JP2004270044A - Heat adhesive fiber - Google Patents

Heat adhesive fiber Download PDF

Info

Publication number
JP2004270044A
JP2004270044A JP2003058497A JP2003058497A JP2004270044A JP 2004270044 A JP2004270044 A JP 2004270044A JP 2003058497 A JP2003058497 A JP 2003058497A JP 2003058497 A JP2003058497 A JP 2003058497A JP 2004270044 A JP2004270044 A JP 2004270044A
Authority
JP
Japan
Prior art keywords
fiber
polyester
heat
melting
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003058497A
Other languages
Japanese (ja)
Inventor
Hiroyuki Watanabe
博之 渡邉
Toshishige Ezuka
利繁 江塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP2003058497A priority Critical patent/JP2004270044A/en
Publication of JP2004270044A publication Critical patent/JP2004270044A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat adhesive fiber affording a nonwoven fabric having excellent dimensional stability and softness without deteriorating characteristics of the main part fiber. <P>SOLUTION: The heat adhesive fiber is composed of a crystalline low-melting polyester having 80-140°C crystallization starting temperature and 130-200°C melting point. The heat adhesive fiber is a core-sheath type conjugated fiber comprising the crystalline low-melting polyester having 80-140°C crystallization starting temperature and 130-200°C melting point as a sheath part and a low-melting polyester having ≤200°C melting point or flow starting temperature and ≤50°C difference from the crystalline low-melting point polyester of the sheath part in the melting point or flow starting temperature as a core part. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、通常のポリエステルに比べて低い融点を示すポリエステルからなる熱接着性能を有する繊維であって、不織布等としたときに繊維の全成分が溶融し、柔軟性及び寸法安定性に優れた不織布を得るのに好適な熱接着性繊維に関するものである。
【0002】
【従来の技術】
合成繊維、特にポリエステル繊維は、その優れた寸法安定性、耐候性、機械的特性、耐久性、さらにはリサイクル性等から、衣料、産業資材として不可欠のものとなっており、様々な分野において、ポリエステル繊維が多く使用されている。
特に、ルーフィング資材、自動車用内装材、カーペットの基布等に用いる不織布、枕やマットレス等の寝装用品の詰物、キルティング用の中入れ綿等の繊維構造体においては、構成繊維(主体繊維という)相互間を接着する目的で、熱接着性繊維が広く普及している。
【0003】
これらの繊維構造体の主体繊維としては、比較的安価で、優れた物性を有するポリエステル繊維が最も多く使用されており、これを接着する熱接着性繊維もポリエステル系のものが好ましく、種々のポリエステル系熱接着性繊維及びそれを用いて接着したポリエステル繊維構造物が提案されている。
【0004】
従来のポリエステル繊維からなる繊維構造体を熱接着するために用いられる熱接着性繊維は、一般的に、芯成分にポリエチレンテレフタレート(PET)、鞘成分にイソフタル酸を共重合した低融点ポリマーを配した芯鞘型複合短繊維が用いられている(特許文献1参照)。
【0005】
しかしながら、前記のようなイソフタル酸を共重合した低融点ポリマーは、非晶性で明確な融点を示さず、ガラス転移点以上となれば軟化が始まるものである。このため、繊維の製造時に熱処理を施すことが困難であり、不織布等にした後の加熱接着処理をする際に収縮が発生する。したがって、得られる不織布等の製品の寸法安定性が悪くなったり、また、高温雰囲気下で使用すると接着強力が低下したり変形が発生するという問題があった。
【0006】
このような問題点を解決するものとして、鞘成分に結晶性を有する共重合低融点ポリマーを配し、芯成分に融点220℃以上のポリアルキレンテレフタレートを配した芯鞘型複合短繊維が提案されている(例えば、特許文献2、3参照)。
【0007】
しかしながら、このような結晶性を有する共重合低融点ポリマーを配した芯鞘型複合繊維を用いても、得られる繊維構造体は高温雰囲気下に対する耐熱性は改善されるが、その芯部にはホモポリエステルが用いられた芯鞘複合構造となっているため、主体繊維と混綿し、熱接着性繊維の鞘部の融点よりも高い温度で熱処理し、接着加工を行って繊維構造体となした後も芯部が溶融せず、残存することとなる。したがって、不織布を得る際には、主体繊維と熱接着性繊維の芯部とが網目構造を形成し、形態安定性には優れるが、主体繊維の動きが制約され、柔軟性に劣る不織布となっていた。
【0008】
【特許文献1】
特許第3313878号公報
【特許文献2】
特開平11−217731号公報
【特許文献3】
特開平11−12349号公報
【0009】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決し、主体繊維の特徴を損なうことなく、寸法安定性及び柔軟性に優れた不織布を得ることができる熱接着性繊維を提供しようとするものである。
【0010】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するために鋭意検討の結果、本発明に到達した。
すなわち、本発明は以下の(1)、(2)を要旨とするものである。
(1)結晶開始温度80〜140℃、融点130〜200℃である結晶性低融点ポリエス テルからなることを特徴とする熱接着性繊維。
(2)結晶開始温度80〜140℃、融点130〜200℃である結晶性低融点ポリエステルを鞘部に、融点または流動開始温度が200℃以下であり、かつ鞘部の結晶性低融点ポリエステルとの融点または流動開始温度の差が50℃以下である低融点ポリエステルを芯部とした芯鞘型複合繊維であることを特徴とする熱接着性繊維。
【0011】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の熱接着性繊維は、結晶開始温度が80〜140℃、好ましくは85〜120℃、融点が130〜200℃、好ましくは150〜185℃である結晶性低融点ポリエステルを少なくとも鞘部に用いた、全融タイプのバインダー繊維である。
【0012】
結晶開始温度(Tc)が80℃未満では、好適な結晶性を得ることが困難となる。一方、140℃を超えると、融点(Tm)が200℃を超えることとなり好ましくない。
融点(Tm)が130℃未満であると、たとえ繊維化しても、高温雰囲気下で使用した場合の耐熱性を得ることができない。一方、200℃を超えると、熱接着加工温度を高くする必要があり、加工性、経済性が劣るばかりか、主体繊維の熱変化を招き、風合い等の主体繊維の特徴を損ねるため好ましくない。
【0013】
また、結晶性低融点ポリエステルはガラス転移点(Tg)が20〜80℃であることが好ましく、さらに好ましくは30〜70℃である。Tgが20℃未満であると、溶融紡糸時に単糸間の密着が発生し、製糸性が悪くなりやすく、一方、Tgが80℃を超えると、製糸工程において高温で延伸することが必要となり、延伸による塑性変形と同時に部分的な結晶化が始まり、糸切れが発生するなど延伸性が低下しやすくなる。
【0014】
本発明の熱接着性繊維は、上記のような結晶性低融点ポリエステルのみからなるものとしてもよいが、結晶性低融点ポリエステルを鞘成分に用いた芯鞘複合繊維としてもよい。
芯鞘複合繊維とする場合は、芯部を構成するポリエステル成分も融点または流動開始温度が200℃以下である低融点ポリエステル成分とし、鞘部の結晶性低融点ポリエステルとの融点または流動開始温度の差を50℃以下とする。
【0015】
芯部を構成する低融点ポリエステル成分は、融点または流動開始温度が200℃以下であり、さらに好ましくは180℃以下である。つまり、芯部を構成するポリエステル成分は結晶性のものでも非晶性のものでもよく、結晶性のものの場合は融点を、非晶性のものの場合は流動開始温度を200℃以下とする。これらの温度が200℃を超えると、熱接着加工温度を高くする必要があり、加工性、経済性が劣るばかりか、主体繊維の熱変化を招き、風合い等の主体繊維の特徴を損ねるため好ましくない。
【0016】
低融点ポリエステルの融点または流動開始温度の下限は、繊維製造過程で問題が生ぜず、繊維特性が得られる範囲であれば特に限定しないが、得られた不織布の熱安定性を考慮すると概ね80℃以上が好ましく、より好ましくは130℃以上である。
【0017】
さらに、鞘部を構成する結晶性低融点ポリエステルとの融点または流動開始温度の差が50℃以下であることが必要であり、さらに好ましくは30℃以下とする。鞘部と芯部のどちらが高融点であっても構わない。
融点または流動開始温度の差が50℃を超えると、芯部または鞘部のいずれかの融点または流動開始温度の高い側の温度よりも高い温度で熱接着処理をすることが必要となり、融点または流動開始温度の低い側が溶融した後も高温下に曝されることになり、経済的に好ましくないばかりか、熱処理により、融点または流動開始温度の低い側の重合体の分解が起こりやすくなり好ましくない。
【0018】
なお、融点とは、結晶性を有する熱可塑性樹脂のDSC測定における結晶融解温度を意味し、流動開始温度とは、結晶性を有しない熱可塑性樹脂のフローテスト時の流動し始める温度を意味する。
そして、本発明においては、融点は示差走査型熱量計(パーキンエルマー社製DSC7)を用い、昇温速度20℃/分で測定するものである。
一方、流動開始温度は、フロテスター(島津製作所CFT−500型)を用い、荷重10MPa、ノズル径0.5mmの条件で、初期温度50℃より10℃/分の割合で昇温していき、ポリマーがダイから流出し始める温度を求めるものである。
【0019】
また、結晶開始温度(Tc)とガラス転移点(Tg)は、融点と同様に示差走査型熱量計(パーキンエルマー社製DSC7)を用い、昇温速度20℃/分で測定するものである。
【0020】
本発明の熱接着性繊維においては、繊維の全体もしくは少なくとも鞘成分に結晶性の低融点ポリエステルを用いる必要がある。一般に低融点ポリエステルは結晶性に乏しいが、結晶性に乏しいポリエステルや非結晶性のポリエステルを用いると、繊維の製造工程で熱処理を施すことが出来ないため、不織布等の加工に適した低熱収縮率の繊維を得るのが困難である。本発明においては、このように繊維の全体もしくは少なくとも鞘成分に結晶性の低融点ポリエステルを用い、繊維の製造過程で熱処理を施すことを可能としたので、繊維の熱収縮率(乾熱収縮率)を低減することが可能となった。
【0021】
つまり、本発明の熱接着性繊維においては、概ね乾熱収縮率を30%以下のものとすることができる。
【0022】
次に、本発明の熱接着性繊維を構成する結晶性低融点ポリエステル成分としては、テレフタル酸成分、エチレングリコール成分を含有し、1,4−ブタンジオール成分、脂肪族ラクトン成分及びアジピン酸成分の少なくとも一成分を含有する共重合ポリエステルであることが好ましい。
【0023】
まず、脂肪族ラクトン成分を含有する場合、その共重合量は全酸成分に対して20モル%以下とすることが好ましく、10〜20モル%とするのがより好ましい。脂肪族ラクトン成分の割合が少ないと結晶性はよくなるが、Tmが高くなり、200℃以下とすることが困難になることがある。一方、20モル%より多いと結晶性が低下し、Tgが低くなりやすく、紡糸時に単糸密着が発生して製糸性が悪くなり、好ましくない。
【0024】
脂肪族ラクトン成分としては、炭素数4〜11のラクトンが好ましく、特に好ましいラクトンとしては、ε−カプロラクトン(ε−CL)が挙げられる。
【0025】
次に、1,4−ブタンジオール成分を共重合する場合、全グリコール成分に対して40〜60モル%となるようにすることが好ましい。共重合量が40モル%未満であったり、60モル%を超えると、Tm、Tcが上がる傾向となり、本発明で規定する範囲外のものとなりやすい。
【0026】
アジピン酸成分を共重合する場合、その共重合量は全酸成分に対して、20モル%以下とすることが好ましく、10〜20モル%とするのがより好ましい。アジピン酸成分の共重合量が10モル%未満であると、結晶性はよくなるが、Tmが高くなり、200℃以下とすることが困難になることがある。一方、20モル%より多いと結晶性が低下し、Tgが低くなりやすく、紡糸時に単糸密着が発生して製糸性が悪くなり、好ましくない。
【0027】
本発明の複合繊維の芯成分を構成する低融点ポリエステル成分としては、上記したように、融点または流動開始温度が200℃以下であり、鞘成分との融点または流動開始温度の差が50℃以下のものであれば、結晶性、非晶性のいずれのものでもよいが、中でも、製糸性やコストの点からイソフタル酸を共重合したポリエチレンテレフタレートを用いることが好ましい。
イソフタル酸共重合PETは一般に非晶性であり、イソフタル酸の共重合量は20〜40モル%とすることが好ましい。
【0028】
なお、これらの芯、鞘成分の低融点ポリエステルには、発明の効果を妨げない範囲であれば、酸化チタンなどの顔料、ヒンダードフェノール系化合物などの抗酸化剤その他各種添加剤を含有していてもよい。また、その特性を損なわない範囲で、イソフタル酸、フタル酸、セバシン酸、ジエチレングリコール、トリエチレングリコール等の共重合成分を少量含有していてもよい。
【0029】
本発明の熱接着性繊維を複合繊維とする場合、構成する芯部と鞘部の比率は特に限定しないが、体積比(芯/鞘)として30/70〜70/30の範囲が好ましく、さらに好ましくは40/60〜60/40である。
また、本発明の熱接着性繊維の断面形状は特に規定するものではなく、丸断面のみならず、多角形や多葉断面形状のもの等が挙げられる。
【0030】
さらに、本発明の熱接着性繊維の繊度や繊維長は特に限定されるものではなく、マルチフィラメント、モノフィラメント、長繊維、短繊維のいずれであってもよく、用途、加工方法等、目的に応じて適宜選択すればよい。繊維の製造の容易さからは短繊維とすることが好ましく、繊度は2〜20dtex、繊維長は25〜76mmとすることが好ましい。
【0031】
次に、本発明の熱接着性繊維の製造方法について、芯鞘複合繊維であって、短繊維形状のものを得る場合の製造例を用いて説明する。
上記したような芯成分及び鞘成分用低融点ポリエステルを常用の複合紡糸装置を用いて複合繊維を溶融紡糸する。紡出された糸条を冷却固化した後、紡糸油剤を付与し、集束して糸条束とし、延伸した後に定張又は緊張熱処理を施す。このとき、延伸工程で配向結晶させた後、鞘成分(熱接着成分)の低融点ポリエステルの結晶融点より低い温度、例えば110〜140℃のヒートドラムを用い、緊張率1.00〜1.03倍の定張又は緊張熱処理を行うことが好ましい。続いて仕上げ油剤を付与し、捲縮を施すことなく、カットして短繊維とする。
【0032】
本発明の熱接着性繊維は不織布を得るのに好適なものであり、主体繊維のバインダー繊維として用いると、寸法安定性及び柔軟性に優れた不織布を得ることができる。そして、主体繊維は、用途等に応じてポリマー種類、繊度、強伸度等適宜選択すればよい。
そして、本発明の熱接着性繊維を用いて不織布を製造する際には、上記のようにして得た短繊維状の熱接着性繊維と主体繊維(短繊維状)とを質量比で10/90〜50/50に混合することが好ましい。熱接着性繊維の割合が10質量%に満たない場合、熱接着性繊維と主体繊維との接着点が少ないため、充分な強力が得られにくい。一方、50質量%を超えると、接着点が多くなるため、繊維構造体の風合いが硬くなりやすい。
【0033】
【作用】
本発明の熱接着性繊維は、結晶開始温度、融点を特定の範囲とした結晶性低融点ポリエステルを少なくとも鞘部に用いている全融タイプのバインダー繊維であるため、主体繊維と混綿して不織布とする際にはバインダー繊維が良好に溶融、接着し、柔軟性に優れたものとすることができる。すなわち、結晶性低融点ポリエステルを少なくとも鞘部に配しているため、製造工程において熱処理を施すことができ、低熱収縮率の繊維とすることができ、不織布等にする際の熱処理工程で収縮することなく柔軟性に優れた不織布とすることができる。また、不織布等にする際、その融点よりも高い温度で熱処理すると、バインダー繊維全体が水滴状に溶融し、主体繊維の繊維同士が重なる交点部分に溶融したポリマーが移動し、その位置で繊維間を接着させるので、溶融した接着成分が主体繊維の動きを制約することがなく、柔軟性に優れた不織布を得ることができる。
【0034】
【実施例】
次に、本発明を実施例によって具体的に説明する。なお、実施例における各特性値の測定方法及び評価方法は次の通りである。
(1)Tc及びTm
前記の方法で測定した。
(2)流動開始温度
前記の方法で測定した。
(3)極限粘度
フェノールと四塩化エタンとの等重量混合物を溶媒として、温度20℃で測定した。
(4)繊度
JIS L−1015−7−5−1Aの方法により測定した。
(5)繊維長
JIS L−1015−7−4−1Cの方法により測定した。
(6)操業性
紡糸、延伸の状況で下記の2段階で評価した。
○:紡糸時の切れ糸回数が3回/日・錘以下であり、繊維の密着がなく、かつ、延伸時にローラ巻き付きの発生がない場合
×:紡糸時の切れ糸回数が3回/日・錘を超えるか、繊維の密着が発生するか、または延伸時にローラ巻き付きの発生があった場合
(7)不織布の風合い
得られた不織布を15cm×15cmの正方形に切断し、パネラーによる手触りにより、風合いのソフト性を下記の2段階で官能評価した。
○:良好
×:不良
(8)乾熱収縮率
JIS L−1015−7−15の方法に従い、熱処理温度を120℃として測定した。
【0035】
実施例1
1,4−ブタンジオールを50mol%共重合した極限粘度0.78、Tc98℃、Tm181℃、Tg48℃の結晶性低融点ポリエチレンテレフタレートを用い、紡糸温度270℃、吐出量410g/分、紡糸速度1050m/分の条件で、孔数225個の丸型断面の紡糸ノズルで紡出し、未延伸糸を得た。
得られた未延伸糸を集束し、12ktexの糸条束にした後、延伸倍率3.4倍、延伸温度50℃で延伸し、110℃のヒートドラムで緊張率1.01倍の緊張熱処理を施し、仕上げ油剤を0.12質量%付与後、押し込み式クリンパーで捲縮を施し、切断して単糸繊度5.5dtex、繊維長51mmの接着性繊維を得た。
この熱接着性繊維30質量%と、繊度6.6dtex、繊維長51mm、強度3.9cN/dtex、伸度60%のPETからなる中空ポリエステル繊維70質量%を混合し、カード機にかけウェブとした後、連続熱処理機にて180℃、1分の熱処理をおこない、目付100g/m のポリエステル系短繊維不織布を得た。
【0036】
比較例1
イソフタル酸を33.0モル%共重合した極限粘度0.68、Tm135℃、Tg69℃の低融点ポリエチレンテレフタレート(流動開始温度135℃)を用いた以外は実施例1と同様にして熱接着性繊維を得た。そして、ウェブの熱処理温度を変更した以外は、実施例1と同様にして短繊維不織布を得た。
【0037】
実施例2
イソフタル酸を33.0モル%共重合した極限粘度0.68の低融点ポリエチレンテレフタレート(流動開始温度135℃)を芯成分に、ε−CLを15mol%、1,4−ブタンジオールを60mol%共重合した極限粘度0.78、Tc94℃、Tm158℃の結晶性低融点ポリエチレンテレフタレートを鞘成分に用いた。両ポリエステルを複合体積比(芯/鞘)50/50とし、紡糸温度270℃、吐出量410g/分、紡糸速度1050m/分の条件で、孔数225個の丸型断面の複合紡糸ノズルで紡出し、未延伸糸を得た。
得られた未延伸糸を集束し、12ktexの糸条束にした後、延伸倍率3.4倍、延伸温度50℃で延伸し、110℃のヒートドラムで緊張率1.01倍の緊張熱処理を施し、仕上げ油剤を0.12質量%付与後、押し込み式クリンパーで捲縮を施し、切断して単糸繊度5.5dtex、繊維長51mmの芯鞘型熱接着性複合繊維を得た。
この熱接着性複合繊維30質量%と、繊度6.6dtex、繊維長51mm、強度3.9cN/dtex、伸度60%のPETからなる中空ポリエステル繊維70質量%を混合し、カード機にかけウェブとした後、連続熱処理機にて180℃、1分の熱処理をおこない、目付100g/m のポリエステル系短繊維不織布を得た。
【0038】
実施例3〜7、比較例2〜5
芯及び鞘部の低融点ポリエステルの成分を表1に記載のように種々変更した以外は実施例1と同様にして熱接着性複合繊維を得た。そして、ウェブの熱処理温度を変更した以外は、実施例1と同様にして短繊維不織布を得た。
【0039】
実施例1〜7、比較例1〜5で得られた熱接着性繊維と短繊維不織布の評価結果を表1、2に示す。
【0040】
【表1】

Figure 2004270044
【0041】
【表2】
Figure 2004270044
【0042】
表1、2から明らかなように、実施例1〜7の熱接着性繊維及びそれから得られた短繊維不織布は、本発明の要件を満たすものであり、操業性よく得ることができ、優れた柔軟性、機械的性能、熱安定性(耐熱性)を有していた。
一方、比較例1の熱接着性繊維は、低融点ポリエステルに結晶性がないため、延伸時に熱処理出来ず、繊維の乾熱収縮率が高く、得られた短繊維不織布は地合の悪い物であり柔軟性に乏しいものであった。比較例2の熱接着性複合繊維は、芯成分に用いた低融点ポリエステルの流動開始温度が高かったため、芯部が溶融せず、得られた不織布の柔軟性が不十分であった。比較例3の熱接着性芯鞘複合繊維は、鞘部に用いた結晶性低融点ポリエステルのε−カプロラクトン共重合量が多かったため、Tc、Tgが低く、熱接着性芯鞘複合繊維の紡糸時に単繊維同士の密着が生じ、また、得られた短繊維不織布は地合の悪い物であり柔軟性に乏しいものであった。比較例4の熱接着性複合繊維は、芯成分と鞘成分の融点の差が大きすぎたため、鞘成分が溶融する温度では芯成分が熱劣化し、着色が発生した。比較例5の熱接着性複合繊維は、鞘部に用いた結晶性低融点ポリエステルの1,4−ブタンジオールの共重合量が少なかったため、Tm、Tc、Tgともに高くなり、熱接着処理時に鞘成分が溶融しなかったため、主体繊維が接着されず、不織布を得ることができなかった。
【0043】
【発明の効果】
本発明の熱接着性繊維は、少なくとも鞘部に特定の結晶開始温度及び融点を有する結晶性低融点ポリエステルを用いているので、低熱収縮率のバインダー繊維とすることができ、かつ、操業性よく得ることが可能であり、不織布にしたときには、主体繊維の特徴を損なうことなく、寸法安定性及び柔軟性に優れた不織布を得ることが可能となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is a fiber having a heat bonding property composed of a polyester having a lower melting point than ordinary polyester, and all components of the fiber are melted when formed into a non-woven fabric or the like, and have excellent flexibility and dimensional stability. The present invention relates to a thermoadhesive fiber suitable for obtaining a nonwoven fabric.
[0002]
[Prior art]
Synthetic fibers, especially polyester fibers, have become indispensable as clothing and industrial materials because of their excellent dimensional stability, weather resistance, mechanical properties, durability, and recyclability, and in various fields, Polyester fibers are often used.
In particular, in fiber structures such as roofing materials, interior materials for automobiles, nonwoven fabrics used as a base fabric of carpets, filling of bedding products such as pillows and mattresses, and cotton wool for quilting, constituent fibers (called main fibers) ) For the purpose of adhering each other, heat-adhesive fibers are widely used.
[0003]
As the main fibers of these fiber structures, polyester fibers having relatively low cost and excellent physical properties are most often used, and the heat-bondable fibers for bonding the polyester fibers are also preferably polyester-based fibers, and various polyesters are used. A heat-bondable system fiber and a polyester fiber structure bonded using the same have been proposed.
[0004]
Conventionally, a heat-bonding fiber used for heat-bonding a fiber structure made of a polyester fiber generally comprises a low-melting polymer obtained by copolymerizing polyethylene terephthalate (PET) for a core component and isophthalic acid for a sheath component. A core-sheath type composite short fiber is used (see Patent Document 1).
[0005]
However, the low-melting-point polymer obtained by copolymerizing isophthalic acid as described above is amorphous and does not show a clear melting point, and softens when the temperature exceeds the glass transition point. For this reason, it is difficult to perform a heat treatment during the production of the fiber, and shrinkage occurs during the heat bonding treatment after forming the nonwoven fabric. Therefore, there has been a problem that the dimensional stability of the obtained product such as a nonwoven fabric is deteriorated, and that when used in a high-temperature atmosphere, the adhesive strength is reduced or deformation occurs.
[0006]
As a solution to such a problem, a core-sheath type composite staple fiber in which a copolymerized low-melting polymer having crystallinity is disposed in a sheath component and a polyalkylene terephthalate having a melting point of 220 ° C. or more is disposed in a core component has been proposed. (For example, see Patent Documents 2 and 3).
[0007]
However, even if a core-sheath conjugate fiber having such a copolymerized low-melting polymer having crystallinity is used, the resulting fiber structure has improved heat resistance under a high-temperature atmosphere. Since it has a core-sheath composite structure using homopolyester, it is mixed with the main fiber, heat-treated at a temperature higher than the melting point of the sheath of the heat-adhesive fiber, and bonded to form a fiber structure. After that, the core portion does not melt and remains. Therefore, when obtaining a nonwoven fabric, the main fiber and the core of the heat-adhesive fiber form a network structure, and although excellent in form stability, the movement of the main fiber is restricted and the nonwoven fabric becomes inferior in flexibility. I was
[0008]
[Patent Document 1]
Japanese Patent No. 3313878 [Patent Document 2]
Japanese Patent Application Laid-Open No. H11-217731 [Patent Document 3]
JP-A-11-12349
[Problems to be solved by the invention]
An object of the present invention is to solve the above problems and to provide a heat-adhesive fiber capable of obtaining a nonwoven fabric excellent in dimensional stability and flexibility without impairing the characteristics of the main fiber.
[0010]
[Means for Solving the Problems]
Means for Solving the Problems The present inventors have made intensive studies in order to solve the above-mentioned problems, and as a result, have reached the present invention.
That is, the present invention provides the following (1) and (2).
(1) A heat-adhesive fiber comprising a crystalline low-melting polyester having a crystallization onset temperature of 80 to 140 ° C and a melting point of 130 to 200 ° C.
(2) a crystalline low-melting polyester having a crystallization onset temperature of 80 to 140 ° C. and a melting point of 130 to 200 ° C. in a sheath, and a melting point or a flow onset temperature of 200 ° C. or less and a crystalline low melting point polyester in a sheath. A heat-adhesive fiber, which is a core-sheath conjugate fiber having a core of a low-melting polyester whose melting point or flow start temperature is 50 ° C. or less.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The heat-adhesive fiber of the present invention has a crystalline low melting point polyester having a crystallization onset temperature of 80 to 140 ° C, preferably 85 to 120 ° C, and a melting point of 130 to 200 ° C, preferably 150 to 185 ° C, at least in a sheath portion. This is a fully fused type binder fiber used.
[0012]
When the crystallization start temperature (Tc) is less than 80 ° C., it is difficult to obtain suitable crystallinity. On the other hand, when the temperature exceeds 140 ° C., the melting point (Tm) exceeds 200 ° C., which is not preferable.
If the melting point (Tm) is less than 130 ° C., even if the fibers are formed, heat resistance when used in a high-temperature atmosphere cannot be obtained. On the other hand, if the temperature exceeds 200 ° C., it is necessary to increase the heat bonding temperature, which is not preferable because not only the workability and the economic efficiency are deteriorated, but also the thermal change of the main fiber is caused, and the characteristics of the main fiber such as texture are impaired.
[0013]
The crystalline low-melting polyester preferably has a glass transition point (Tg) of 20 to 80 ° C, more preferably 30 to 70 ° C. If the Tg is less than 20 ° C., adhesion between single yarns occurs during melt spinning, and the spinning property tends to be deteriorated. On the other hand, if the Tg exceeds 80 ° C., it is necessary to stretch at a high temperature in the spinning process, Partial crystallization starts at the same time as the plastic deformation due to the stretching, and the stretchability is liable to be reduced, for example, yarn breakage occurs.
[0014]
The heat-bondable fiber of the present invention may be composed of only the crystalline low-melting polyester as described above, or may be a core-sheath conjugate fiber using the crystalline low-melting polyester as a sheath component.
When the core-sheath composite fiber is used, the polyester component constituting the core is also a low-melting-point polyester component having a melting point or a flow start temperature of 200 ° C. or lower, and the melting point or the flow-start temperature of the crystalline low-melting polyester of the sheath part. The difference is 50 ° C. or less.
[0015]
The low melting point polyester component constituting the core has a melting point or a flow start temperature of 200 ° C. or lower, more preferably 180 ° C. or lower. That is, the polyester component constituting the core may be either crystalline or amorphous. The crystalline component has a melting point, and the amorphous component has a flow starting temperature of 200 ° C. or lower. When these temperatures exceed 200 ° C., it is necessary to increase the heat bonding processing temperature, which is not only poor in workability and economical efficiency but also causes a thermal change of the main fiber and impairs the characteristics of the main fiber such as texture, which is preferable. Absent.
[0016]
The lower limit of the melting point or the flow start temperature of the low-melting polyester is not particularly limited as long as it does not cause a problem in the fiber production process and the fiber properties can be obtained. However, considering the thermal stability of the obtained nonwoven fabric, it is generally about 80 ° C. Or more, more preferably 130 ° C. or more.
[0017]
Further, it is necessary that the difference between the melting point and the flow start temperature of the crystalline low-melting polyester constituting the sheath portion is 50 ° C or less, and more preferably 30 ° C or less. Either the sheath or the core may have a high melting point.
If the difference between the melting point and the flow start temperature exceeds 50 ° C., it is necessary to perform the thermal bonding treatment at a temperature higher than the melting point of either the core or the sheath or the temperature on the higher flow start temperature. The lower side of the flow start temperature will be exposed to a high temperature even after being melted, which is not economically preferable, and is not preferable because the heat treatment causes the polymer of the melting point or the lower flow start temperature to easily decompose. .
[0018]
The melting point refers to a crystal melting temperature in DSC measurement of a thermoplastic resin having crystallinity, and the flow start temperature refers to a temperature at which a thermoplastic resin having no crystallinity starts flowing during a flow test. .
In the present invention, the melting point is measured at a heating rate of 20 ° C./min using a differential scanning calorimeter (DSC7 manufactured by PerkinElmer).
On the other hand, the flow start temperature is increased from the initial temperature of 50 ° C. at a rate of 10 ° C./min under the conditions of a load of 10 MPa and a nozzle diameter of 0.5 mm using a flotte tester (CFT-500, Shimadzu Corporation). Determine the temperature at which the polymer begins to flow out of the die.
[0019]
In addition, the crystal onset temperature (Tc) and the glass transition point (Tg) are measured at a heating rate of 20 ° C./min using a differential scanning calorimeter (DSC7 manufactured by Perkin Elmer) in the same manner as the melting point.
[0020]
In the heat-adhesive fiber of the present invention, it is necessary to use a crystalline low-melting polyester for the entire fiber or at least for the sheath component. In general, low-melting polyesters have poor crystallinity, but if low-crystalline or non-crystalline polyesters are used, they cannot be subjected to heat treatment in the fiber manufacturing process. Is difficult to obtain. In the present invention, since a crystalline low-melting polyester is used for the whole or at least the sheath component of the fiber and heat treatment can be performed in the process of producing the fiber, the heat shrinkage of the fiber (dry heat shrinkage) ) Can be reduced.
[0021]
In other words, the heat-bondable fiber of the present invention can have a dry heat shrinkage of about 30% or less.
[0022]
Next, the crystalline low-melting polyester component constituting the heat-adhesive fiber of the present invention includes a terephthalic acid component, an ethylene glycol component, and a 1,4-butanediol component, an aliphatic lactone component and an adipic acid component. It is preferably a copolymerized polyester containing at least one component.
[0023]
First, when an aliphatic lactone component is contained, its copolymerization amount is preferably 20 mol% or less, more preferably 10 to 20 mol%, based on the total acid component. When the proportion of the aliphatic lactone component is small, the crystallinity is improved, but Tm is increased, and it may be difficult to reduce the temperature to 200 ° C. or lower. On the other hand, if it is more than 20 mol%, the crystallinity is lowered, the Tg is apt to be lowered, and the single yarn adheres to the fiber during spinning, and the spinning property is deteriorated.
[0024]
As the aliphatic lactone component, a lactone having 4 to 11 carbon atoms is preferable, and a particularly preferable lactone is ε-caprolactone (ε-CL).
[0025]
Next, when the 1,4-butanediol component is copolymerized, it is preferable that the content be 40 to 60 mol% based on all glycol components. If the copolymerization amount is less than 40 mol% or exceeds 60 mol%, Tm and Tc tend to increase, and tend to fall outside the range specified in the present invention.
[0026]
When the adipic acid component is copolymerized, the copolymerization amount is preferably 20 mol% or less, more preferably 10 to 20 mol%, based on the total acid component. When the copolymerization amount of the adipic acid component is less than 10 mol%, the crystallinity is improved, but Tm is increased, and it may be difficult to reduce the temperature to 200 ° C. or lower. On the other hand, if it is more than 20 mol%, the crystallinity is lowered, the Tg is apt to be lowered, and the single yarn adheres to the fiber during spinning, and the spinning property is deteriorated.
[0027]
As described above, the low-melting polyester component constituting the core component of the conjugate fiber of the present invention has a melting point or a flow start temperature of 200 ° C. or less, and a difference between the melting point or the flow start temperature of the sheath component and 50 ° C. or less. Any of crystalline and non-crystalline materials may be used as long as the polyethylene terephthalate is obtained by copolymerizing isophthalic acid from the viewpoints of spinnability and cost.
The isophthalic acid copolymerized PET is generally amorphous, and the copolymerization amount of isophthalic acid is preferably 20 to 40 mol%.
[0028]
The low-melting-point polyester of the core and sheath components contains a pigment such as titanium oxide, an antioxidant such as a hindered phenol compound, and other various additives as long as the effects of the invention are not impaired. You may. Further, a small amount of a copolymer component such as isophthalic acid, phthalic acid, sebacic acid, diethylene glycol, and triethylene glycol may be contained as long as the properties are not impaired.
[0029]
When the heat-adhesive fiber of the present invention is a conjugate fiber, the ratio between the core and the sheath constituting the composite fiber is not particularly limited, but the volume ratio (core / sheath) is preferably in the range of 30/70 to 70/30. Preferably it is 40 / 60-60 / 40.
The cross-sectional shape of the heat-adhesive fiber of the present invention is not particularly limited, and includes not only a round cross-section but also a polygonal or multi-lobed cross-section.
[0030]
Further, the fineness and fiber length of the heat-adhesive fiber of the present invention are not particularly limited, and may be any of multifilaments, monofilaments, long fibers, and short fibers. May be selected appropriately. It is preferable to use short fibers from the viewpoint of easy production of the fibers, and it is preferable that the fineness is 2 to 20 dtex and the fiber length is 25 to 76 mm.
[0031]
Next, the method for producing the heat-adhesive fiber of the present invention will be described with reference to a production example in which a core-sheath conjugate fiber having a short fiber shape is obtained.
The above-mentioned low-melting polyester for the core component and the sheath component is melt-spun using a conventional composite spinning apparatus. After the spun yarn is cooled and solidified, a spinning oil agent is applied, bundled into a bundle of yarns, and stretched and then subjected to constant tension or tension heat treatment. At this time, after the oriented crystal is formed in the stretching step, a tension of 1.00 to 1.03 is applied by using a heat drum at a temperature lower than the crystal melting point of the low melting point polyester of the sheath component (heat bonding component), for example, 110 to 140 ° C. It is preferable to perform double constant tension or tension heat treatment. Subsequently, a finishing oil is applied and cut into short fibers without crimping.
[0032]
The heat-adhesive fiber of the present invention is suitable for obtaining a nonwoven fabric, and when used as a binder fiber of a main fiber, a nonwoven fabric having excellent dimensional stability and flexibility can be obtained. The main fiber may be appropriately selected depending on the application and the like, such as the type of polymer, fineness, and high elongation.
When a nonwoven fabric is manufactured using the heat-adhesive fiber of the present invention, the short-fiber heat-adhesive fiber obtained as described above and the main fiber (short-fiber) are mixed in a mass ratio of 10/10. It is preferable to mix 90 to 50/50. When the proportion of the heat-adhesive fiber is less than 10% by mass, it is difficult to obtain sufficient strength because the number of adhesion points between the heat-adhesive fiber and the main fiber is small. On the other hand, if it exceeds 50% by mass, the number of adhesion points increases, and the texture of the fibrous structure tends to be hard.
[0033]
[Action]
The heat-adhesive fiber of the present invention is a fully-melt type binder fiber using a crystalline low-melting polyester having a crystallization start temperature and a melting point in a specific range at least in a sheath portion. In this case, the binder fibers can be melted and adhered satisfactorily and have excellent flexibility. That is, since the crystalline low-melting-point polyester is disposed at least in the sheath, it can be subjected to heat treatment in the manufacturing process, can be made into a fiber having a low heat shrinkage, and shrinks in the heat treatment process when forming a nonwoven fabric or the like. A non-woven fabric having excellent flexibility can be obtained without the need. When a non-woven fabric or the like is heat-treated at a temperature higher than its melting point, the entire binder fiber melts in a water-drop shape, and the polymer that has melted moves to the intersection where the main fiber fibers overlap with each other. Are bonded, so that the melted adhesive component does not restrict the movement of the main fiber, and a nonwoven fabric excellent in flexibility can be obtained.
[0034]
【Example】
Next, the present invention will be described specifically with reference to examples. The measuring method and evaluation method of each characteristic value in the examples are as follows.
(1) Tc and Tm
It was measured by the method described above.
(2) Flow start temperature Measured by the method described above.
(3) Intrinsic viscosity Measurement was carried out at a temperature of 20 ° C. using an equal weight mixture of phenol and ethane tetrachloride as a solvent.
(4) Fineness Measured according to the method of JIS L-1015-7-5-1A.
(5) Fiber length Measured according to the method of JIS L-1015-7-4-1C.
(6) Operability The following two stages were evaluated in the spinning and drawing conditions.
:: The number of cut yarns at the time of spinning is 3 times / day / weight or less, there is no adhesion of the fiber, and there is no occurrence of winding of the roller at the time of stretching. ×: The number of cut yarns at the time of spinning is 3 times / day · When the weight exceeds the weight, when the fibers adhere to each other, or when a roll is wrapped during stretching (7) The texture of the nonwoven fabric The obtained nonwoven fabric is cut into a square of 15 cm x 15 cm, and the texture is obtained by touching by a panelist. Was softly evaluated in the following two stages.
:: good ×: bad (8) Dry heat shrinkage Measured at a heat treatment temperature of 120 ° C. according to the method of JIS L-1015-7-15.
[0035]
Example 1
Using a crystalline low melting point polyethylene terephthalate having an intrinsic viscosity of 0.78, Tc of 98 ° C., Tm of 181 ° C., and Tg of 48 ° C. obtained by copolymerizing 1,4-butanediol at 50 mol%, a spinning temperature of 270 ° C., a discharge rate of 410 g / min, and a spinning speed of 1050 m At a rate of / min, spinning was performed with a spinning nozzle having a round cross section having 225 holes to obtain an undrawn yarn.
The obtained undrawn yarn is bundled to form a 12 ktex yarn bundle, and then drawn at a draw ratio of 3.4 times at a drawing temperature of 50 ° C., and subjected to a tension heat treatment at a tension rate of 1.01 times with a 110 ° C. heat drum. After applying 0.12% by mass of the finishing oil, the product was crimped by a press-type crimper and cut to obtain an adhesive fiber having a single yarn fineness of 5.5 dtex and a fiber length of 51 mm.
30% by mass of this heat-adhesive fiber was mixed with 70% by mass of a hollow polyester fiber made of PET having a fineness of 6.6 dtex, a fiber length of 51 mm, a strength of 3.9 cN / dtex and an elongation of 60%, and the mixture was applied to a card machine to form a web. Thereafter, heat treatment was performed at 180 ° C. for 1 minute with a continuous heat treatment machine to obtain a polyester short fiber nonwoven fabric having a basis weight of 100 g / m 2 .
[0036]
Comparative Example 1
Thermal adhesive fiber in the same manner as in Example 1 except that a low melting point polyethylene terephthalate having an intrinsic viscosity of 0.68, Tm of 135 ° C. and Tg of 69 ° C. (flow starting temperature of 135 ° C.) obtained by copolymerizing 33.0 mol% of isophthalic acid was used. Got. Then, a short fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the heat treatment temperature of the web was changed.
[0037]
Example 2
A low melting point polyethylene terephthalate having an intrinsic viscosity of 0.68 obtained by copolymerizing isophthalic acid of 33.0 mol% (flow initiation temperature: 135 ° C.) was used as a core component, and 15 mol% of ε-CL and 60 mol% of 1,4-butanediol were used. Polymerized crystalline low melting point polyethylene terephthalate having an intrinsic viscosity of 0.78, Tc of 94 ° C. and Tm of 158 ° C. was used as a sheath component. Both polyesters are mixed at a composite volume ratio (core / sheath) of 50/50, spinning at a spinning temperature of 270 ° C., a discharge rate of 410 g / min, and a spinning speed of 1050 m / min with a composite spinning nozzle having a round cross section having 225 holes. And an undrawn yarn was obtained.
The obtained undrawn yarn is bundled to form a 12 ktex yarn bundle, and then drawn at a draw ratio of 3.4 times at a drawing temperature of 50 ° C., and subjected to a tension heat treatment at a tension rate of 1.01 times with a 110 ° C. heat drum. After applying 0.12% by mass of the finishing oil, crimping was performed with a push-in crimper and cut to obtain a core-sheath type heat-adhesive conjugate fiber having a single yarn fineness of 5.5 dtex and a fiber length of 51 mm.
30% by mass of this heat-adhesive conjugate fiber and 70% by mass of a hollow polyester fiber made of PET having a fineness of 6.6 dtex, a fiber length of 51 mm, a strength of 3.9 cN / dtex and an elongation of 60% are mixed, and the mixture is put on a card machine to form a web. After that, heat treatment was performed at 180 ° C. for 1 minute with a continuous heat treatment machine to obtain a polyester-based short fiber nonwoven fabric having a basis weight of 100 g / m 2 .
[0038]
Examples 3 to 7, Comparative Examples 2 to 5
A heat-adhesive conjugate fiber was obtained in the same manner as in Example 1, except that the components of the low-melting point polyester in the core and the sheath were changed as shown in Table 1. Then, a short fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the heat treatment temperature of the web was changed.
[0039]
Tables 1 and 2 show the evaluation results of the heat-bondable fibers and the short-fiber nonwoven fabric obtained in Examples 1 to 7 and Comparative Examples 1 to 5.
[0040]
[Table 1]
Figure 2004270044
[0041]
[Table 2]
Figure 2004270044
[0042]
As is clear from Tables 1 and 2, the heat-adhesive fibers of Examples 1 to 7 and the short-fiber nonwoven fabric obtained therefrom satisfy the requirements of the present invention, can be obtained with good operability, and have excellent properties. It had flexibility, mechanical performance, and thermal stability (heat resistance).
On the other hand, the heat-adhesive fiber of Comparative Example 1 cannot be heat-treated at the time of stretching because the low-melting polyester has no crystallinity, the dry heat shrinkage of the fiber is high, and the obtained short-fiber nonwoven fabric has poor formation. There was little flexibility. In the heat-adhesive conjugate fiber of Comparative Example 2, since the low-melting-point polyester used as the core component had a high flow starting temperature, the core did not melt, and the obtained nonwoven fabric had insufficient flexibility. The heat-adhesive core-sheath conjugate fiber of Comparative Example 3 had a low Tc and Tg because the amount of copolymerized ε-caprolactone of the crystalline low-melting polyester used in the sheath portion was large, and the heat-adhesive core-sheath conjugate fiber was spun. Adhesion between the single fibers occurred, and the obtained short-fiber nonwoven fabric was poor in formation and poor in flexibility. In the heat-adhesive conjugate fiber of Comparative Example 4, since the difference between the melting points of the core component and the sheath component was too large, the core component was thermally degraded at a temperature at which the sheath component melted, and coloring occurred. In the heat-adhesive conjugate fiber of Comparative Example 5, since the copolymerization amount of 1,4-butanediol of the crystalline low-melting polyester used in the sheath portion was small, both Tm, Tc, and Tg were high, and the sheath during the heat-bonding treatment was increased. Since the components did not melt, the main fibers were not bonded, and a nonwoven fabric could not be obtained.
[0043]
【The invention's effect】
Since the heat-adhesive fiber of the present invention uses a crystalline low-melting-point polyester having a specific crystallization onset temperature and a melting point at least in a sheath portion, it can be a binder fiber having a low heat shrinkage rate, and has good operability. It is possible to obtain a nonwoven fabric having excellent dimensional stability and flexibility without impairing the characteristics of the main fiber when the nonwoven fabric is used.

Claims (4)

結晶開始温度80〜140℃、融点130〜200℃である結晶性低融点ポリエステルからなることを特徴とする熱接着性繊維。A heat-adhesive fiber comprising a crystalline low-melting polyester having a crystallization start temperature of 80 to 140 ° C and a melting point of 130 to 200 ° C. 結晶開始温度80〜140℃、融点130〜200℃である結晶性低融点ポリエステルを鞘部に、融点または流動開始温度が200℃以下であり、かつ鞘部の結晶性低融点ポリエステルとの融点または流動開始温度の差が50℃以下である低融点ポリエステルを芯部とした芯鞘型複合繊維であることを特徴とする熱接着性繊維。A crystalline low-melting polyester having a crystallization onset temperature of 80 to 140 ° C. and a melting point of 130 to 200 ° C. in a sheath portion, and a melting point or a flow start temperature of 200 ° C. or less, and a melting point of the crystalline low melting point polyester in a sheath portion or A heat-adhesive fiber, which is a core-sheath type composite fiber having a core made of a low-melting polyester having a flow start temperature difference of 50 ° C. or less. 結晶性低融点ポリエステルが、テレフタル酸成分、エチレングリコール成分を含有し、1,4−ブタンジオール成分、脂肪族ラクトン成分及びアジピン酸成分の少なくとも一成分を含有する共重合ポリエステルである請求項1又は2記載の熱接着性繊維。The crystalline low-melting-point polyester is a copolymerized polyester containing a terephthalic acid component, an ethylene glycol component, and at least one component of a 1,4-butanediol component, an aliphatic lactone component and an adipic acid component. 2. The heat-bondable fiber according to 2. 芯部を構成する低融点ポリエステル成分が、イソフタル酸を共重合したポリエチレンテレフタレートである請求項2又は3記載の熱接着性繊維。4. The heat-adhesive fiber according to claim 2, wherein the low-melting polyester component constituting the core is polyethylene terephthalate obtained by copolymerizing isophthalic acid.
JP2003058497A 2003-03-05 2003-03-05 Heat adhesive fiber Pending JP2004270044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003058497A JP2004270044A (en) 2003-03-05 2003-03-05 Heat adhesive fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003058497A JP2004270044A (en) 2003-03-05 2003-03-05 Heat adhesive fiber

Publications (1)

Publication Number Publication Date
JP2004270044A true JP2004270044A (en) 2004-09-30

Family

ID=33121595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003058497A Pending JP2004270044A (en) 2003-03-05 2003-03-05 Heat adhesive fiber

Country Status (1)

Country Link
JP (1) JP2004270044A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207084A (en) * 2005-01-31 2006-08-10 Nippon Ester Co Ltd Low shrinkable heat-bonding fiber
JP2009167579A (en) * 2008-01-21 2009-07-30 Nippon Ester Co Ltd Polyester conjugated filament nonwoven fabric
CN113322527A (en) * 2021-05-25 2021-08-31 常州欣战江特种纤维有限公司 Preparation method of low-melting-point sheath-core fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207084A (en) * 2005-01-31 2006-08-10 Nippon Ester Co Ltd Low shrinkable heat-bonding fiber
JP4628808B2 (en) * 2005-01-31 2011-02-09 日本エステル株式会社 Low shrinkable thermal adhesive fiber
JP2009167579A (en) * 2008-01-21 2009-07-30 Nippon Ester Co Ltd Polyester conjugated filament nonwoven fabric
CN113322527A (en) * 2021-05-25 2021-08-31 常州欣战江特种纤维有限公司 Preparation method of low-melting-point sheath-core fiber

Similar Documents

Publication Publication Date Title
TWI467069B (en) Thermoadhesive conjugate fiber and production method thereof,and fiber assembly
JPH09268490A (en) Polyester-based heat-resistant wet type nonwoven fabric and its production
JP2004270044A (en) Heat adhesive fiber
JP2004107860A (en) Thermally adhesive sheath core type conjugated short fiber and non-woven fabric of the same
JP4076369B2 (en) Polyester-based heat-bondable hollow composite short fiber and nonwoven fabric
JP2003286640A (en) Short fiber nonwoven fabric
JPH10310965A (en) Polyester short fiber nonwoven fabric
JP4628808B2 (en) Low shrinkable thermal adhesive fiber
JP5893475B2 (en) Latently crimpable polyester composite short fiber and nonwoven fabric thereof
JPH0130926B2 (en)
JP6537431B2 (en) Core-sheath composite binder fiber
JPH07119011A (en) Polyester-based heat-resistant nonwoven fabric and its production
JP2009102796A (en) Nonwoven fabric formed of polylactic acid based composite staple fiber, and method for producing the same
JP2000226735A (en) Heat bonding conjugate fiber and nonwoven fabric using the same and production of the same nonwoven fabric
JP5654194B2 (en) Circular knitted fabric and textile products using the same
JPH03185116A (en) Polyester conjugate fiber
JPH11217731A (en) Thermoadhesive conjugate fiber and its production
JPH0754216A (en) Latent-crimpable polyester composite fiber and non-woven fabric
JPH11158734A (en) Antimicrobial, thermally bondable conjugate yarn and antimicrobial yarn structure
JP2008214771A (en) Method for producing low-shrinkage heat-bonding conjugated fiber
JPH11241261A (en) Polyesterfiber structure having shape-memory ability
JP3759236B2 (en) Spinned yarn containing latently crimped fibers
JP2006118067A (en) Method for producing thermoadhesive conjugate fiber
JP2022143330A (en) Composite fiber with latent crimping ability and nonwoven fabric made from the same
JP6066628B2 (en) Polyester hollow composite binder fiber