 (en) 2007-02-15
CN1229530C (en) 2005-11-30
ATE334240T1 (en) 2006-08-15
US20030134115A1 (en) 2003-07-17
WO2002081794A1 (en) 2002-10-17
CA2421709C (en) 2009-01-20
HK1058952A1 (en) 2004-06-11
KR100510156B1 (en) 2005-08-25

Similar Documents

Publication Publication Date Title
JP3778808B2 (en) Polyester-based heat-adhesive conjugate fiber and method for producing the same
JP3247176B2 (en) Biodegradable latently crimpable composite filament and nonwoven fabric thereof
JP3692931B2 (en) POLYESTER SHORT FIBER HAVING LATIN CRIMMING CHARACTERISTICS AND PROCESS FOR PRODUCING THE SAME
JP2002227089A (en) Polyester-based binder fiber for wet papermaking and method for producing the same
JP4418869B2 (en) Biodegradable composite short fiber, method for producing the same, and heat-bonding nonwoven fabric using the same
JPH10310965A (en) Polyester short fiber nonwoven fabric
JP4076369B2 (en) Polyester-based heat-bondable hollow composite short fiber and nonwoven fabric
JP2011157647A (en) Wiping cloth
JP4458032B2 (en) Thermal adhesive composite fiber for cushion material and cushion material
JP4628808B2 (en) Low shrinkable thermal adhesive fiber
JP2001115340A (en) Polyester hot-melting type conjugated staple fiber and non-woven fabric therefrom
JP2008045241A (en) Heat-adhesive conjugate fiber and fiber assembly
JPH1150337A (en) Production of hot-melt conjugated fiber
JP2005139569A (en) Heat-adhesive conjugated fiber for air-laid nonwoven fabric
JP2011195978A (en) Heat-bonding composite fiber for producing wet nonwoven fabric, and method of producing the same
JP3360680B2 (en) Polyester thermal bonding fiber and cushioning material
JP3960065B2 (en) Polyester thermal bonding fiber and cushioning material
JP4457839B2 (en) Heat-fusible fiber
JP3945268B2 (en) Polyester thermal bonding fiber and cushioning material
JPH11217731A (en) Thermoadhesive conjugate fiber and its production
JP2001073229A (en) Polyester-based heat bonding conjugate staple fiber and nonwoven fabric
JPH07119011A (en) Polyester-based heat-resistant nonwoven fabric and its production
JPH08294586A (en) Production of polyester-base elastic heat resistant solid cotton
JP2004270044A (en) Heat adhesive fiber
JP2003155628A (en) Polyester-based thermobonding conjugate fiber and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051025

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051222

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees