JPH09324323A - Heat-bondable conjugate polyester fiber having low shrinkage - Google Patents

Heat-bondable conjugate polyester fiber having low shrinkage

Info

Publication number
JPH09324323A
JPH09324323A JP8168566A JP16856696A JPH09324323A JP H09324323 A JPH09324323 A JP H09324323A JP 8168566 A JP8168566 A JP 8168566A JP 16856696 A JP16856696 A JP 16856696A JP H09324323 A JPH09324323 A JP H09324323A
Authority
JP
Japan
Prior art keywords
heat
fiber
melting point
polyester
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8168566A
Other languages
Japanese (ja)
Inventor
Junji Ikeda
純二 池田
Tomoyasu Nakada
智康 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP8168566A priority Critical patent/JPH09324323A/en
Publication of JPH09324323A publication Critical patent/JPH09324323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a heat-bondable conjugate polyester fiber having low heat shrinkage and high dimensional stability and giving a fiber structure such as a non-woven fabric resistant to deformation caused by the lowering of the bonding strength even by using the fabric in a hot atmosphere. SOLUTION: This heat-bondable conjugated fiber is composed of a core consisting of a polyalkylene terephthalate having a melting point of >=220 deg.C and a sheath consisting of a copolymerized polyester having a glass transition point of 20-80 deg.C, a crystallization starting temperature of 90-130 deg.C and a melting point of 130-180 deg.C and composed or an aromatic polyester and an aliphatic polylactone. The dry-heat shrinkage of the yarn is <=3% at 100 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、不織布等の繊維構
造体の接着に好適なポリエステル系低収縮熱接着複合繊
維に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyester-based low shrinkage heat-bonding composite fiber suitable for bonding a fiber structure such as a nonwoven fabric.

【0002】[0002]

【従来の技術】従来、ポリエステル系熱接着複合繊維と
して、ポリエチレンテレフタレートを芯成分とし、イソ
フタル酸成分を共重合したポリエチレンテレフタレート
系共重合体を鞘成分としたものが広く使用されている。
2. Description of the Related Art Heretofore, as a polyester heat-bonding composite fiber, a fiber having polyethylene terephthalate as a core component and a polyethylene terephthalate copolymer obtained by copolymerizing an isophthalic acid component as a sheath component has been widely used.

【0003】しかし、この複合繊維の鞘成分の共重合ポ
リエステルは、非晶性で明確な結晶融点を示さず、ガラ
ス転移点以上となれば軟化が始まるものである。このた
め、繊維の製造時に熱固定することができず、加熱接着
処理する際に繊維が収縮するので、この繊維の使用比率
が大きい場合には寸法安定性が悪く、また、高温雰囲気
下で使用すると接着強力が低下して変形するという問題
があった。
However, the copolymerized polyester as the sheath component of the composite fiber is amorphous and does not show a clear crystal melting point, and softening begins when the glass transition temperature is exceeded. For this reason, it cannot be heat-set during the production of the fiber, and the fiber shrinks during the heat-bonding process. Then, there is a problem that the adhesive strength is lowered and the adhesive is deformed.

【0004】このような問題を解決するものとして、特
開平7−119010号公報には、芯成分に融点 220℃以上の
ポリアルキレンテレフタレート、鞘成分に芳香族ポリエ
ステルと脂肪族ポリラクトンとからなり、ガラス転移点
20〜80℃、結晶開始温度90〜130 ℃、融点 130〜180 ℃
である共重合ポリエステルを用いた芯鞘型熱接着複合繊
維が開示されている。
As a solution to such a problem, Japanese Unexamined Patent Publication (Kokai) No. 7-119010 discloses that a core component is made of polyalkylene terephthalate having a melting point of 220 ° C. or higher, a sheath component is made of aromatic polyester and an aliphatic polylactone, and glass is used. Transition point
20 ~ 80 ℃, Crystal start temperature 90 ~ 130 ℃, Melting point 130 ~ 180 ℃
The core-sheath type heat-bonded composite fiber using the copolyester is disclosed.

【0005】しかし、この公報に開示された熱接着複合
繊維は、熱収縮率が十分低くないため、これを用いた不
織布は、加熱接着処理時に不織布が収縮して寸法安定性
が悪かったり、高温雰囲気下での使用中に収縮するとい
う問題があった。
However, since the heat-bonding composite fiber disclosed in this publication does not have a sufficiently low heat shrinkage ratio, a nonwoven fabric using this fiber has a poor dimensional stability due to shrinkage of the nonwoven fabric during heat-bonding treatment, or high temperature. There was a problem of shrinkage during use in an atmosphere.

【0006】[0006]

【発明が解決しようとする課題】本発明は、熱収縮率が
小さく、寸法安定性が良好で、高温雰囲気下で使用して
も接着強力が低下して変形することのない不織布等の繊
維構造体を得ることのできるポリエステル系低収縮熱接
着複合繊維を提供しようとするものである。
DISCLOSURE OF THE INVENTION The present invention provides a fibrous structure such as a non-woven fabric which has a small heat shrinkage ratio, good dimensional stability, and does not deform due to a decrease in adhesive strength even when used in a high temperature atmosphere. It is intended to provide a polyester-based low shrinkage heat-bonding composite fiber capable of obtaining a body.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の課題を
解決するもので、その要旨は、芯成分に融点 220℃以上
のポリアルキレンテレフタレート、鞘成分に芳香族ポリ
エステルと脂肪族ポリラクトンとからなり、ガラス転移
点20〜80℃、結晶開始温度90〜130 ℃、融点 130〜180
℃である共重合ポリエステルを用いた芯鞘複合繊維であ
り、 100℃での乾熱収縮率が3%以下であることを特徴
とするポリエステル系低収縮熱接着複合繊維にある。
Means for Solving the Problems The present invention is intended to solve the above problems, and its gist is to use a polyalkylene terephthalate having a melting point of 220 ° C. or more as a core component and an aromatic polyester and an aliphatic polylactone as a sheath component. , Glass transition point 20 ~ 80 ℃, crystal start temperature 90 ~ 130 ℃, melting point 130 ~ 180
A core-sheath composite fiber using a copolyester having a temperature of 100 ° C., which is a polyester-based low shrinkage heat-bonding composite fiber characterized by having a dry heat shrinkage ratio at 100 ° C. of 3% or less.

【0008】以下、本発明について詳細に説明する。ま
ず、本発明の複合繊維において、芯成分には、融点 220
℃以上のポリアルキレンテレフタレートを用いることが
必要である。芯成分のポリエステルの融点が220℃未満
であると、複合繊維を安定して製糸することが困難であ
るとともに、熱接着処理時の安定性が悪くなる。ポリア
ルキレンテレフタレートの具体例としては、ポリエチレ
ンテレフタレート(PET)及びポリブチレンテレフタ
レート(PBT)が好ましく、その特性を損なわない範
囲であれば少量の共重合成分や艶消剤、滑剤等の添加剤
を含有していてもよい。
The present invention will be described in detail below. First, in the composite fiber of the present invention, the core component has a melting point of 220
It is necessary to use polyalkylene terephthalate at a temperature of not less than ° C. When the melting point of the core component polyester is less than 220 ° C., it is difficult to stably form the conjugate fiber, and the stability at the time of heat-bonding treatment is deteriorated. As specific examples of polyalkylene terephthalate, polyethylene terephthalate (PET) and polybutylene terephthalate (PBT) are preferable, and a small amount of a copolymerization component, a matting agent, an additive such as a lubricant is contained as long as the characteristics are not impaired. You may have.

【0009】一方、鞘成分には、芳香族ポリエステルと
脂肪族ポリラクトンとからなり、ガラス転移点20〜80
℃、結晶開始温度90〜130 ℃、融点 130〜180 ℃である
共重合ポリエステルが用いられる。
On the other hand, the sheath component is composed of aromatic polyester and aliphatic polylactone and has a glass transition point of 20-80.
A copolyester having a crystallization temperature of 90 to 130 ° C. and a melting point of 130 to 180 ° C. is used.

【0010】共重合ポリエステルを構成する芳香族ポリ
エステルとしては、ポリアルキレンテレフタレート、具
体的には、PET及び/又はPBTが好ましく、その特
性を損なわない範囲で、イソフタル酸、フタル酸、アジ
ピン酸、セバシン酸、 1,4−ブタンジオール、ジエチレ
ングリコール、トリエチレングリコール等の共重合成分
を含有していてもよい。
As the aromatic polyester constituting the copolyester, polyalkylene terephthalate, specifically, PET and / or PBT is preferable, and isophthalic acid, phthalic acid, adipic acid, sebacine are used as long as the characteristics thereof are not impaired. It may contain a copolymerization component such as an acid, 1,4-butanediol, diethylene glycol or triethylene glycol.

【0011】一方、脂肪族ポリラクトンとしては、炭素
数4〜11のラクトンの単独重合体又は共重合体があり、
特に良好なポリラクトンとして、ポリε−カプロラクト
ンが挙げられる。
On the other hand, as the aliphatic polylactone, there are homopolymers or copolymers of lactones having 4 to 11 carbon atoms,
A particularly good polylactone is poly ε-caprolactone.

【0012】芳香族ポリエステルと脂肪族ポリラクトン
との共重合比は、モル比で90/10〜80/20とすることが
好ましい。脂肪族ポリラクトンの割合がこれより少ない
と結晶性は良くなるが、融点が 180℃以上となり、熱処
理時高温での処理が必要となり、一方、これより多いと
紡糸時に単糸密着が発生し、製糸性が悪くなる。
The copolymerization ratio of the aromatic polyester and the aliphatic polylactone is preferably 90/10 to 80/20 in terms of molar ratio. If the proportion of the aliphatic polylactone is lower than this, the crystallinity will be better, but the melting point will be 180 ° C or higher, and high-temperature treatment will be required during heat treatment, while if it is higher than this, single yarn adhesion will occur during spinning, resulting in spinning. The sex becomes worse.

【0013】鞘成分の共重合ポリエステルは、ガラス転
移点(Tg)が20〜80℃、結晶開始温度(Tc)が90〜
130 ℃、融点(Tm)が 130〜180 ℃の範囲となるよう
にする必要がある。
The copolymerized polyester as the sheath component has a glass transition point (Tg) of 20 to 80 ° C. and a crystal initiation temperature (Tc) of 90 to
It is necessary to keep the melting point (Tm) at 130 ° C within the range of 130 to 180 ° C.

【0014】共重合ポリエステルのTgが20℃未満で
は、溶融紡糸時に単糸密着発生による製糸性が悪くな
り、通常の二成分複合溶融紡糸では製造できない。ま
た、共重合ポリエステルのTcが90℃未満では、好適な
結晶性を得ることが困難となり、 130℃を超えるとTm
が 180℃を超え、熱接着繊維として使用できない。さら
に、共重合ポリエステルのTmが 130℃未満では、たと
え繊維化しても、高温雰囲気下で使用した場合、耐熱性
を得ることができない。一方、Tmが 180℃を超えると
高温熱接着処理が必要となり、経済的に好ましくないば
かりか、熱処理により重合体の分解が起こりやすくな
る。
When the Tg of the copolyester is less than 20 ° C., single yarn adhesion occurs during melt spinning, resulting in poor spinnability, and ordinary two-component composite melt spinning cannot be used. If the Tc of the copolyester is less than 90 ° C, it becomes difficult to obtain suitable crystallinity, and if it exceeds 130 ° C, the Tm
Is over 180 ℃ and cannot be used as a heat-bonded fiber. Further, if the Tm of the copolyester is less than 130 ° C., even if it is made into fibers, heat resistance cannot be obtained when used in a high temperature atmosphere. On the other hand, when Tm exceeds 180 ° C., a high temperature heat-bonding treatment is required, which is not economically preferable and heat treatment tends to cause decomposition of the polymer.

【0015】また、本発明の熱接着複合繊維は 100℃で
の乾熱収縮率が3%以下である必要がある。この乾熱収
縮率が3%を超える場合、特に熱接着複合繊維の使用割
合が高いと、加熱接着処理時に繊維構造体が収縮して寸
法安定性が悪くなる。
Further, the heat-bonded composite fiber of the present invention needs to have a dry heat shrinkage at 100 ° C. of 3% or less. When the dry heat shrinkage ratio exceeds 3%, particularly when the heat-bonding composite fiber is used in a high proportion, the fiber structure shrinks during the heat-bonding treatment, resulting in poor dimensional stability.

【0016】乾熱収縮率が3%以下の熱接着複合繊維を
得るには、延伸工程で配向結晶させた後、鞘成分(熱接
着成分)の共重合ポリエステルの結晶融点より低い温
度、例えば 100〜130 ℃のヒートドラムを用いて緊張率
1.00〜1.03倍の定長又は緊張熱処理を行えばよい。これ
は鞘成分の共重合ポリエステルが明確な結晶融点を示す
場合のみ可能なことであり、従来の鞘成分に非晶性共重
合ポリエステルを用いた熱接着複合繊維のようにTg以
上では軟化の始まるようなものでは不可能なことであっ
た。
In order to obtain a heat-bonding composite fiber having a dry heat shrinkage of 3% or less, oriented crystal is formed in the drawing step and then a temperature lower than the crystal melting point of the copolyester of the sheath component (heat-bonding component), for example, 100. Tension rate using a heat drum at ~ 130 ° C
A fixed length or tension heat treatment of 1.00 to 1.03 times may be performed. This is possible only when the copolyester of the sheath component shows a clear crystalline melting point, and softening starts at Tg or higher as in the conventional heat-bonded composite fiber using the amorphous copolyester as the sheath component. It was impossible with such a thing.

【0017】本発明の熱接着複合繊維は、前述のような
芯成分及び鞘成分用ポリエステルを用い、常法によって
芯鞘型複合繊維を紡糸し、速度 500〜1200m/分で引き
取り通常の延伸方法で延伸を行って配向結晶化させた
後、 100〜130 ℃のヒートドラムを用いて1.00〜1.03倍
の定長又は緊張熱処理を施し、所望により捲縮を付与し
た後、切断してステープルとすることにより得ることが
できる。なお、機械捲縮を付与しておくと、混繊、開繊
性が良好となって好ましい。
The heat-bonded conjugate fiber of the present invention is prepared by spinning the core-sheath type conjugate fiber by a conventional method using the polyester for the core component and the sheath component as described above and drawing it at a speed of 500 to 1200 m / min. After orientation and crystallization by stretching at 100 ° C. to 130 ° C., a fixed length or tension heat treatment of 1.00 to 1.03 times is applied using a heat drum at 100 to 130 ° C., and crimping is applied if desired, and then stapled. Can be obtained. In addition, it is preferable to add mechanical crimping because good mixing and opening properties can be obtained.

【0018】本発明の熱接着複合繊維は、不織布用とし
て好適である。この熱接着複合繊維のみを用いて不織布
とすることもできるが、通常は、この熱接着複合繊維の
鞘成分の融点よりも高融点の他の繊維と併用される。他
の繊維と併用する場合、熱接着複合繊維の割合が5重量
%以上となるようにすることが望ましい。
The heat-bonded conjugate fiber of the present invention is suitable for nonwoven fabrics. Although the non-woven fabric can be formed by using only the heat-bonded composite fiber, it is usually used in combination with another fiber having a higher melting point than the melting point of the sheath component of the heat-bonded composite fiber. When used in combination with another fiber, it is desirable that the proportion of the heat-bonded composite fiber be 5% by weight or more.

【0019】他の繊維としては、ポリエステル繊維、ナ
イロン繊維、アクリル繊維、ポリプロピレン繊維等の合
成繊維、レーヨン繊維、アセテート繊維等の化学繊維、
ウール、木綿、麻等の天然繊維が挙げられる。
Other fibers include synthetic fibers such as polyester fibers, nylon fibers, acrylic fibers and polypropylene fibers, chemical fibers such as rayon fibers and acetate fibers,
Examples include natural fibers such as wool, cotton and hemp.

【0020】なかでもポリエステル繊維、例えば、PE
T、PBT、ポリエチレン−2,6 −ナフタレート及びこ
れらを主体とし、イソフタル酸、5−ナトリウムスルホ
イソフタル酸、ジエチレングリコール等の共重合成分を
含有したポリエステルからなる繊維が好ましい。また、
ポリエステル繊維は、その断面形態が丸断面であっても
異形断面であってもよいし、中空であっても非中空であ
ってもよい。さらに、その繊度も特に限定されず、用途
による要求特性により決めればよいが、一般的には2〜
20デニールのものが用いられる。また、捲縮形態も特に
限定されないが、不織布をクッション材として用いる場
合には、コンジュゲートタイプの立体捲縮を有するもの
がクッション性の良いものが得られるので好ましい。ポ
リエステル繊維は、通常の詰綿用油剤を付与したもので
も、シリコーン系あるいは非シリコーン系の易滑性油剤
を付与したものでもよい。
Among them, polyester fibers such as PE
Fibers made of T, PBT, polyethylene-2,6-naphthalate, and polyesters containing these as the main components and containing a copolymerization component such as isophthalic acid, 5-sodium sulfoisophthalic acid, and diethylene glycol are preferred. Also,
The cross-sectional shape of the polyester fiber may be a round cross section or a modified cross section, and may be hollow or non-hollow. Further, the fineness is not particularly limited, and may be determined according to the required characteristics depending on the application, but generally 2 to
A 20 denier one is used. The crimp form is also not particularly limited, but when a non-woven fabric is used as a cushion material, one having a conjugate type three-dimensional crimp is preferable because a good cushioning property can be obtained. The polyester fiber may be provided with an ordinary padding oil agent or may be provided with a silicone type or non-silicone type slippery oil agent.

【0021】[0021]

【作用】本発明の熱接着複合繊維は、熱接着成分(鞘成
分)として特定の結晶性共重合ポリエステルを用い、乾
熱収縮率を小さくしたものであるから、熱収縮が少なく
て寸法安定性が良好である。また、熱接着成分が、融点
100℃以上の共重合ポリエステルであるので、これを用
いた不織布等は、使用に際して、例えば70〜80℃位の高
温雰囲気下においても変形し難く、へたり難いものとな
る。
The heat-bonding conjugate fiber of the present invention uses a specific crystalline copolyester as a heat-bonding component (sheath component) and has a small dry heat shrinkage, so that the heat shrinkage is small and the dimensional stability is high. Is good. Also, the heat-adhesive component has a melting point
Since it is a copolyester having a temperature of 100 ° C. or higher, a non-woven fabric or the like using the same is not likely to be deformed even in a high temperature atmosphere of about 70 to 80 ° C. and is hard to set.

【0022】[0022]

【実施例】次に、実施例によって本発明を具体的に説明
する。なお、実施例に記述した諸物性の評価方法は、次
の通りである。 (1) 極限粘度 (〔η〕) フェノールと四塩化エタンの等重量混合物を溶媒とし、
試料濃度 0.5g/dl、温度20℃で測定した。 (2) Tg、Tc及びTm パーキンエルマー社製の示差走査熱量計DSC−7型を
使用し、昇温速度20℃/分で測定した。 (3) 乾熱収縮率 JISL−1015−7−15の方法により50mg/dの
荷重で測定した。 (4) 熱変形度 30cm×30cmの大きさに加熱成形した不織布を、水平に載
置した内接円の直径が20cmの正方形の型枠の中央に置
き、不織布の中心に 200gの錘を載せて 110℃の雰囲気
中に60分間静置した。その後、室温に冷却し、錘を取り
去ってから元の形状に対する不織布中心部の垂れ下がり
程度を測定した。(数字の小さいものほど変形し難いも
のである。) (5) 不織布強力 オリエンテック社製UTM−4型のテンシロンを用い、
幅 2.5cm、長さ15cmの不織布を作製し、引張速度10cm/
分、つかみ間隔10cmの条件で伸長切断し、最大強力を読
みとった。
Next, the present invention will be described specifically with reference to examples. The methods for evaluating various physical properties described in the examples are as follows. (1) Intrinsic viscosity ([η]) Using an equal weight mixture of phenol and ethane tetrachloride as a solvent,
It was measured at a sample concentration of 0.5 g / dl and a temperature of 20 ° C. (2) Tg, Tc, and Tm A differential scanning calorimeter DSC-7 type manufactured by Perkin Elmer was used, and measurement was performed at a temperature rising rate of 20 ° C./min. (3) Dry heat shrinkage It was measured with a load of 50 mg / d by the method of JISL-1015-7-15. (4) Place the heat-formed non-woven fabric with a thermal deformation degree of 30 cm x 30 cm in the center of a square formwork with a horizontally placed inscribed circle of 20 cm in diameter, and place a 200 g weight on the center of the non-woven fabric. And allowed to stand in an atmosphere of 110 ° C. for 60 minutes. Then, after cooling to room temperature and removing the weight, the degree of sagging of the central part of the nonwoven fabric with respect to the original shape was measured. (The smaller the number is, the more difficult it is to deform.) (5) Nonwoven fabric strength Using UTM-4 type Tensilon manufactured by Orientec,
A non-woven fabric with a width of 2.5 cm and a length of 15 cm is produced and the pulling speed is 10 cm /
The sheet was stretched and cut under the condition that the grip interval was 10 cm, and the maximum strength was read.

【0023】実施例1〜7及び比較例1〜5 芯成分として〔η〕0.67、Tm 256℃のPET、鞘成分
としてPETとPBTとのモル比50/50の共重合体とポ
リ−ε−カプロラクトン(PCL)又はポリ−δ−バレ
ロラクトン(PVL)とを表1の割合で共重合した共重
合ポリエステルを用い、各々のペレットを減圧乾燥した
後、通常の芯鞘型複合溶融紡糸装置に供給し、1/1の
複合比率(体積比)で、紡糸温度 270℃、吐出量 206g
/分、紡糸孔数 225、紡糸速度 700m/分の条件で紡糸
した。紡出糸条を18℃の冷風で冷却し、引き取って未延
伸糸を得た。得られた未延伸糸糸条を集束し、10万dの
トウにして延伸倍率 3.3倍、延伸温度60℃で延伸を行
い、表1に示す温度のヒ−トドラムで緊張率1.01倍の緊
張熱処理を施し、押し込み式クリンパ−で捲縮を付与し
た後、長さ51mmに切断して単繊維繊度4dの熱接着複合
繊維を得た。得られた熱接着複合繊維と単繊維繊度2
d、長さ51mmのPET繊維とを50/50の重量比で混綿
し、カード機でウエブとした後、回転乾燥機を用いて表
1に示す温度で加熱接着処理を施し、目付40g/m2の不
織布を得た。熱接着複合繊維の乾熱収縮率、不織布の熱
変形度及び強力を表1に示す。
Examples 1 to 7 and Comparative Examples 1 to 5 [η] 0.67 as a core component, PET having a Tm of 256 ° C., a copolymer having a molar ratio of PET and PBT of 50/50 as a sheath component, and poly-ε-. Copolyester obtained by copolymerizing caprolactone (PCL) or poly-δ-valerolactone (PVL) in the ratio shown in Table 1 was used, and each pellet was dried under reduced pressure and then supplied to a normal core-sheath composite melt spinning device. However, with a composite ratio (volume ratio) of 1/1, spinning temperature 270 ° C, discharge rate 206g
/ Min, the number of spinning holes was 225, and the spinning speed was 700 m / min. The spun yarn was cooled with cold air at 18 ° C. and taken out to obtain an undrawn yarn. The unstretched yarn obtained was bundled, made into a tow of 100,000 d, stretched at a draw ratio of 3.3 times, and stretched at a drawing temperature of 60 ° C., and subjected to a tension heat treatment with a heat drum at a temperature shown in Table 1 and a tension ratio of 1.01 times. Was applied, crimped by a push-in crimper, and then cut into a length of 51 mm to obtain a heat-bonded composite fiber having a single fiber fineness of 4 d. The obtained heat-bonded composite fiber and single fiber fineness 2
d, PET fiber having a length of 51 mm was mixed at a weight ratio of 50/50, made into a web with a card machine, and then heat-bonded at a temperature shown in Table 1 using a rotary dryer to give a basis weight of 40 g / m 2. Two non-woven fabrics were obtained. Table 1 shows the dry heat shrinkage ratio of the heat-bonded composite fiber, the thermal deformation degree of the nonwoven fabric, and the tenacity.

【0024】[0024]

【表1】 [Table 1]

【0025】実施例1〜7では、いずれも製糸性が良好
で、乾熱収縮率の小さい熱接着複合繊維が得られ、これ
を用いた不織布は、強力が大きく、熱変形度の小さいも
のであった。
In each of Examples 1 to 7, a heat-bonding composite fiber having good spinnability and a small dry heat shrinkage was obtained, and a nonwoven fabric using this was one having a high strength and a small thermal deformation degree. there were.

【0026】これに対して、比較例1〜5では、次のよ
うな問題があった。比較例1では、鞘成分のTmが 180
℃を超えるため、不織布成形の際、加熱接着により重合
体の分解が起こり、不織布の熱変形度も大きかった。比
較例2では、鞘成分のTmが低いため、製糸性が不良と
あるとともに、緊張熱処理温度を上げることができず、
不織布の熱変形度が大きかった。比較例3では、鞘成分
のTcが 130℃を超え、Tmが 180℃を超えるため、不
織布成形の際、加熱接着により重合体の分解が起こり、
不織布の熱変形度も大きかった。比較例4では、鞘成分
のTcが低いため、不織布の熱変形度が大きかった。比
較例5では、緊張熱処理温度が低く、乾熱収縮率が大き
いため、不織布成形の際、加熱接着により不織布が収縮
して寸法安定性が悪いとともに、不織布の熱変形度が大
きかった。
On the other hand, Comparative Examples 1 to 5 had the following problems. In Comparative Example 1, the sheath component has a Tm of 180.
Since the temperature was higher than 0 ° C, the polymer was decomposed by heat bonding during the formation of the nonwoven fabric, and the thermal deformation of the nonwoven fabric was also large. In Comparative Example 2, since the sheath component has a low Tm, the spinnability is poor and the tension heat treatment temperature cannot be increased.
The degree of thermal deformation of the non-woven fabric was large. In Comparative Example 3, since the Tc of the sheath component exceeds 130 ° C. and the Tm of the sheath component exceeds 180 ° C., decomposition of the polymer occurs due to heat adhesion during molding of the nonwoven fabric,
The degree of thermal deformation of the non-woven fabric was also large. In Comparative Example 4, since the sheath component had a low Tc, the degree of thermal deformation of the nonwoven fabric was large. In Comparative Example 5, since the tension heat treatment temperature was low and the dry heat shrinkage rate was large, the nonwoven fabric shrank due to heat adhesion during the molding of the nonwoven fabric so that the dimensional stability was poor and the thermal deformation degree of the nonwoven fabric was large.

【0027】[0027]

【発明の効果】本発明によれば、熱収縮率が小さく、寸
法安定性が良好で、高温雰囲気下で使用しても接着強力
が低下して変形することのない不織布等の繊維構造体を
得ることのできるポリエステル系低収縮熱接着複合繊維
が提供される。
According to the present invention, there is provided a fibrous structure such as a non-woven fabric which has a small heat shrinkage ratio, good dimensional stability, and does not deform even if used in a high temperature atmosphere and has a reduced adhesive strength. A polyester-based low shrinkage heat-bonding composite fiber that can be obtained is provided.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 芯成分に融点 220℃以上のポリアルキレ
ンテレフタレート、鞘成分に芳香族ポリエステルと脂肪
族ポリラクトンとからなり、ガラス転移点20〜80℃、結
晶開始温度90〜130 ℃、融点 130〜180 ℃である共重合
ポリエステルを用いた芯鞘複合繊維であり、 100℃での
乾熱収縮率が3%以下であることを特徴とするポリエス
テル系低収縮熱接着複合繊維。
1. A core component composed of polyalkylene terephthalate having a melting point of 220 ° C. or higher, a sheath component composed of an aromatic polyester and an aliphatic polylactone, having a glass transition point of 20 to 80 ° C., a crystal starting temperature of 90 to 130 ° C., and a melting point of 130 to A polyester-based low shrinkage heat-bonding composite fiber, which is a core-sheath composite fiber using a copolyester having a temperature of 180 ° C. and a dry heat shrinkage ratio at 100 ° C. of 3% or less.
JP8168566A 1996-06-06 1996-06-06 Heat-bondable conjugate polyester fiber having low shrinkage Pending JPH09324323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8168566A JPH09324323A (en) 1996-06-06 1996-06-06 Heat-bondable conjugate polyester fiber having low shrinkage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8168566A JPH09324323A (en) 1996-06-06 1996-06-06 Heat-bondable conjugate polyester fiber having low shrinkage

Publications (1)

Publication Number Publication Date
JPH09324323A true JPH09324323A (en) 1997-12-16

Family

ID=15870422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8168566A Pending JPH09324323A (en) 1996-06-06 1996-06-06 Heat-bondable conjugate polyester fiber having low shrinkage

Country Status (1)

Country Link
JP (1) JPH09324323A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475618B1 (en) 2001-03-21 2002-11-05 Kimberly-Clark Worldwide, Inc. Compositions for enhanced thermal bonding
JP2014043657A (en) * 2012-08-27 2014-03-13 Nippon Ester Co Ltd Polyester hollow composite binder fiber
CN103866485A (en) * 2012-12-11 2014-06-18 东丽纤维研究所(中国)有限公司 Heat bonding non-woven fabric and production method and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6475618B1 (en) 2001-03-21 2002-11-05 Kimberly-Clark Worldwide, Inc. Compositions for enhanced thermal bonding
US6946195B2 (en) 2001-03-21 2005-09-20 Kimberly-Clark Worldwide, Inc. Compositions for enhanced thermal bonding
JP2014043657A (en) * 2012-08-27 2014-03-13 Nippon Ester Co Ltd Polyester hollow composite binder fiber
CN103866485A (en) * 2012-12-11 2014-06-18 东丽纤维研究所(中国)有限公司 Heat bonding non-woven fabric and production method and application thereof

Similar Documents

Publication Publication Date Title
JP2002302833A (en) Polyester-based thermoadhesive conjugate fiber and method for producing the same
JP2001172829A (en) Polyester-based conjugate fiber with crimping potential and nonwoven fabric using the same
JP2001049533A (en) Polylactic acid-based conjugate short fiber, nonwoven fabric comprising the same short fiber and production thereof
JPH09268490A (en) Polyester-based heat-resistant wet type nonwoven fabric and its production
JP2003171536A (en) Polyester resin composition
JPH09324323A (en) Heat-bondable conjugate polyester fiber having low shrinkage
JP4233245B2 (en) Polyester composite fiber and method for producing the same
JP4076369B2 (en) Polyester-based heat-bondable hollow composite short fiber and nonwoven fabric
JP3683048B2 (en) Naturally degradable fiber assembly
JPH07119011A (en) Polyester-based heat-resistant nonwoven fabric and its production
JP3879289B2 (en) Method for producing polyester short fiber for cushion material and method for producing cushion material
JPH06101116A (en) Conjugate fiber
JPH11217731A (en) Thermoadhesive conjugate fiber and its production
JP3557027B2 (en) Naturally degradable composite yarn and its product
JPH11158734A (en) Antimicrobial, thermally bondable conjugate yarn and antimicrobial yarn structure
CN112352069B (en) Polyester fiber, pile fabric using same, and method for producing same
JPH09209216A (en) Self-crimping conjugate fiber
JP2005113309A (en) Modified cross-section polytrimethylene terephthalate fiber
JPH11241261A (en) Polyesterfiber structure having shape-memory ability
JP2006118066A (en) Thermoadhesive conjugate fiber
JP2001115340A (en) Polyester hot-melting type conjugated staple fiber and non-woven fabric therefrom
JPH02139415A (en) Polyester conjugate fiber, nonwoven fabric containing the same and production of nonwoven fabric
JP2000328370A (en) Polyester composite fiber and nonwoven fabric including the same
JPH07189101A (en) Soundproof material for automobile
JP2008106394A (en) Core-sheath type conjugated polyester fiber and woven/knitted fabric