JPH09268490A - Polyester-based heat-resistant wet type nonwoven fabric and its production - Google Patents

Polyester-based heat-resistant wet type nonwoven fabric and its production

Info

Publication number
JPH09268490A
JPH09268490A JP8097645A JP9764596A JPH09268490A JP H09268490 A JPH09268490 A JP H09268490A JP 8097645 A JP8097645 A JP 8097645A JP 9764596 A JP9764596 A JP 9764596A JP H09268490 A JPH09268490 A JP H09268490A
Authority
JP
Japan
Prior art keywords
polyester
sheath
heat treatment
nonwoven fabric
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8097645A
Other languages
Japanese (ja)
Inventor
Kazunori Miyamoto
一徳 宮元
Junji Ikeda
純二 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP8097645A priority Critical patent/JPH09268490A/en
Publication of JPH09268490A publication Critical patent/JPH09268490A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Paper (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a polyester-based heat-resistant wet type nonwoven fabric excellent in both heat resistance and paper making processability, low in shrinkage percentage after boiling water treatment, capable of maintaining tenacity after being thrown into boiling water. SOLUTION: This nonwoven fabric comprises 90-10wt.% of a polyester fiber and 10-90wt.% of a polyester-based core-sheath conjugate binder fiber consisting of a core part composed of a polyalkylene terephthalate having >=220 deg.C melting point and a sheath part composed of an aromatic polyester and an aliphatic polylactone, having 20-80 deg.C glass transition temperature, 90-130 deg.C crystal starting temperature and 130-180 deg.C melting point and has <=10% shrinkage percentage in boiling water and >=50% tenacity retention after boiling water treatment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高温雰囲気下で使
用したときも強力を保持している湿式不織布に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wet non-woven fabric which retains its strength even when used in a high temperature atmosphere.

【0002】[0002]

【従来の技術】近年、自動車用内装材、フィルター材、
ティーバック外包材等に用いる湿式不織布の繊維構造物
において、構成繊維(以下、主体繊維という。)相互間
を接着する目的で、従来より使用されているポリビニル
アルコール、変成アクリル酸ポリマー等のバインダーに
代わって、ホットメルト型バインダー繊維が広く使用さ
れるようになっている。主体繊維としては、比較的安価
で優れた物性を有するポリエステル繊維が最も多く使用
されており、これを接着するバインダー繊維もポリエス
テル系のものが多く使用されている。
2. Description of the Related Art Recently, automobile interior materials, filter materials,
In a fibrous structure of a wet non-woven fabric used as an outer packaging material for tea bags, it is used as a binder such as polyvinyl alcohol and modified acrylic acid polymer, which have been conventionally used for the purpose of adhering constituent fibers (hereinafter referred to as main fibers) to each other. Instead, hot melt binder fibers have become widely used. As the main fiber, the polyester fiber having a relatively low cost and excellent physical properties is most often used, and the binder fiber for adhering this is also often the polyester fiber.

【0003】これらのバインダー繊維は、製造時の操業
性や不織布の接着強力のみを重要視したものであり、湿
潤時の強力、湿潤時の収縮、風合い等については何ら研
究されていない。
These binder fibers place importance only on the operability at the time of production and the adhesive strength of the non-woven fabric, and have not been studied on the strength at the time of wetting, the contraction at the time of wetting, the texture and the like.

【0004】例えば、芯部がポリエチレンテレフタレー
ト(以下、PETという。)、鞘部がイソフタル酸成分
を共重合した低融点の非晶性ポリエステルとする芯鞘型
複合バインダー繊維からなる不織布では、繊維製造時の
問題が少なく、また、比較的低温の熱処理で不織布を成
形できるが、高温雰囲気下になるほど不織布強力が弱く
なり、耐熱性を有していないという問題点が指摘されて
いる。つまり、結晶性の低い共重合ポリエステルを鞘成
分としたバインダー繊維からなる不織布では、耐熱性が
十分でなく、これを改良するために結晶性共重合ポリエ
ステルを鞘成分としたバインダー繊維の研究がなされて
きた。しかし、この結晶性共重合ポリエステルは結晶化
速度が大きいために溶融紡糸時の細化中に結晶化が進行
し糸切れが生じるという問題や、前記重合体の結晶化度
が本願の目的を達成するほど十分に高くないため十分な
耐熱性を有しない。また、芯部がPET、鞘部のイソフ
タル酸成分の共重合量を特定量とし融点を高くして耐熱
性を有するバインダー繊維としたものも用いられている
が、湿潤時の強力低下が激しく、収縮率が大きいため実
用に即していない。
For example, in the case of a non-woven fabric comprising a core-sheath type composite binder fiber whose core part is polyethylene terephthalate (hereinafter referred to as PET) and whose sheath part is a low melting point amorphous polyester copolymerized with an isophthalic acid component, fiber production It has been pointed out that there are few problems with time and that a nonwoven fabric can be formed by a heat treatment at a relatively low temperature, but the strength of the nonwoven fabric becomes weaker in a high temperature atmosphere, and the nonwoven fabric does not have heat resistance. In other words, the heat resistance is not sufficient in the non-woven fabric composed of the binder fiber containing the copolyester having a low crystallinity as the sheath component, and in order to improve this, the research of the binder fiber containing the crystalline copolyester as the sheath component is conducted. Came. However, since this crystalline copolyester has a high crystallization rate, the problem that the crystallization progresses during the thinning during melt spinning to cause yarn breakage, and the crystallinity of the polymer achieves the object of the present application. It does not have sufficient heat resistance because it is not sufficiently high. Further, there is also used a binder fiber having heat resistance by increasing the melting point with a specific amount of the copolymerization of the isophthalic acid component of the core of PET and the sheath part, but the strength is significantly reduced when wet, It is not suitable for practical use due to its high shrinkage ratio.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記のよう
なバインダー繊維からなる不織布の問題点を解消し、耐
熱性、製糸性共に優れ、沸水中での収縮率が低く、沸水
中へ投入後であっても強力を保持できるポリエステル系
耐熱湿式不織布を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention solves the above problems of a nonwoven fabric composed of binder fibers, has excellent heat resistance and spinnability, has a low shrinkage ratio in boiling water, and is put into boiling water. It is intended to provide a polyester heat-resistant wet non-woven fabric that can retain its strength even afterwards.

【0006】[0006]

【課題を解決するための手段】本発明者らは、このよう
な新規なポリエステル系バインダー繊維を開発すべく鋭
意検討を重ねた結果、本発明に到達した。
The present inventors have arrived at the present invention as a result of intensive studies to develop such a novel polyester binder fiber.

【0007】すなわち、本発明は、ポリエステル繊維9
0〜10重量%と、芯部が融点220℃以上のポリアル
キレンテレフタレートで、鞘部がガラス転移温度20〜
80℃、結晶開始温度90〜130℃、融点130〜1
80℃である芳香族ポリエステルと脂肪族ポリラクトン
とからなるブロツク共重合ポリエステルであるポリエス
テル系芯鞘複合バインダー繊維10〜90重量%とから
なり、沸水収縮率が10%以下、沸水処理後の強力保持
率が50%以上であることを特徴とするポリエステル系
耐熱湿式不織布を要旨とするものである。
That is, the present invention relates to polyester fiber 9
0 to 10% by weight, the core portion is polyalkylene terephthalate having a melting point of 220 ° C. or higher, and the sheath portion has a glass transition temperature of 20 to
80 ° C, crystallization start temperature 90-130 ° C, melting point 130-1
Consisting of 10 to 90% by weight of polyester core-sheath composite binder fiber, which is a block copolymerized polyester composed of aromatic polyester and aliphatic polylactone at 80 ° C., and has a boiling water shrinkage rate of 10% or less and a strong retention after boiling water treatment. The gist of the present invention is a polyester heat-resistant wet non-woven fabric, characterized in that the rate is 50% or more.

【0008】ポリエステル繊維90〜10重量%と、芯
部が融点220℃以上のポリアルキレンテレフタレート
で、鞘部がガラス転移温度20〜80℃、結晶開始温度
90〜130℃、融点130〜180℃である芳香族ポ
リエステルと脂肪族ポリラクトンとからなるブロツク共
重合ポリエステルであるポリエステル系芯鞘複合バイン
ダー繊維10〜90重量%を混合し、抄紙機にて抄紙と
した後、〔バインダー繊維の鞘部を構成する共重合ポリ
エステルの融点〜(融点+30)〕℃の温度で融着熱処
理を行って不織布を成形し、次いで〔前記共重合ポリエ
ステルの結晶開始温度〜(融点−20)〕℃の温度で2
分間以上耐熱化熱処理を行うことを特徴とする請求ポリ
エステル系耐熱湿式不織布の製造方法を要旨とするもの
である。
90% to 10% by weight of polyester fiber, polyalkylene terephthalate having a core having a melting point of 220 ° C. or higher, a sheath having a glass transition temperature of 20 ° to 80 ° C., a crystal initiation temperature of 90 ° to 130 ° C., and a melting point of 130 ° to 180 ° C. After mixing 10 to 90% by weight of polyester-sheath composite binder fiber, which is a block copolymerized polyester composed of an aromatic polyester and an aliphatic polylactone, and making a paper with a paper machine, [the sheath of the binder fiber is constituted The melting point of the copolyester to (melting point + 30)] ° C. is used to form a nonwoven fabric by fusion heat treatment, and then the crystallization initiation temperature of the copolyester is up to (melting point−20) ° C.
The gist is a method for producing a claimed polyester heat-resistant wet non-woven fabric, which is characterized in that heat treatment for heat resistance is carried out for not less than a minute.

【0009】以下、本発明を詳細に説明する。ポリエス
テル系芯鞘複合バインダー繊維の芯部は、融点220℃
以上のポリアルキレンテレフタレートである。ポリアル
キレンテレフタレートとしては、ポリエチレンテレフタ
レート(以下、PETと略記する。)、ポリブチレンテ
レフタレート(以下、PBTと略記する。)等が好まし
く、これらの単独重合体、もしくは、本発明の目的を損
なわない範囲であれば、イソフタル酸、フタル酸、アジ
ピン酸、セバシン酸、1,4−ブタンジオール、ジエチレ
ングリコール、トリエチレングリコール等を10モル%
程度共重合させた共重合体でも良く、また艶消し剤や、
滑剤等の添加剤を添加してもよい。
Hereinafter, the present invention will be described in detail. The core of the polyester-sheath composite binder fiber has a melting point of 220 ° C.
It is the above polyalkylene terephthalate. As the polyalkylene terephthalate, polyethylene terephthalate (hereinafter abbreviated as PET), polybutylene terephthalate (hereinafter abbreviated as PBT), and the like are preferable, and a homopolymer thereof or a range not impairing the object of the present invention. If so, 10 mol% of isophthalic acid, phthalic acid, adipic acid, sebacic acid, 1,4-butanediol, diethylene glycol, triethylene glycol, etc.
It may be a copolymer copolymerized to some extent, a matting agent,
You may add additives, such as a lubricant.

【0010】ポリエステル系芯鞘複合バインダー繊維の
芯部の融点は220℃以上とすることが必要であり、好
ましくは230℃以上とする。220℃未満であると、
不織布成形の際、融着熱処理の安定性も悪くなり、また
熱処理により芯部が熱劣化して強度が低下するため好ま
しくない。
The melting point of the core of the polyester-sheath composite binder fiber must be 220 ° C. or higher, preferably 230 ° C. or higher. When it is less than 220 ° C,
When forming a nonwoven fabric, the stability of the heat treatment for fusion is also deteriorated, and the heat treatment causes the core to be thermally deteriorated to lower the strength, which is not preferable.

【0011】ポリエステル系芯鞘複合バインダー繊維の
鞘部は、ガラス転移温度20〜80℃の範囲、結晶開始
温度90〜130℃、融点130〜180℃である芳香
族ポリエステルと脂肪酸ポリラクトンとからなるブロツ
ク共重合ポリエステルである。
The sheath portion of the polyester-core-sheath composite binder fiber is a block composed of an aromatic polyester having a glass transition temperature of 20 to 80 ° C., a crystal initiation temperature of 90 to 130 ° C. and a melting point of 130 to 180 ° C. and a fatty acid polylactone. It is a copolyester.

【0012】芳香族ポリエステルとしては、PETやP
BT等が好ましく、これらの単独重合体、もしくは、本
発明の目的を損なわない範囲であれば、20モル%以下
の範囲でイソフタル酸、フタル酸、アジピン酸、セバシ
ン酸、ジエチレングリコール、トリエチレングリコール
等を共重合させた共重合体でもよい。20モル%を超え
ると共重合体の融点が下がり本発明の目的から外れるこ
とになるので好ましくない。
As the aromatic polyester, PET or P
BT and the like are preferable, and as long as they are homopolymers, or within a range that does not impair the object of the present invention, isophthalic acid, phthalic acid, adipic acid, sebacic acid, diethylene glycol, triethylene glycol, etc. can be added in a range of 20 mol% or less. It may be a copolymer obtained by copolymerizing. When it exceeds 20 mol%, the melting point of the copolymer is lowered and it is out of the object of the present invention, which is not preferable.

【0013】脂肪族ポリラクトンとしては、炭素数4〜
11のラクトンの単独重合体または、二種以上の共重合
体が好ましく、特に、好適なポリラクトンとして、ポリ
ε−カプロラクトンが挙げられる。
The aliphatic polylactone has 4 to 4 carbon atoms.
Homopolymers of 11 lactones or copolymers of two or more kinds are preferable, and particularly preferable polylactones include poly ε-caprolactone.

【0014】芳香族ポリエステルにブロツク共重合する
脂肪族ポリラクトンの共重合量は、10〜20モル%が
好ましく、より好ましくは12〜18モルである。共重
合量が10モル%未満では結晶性は良くなるが、融点が
180℃を超え、不織布成形の際、融着熱処理に高温処
理が必要となり、20モル%を超えると、紡糸時の密着
が発生し、製糸性が悪くなるため好ましくない。
The copolymerization amount of the aliphatic polylactone block-copolymerized with the aromatic polyester is preferably 10 to 20 mol%, more preferably 12 to 18 mol. If the copolymerization amount is less than 10 mol%, the crystallinity will be good, but the melting point will exceed 180 ° C. and high temperature treatment will be required for the fusion heat treatment during nonwoven fabric molding. If it exceeds 20 mol%, the adhesion during spinning will be poor. It is not preferable because it occurs and the thread-forming property deteriorates.

【0015】ポリエステル系芯鞘複合バインダー繊維の
鞘部となる共重合ポリエステルのガラス転移温度(以
下、Tgと略記する。)は、20〜80℃の範囲とする
必要がある。鞘部となる共重合ポリエステルのTgが2
0℃未満では、溶融紡糸時に単糸密着発生による製糸性
が悪くなり、通常の二成分複合溶融紡糸装置では、製造
することが困難である。また、80℃を超えると、延伸
を行う際に延伸温度を上げる必要があり、高温延伸であ
るため延伸による塑性変形と同時に部分的な結晶化が始
まるが、芯部と鞘部との間で結晶化に差異が生じるた
め、糸構造にムラが生じ、したがって糸切れが発生し延
伸性が低下する等の問題が生じる。
The glass transition temperature (hereinafter abbreviated as Tg) of the copolyester which forms the sheath of the polyester-core-sheath composite binder fiber needs to be in the range of 20 to 80 ° C. The Tg of the copolyester that forms the sheath is 2
If the temperature is lower than 0 ° C, the yarn-forming property deteriorates due to the occurrence of single yarn adhesion during melt-spinning, and it is difficult to manufacture with an ordinary two-component composite melt-spinning apparatus. If it exceeds 80 ° C., it is necessary to raise the stretching temperature during stretching, and since it is high temperature stretching, partial crystallization starts simultaneously with plastic deformation due to stretching, but between the core and the sheath. Since there is a difference in crystallization, there is a problem in that the yarn structure becomes uneven, and thus yarn breakage occurs and drawability decreases.

【0016】ポリエステル系芯鞘複合バインダー繊維の
鞘部となる共重合ポリエステルの結晶開始温度(以下、
Tcと略記する。)は、90〜130℃の範囲とする必
要がある。ポリエステル系芯鞘複合バインダー繊維の鞘
部となる共重合ポリエステルのTcが90℃未満では、
熱延伸工程で結晶化が進行してしまうため、次の耐熱化
熱処理工程において安定な結晶構造を再構築することが
困難である。また、130℃を超えると融点が180℃
を超えることになりバインダー繊維として使用できな
い。
Crystallization initiation temperature of the copolyester that forms the sheath of the polyester-sheath composite binder fiber (hereinafter, referred to as
It is abbreviated as Tc. ) Needs to be in the range of 90 to 130 ° C. When the Tc of the copolymerized polyester that forms the sheath portion of the polyester-sheath composite binder fiber is less than 90 ° C,
Since crystallization proceeds in the hot drawing step, it is difficult to reconstruct a stable crystal structure in the next heat treatment for heat treatment. If it exceeds 130 ° C, the melting point will be 180 ° C.
It cannot be used as a binder fiber because it will exceed.

【0017】ポリエステル系芯鞘複合バインダー繊維の
鞘部となる共重合ポリエステルの融点(以下、Tmと略
記する。)は、130〜180℃の範囲とする必要があ
る。鞘成分となる共重合ポリエステルのTmが130℃
未満では、たとえ繊維化した場合でも、高温雰囲気下で
使用した場合、溶融し耐熱性が得られないことから高温
雰囲気下および沸水中で使用できない。また、180℃
を超えると、高温での融着熱処理が必要となり、高温熱
処理による重合体の分解が起こりやすくなり、また経済
的にも好ましくない等の問題がある。
The melting point (hereinafter abbreviated as Tm) of the copolymerized polyester which forms the sheath of the polyester-core-sheath composite binder fiber must be in the range of 130 to 180 ° C. The Tm of the copolyester used as the sheath component is 130 ° C.
If it is less than the above range, even if it is made into a fiber, it cannot be used in a high temperature atmosphere or in boiling water because it melts and cannot obtain heat resistance when used in a high temperature atmosphere. Also, 180 ℃
If it exceeds, the heat treatment for fusion at a high temperature is required, the polymer is likely to be decomposed by the high temperature heat treatment, and there is a problem that it is not economically preferable.

【0018】本発明の湿式不織布を構成する繊維におい
て、ポリエステル系芯鞘複合バインダー繊維を10〜9
0重量%有することが必要である。10重量%未満で
は、バインダー効果が不十分となって、十分な繊維相互
間の接着強力を得ることができない。また、90重量%
を超えると、耐熱性には優れるが、手触りが硬く、かつ
嵩がなくなり好適な風合いの湿式不織布を得ることがで
きない。
In the fibers constituting the wet non-woven fabric of the present invention, 10-9 polyester-sheath composite binder fibers are used.
It is necessary to have 0% by weight. If it is less than 10% by weight, the effect of the binder is insufficient and sufficient adhesive strength between fibers cannot be obtained. Also, 90% by weight
When it exceeds the above value, the heat resistance is excellent, but the handle is hard to the touch and does not have bulk, so that a wet non-woven fabric having a suitable texture cannot be obtained.

【0019】ポリエステル系芯鞘複合バインダー繊維の
芯部と鞘部の複合比率は、2/3〜3/2が好ましい
が、特に限定されるものではなく、二成分それぞれの機
能を発揮させるために適宜選択すればよい。
The composite ratio of the core portion and the sheath portion of the polyester-based core-sheath composite binder fiber is preferably 2/3 to 3/2, but it is not particularly limited and in order to exert the functions of the two components respectively. It may be selected appropriately.

【0020】主体繊維は用途によって選択すればよく、
例えばクツシヨン性や嵩高性が要求されるものであれば
6〜15デニールのポリエステルステープル綿、風合い
のソフトなものが要求される時は1〜5デニールのポリ
エステルステープル綿を混合使用することにより、好適
な湿式不織布が得られる。
The main fiber may be selected according to the application,
For example, 6 to 15 denier polyester staple cotton is required if cushioning and bulkiness are required, and 1 to 5 denier polyester staple cotton is preferably used when soft texture is required. A wet non-woven fabric is obtained.

【0021】本発明の耐熱湿式不織布は、沸水収縮率が
10%以下、沸水処理後の強力保持率が50%以上であ
る。沸水収縮率が10%を超える湿式不織布は、沸水中
での寸法安定性が悪く、本発明の目的より好ましくな
い。沸水処理後の強力保持率が50%未満である不織布
もまた本発明の目的より好ましくない。
The heat resistant wet non-woven fabric of the present invention has a boiling water shrinkage of 10% or less and a tenacity retention after boiling water treatment of 50% or more. A wet type nonwoven fabric having a boiling water shrinkage ratio of more than 10% has poor dimensional stability in boiling water and is not preferable for the purpose of the present invention. Nonwoven fabrics having a tenacity retention of less than 50% after boiling water treatment are also not preferred for the purpose of the present invention.

【0022】ポリエステル系芯鞘複合バインダー繊維
は、通常の芯鞘型複合紡糸装置を用いて溶融紡糸し、得
られた未延伸繊維を延伸した後、必要に応じて捲縮を付
与することによって得ることができる。ついで、この繊
維を切断してステープルとした後、主体繊維であるポリ
エステルステープルと混綿し、抄紙機にて抄紙を作成
し、〔バインダー繊維の鞘部を構成する共重合ポリエス
テルのTm〜(Tm+30)〕℃に昇温した熱処理装置
によって融着熱処理を行って、不織布を成形する。すな
わち、ポリエステル系芯鞘複合バインダー繊維の鞘部の
共重合ポリエステルを溶融させ、繊維相互を点接着し不
織布を得る。熱処理装置としては熱風循環ドライヤー、
回転ドラム乾燥機等が用いられる。
The polyester core-sheath composite binder fiber is obtained by melt spinning using a usual core-sheath type composite spinning device, stretching the resulting unstretched fiber, and then crimping it if necessary. be able to. Then, after this fiber is cut into staples, it is mixed with polyester staple which is the main fiber, and paper is made with a paper machine, and [Tm to (Tm + 30) of the copolyester constituting the sheath portion of the binder fiber is produced. ] A non-woven fabric is formed by performing a fusion heat treatment with a heat treatment apparatus heated to a temperature of ° C. That is, the copolymerized polyester in the sheath portion of the polyester-core-sheath composite binder fiber is melted and the fibers are point-bonded to each other to obtain a nonwoven fabric. As a heat treatment device, a hot air circulation dryer,
A rotary drum dryer or the like is used.

【0023】以上の処理で不織布が成形されるが、本発
明は成形された不織布についてさらに耐熱化熱処理を
〔バインダー繊維の鞘部のTc〜(Tm−20)〕℃の
温度で2分間以上行う。この耐熱化熱処理を行うことに
より、高温雰囲気下および沸水中へ投入後での不織布強
力が保持できる。
The non-woven fabric is formed by the above treatment. In the present invention, the heat treatment for heat resistance of the formed non-woven fabric is further performed at a temperature of [Tc of the sheath portion of the binder fiber to (Tm-20)] ° C. for 2 minutes or more. . By performing this heat treatment for heat resistance, the strength of the nonwoven fabric can be maintained in a high temperature atmosphere and after being put into boiling water.

【0024】すなわち、芯部のTmが220℃以上のポ
リアルキレンテレフタレートからなるため熱延伸する必
要があるが、このとき、鞘部も熱延伸の影響をうけて、
結晶化が進行する。この際、鞘部のブロツク共重合ポリ
エステルのTcが低いと結晶化がすすみ、芯部の重合体
が熱分解をしない範囲での熱処理を施した時、鞘部に形
成された結晶構造を一旦崩壊させることはできない。従
って、このような繊維は、鞘部が芯部を拘束しており芯
部が依然内部ひずみをもったままであるため、寸法安定
性に劣る。これに対し、本発明は鞘部のブロツク共重合
ポリエステルが前記のような高いTcをもっているた
め、熱延伸時には比較的低結晶性である。そして、不織
布成形後、耐熱化熱処理を〔バインダー繊維の鞘部のT
c〜(Tm−20)〕℃の温度で2分間以上行うことに
より、新たな内部ひずみを吸収した結晶構造を構築す
る。従って、寸法安定性が著しく向上する。
That is, since the Tm of the core portion is made of polyalkylene terephthalate having a Tm of 220 ° C. or higher, it is necessary to perform hot stretching, but at this time, the sheath portion is also affected by the heat stretching,
Crystallization proceeds. At this time, if the Tc of the block copolyester in the sheath is low, crystallization proceeds, and when the polymer in the core is subjected to heat treatment in a range that does not cause thermal decomposition, the crystal structure formed in the sheath is temporarily collapsed. I can't let you do it. Therefore, such a fiber is inferior in dimensional stability because the sheath restrains the core and the core still has an internal strain. On the other hand, in the present invention, the block copolyester of the sheath has a high Tc as described above, and therefore has relatively low crystallinity during hot stretching. Then, after forming the non-woven fabric, heat treatment for heat resistance is performed [T of the sheath portion of the binder fiber
c- (Tm-20)] [deg.] C. for 2 minutes or more to construct a crystal structure that absorbs new internal strain. Therefore, the dimensional stability is significantly improved.

【0025】耐熱化熱処理時間が2分未満では処理時間
が短く不織布の耐熱性は不十分となる。また10分を超
えて耐熱化熱処理を行っても耐熱性は変わらないので、
2〜10分の範囲で耐熱化熱処理を行えば十分である。
When the heat treatment time is less than 2 minutes, the treatment time is short and the heat resistance of the nonwoven fabric is insufficient. In addition, since heat resistance does not change even if heat treatment for heat treatment is performed for more than 10 minutes,
It is sufficient to perform the heat treatment for heat treatment in the range of 2 to 10 minutes.

【0026】[0026]

【作用】本発明のポリエステル系耐熱湿式不織布の芯鞘
複合バインダー繊維の鞘部が、前記載の結晶性を有する
ブロック共重合ポリエステルからなるため、溶融紡糸時
に単繊維相互の密着や繊維の擦過損傷もなく製造時の操
業調子も良好である。さらに、前記バインダー繊維を少
なくとも10重量%混綿して得た本発明の湿式不織布
は、耐熱化熱処理を行うことにより芯鞘複合バインダー
繊維の鞘部のブロツク共重合ポリエステルの結晶化度が
大幅に向上し熱的に安定な構造をつくるため、耐熱性に
優れた不織布となる。
[Function] Since the sheath portion of the core-sheath composite binder fiber of the polyester heat-resistant wet non-woven fabric of the present invention is composed of the block copolymerized polyester having crystallinity as described above, adhesion between single fibers and abrasion damage of fibers during melt spinning Nonetheless, the operating condition at the time of manufacturing is good. Furthermore, the wet non-woven fabric of the present invention obtained by mixing at least 10% by weight of the binder fiber is subjected to heat treatment for heat resistance, so that the crystallinity of the block copolymerized polyester in the sheath portion of the core-sheath composite binder fiber is significantly improved. Since it has a thermally stable structure, it is a non-woven fabric with excellent heat resistance.

【0027】[0027]

【実施例】以下、実施例によって本発明を詳しく説明す
るが、本発明はこれらによって限定されるものでない。
The present invention will be described in detail below with reference to examples, but the present invention is not limited thereto.

【0028】なお、実施例に記述した諸物性の測定およ
び評価は次の方法により行った。
The various properties described in the examples were measured and evaluated by the following methods.

【0029】(1)相対粘度ηR :フェノール四塩化エ
タンの等重量混合溶媒で、温度20℃で測定した。
(1) Relative Viscosity η R : Measured at a temperature of 20 ° C. in a mixed solvent of equal weight of phenol tetrachloride ethane.

【0030】(2)Tg・Tc・Tm:パーキンエルマ
ー社製の示差走査熱量計DSC−7型を用い、昇温速度
20℃/分で測定した。
(2) Tg / Tc / Tm: Measured with a differential scanning calorimeter DSC-7 type manufactured by Perkin Elmer at a temperature rising rate of 20 ° C / min.

【0031】(3)不織布強力:オリエンテツク社製U
TM 4型のテンシロンを用い、不織布を幅2.5c
m、長さ15cmとして温度条件変更可能な恒温槽内に
投入し、引張速度10cm/分、つかみ間隔10cmの
条件で、伸長切断し、最大点強力を読み取った。この値
を高温雰囲気下の不織布強力とした。恒温槽温度条件
は、90℃、110℃の2点とし、恒温槽投入1分後に
ついて各々試料数10個測定し、平均値を求めた。ま
た、室温下(23℃)での不織布強力は、室温下で同様
にして求めた。
(3) Nonwoven fabric strength: U manufactured by Orientec Co., Ltd.
Nonwoven fabric width 2.5c using TM 4 type Tensilon
The sample was placed in a thermostatic chamber with m and a length of 15 cm and the temperature conditions could be changed, stretched and cut under the conditions of a pulling speed of 10 cm / min and a gripping interval of 10 cm, and the maximum strength was read. This value was defined as the strength of the nonwoven fabric in a high temperature atmosphere. The temperature of the constant temperature bath was set at two points of 90 ° C. and 110 ° C., and 1 minute after the addition of the constant temperature bath, 10 samples were measured and the average value was obtained. Further, the strength of the nonwoven fabric at room temperature (23 ° C.) was similarly determined at room temperature.

【0032】(4)高温雰囲気下の不織布強力保持率
(%):次式により求めた。 A(%)=(B/C)×100 上式において、Aは、高温雰囲気下の不織布強力保持
率、Bは、90℃あるいは110℃雰囲気下の不織布強
力(g)、Cは、耐熱化熱処理前の室温下の不織布強力
(g)とする。
(4) Non-woven fabric tenacity retention rate (%) in a high temperature atmosphere: determined by the following formula. A (%) = (B / C) × 100 In the above formula, A is the strength retention of the nonwoven fabric in a high temperature atmosphere, B is the strength of the nonwoven fabric in a 90 ° C. or 110 ° C. atmosphere (g), and C is heat resistant. Nonwoven fabric strength (g) at room temperature before heat treatment.

【0033】(5)沸水収縮率(%):不織布を縦2.
5cm、横2.5cmとして各々試料数10個用意し、
沸水中(100℃)に10分間投入した後、各々試料数
10個の面積を測定して平均値を求め、沸水収縮率
(%)を次式により求めた。 A(%)=(B−C)×100/B 上式において、Aは沸水収縮率、Bは沸水投入前の不織
布の面積、Cは沸水投入10分後の不織布の面積とす
る。
(5) Shrinkage rate of boiling water (%): The nonwoven fabric is 2.
Prepare 10 samples each for 5 cm and 2.5 cm width,
After pouring in boiling water (100 ° C.) for 10 minutes, the area of each of 10 samples was measured to obtain an average value, and the boiling water shrinkage rate (%) was determined by the following formula. A (%) = (B−C) × 100 / B In the above formula, A is boiling water shrinkage, B is the area of the non-woven fabric before pouring the boiling water, and C is the area of the non-woven fabric 10 minutes after pouring the boiling water.

【0034】(6)沸水処理後の不織布強力保持率
(%):オリエンテツク社製UTM 4型のテンシロン
を用い、不織布を幅2.5cm、長さ15cmとして沸
水中(100℃)に10分間投入した後に、引張速度1
0cm/分、つかみ間隔10cmの条件で、伸長切断
し、最大点強力を読み取り、この値を沸水処理後の不織
布強力とした。各々試料数10個測定し、平均値を求め
た。また、室温下(23℃)での不織布強力は、室温下
で同様にして求めた。得られた値より沸水中の不織布強
力保持率を次式により求めた。 A(%)=(B/C)×100 上式において、Aは沸水処理後の不織布強力保持率、B
は沸水処理後の不織布強力(g)、Cは室温下(23
℃)の不織布強力(g)とする。
(6) Nonwoven fabric tenacity retention (%) after boiling water treatment: UTM 4 type Tensilon manufactured by Orientec Co., Ltd. was used to make the nonwoven fabric 2.5 cm wide and 15 cm long in boiling water (100 ° C.) for 10 minutes. After loading, pulling speed 1
It was stretched and cut under the conditions of 0 cm / min and a gripping interval of 10 cm, and the maximum point strength was read, and this value was taken as the strength of the nonwoven fabric after boiling water treatment. The number of samples was measured 10 each, and the average value was calculated. Further, the strength of the nonwoven fabric at room temperature (23 ° C.) was similarly determined at room temperature. From the obtained value, the strength retention of the nonwoven fabric in boiling water was determined by the following formula. A (%) = (B / C) × 100 In the above formula, A is the non-woven fabric strength retention after boiling water treatment, and B
Is the strength (g) of the nonwoven fabric after boiling water treatment, and C is at room temperature (23
(° C) Nonwoven fabric strength (g).

【0035】(7)風合い:湿式不織布の風合いを官能
評価により次の3段階で評価した。 ○:手触りがよく、ソフト感がある。 △:手触りがやや硬い。 ×:手触りが硬い。
(7) Texture: The texture of the wet non-woven fabric was evaluated by sensory evaluation in the following three grades. ◯: Good touch and soft feeling. Δ: The touch is slightly hard. X: The feel is hard.

【0036】(8)総合評価: ○:下記の5個の条件をすべて満足するもの △:下記の条件のうち4個の条件を満足するもの ×:下記の条件を満たすものが3個以下のもの 〔条件〕 1.高温雰囲気下(90℃)での強力保持率50%以上
である。 2.高温雰囲気下(110℃)での強力保持率50%以
上である。 3.沸水処理後の強力保持率50%以上である。 4.沸水収縮率が10%以下である。 5.風合いが○である。
(8) Comprehensive evaluation: ◯: All of the following 5 conditions are satisfied Δ: Four of the following conditions are satisfied ×: Three or less satisfy the following conditions Things [Conditions] 1. It has a strength retention of 50% or more in a high temperature atmosphere (90 ° C.). 2. It has a strength retention of 50% or more in a high temperature atmosphere (110 ° C.). 3. The strength retention after boiling water treatment is 50% or more. 4. The boiling water shrinkage is 10% or less. 5. The texture is good.

【0037】実施例1〜7 芯成分に相対粘度1.38、256℃のPETペレツト、
鞘成分にテレフタル酸(TPA)/エチレングリコール
(EG)/1,4ブタンジオール(1,4−BD)=100
/50/50(モル比)共重合させたものに、ポリε
カプロラクトン(ε−CL)あるいは、ポリδ−バレロ
ラクトン(δ−VL)を表1に示す割合に従って共重合
して得た共重合ポリエステルペレツトを各々減圧乾燥し
た。上記ペレツトを通常の二成分複合溶融紡糸装置を用
い、1:1の複合比率(体積比)で、紡糸温度270
℃、吐出量120g/分、口金板孔数225孔、紡糸速
度700m/分で紡糸した。紡出糸条を冷風(18℃)
で冷却し、引き取って未延伸糸を得た。得られた未延伸
糸条を集束し、10万デニールのトウにして延伸倍率を
3.3倍、延伸温度60℃で延伸し、130℃の緊張熱処
理を施し、油剤を付与した後ノークリンプトウを5mm
に切断して単糸繊度2デニールの実施例1〜7のポリエ
ステル系芯鞘複合バインダー繊維を得た。得られた実施
例1〜7のポリエステル系芯鞘複合バインダー繊維の鞘
成分のブロツク共重合ポリエステルのTg・Tc・Tm
およびηR を表1に示した。
Examples 1 to 7 PET pellets having a relative viscosity of 1.38 and 256 ° C. as core components,
Terephthalic acid (TPA) / ethylene glycol (EG) / 1,4-butanediol (1,4-BD) = 100 in the sheath component
/ 50/50 (molar ratio)
Copolyester pellets obtained by copolymerizing caprolactone (ε-CL) or poly δ-valerolactone (δ-VL) according to the ratio shown in Table 1 were dried under reduced pressure. Using the usual two-component composite melt-spinning apparatus, the pellets were spun at a spinning temperature of 270 at a composite ratio of 1: 1 (volume ratio).
Spinning was carried out at a temperature of 120 ° C., a discharge rate of 120 g / min, a number of holes in the die plate of 225, and a spinning speed of 700 m / min. Cold wind the spun yarn (18 ℃)
It was then cooled and taken up to obtain an undrawn yarn. The unstretched filaments obtained were bundled, made into a tow of 100,000 denier, stretched at a draw ratio of 3.3, stretched at a stretching temperature of 60 ° C., subjected to a tension heat treatment at 130 ° C., and after applying an oil agent, no crimp tow. 5 mm
The polyester core-sheath composite binder fibers of Examples 1 to 7 having a single yarn fineness of 2 denier were cut into pieces. Tg / Tc / Tm of the block copolymerized polyester of the sheath component of the obtained polyester-sheath composite binder fibers of Examples 1 to 7
And η R are shown in Table 1.

【0038】実施例8 実施例3において、芯成分に相対粘度1.55、227℃
のPBTペレツトを使用する以外は、実施例3と同様に
して実施例8のポリエステル系芯鞘複合バインダー繊維
を得た。得られた実施例8のポリエステル系芯鞘複合バ
インダー繊維の鞘成分のブロツク共重合ポリエステルの
Tg・Tc・TmおよびηR を表1に示した。
Example 8 In Example 3, the core component had a relative viscosity of 1.55 and 227 ° C.
A polyester-based core-sheath composite binder fiber of Example 8 was obtained in the same manner as in Example 3 except that the PBT pellet was used. Table 1 shows Tg / Tc / Tm and η R of the block copolymerized polyester of the sheath component of the obtained polyester-core / sheath composite binder fiber of Example 8.

【0039】[0039]

【表1】 [Table 1]

【0040】実施例1〜4、6〜8のポリエステル系芯
鞘複合バインダー繊維の製糸性は良好であった。一方、
実施例5のポリエステル系芯鞘複合バインダー繊維は、
紡糸時に密着が発生し、製糸性は悪かった。
The polyester-core-sheath composite binder fibers of Examples 1 to 4 and 6 to 8 had good spinnability. on the other hand,
The polyester-sheath composite binder fiber of Example 5 is
Adhesion occurred during spinning, and the spinnability was poor.

【0041】実施例11 繊度2デニール、繊維長5mmのPET繊維と実施例3
で得られたポリエステル系芯鞘複合バインダー繊維を重
量割合1:1で混綿し、抄紙機にて抄紙を作成し、回転
乾燥機を用いて熱処理温度160℃×100秒で融着熱
処理を行って成形し、得られた耐熱化熱処理前の不織布
の室温下(23℃)での不織布強力(g)を測定して表
2に示した。次いで100℃×5分で耐熱化熱処理を行
い、目付40g/m2 の耐熱性湿式不織布を得た。
Example 11 Example 3 with a PET fiber having a fineness of 2 denier and a fiber length of 5 mm
The polyester core-sheath composite binder fiber obtained in 1. was mixed at a weight ratio of 1: 1 to prepare a paper using a paper machine, and a fusion heat treatment was performed using a rotary dryer at a heat treatment temperature of 160 ° C. for 100 seconds. The nonwoven fabric strength (g) at room temperature (23 ° C.) of the obtained nonwoven fabric before heat treatment for heat resistance was measured and is shown in Table 2. Next, heat treatment for heat resistance was performed at 100 ° C. for 5 minutes to obtain a heat resistant wet non-woven fabric having a basis weight of 40 g / m 2 .

【0042】実施例12〜13 実施例11において、表2に示す熱処理温度および耐熱
化熱処理温度で熱処理をした以外は、実施例11と同様
にして実施例12〜13の耐熱性湿式不織布を得た。
Examples 12 to 13 Heat-resistant wet nonwoven fabrics of Examples 12 to 13 were obtained in the same manner as in Example 11 except that the heat treatment was carried out at the heat treatment temperature and heat treatment heat treatment temperature shown in Table 2. It was

【0043】実施例14 実施例11において、実施例2で得られたポリエステル
系芯鞘複合バインダー繊維を用いて、表2に示す熱処理
温度および耐熱化熱処理温度で熱処理をした以外は、実
施例11と同様にして実施例14の耐熱性湿式不織布を
得た。
Example 14 Example 11 was repeated except that the polyester core-sheath composite binder fiber obtained in Example 2 was used for the heat treatment temperature and heat treatment temperature shown in Table 2. A heat resistant wet nonwoven fabric of Example 14 was obtained in the same manner as in.

【0044】実施例15 実施例11において、実施例4で得られたポリエステル
系芯鞘複合バインダー繊維を用いて、表2に示す熱処理
温度および耐熱化熱処理温度で熱処理をした以外は、実
施例11と同様にして実施例15の耐熱性湿式不織布を
得た。
Example 15 Example 11 was repeated except that the polyester core-sheath composite binder fiber obtained in Example 4 was used for the heat treatment temperature and heat treatment heat treatment temperature shown in Table 2. A heat resistant wet non-woven fabric of Example 15 was obtained in the same manner as in.

【0045】実施例16 実施例11において、実施例8で得られたポリエステル
系芯鞘複合バインダー繊維を用いて、表2に示す熱処理
温度および耐熱化熱処理温度で熱処理をした以外は、実
施例11と同様にして実施例16の耐熱性湿式不織布を
得た。
Example 16 Example 11 was repeated except that the polyester core-sheath composite binder fiber obtained in Example 8 was used at the heat treatment temperature and heat treatment heat treatment temperature shown in Table 2. A heat resistant wet nonwoven fabric of Example 16 was obtained in the same manner as in.

【0046】実施例17 実施例11において、繊度2デニール、繊維長51mm
のPET繊維と実施例3で得られたポリエステル系芯鞘
複合バインダー繊維を重量割合3:7で混合した以外
は、実施例11と同様にして実施例17の耐熱性湿式不
織布を得た。
Example 17 In Example 11, the fineness was 2 denier and the fiber length was 51 mm.
A heat-resistant wet non-woven fabric of Example 17 was obtained in the same manner as in Example 11 except that the PET fiber of Example 1 and the polyester-sheath composite binder fiber obtained in Example 3 were mixed at a weight ratio of 3: 7.

【0047】実施例18 実施例11において、繊度2デニール、繊維長51mm
のPET繊維と実施例3で得られたポリエステル系芯鞘
複合バインダー繊維を重量割合7:3で混綿した以外
は、実施例11と同様にして実施例18の耐熱性湿式不
織布を得た。
Example 18 In Example 11, the fineness was 2 denier and the fiber length was 51 mm.
A heat-resistant wet non-woven fabric of Example 18 was obtained in the same manner as in Example 11 except that the PET fiber of Example 1 and the polyester-sheath composite binder fiber obtained in Example 3 were mixed at a weight ratio of 7: 3.

【0048】比較例1 実施例11において、実施例5で得られたポリエステル
系芯鞘複合バインダー繊維を用いて、表2に示す熱処理
温度および耐熱化熱処理温度で熱処理をした以外は、実
施例11と同様にして比較例1の不織布を得た。
Comparative Example 1 Example 11 was repeated except that the polyester-sheath composite binder fiber obtained in Example 5 was used for heat treatment at the heat treatment temperature and heat treatment heat treatment temperature shown in Table 2. A nonwoven fabric of Comparative Example 1 was obtained in the same manner as in.

【0049】比較例2 実施例11において、実施例6で得られたポリエステル
系芯鞘複合バインダー繊維を用いて、表2に示す熱処理
温度および耐熱化熱処理温度で熱処理をした以外は、実
施例11と同様にして比較2の不織布を得た。
Comparative Example 2 Example 11 was repeated except that the polyester core-sheath composite binder fiber obtained in Example 6 was used at the heat treatment temperature and heat treatment heat treatment temperature shown in Table 2. A non-woven fabric of Comparative 2 was obtained in the same manner as.

【0050】比較例3 実施例11において、実施例7で得られたポリエステル
系芯鞘複合バインダー繊維を用いて、表2に示す熱処理
温度および耐熱化熱処理温度で熱処理をした以外は、実
施例11と同様にして比較例3の不織布を得た。
Comparative Example 3 Example 11 was repeated except that the polyester core-sheath composite binder fiber obtained in Example 7 was used at the heat treatment temperature and heat treatment heat treatment temperature shown in Table 2. A non-woven fabric of Comparative Example 3 was obtained in the same manner as in.

【0051】比較例4 実施例11において、実施例1で得られたポリエステル
系芯鞘複合バインダー繊維を用いて、表2に示す熱処理
温度および耐熱化熱処理温度で熱処理をした以外は、実
施例11と同様にして比較例4の不織布を得た。
Comparative Example 4 Example 11 was repeated except that the polyester core-sheath composite binder fiber obtained in Example 1 was used for the heat treatment temperature and heat treatment heat treatment temperature shown in Table 2. A non-woven fabric of Comparative Example 4 was obtained in the same manner as in.

【0052】比較例5 実施例11において、繊度2デニール、繊維長5mmの
PET繊維と実施例3で得られたポリエステル系芯鞘複
合バインダー繊維を重量割合95:5で混合した以外
は、実施例11と同様にして比較例5の耐熱湿式不織布
を得た。
Comparative Example 5 Example 5 was repeated except that the PET fiber having a fineness of 2 denier and a fiber length of 5 mm was mixed with the polyester core-sheath composite binder fiber obtained in Example 3 in a weight ratio of 95: 5. A heat resistant wet nonwoven fabric of Comparative Example 5 was obtained in the same manner as in 11.

【0053】比較例6 実施例11において、繊度2デニール、繊維長5mmの
PET繊維と実施例3で得られたポリエステル系芯鞘複
合バインダー繊維を重量割合5:95で混合した以外
は、実施例11と同様にして比較例6の耐熱湿式不織布
を得た。
Comparative Example 6 Example 6 was repeated except that the PET fiber having a fineness of 2 denier and a fiber length of 5 mm was mixed with the polyester type core-sheath composite binder fiber obtained in Example 3 in a weight ratio of 5:95. A heat resistant wet nonwoven fabric of Comparative Example 6 was obtained in the same manner as in 11.

【0054】実施例11〜18、比較実施例1〜6で得
られた不織布の物性の測定および評価を行い表2に示し
た。
The physical properties of the nonwoven fabrics obtained in Examples 11 to 18 and Comparative Examples 1 to 6 were measured and evaluated, and the results are shown in Table 2.

【0055】[0055]

【表2】 [Table 2]

【0056】表2において、本発明の耐熱湿式不織布
は、耐熱化熱処理を行うことにより高温雰囲気下および
沸水中での不織布強力が明らかに高くなり、また、沸水
中での収縮率も低く、耐熱性および沸水中での強力保持
率に優れていた。
In Table 2, the heat-resistant wet-type nonwoven fabric of the present invention has a significantly higher nonwoven fabric strength in a high temperature atmosphere and in boiling water when subjected to heat treatment for heat treatment, and has a low shrinkage ratio in boiling water. And the retention of strength in boiling water were excellent.

【0057】比較例1〜2はバインダー繊維の鞘部のT
g、Tc、あるいはTmが本発明の構成要件を満たない
ものである。
In Comparative Examples 1 and 2, T of the sheath portion of the binder fiber was used.
g, Tc, or Tm does not satisfy the constituent requirements of the invention.

【0058】バインダー繊維の鞘部のTmが130℃未
満である比較例1の不織布は、高温雰囲気下で溶融し耐
熱性に劣り、沸水中での収縮率が高く、沸水中での寸法
安定性に劣るものであった。
The nonwoven fabric of Comparative Example 1 in which the Tm of the sheath portion of the binder fiber was less than 130 ° C. melted in a high temperature atmosphere and was inferior in heat resistance, had a high shrinkage rate in boiling water, and had a dimensional stability in boiling water. Was inferior to

【0059】バインダー繊維の鞘部のTcが130℃を
超え、Tmが180℃を超えた比較例2の不織布は、不
織布成形の際、融着熱処理により重合体の分解が起こり
不織布強力が劣るものであった。
The nonwoven fabric of Comparative Example 2 in which the Tc of the sheath portion of the binder fiber exceeds 130 ° C. and the Tm of the binder fiber exceeds 180 ° C., the polymer is decomposed by the heat treatment for fusion during molding of the nonwoven fabric and the strength of the nonwoven fabric is poor. Met.

【0060】バインダー繊維の鞘部のTcが90℃未満
である比較例3の不織布は、熱延伸工程で結晶化が進行
して次の耐熱化熱処理工程において安定な結晶構造が再
構築されず、高温雰囲気下での不織布強力が劣るもので
あった。
In the non-woven fabric of Comparative Example 3 in which the Tc of the sheath portion of the binder fiber was less than 90 ° C., crystallization proceeded in the heat drawing step and a stable crystal structure was not reconstructed in the next heat treatment for heat treatment, The strength of the non-woven fabric in a high temperature atmosphere was poor.

【0061】バインダー繊維の鞘部のTmが180℃を
超える比較例4の不織布は、不織布成形の際、融着熱処
理により重合体の分解が起こり不織布強力が劣るもので
あった。
The nonwoven fabric of Comparative Example 4 in which the Tm of the sheath portion of the binder fiber exceeded 180 ° C. was inferior in nonwoven fabric strength due to decomposition of the polymer due to heat treatment for fusion during molding of the nonwoven fabric.

【0062】比較例5〜6は、ポリエステル系芯鞘複合
バインダー繊維と主体繊維との構成比率が1:9〜9:
1から外れるものである。
In Comparative Examples 5 to 6, the composition ratio of the polyester-sheath composite binder fiber to the main fiber was 1: 9 to 9 :.
It deviates from 1.

【0063】ポリエステル系芯鞘複合バインダー繊維が
本発明の構成比率より少ない比較例5の不織布は、繊維
相互間の接着が不十分となりその結果、不織布強力にも
劣り、また耐熱性にも劣るものであった。
The non-woven fabric of Comparative Example 5 in which the polyester-core-sheath composite binder fiber was less than the composition ratio of the present invention, the adhesion between the fibers was insufficient and, as a result, the non-woven fabric was poor in strength and heat resistance. Met.

【0064】ポリエステル系芯鞘複合バインダー繊維が
本発明の構成比率より多い比較例6で得られた不織布
は、耐熱性および不織布強力に優れているが、手触りが
硬く、また嵩がなくペーパーライクなものであった。
The non-woven fabric obtained in Comparative Example 6 in which the polyester-core-sheath composite binder fiber is larger than the composition ratio of the present invention is excellent in heat resistance and non-woven fabric strength, but is hard to the touch and bulky and paper-like. It was a thing.

【0065】[0065]

【発明の効果】本発明のポリエステル系芯鞘複合バイン
ダー繊維は、繊維製造の際、紡糸時の繊維相互間の密着
発生がない。しかも、この繊維を用いて得た湿式不織布
は、高温雰囲気下および沸水中でも強力を保持し、耐熱
性を有する風合いの柔らかいものである。
EFFECTS OF THE INVENTION The polyester-core-sheath composite binder fiber of the present invention does not cause adhesion between fibers during spinning during fiber production. In addition, the wet non-woven fabric obtained by using this fiber has a strong texture even under a high temperature atmosphere and in boiling water and has a heat resistance and a soft texture.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ポリエステル繊維90〜10重量%と、
芯部が融点220℃以上のポリアルキレンテレフタレー
トで、鞘部がガラス転移温度20〜80℃、結晶開始温
度90〜130℃、融点130〜180℃である芳香族
ポリエステルと脂肪族ポリラクトンとからなるブロツク
共重合ポリエステルであるポリエステル系芯鞘複合バイ
ンダー繊維10〜90重量%とからなり、沸水収縮率が
10%以下、沸水処理後の強力保持率が50%以上であ
ることを特徴とするポリエステル系耐熱湿式不織布。
1. 90 to 10% by weight of polyester fiber,
A block composed of an aromatic polyester and an aliphatic polylactone, the core of which is a polyalkylene terephthalate having a melting point of 220 ° C. or higher, and the sheath of which has a glass transition temperature of 20 to 80 ° C., a crystallization starting temperature of 90 to 130 ° C., and a melting point of 130 to 180 ° C. A polyester-based heat-resistant material, comprising 10 to 90% by weight of a polyester-sheath composite binder fiber which is a copolyester, and having a boiling water shrinkage of 10% or less and a strength retention after boiling water treatment of 50% or more. Wet non-woven fabric.
【請求項2】 ポリエステル繊維90〜10重量%と、
芯部が融点220℃以上のポリアルキレンテレフタレー
トで、鞘部がガラス転移温度20〜80℃、結晶開始温
度90〜130℃、融点130〜180℃である芳香族
ポリエステルと脂肪族ポリラクトンとからなるブロツク
共重合ポリエステルであるポリエステル系芯鞘複合バイ
ンダー繊維10〜90重量%を混合し、抄紙機にて抄紙
とした後、〔バインダー繊維の鞘部を構成する共重合ポ
リエステルの融点〜(融点+30)〕℃の温度で融着熱
処理を行って不織布を成形し、次いで〔前記共重合ポリ
エステルの結晶開始温度〜(融点−20)〕℃の温度で
2分間以上耐熱化熱処理を行うことを特徴とする請求ポ
リエステル系耐熱湿式不織布の製造方法。
2. 90 to 10% by weight of polyester fiber,
A block composed of an aromatic polyester and an aliphatic polylactone, the core of which is a polyalkylene terephthalate having a melting point of 220 ° C. or higher, and the sheath of which has a glass transition temperature of 20 to 80 ° C., a crystallization starting temperature of 90 to 130 ° C., and a melting point of 130 to 180 ° C. After mixing 10 to 90% by weight of polyester-core-sheath composite binder fiber which is a copolyester, and making a paper by a paper machine, [melting point of copolyester constituting the sheath of binder fiber to (melting point +30)] A fusion heat treatment is performed at a temperature of [deg.] C to form a nonwoven fabric, and then a heat treatment for heat treatment is performed at a temperature of [crystallization start temperature of the copolymerized polyester to (melting point -20)] [deg.] C for 2 minutes or more. A method for producing a polyester heat resistant wet non-woven fabric.
JP8097645A 1996-03-26 1996-03-26 Polyester-based heat-resistant wet type nonwoven fabric and its production Pending JPH09268490A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8097645A JPH09268490A (en) 1996-03-26 1996-03-26 Polyester-based heat-resistant wet type nonwoven fabric and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8097645A JPH09268490A (en) 1996-03-26 1996-03-26 Polyester-based heat-resistant wet type nonwoven fabric and its production

Publications (1)

Publication Number Publication Date
JPH09268490A true JPH09268490A (en) 1997-10-14

Family

ID=14197858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8097645A Pending JPH09268490A (en) 1996-03-26 1996-03-26 Polyester-based heat-resistant wet type nonwoven fabric and its production

Country Status (1)

Country Link
JP (1) JPH09268490A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002070805A1 (en) * 2001-03-06 2002-09-12 Mitsubishi Burlington Co.,Ltd. Polyester nonwoven fabric, nonwoven fabric product thereof and various products using the nonwoven fabrics reinforcing material
JP2010001572A (en) * 2008-06-18 2010-01-07 Daio Paper Corp Sheet and food-packing material using the same
JP2011137267A (en) * 2009-12-29 2011-07-14 Nippon Ester Co Ltd Wet-laid staple fiber nonwoven fabric
JP2014136838A (en) * 2013-01-15 2014-07-28 Nippon Ester Co Ltd Short-cut conjugated fiber for wet nonwoven fabric
WO2016148038A1 (en) * 2015-03-13 2016-09-22 三菱製紙株式会社 Semipermeable membrane support for processing membrane separation activated sludge, filtration membrane, and module
JP6038369B1 (en) * 2015-03-13 2016-12-07 三菱製紙株式会社 Support for semipermeable membrane for membrane separation activated sludge treatment, filtration membrane and module
JP6038370B1 (en) * 2015-09-09 2016-12-07 三菱製紙株式会社 Support for semipermeable membrane for membrane separation activated sludge treatment, filtration membrane and module
JP2017121606A (en) * 2016-01-07 2017-07-13 三菱製紙株式会社 Semi-permeable membrane support for membrane separation active sludge treatment and filtering membrane
JP2017159249A (en) * 2016-03-10 2017-09-14 三菱製紙株式会社 Filter medium for air filter
WO2020004462A1 (en) * 2018-06-29 2020-01-02 三菱製紙株式会社 Semipermeable membrane support for membrane bioreactor treatment
JP2020049482A (en) * 2018-06-29 2020-04-02 三菱製紙株式会社 Semipermeable membrane substrate for membrane separation activated sludge treatment

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002070805A1 (en) * 2001-03-06 2002-09-12 Mitsubishi Burlington Co.,Ltd. Polyester nonwoven fabric, nonwoven fabric product thereof and various products using the nonwoven fabrics reinforcing material
JP2010001572A (en) * 2008-06-18 2010-01-07 Daio Paper Corp Sheet and food-packing material using the same
JP2011137267A (en) * 2009-12-29 2011-07-14 Nippon Ester Co Ltd Wet-laid staple fiber nonwoven fabric
JP2014136838A (en) * 2013-01-15 2014-07-28 Nippon Ester Co Ltd Short-cut conjugated fiber for wet nonwoven fabric
WO2016148038A1 (en) * 2015-03-13 2016-09-22 三菱製紙株式会社 Semipermeable membrane support for processing membrane separation activated sludge, filtration membrane, and module
JP6038369B1 (en) * 2015-03-13 2016-12-07 三菱製紙株式会社 Support for semipermeable membrane for membrane separation activated sludge treatment, filtration membrane and module
JP6038370B1 (en) * 2015-09-09 2016-12-07 三菱製紙株式会社 Support for semipermeable membrane for membrane separation activated sludge treatment, filtration membrane and module
JP2017121606A (en) * 2016-01-07 2017-07-13 三菱製紙株式会社 Semi-permeable membrane support for membrane separation active sludge treatment and filtering membrane
JP2017159249A (en) * 2016-03-10 2017-09-14 三菱製紙株式会社 Filter medium for air filter
WO2020004462A1 (en) * 2018-06-29 2020-01-02 三菱製紙株式会社 Semipermeable membrane support for membrane bioreactor treatment
JP2020049482A (en) * 2018-06-29 2020-04-02 三菱製紙株式会社 Semipermeable membrane substrate for membrane separation activated sludge treatment
CN112368067A (en) * 2018-06-29 2021-02-12 三菱制纸株式会社 Support for semipermeable membrane for membrane separation activated sludge treatment

Similar Documents

Publication Publication Date Title
JPH09268490A (en) Polyester-based heat-resistant wet type nonwoven fabric and its production
JP2001049533A (en) Polylactic acid-based conjugate short fiber, nonwoven fabric comprising the same short fiber and production thereof
JP2003166127A (en) Polyester heat-bondable conjugated fiber and method for producing the same
JP2004107860A (en) Thermally adhesive sheath core type conjugated short fiber and non-woven fabric of the same
JP4418869B2 (en) Biodegradable composite short fiber, method for producing the same, and heat-bonding nonwoven fabric using the same
JP2003286640A (en) Short fiber nonwoven fabric
JP4076369B2 (en) Polyester-based heat-bondable hollow composite short fiber and nonwoven fabric
JPH07119011A (en) Polyester-based heat-resistant nonwoven fabric and its production
JP2021147738A (en) Polyester-based sheath-core type conjugate fiber
JP3683048B2 (en) Naturally degradable fiber assembly
JP2002069796A (en) Woven or knit fabric of polylactic acid
JPH09111537A (en) Biodegradable fiber having moisture absorbing and desorbing property and its production
JP6537431B2 (en) Core-sheath composite binder fiber
JPH09324323A (en) Heat-bondable conjugate polyester fiber having low shrinkage
JPH11241261A (en) Polyesterfiber structure having shape-memory ability
JP2882636B2 (en) Far-infrared radiating composite fiber, woven or knitted fabric containing the fiber and nonwoven fabric
JPH1161560A (en) Biodegradable staple fiber and its production
JPH11158734A (en) Antimicrobial, thermally bondable conjugate yarn and antimicrobial yarn structure
JP2009102796A (en) Nonwoven fabric formed of polylactic acid based composite staple fiber, and method for producing the same
JPH0551853A (en) Copolyester fiber laminate having shape memorizing ability
JP2004270044A (en) Heat adhesive fiber
JPH11217731A (en) Thermoadhesive conjugate fiber and its production
JP4628808B2 (en) Low shrinkable thermal adhesive fiber
JPS6330408B2 (en)
JP5063148B2 (en) Thermally adhesive polyester filaments with antibacterial properties