JP2003171536A - Polyester resin composition - Google Patents

Polyester resin composition

Info

Publication number
JP2003171536A
JP2003171536A JP2001370574A JP2001370574A JP2003171536A JP 2003171536 A JP2003171536 A JP 2003171536A JP 2001370574 A JP2001370574 A JP 2001370574A JP 2001370574 A JP2001370574 A JP 2001370574A JP 2003171536 A JP2003171536 A JP 2003171536A
Authority
JP
Japan
Prior art keywords
polyester
yarn
blended
fiber
polylactic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001370574A
Other languages
Japanese (ja)
Other versions
JP2003171536A5 (en
JP3925176B2 (en
Inventor
Takashi Ochi
隆志 越智
Toyohiko Masuda
豊彦 増田
Yuhei Maeda
裕平 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2001370574A priority Critical patent/JP3925176B2/en
Publication of JP2003171536A publication Critical patent/JP2003171536A/en
Publication of JP2003171536A5 publication Critical patent/JP2003171536A5/ja
Application granted granted Critical
Publication of JP3925176B2 publication Critical patent/JP3925176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Biological Depolymerization Polymers (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel polyester resin composition which mainly comprises an aliphatic polyester having never existed before and is excellent in high- temperature mechanical characteristics and heat resistance. <P>SOLUTION: This polyester resin composition is prepared by blending an aliphatic polyester with 5-40 wt.% aromatic polyester which is prepared by using a 6C or higher diol ingredient or by copolymerizing a 6C or higher diol ingredient and/or a 6C or higher dicarboxylic acid ingredient. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、脂肪族ポリエステ
ルに芳香族ポリエステルがブレンドされた高温力学特性
に優れたポリエステル樹脂組成物に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyester resin composition which is obtained by blending an aliphatic polyester with an aromatic polyester and has excellent high-temperature mechanical properties.

【0002】[0002]

【従来の技術】最近、地球的規模での環境問題に対し
て、自然環境の中で分解するポリマー素材の開発が切望
されており、脂肪族ポリエステル等、様々なポリマーの
研究・開発、また実用化の試みが活発化している。そし
て、微生物により分解されるポリマー、すなわち生分解
性ポリマーに注目が集まっている。
2. Description of the Related Art Recently, development of a polymer material that decomposes in a natural environment has been earnestly desired for environmental problems on a global scale. Research and development of various polymers such as aliphatic polyester and practical use Attempts to realize this are becoming more active. Attention has been focused on polymers that are decomposed by microorganisms, that is, biodegradable polymers.

【0003】一方、従来のポリマーはほとんど石油資源
を原料としているが、石油資源が将来的に枯渇するので
はないかということ、また石油資源を大量消費すること
により、地質時代より地中に蓄えられていた二酸化炭素
が大気中に放出され、さらに地球温暖化が深刻化するこ
とが懸念されている。しかし、二酸化炭素を大気中から
取り込み成長する植物資源を原料としてポリマーが合成
できれば、二酸化炭素循環により地球温暖化を抑制でき
ることが期待できるのみならず、資源枯渇の問題も同時
に解決できる可能性がある。このため、植物資源を原料
とするポリマー、すなわちバイオマス利用ポリマーに注
目が集まっている。
On the other hand, most conventional polymers use petroleum resources as raw materials, but it is possible that petroleum resources will be depleted in the future, and due to the large consumption of petroleum resources, they will be stored underground in the geological era. It is feared that the carbon dioxide that had been released will be released into the atmosphere, and that global warming will become more serious. However, if polymers can be synthesized from plant resources that take in carbon dioxide from the atmosphere and grow and grow, not only can we expect that global warming can be suppressed by the carbon dioxide cycle, but there is also the possibility that the problem of resource depletion can be solved at the same time. . Therefore, attention has been focused on polymers made from plant resources, that is, polymers using biomass.

【0004】上記2つの点から、バイオマス利用の生分
解性ポリマーが大きな注目を集め、石油資源を原料とす
る従来のポリマーを代替していくことが期待されてい
る。しかしながら、バイオマス利用の生分解性ポリマー
は一般に力学特性、耐熱性が低く、また高コストとなる
といった課題あった。これらを解決できるバイオマス利
用の生分解性ポリマーとして、現在、最も注目されてい
るのは脂肪族ポリエステルの一種であるポリ乳酸であ
る。ポリ乳酸は植物から抽出したでんぷんを発酵するこ
とにより得られる乳酸を原料としたポリマーであり、バ
イオマス利用の生分解性ポリマーの中では力学特性、耐
熱性、コストのバランスが最も優れている。そして、こ
れを利用した樹脂製品、繊維、フィルム、シート等の開
発が急ピッチで行われている。
From the above two points, biodegradable polymers utilizing biomass have attracted great attention and are expected to replace conventional polymers derived from petroleum resources. However, biodegradable polymers using biomass generally have the problems of low mechanical properties and low heat resistance and high cost. As a biodegradable polymer using biomass that can solve these problems, polylactic acid, which is a kind of aliphatic polyester, is currently receiving the most attention. Polylactic acid is a polymer using lactic acid as a raw material, which is obtained by fermenting starch extracted from plants, and has the best balance among mechanical properties, heat resistance and cost among biodegradable polymers using biomass. The development of resin products, fibers, films, sheets, etc. using these is being carried out at a rapid pace.

【0005】しかし、このように最も有望なポリ乳酸で
さえ、従来の石油資源を原料とするポリマーに比べると
いくつかの欠点を有している。このうち大きなものとし
て、高温力学特性が悪いことが挙げられる。ここで、高
温力学特性が悪いとは、ポリ乳酸ポリマーのガラス転移
温度(Tg)である60℃を超えると急激に軟化することを
指している。例えば、温度を変更してポリ乳酸繊維の引
っ張り試験を行うと、70℃付近から急激に軟化し、90℃
では流動に近い形状を示し、寸法安定性が大きく低下す
るのである(図3)。一方、従来のポリマーであるナイ
ロン6ではこのような軟化現象は緩やかであり、90℃で
も充分な力学特性を発揮している(図3)。
However, even the most promising polylactic acid has some drawbacks as compared with the conventional polymers made from petroleum resources. Among them, the large one is that the high temperature mechanical properties are poor. Here, the poor high-temperature mechanical properties mean that the polylactic acid polymer is rapidly softened when it exceeds the glass transition temperature (T g ) of 60 ° C. For example, when the tensile test of polylactic acid fiber is performed at different temperatures, it suddenly softens from around 70 ° C and reaches 90 ° C.
Shows a shape close to that of flow, and the dimensional stability is greatly reduced (Fig. 3). On the other hand, such a softening phenomenon is slow in nylon 6 which is a conventional polymer, and sufficient mechanical properties are exhibited even at 90 ° C (Fig. 3).

【0006】ポリ乳酸は上記したように高温での力学特
性が不良であるため、実際に種々の問題が発生してい
る。例えば、ポリ乳酸の射出成形による自動車用ダッシ
ュボードは60〜70℃で軟化するため、夏季の車内温度80
〜100℃では容易に変形してしまう問題があった。ま
た、繊維では以下のような問題があった。例えば、ポリ
乳酸繊維を織物の経糸に用いるときは、糸の集束性を高
め製織性を向上させる目的で糸を糊付けするが、熱風乾
燥を行うと経糸をぴんと張るためにかけている張力によ
り、糸が伸びてしまうトラブルが発生した。また、ポリ
乳酸繊維に仮撚を施すと、熱板上で糸が急激に軟化する
ため、糸に撚りがかからず捲縮特性が劣るばかりか、熱
板上で糸が破断してしまい、仮撚そのものが困難となる
場合もあった。さらに、このような熱板上でのトラブル
のため、熱板温度は高々110℃までしか上げられず、熱
セットが不足するため捲縮特性が低いのみならず、沸騰
水中での糸の収縮率(沸収)を実用レベルである20%以
下まで低下させることも困難であった。
Since polylactic acid has poor mechanical properties at high temperatures as described above, various problems actually occur. For example, an automobile dashboard made by injection molding of polylactic acid softens at 60 to 70 ° C, so the vehicle interior temperature in summer is 80%.
There was a problem that it was easily deformed at ~ 100 ° C. Further, the fiber has the following problems. For example, when polylactic acid fiber is used as the warp yarn of a woven fabric, the yarn is glued for the purpose of improving the bundle gathering property and the weaving property, but when hot air drying is performed, the yarn is stretched by the tension applied to stretch the warp yarn. There was a problem of stretching. Further, when the false twist is applied to the polylactic acid fiber, the yarn is abruptly softened on the hot plate, so that the yarn is not twisted and the crimp property is inferior, and the yarn is broken on the hot plate. In some cases, false twisting itself becomes difficult. Furthermore, due to such troubles on the hot plate, the hot plate temperature can be raised up to 110 ° C at most, and the heat setting is insufficient, so that not only the crimping property is low but also the shrinkage rate of the yarn in boiling water. It was also difficult to reduce (boiling yield) to a practical level of 20% or less.

【0007】さらに、脂肪族ポリエステルは一般に融点
が低く、融点が最も高い部類であるポリ乳酸でさえ170
℃程度であり、例えばポリ乳酸繊維からなる布帛をアイ
ロン掛けするとポリ乳酸繊維の融解により布帛に穴が空
くといった問題があった。
Furthermore, aliphatic polyesters generally have low melting points, and even the highest melting class of polylactic acid is 170
The temperature is about 0 ° C., for example, when a cloth made of polylactic acid fiber is ironed, there is a problem that holes are formed in the cloth due to melting of the polylactic acid fiber.

【0008】以上のような問題から、ポリ乳酸をはじめ
とする脂肪族ポリエステルは用途展開に大きな制限があ
った。このため、高温での力学特性や融点を向上させた
脂肪族ポリエステルが切望されていた。
Due to the above problems, the application of aliphatic polyesters such as polylactic acid has been greatly limited. Therefore, an aliphatic polyester having improved mechanical properties and melting point at high temperature has been earnestly desired.

【0009】[0009]

【発明が解決しようとする課題】本発明は、優れた高温
力学特性、耐熱性を有する従来には無かった、脂肪族ポ
リエステルを主成分とするポリエステル樹脂組成物を提
供するものである。
DISCLOSURE OF THE INVENTION The present invention provides a polyester resin composition containing an aliphatic polyester as a main component, which has never before been provided with excellent high-temperature mechanical properties and heat resistance.

【0010】[0010]

【課題を解決するための手段】上記目的は、脂肪族ポリ
エステルに、ジオール成分の炭素数が6以上の芳香族ポ
リエステルまたは炭素数が6以上のジオール成分および
/またはジカルボン酸成分が共重合された芳香族ポリエ
ステルが5〜40重量%ブレンドされていることを特徴とす
るポリエステル樹脂組成物により達成される。
[Means for Solving the Problems] The above object is to copolymerize an aliphatic polyester with an aromatic polyester having 6 or more carbon atoms in a diol component or a diol component having 6 or more carbon atoms and / or a dicarboxylic acid component. It is achieved by a polyester resin composition characterized in that an aromatic polyester is blended in an amount of 5 to 40% by weight.

【0011】[0011]

【発明の実施の形態】本発明でいう脂肪族ポリエステル
とは、脂肪族アルキル鎖がエステル結合で連結されたポ
リマーのことをいい、例えばポリ乳酸、ポリヒドロキシ
ブチレート、ポリブチレンサクシネート、ポリグリコー
ル酸、ポリカプロラクトン等が挙げられる。このうち、
前記したようにポリ乳酸が最も好ましい。また、ポリ乳
酸とは乳酸を重合したものを言い、L体あるいはD体の
光学純度は90%以上であると、融点が高く好ましい。ま
た、ポリ乳酸の性質を損なわない範囲で、乳酸以外の成
分を共重合していても、ポリ乳酸以外のポリマーや粒
子、難燃剤、帯電防止剤等の添加物を含有していても良
い。ただし、バイオマス利用、生分解性の観点から、ポ
リマーとして乳酸モノマーは50重量%以上とすることが
重要である。乳酸モノマーは好ましくは75重量%以上、
より好ましくは96重量%以上である。また、ポリ乳酸ポ
リマーの分子量は、重量平均分子量で5万〜50万である
と、力学特性と成形性のバランスが良く好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The aliphatic polyester referred to in the present invention means a polymer in which an aliphatic alkyl chain is linked by an ester bond, and examples thereof include polylactic acid, polyhydroxybutyrate, polybutylene succinate and polyglycol. Examples thereof include acids and polycaprolactone. this house,
As mentioned above, polylactic acid is most preferred. Moreover, polylactic acid means a polymer of lactic acid, and it is preferable that the optical purity of the L-form or D-form is 90% or more because the melting point is high. Further, components other than lactic acid may be copolymerized, or polymers other than polylactic acid, particles, additives such as flame retardants, antistatic agents and the like may be contained, as long as the properties of polylactic acid are not impaired. However, from the viewpoint of biomass utilization and biodegradability, it is important that the lactic acid monomer is 50% by weight or more as a polymer. Lactic acid monomer is preferably 75% by weight or more,
More preferably, it is 96% by weight or more. The molecular weight of the polylactic acid polymer is preferably 50,000 to 500,000 in terms of weight average molecular weight, because the balance between mechanical properties and moldability is good.

【0012】本発明でいう芳香族ポリエステルとは、主
鎖あるいは側鎖中に芳香環を含むポリエステルのことを
いい、例えばポリエチレンテレフタレート(PET)、ポ
リプロピレンテレフタレート(PPT)、ポリブチレンテ
レフタレート(PBT)、ポリヘキサメチレンテレフタレ
ート(PHT)等が挙げられる。しかし、ホモPETやホモPB
Tは一般に脂肪族ポリエステルとの相溶性が低いため、
実質的に脂肪族ポリエステルとのポリマーブレンドは不
可能であった。このため、芳香族ポリエステルと脂肪族
ポリエステルとの相溶性を高めるために、芳香族ポリエ
ステルの主鎖あるいは側鎖に脂肪族性を導入することが
重要である。より具体的には、芳香族ポリエステルのジ
オール成分の炭素数が6以上としたり、芳香族ポリエス
テルに炭素数が6以上のジオール成分および/またはジ
カルボン酸成分を共重合することが重要である。共重合
成分としては、長鎖アルキル鎖やビスフェノールA誘導
体等が好ましい。長鎖アルキル鎖とは、例えば、アルキ
レンジオールや長鎖ジカルボン酸等を挙げることができ
る。ここで、アルキレンジオールとは、例えばポリエチ
レングリコール等のアルキレンオキサイドポリマーやオ
リゴマー、またネオペンチルグリコールやヘキサメチレ
ングリコール等の炭素数の多いジオールが挙げられる。
また、長鎖ジカルボン酸としてはアジピン酸やセバシン
酸等を挙げることができる。共重合比としては、ジオー
ルの場合は全カルボン酸量、ジカルボン酸の場合は全ジ
オール量に対し、2〜15mol%あるいは2〜15重量%とする
ことが好ましい。なお、本発明で用いる、ジオール成分
の炭素数が6以上の芳香族ポリエステルまたは炭素数が6
以上のジオール成分および/またはジカルボン酸が共重
合された芳香族ポリエステルを、簡便のため以下単に
「特定の芳香族ポリエステル」と記載する。
The aromatic polyester referred to in the present invention means a polyester having an aromatic ring in its main chain or side chain, for example, polyethylene terephthalate (PET), polypropylene terephthalate (PPT), polybutylene terephthalate (PBT), Examples thereof include polyhexamethylene terephthalate (PHT). However, Homo PET and Homo PB
Since T generally has low compatibility with aliphatic polyester,
Polymer blends with aliphatic polyesters were virtually impossible. Therefore, in order to enhance the compatibility between the aromatic polyester and the aliphatic polyester, it is important to introduce the aliphaticity into the main chain or side chain of the aromatic polyester. More specifically, it is important that the diol component of the aromatic polyester has 6 or more carbon atoms, or that the diol component and / or dicarboxylic acid component having 6 or more carbon atoms is copolymerized with the aromatic polyester. As the copolymerization component, a long-chain alkyl chain or a bisphenol A derivative is preferable. Examples of long-chain alkyl chains include alkylene diols and long-chain dicarboxylic acids. Here, examples of the alkylene diol include alkylene oxide polymers and oligomers such as polyethylene glycol, and diols having a large number of carbon atoms such as neopentyl glycol and hexamethylene glycol.
Examples of the long-chain dicarboxylic acid include adipic acid and sebacic acid. The copolymerization ratio is preferably 2 to 15 mol% or 2 to 15% by weight based on the total carboxylic acid amount in the case of diol and the total diol amount in the case of dicarboxylic acid. The diol component used in the present invention has an aromatic polyester having 6 or more carbon atoms or has 6 carbon atoms.
The aromatic polyester copolymerized with the above diol component and / or dicarboxylic acid will be simply referred to as "specific aromatic polyester" hereinafter for the sake of simplicity.

【0013】さらに、一般に脂肪族ポリエステルの融点
が170℃以下であるため、ブレンド温度をなるべく低温
化することを考慮し、特定の芳香族ポリエステルにはさ
らにイソフタル酸等を共重合して低融点化することが好
ましい。特定の芳香族ポリエステルの融点は、好ましく
は250℃以下、より好ましくは230℃以下である。ただ
し、脂肪族ポリエステルに特定の芳香族ポリエステルを
ブレンドしたブレンドポリエステル樹脂やその成形体の
耐熱性を向上させる観点から、特定の芳香族ポリエステ
ルの融点は好ましくは170℃以上、より好ましくは200℃
以上である。
Further, since the melting point of the aliphatic polyester is generally 170 ° C. or less, in consideration of lowering the blending temperature as much as possible, the specific aromatic polyester is further copolymerized with isophthalic acid or the like to lower the melting point. Preferably. The melting point of the specific aromatic polyester is preferably 250 ° C. or lower, more preferably 230 ° C. or lower. However, the melting point of the specific aromatic polyester is preferably 170 ° C. or higher, more preferably 200 ° C., from the viewpoint of improving the heat resistance of the blended polyester resin or a molded product thereof in which the specific aromatic polyester is blended with the aliphatic polyester.
That is all.

【0014】また、脂肪族ポリエステルに特定の芳香族
ポリエステルをブレンドしたブレンドポリエステル樹脂
の成形性、成形体の寸法安定性を向上させるために、該
ブレンドポリエステル樹脂が結晶性であることが好まし
い。このため、ブレンドする特定の芳香族ポリエステル
も結晶性であることが好ましい。なお、示差走査熱量計
(DSC)測定において融解ピークを観測できれば、その
ポリマーは結晶性であると判断できる。
In order to improve the moldability of the blended polyester resin obtained by blending the aliphatic polyester with a specific aromatic polyester and the dimensional stability of the molded product, the blended polyester resin is preferably crystalline. Therefore, the specific aromatic polyester to be blended is also preferably crystalline. If a melting peak can be observed in a differential scanning calorimeter (DSC) measurement, the polymer can be judged to be crystalline.

【0015】また、該ブレンドポリエステル樹脂の生分
解性を考慮すると、特定の芳香族ポリエステルのブレン
ド比は該ブレンドポリエステル樹脂全体に対し40重量%
以下であることが重要である。一方、高温力学特性を向
上させる点を考慮すると特定の芳香族ポリエステルのブ
レンド比は5重量%以上であることが重要である。特定の
芳香族ポリエステルのブレンド比は、好ましくは15〜30
重量%である。
In consideration of the biodegradability of the blended polyester resin, the blending ratio of the specific aromatic polyester is 40% by weight based on the whole blended polyester resin.
It is important that: On the other hand, it is important that the blending ratio of the specific aromatic polyester is 5% by weight or more in view of improving the high temperature mechanical properties. The blending ratio of the particular aromatic polyester is preferably 15-30.
% By weight.

【0016】本発明において、高温力学特性が向上する
理由は以下のように考えられる。すなわち、通常、ポリ
乳酸等の脂肪族ポリエステルでは分子鎖間相互作用が弱
く、分子鎖同士がすり抜けやすいため高温力学特性が低
いと考えられる。そこで、特定の芳香族ポリエステルの
持つ芳香環同士強固な相互作用により、脂肪族ポリエス
テル分子鎖を強力に拘束することにより、脂肪族ポリエ
ステル分子鎖を支えることで、ブレンドポリエステル樹
脂の高温力学特性が向上したと考えられる。
The reason why the high temperature mechanical properties are improved in the present invention is considered as follows. That is, it is generally considered that the aliphatic polyester such as polylactic acid has a weak interaction between the molecular chains and is likely to slip through the molecular chains, and thus has a high temperature mechanical property. Therefore, the strong interaction between the aromatic rings of a specific aromatic polyester strongly restrains the aliphatic polyester molecular chain, thereby supporting the aliphatic polyester molecular chain and improving the high-temperature mechanical properties of the blended polyester resin. It is thought to have been done.

【0017】このためには、特定の芳香族ポリエステル
の結晶化あるいは高いTgを利用することが好ましい。ま
た、結晶化あるいは高いTgの効果を充分発揮させるため
には、特定の芳香族ポリエステルと脂肪族ポリエステル
は適度に相溶していることが好ましい。ここで、適度に
相溶しているとは、特定の芳香族ポリエステルと脂肪族
ポリエステルは相分離し、いわゆる海島構造を採ってい
るが、特定の芳香族ポリエステルドメイン中に脂肪族ポ
リエステルがある程度侵入していることを指している。
このような特異なブレンド状態を実現できると、特定の
芳香族ポリエステルが脂肪族ポリエステルを強く拘束す
ることができるのである。この状態は例えば、該ブレン
ドポリエステル成形体のスライスを透過型電子顕微鏡
(TEM)観察し、脂肪族ポリエステルと特定の芳香族ポ
リエステルの仕込み比とTEM観察で得られた海島比との
比較から確かめることができる。また、小角X線散乱に
よる長周期の測定からも情報を得ることができる。
For this purpose, it is preferable to utilize the crystallization of a specific aromatic polyester or a high T g . Further, in order to sufficiently bring out the effect of crystallization or high T g , it is preferable that the specific aromatic polyester and the aliphatic polyester are appropriately compatible with each other. Here, the term “moderately compatible” means that a specific aromatic polyester and an aliphatic polyester are phase-separated and have a so-called sea-island structure, but the aliphatic polyester penetrates into the specific aromatic polyester domain to some extent. Refers to what you are doing.
When such a unique blended state can be realized, the specific aromatic polyester can strongly bind the aliphatic polyester. This state can be confirmed by, for example, observing a slice of the blended polyester molded body with a transmission electron microscope (TEM) and comparing the charging ratio of the aliphatic polyester and the specific aromatic polyester with the sea-island ratio obtained by the TEM observation. You can Information can also be obtained from long-period measurement by small-angle X-ray scattering.

【0018】例えば、実施例1に示したポリ乳酸80重量
%、共重合PET20重量%のブレンド繊維の系では、TEM観察
(図1)で得られた海島比は45面積%:55面積%と、仕込
み比から予測された海島比81面積%:19面積%と比較する
と大幅に島比が高く、ポリ乳酸が共重合PETドメイン中
に侵入していることが示唆される。しかも共重合PETの
長周期は通常10nm程度であるが、実施例1では19nmと約
2倍にも達しており、共重合PET分子鎖が一部ポリ乳酸
分子鎖を挟み込んでいると解釈できる。
For example, 80 weight of polylactic acid shown in Example 1
%, The ratio of sea-island ratio obtained by TEM observation (Fig. 1) is 45 area%: 55 area%, and the sea-island ratio 81 area%: 19 area predicted from the charging ratio. The island ratio is significantly higher than that in the case of%, suggesting that polylactic acid penetrates into the copolymerized PET domain. Moreover, the long period of the copolymerized PET is usually about 10 nm, but in Example 1, it was about 2 times as large as 19 nm, and it can be interpreted that the copolymerized PET molecular chain partially sandwiches the polylactic acid molecular chain.

【0019】一方、特定の芳香族ポリエステルと脂肪族
ポリエステルが分子レベルで完全に相溶してしまうと、
成形性は良いが、お互いの結晶化を阻害したり、Tgの加
成性によりブレンドポリエステルとしてのTg上昇が小さ
くなり、上記したような特定の芳香族ポリエステルによ
る拘束効果が発現せず、高温力学特性を向上させること
ができない場合がある。
On the other hand, when the specific aromatic polyester and the aliphatic polyester are completely compatible at the molecular level,
Although formability good, or inhibit the crystallization of one another, T g increases as the blend polyester with additive property T g of decreases, restraint effect of specific aromatic polyesters as described above does not express, It may not be possible to improve the high temperature mechanical properties.

【0020】また、特定の芳香族ポリエステルと脂肪族
ポリエステルがいわゆる非相溶な場合は、特定の芳香族
ポリエステルドメイン中に脂肪族ポリエステルが侵入で
きず、やはり上記したような効果が発現せず、高温力学
特性を向上させることができないのである。さらに、非
相溶系では相分離に基づく弾性的挙動が強く発現する場
合が多く、該ブレンドポリエステルの成形性が著しく損
なわれるのである。従来、ホモPETやホモPBTと脂肪族ポ
リエステルではこの非相溶系となり、実質的にポリマー
ブレンドが不可能であった。
When the specific aromatic polyester and the aliphatic polyester are so-called incompatible, the aliphatic polyester cannot penetrate into the specific aromatic polyester domain, and the above-mentioned effects are not exhibited, The high temperature mechanical properties cannot be improved. Further, in an incompatible system, elastic behavior due to phase separation often appears strongly, and the moldability of the blended polyester is significantly impaired. In the past, homo-PET or homo-PBT and an aliphatic polyester were incompatible with each other, and polymer blending was virtually impossible.

【0021】このように、高温力学特性と成形性を両立
させるためには、いわゆるブレンド状態は海島構造を採
っており、しかも島ドメインのサイズが直径換算で0.00
1〜10μmである部分を少なくとも一部に有していること
が好ましい。特に繊維、フィルムの場合は、島ドメイン
のサイズが直径換算で0.001〜1μmである部分を少なく
とも一部に有していることが好ましい。ここで、島ドメ
インサイズは、該ブレンドポリエステル樹脂あるいはそ
の成形体をスライスし、TEMで観察することにより測定
することができる。また、該ブレンドポリエステルの一
部においては、海島構造の海と島が判別しがたいような
海島が入り乱れた構造を採っていることも、成形性を向
上させる観点から好ましい。例えば、前記した実施例1
では繊維内層部にその様な状態が観察できる(図1)。
As described above, in order to achieve both high-temperature mechanical properties and moldability, the so-called blended state has a sea-island structure, and the size of the island domain is 0.00 in terms of diameter.
It is preferable to have at least a portion having a thickness of 1 to 10 μm. Particularly in the case of fibers and films, it is preferable that at least a part of the island domain has a size of 0.001 to 1 μm in terms of diameter. Here, the island domain size can be measured by slicing the blended polyester resin or a molded product thereof and observing it by TEM. Further, it is also preferable from the viewpoint of improving moldability that a part of the blended polyester has a sea-island structure in which seas and islands are difficult to distinguish from each other and sea islands are disturbed. For example, the first embodiment described above.
Then, such a state can be observed in the fiber inner layer (Fig. 1).

【0022】本発明のポリエステル樹脂組成物は成形性
に優れているため、射出成形、押出成形、ブロー成形の
ような通常の樹脂成形は元より、紡糸による繊維化や製
膜によるフィルム化といったより高度な溶融成形にも適
用可能である。通常、樹脂の高性能化にはガラス繊維ブ
レンドが利用されているが、ガラス繊維のサイズがミク
ロンオーダー以上であるため、繊維やフィルムに適用し
た場合、繊維径やフィルム厚以上のサイズとなるため、
実質的に製糸や製膜は不可能であった。しかし、本発明
の該ブレンドポリエステルでは、ブレンドされる特定の
芳香族ポリエステルはサブミクロンオーダー以下である
ため、そのような問題が無く、脂肪族ポリエステルの高
性能化、用途拡大に大いに寄与できるのである。特に、
繊維および繊維製品はそれを用いた2次加工も容易であ
り、好ましい。
Since the polyester resin composition of the present invention has excellent moldability, it can be used not only for ordinary resin molding such as injection molding, extrusion molding and blow molding but also for fiberization by spinning and film formation by film formation. It can also be applied to advanced melt molding. Normally, glass fiber blends are used to improve the performance of resins, but since the size of glass fibers is on the order of microns or more, when applied to fibers and films, the size is greater than the fiber diameter or film thickness. ,
It was virtually impossible to make yarn or film. However, in the blended polyester of the present invention, since the specific aromatic polyester to be blended is on the order of submicron or less, there is no such problem, and it can greatly contribute to the high performance of the aliphatic polyester and the expansion of its applications. . In particular,
Fibers and textile products are preferable because secondary processing using them is easy.

【0023】本発明のポリエステル樹脂組成物を利用し
た繊維では、工程通過性や製品の力学的強度を充分高く
保つためには、室温での強度は1.0cN/dtex以上とするこ
とが好ましい。室温での強度は好ましくは2.0cN/dtex以
上である。また、本発明の繊維の室温での伸度は15〜70
%であると、繊維製品にする際の工程通過性が向上し、
好ましい。室温での伸度は、より好ましくは25〜50%で
ある。
The fiber using the polyester resin composition of the present invention preferably has a strength at room temperature of 1.0 cN / dtex or more in order to keep the process passability and the mechanical strength of the product sufficiently high. The strength at room temperature is preferably 2.0 cN / dtex or more. Further, the elongation at room temperature of the fiber of the present invention is 15 to 70.
When it is%, the process passability in making a textile product is improved,
preferable. The elongation at room temperature is more preferably 25 to 50%.

【0024】脂肪族ポリエステルの代表例であるポリ乳
酸繊維では、前記したように90℃では流動に近い強伸度
曲線形状(図3)となってしまい、強度も0.5cN/dtex以
下となってしまうが、本発明の繊維では90℃においても
強度を0.7cN/dtex以上まで引き上げることが可能であ
り、しかもクリープ特性も大幅に向上させることができ
る。クリープ特性としては、90℃で0.5cN/dtex応力下で
の伸びを指標とするが、本発明の繊維ではこれを15%以
下とすることができる。ここで、90℃で0.5cN/dtex応力
下での伸びとは、90℃で繊維の引っ張り試験を行い、強
伸度曲線図において、応力0.5cN/dtexでの伸度を読むこ
とにより得ることができる(図2)。90℃で0.5cN/dtex
応力下での伸びは、好ましくは10%以下である。また、9
0℃での強度が0.7cN/dtex以上であれば、ポリ乳酸繊維
からなる繊維製品の高温での強度を向上でき、好ましい
のである。90℃での強度はより好ましくは1.0cN/dtex以
上である。
As described above, the polylactic acid fiber, which is a typical example of the aliphatic polyester, has a strength-elongation curve shape (FIG. 3) close to a flow at 90 ° C. and a strength of 0.5 cN / dtex or less. However, with the fiber of the present invention, the strength can be increased to 0.7 cN / dtex or more even at 90 ° C., and the creep property can be greatly improved. As the creep property, the elongation at 90 ° C. under 0.5 cN / dtex stress is used as an index, but in the fiber of the present invention, this can be set to 15% or less. Here, the elongation at 90 ° C under 0.5 cN / dtex stress is obtained by performing a tensile test of the fiber at 90 ° C and reading the elongation at stress 0.5 cN / dtex in the strength-elongation curve diagram. Can be done (Fig. 2). 0.5cN / dtex at 90 ℃
The elongation under stress is preferably 10% or less. Also, 9
When the strength at 0 ° C. is 0.7 cN / dtex or more, the strength at high temperature of the fiber product made of polylactic acid fiber can be improved, which is preferable. The strength at 90 ° C is more preferably 1.0 cN / dtex or more.

【0025】本発明の繊維では、沸収が0〜20%であれば
繊維および繊維製品の寸法安定性が良く好ましい。沸収
は好ましくは3〜10%である。
In the fiber of the present invention, when the boiling point is 0 to 20%, the dimensional stability of the fiber and the fiber product is good and it is preferable. The boiling point is preferably 3-10%.

【0026】本発明の繊維の断面形状については丸断
面、中空断面、三葉断面等の多葉断面、その他の異形断
面についても自由に選択することが可能である。また、
繊維の形態は、長繊維、短繊維等特に制限は無く、長繊
維の場合はマルチフィラメントでもモノフィラメントで
も良い。
Regarding the cross-sectional shape of the fiber of the present invention, it is possible to freely select a round cross section, a hollow cross section, a multilobe cross section such as a trilobal cross section, and other irregular cross sections. Also,
The form of the fiber is not particularly limited such as long fiber and short fiber, and in the case of long fiber, it may be multifilament or monofilament.

【0027】本発明の繊維は、織物、編物、不織布の
他、カップやボード等の熱圧縮成形体等の様々な繊維製
品の形態を採ることができる。
The fibers of the present invention can be in the form of various textile products such as woven fabrics, knitted fabrics, non-woven fabrics and thermocompression molded products such as cups and boards.

【0028】本発明のポリエステル樹脂組成物は、樹脂
成形用途においてはケース、ボード、生活資材、車両用
資材、産業資材等に好適に用いることができる。また、
繊維用途においては、仮撚加工用の原糸、シャツやブル
ゾン、パンツといった衣料用途のみならず、カップやパ
ッド等の衣料資材、カーテンやカーペット、マット、家
具等のインテリアや車両内装やベルト、ネット、ロー
プ、重布、袋類、縫い糸、フェルト、不織布、フィルタ
ー、人工芝等の産業資材用途にも好適に用いることがで
きる。また、フィルム、シート用途においては、包装
材、ラベルの他、ラップフィルム等の生活資材、セパレ
ーター等の産業資材にも好適に用いることができる。
The polyester resin composition of the present invention can be suitably used for cases, boards, daily life materials, vehicle materials, industrial materials and the like in resin molding applications. Also,
In textile applications, not only raw yarn for false twisting, clothing such as shirts, blouson and pants, but also clothing materials such as cups and pads, curtains, carpets, mats, furniture interiors, vehicle interiors, belts, nets, etc. It can also be suitably used for industrial materials such as ropes, heavy cloth, bags, sewing threads, felts, non-woven fabrics, filters and artificial grass. In addition, in the use of films and sheets, it can be suitably used as a packaging material, a label, a living material such as a wrap film, and an industrial material such as a separator.

【0029】[0029]

【実施例】以下、本発明を実施例を用いて詳細に説明す
る。なお、実施例中の測定方法は以下の方法を用いた。
EXAMPLES The present invention will be described in detail below with reference to examples. The following methods were used as the measuring methods in the examples.

【0030】A.脂肪族ポリエステルの重量平均分子量 試料のクロロホルム溶液にテトラヒドロフランを混合し
測定溶液とした。これをGPCで測定し、ポリスチレン換
算で重量平均分子量を求めた。
A. Tetrahydrofuran was mixed with a chloroform solution of a weight average molecular weight sample of the aliphatic polyester to prepare a measurement solution. This was measured by GPC, and the weight average molecular weight was calculated in terms of polystyrene.

【0031】B.芳香族ポリエステルの極限粘度[η] オルソクロロフェノール中25℃で測定した。B. Intrinsic viscosity of aromatic polyester [η] Measured in orthochlorophenol at 25 ° C.

【0032】C.室温での強度および伸度 室温(25℃)で、初期試料長=200mm、引っ張り速度=2
00mm/分とし、JIS L1013に示される条件で荷重−伸長曲
線を求めた。次に破断時の荷重値を初期の繊度で割り、
それを強度とし、破断時の伸びを初期試料長で割り、伸
度として強伸度曲線を求めた。
C. Strength and elongation at room temperature At room temperature (25 ℃), initial sample length = 200mm, tensile speed = 2
The load-elongation curve was determined under the conditions specified in JIS L1013 at 00 mm / min. Next, divide the load value at break by the initial fineness,
The strength was taken as the strength, the elongation at break was divided by the initial sample length, and the strength-elongation curve was obtained as the elongation.

【0033】D.90℃で0.5cN/dtex応力下での伸び 測定温度90℃で、上記Cと同様に強伸度曲線を求め、0.
5cN/dtexでの伸度を読み、90℃で0.5cN/dtex応力下での
伸びとした。
D. Elongation measurement temperature at 90 ° C. under 0.5 cN / dtex stress At 90 ° C., a strength-elongation curve was obtained in the same manner as in the above C.
The elongation at 5 cN / dtex was read, and the elongation was measured at 90 ° C under 0.5 cN / dtex stress.

【0034】E.90℃での強度 測定温度90℃で、上記Dと同様に強伸度曲線を求め、荷
重値を初期の繊度で割り90℃での強度とした。
E. Strength measurement at 90 ° C. At a temperature of 90 ° C., a strength / elongation curve was obtained in the same manner as in D, and the load value was divided by the initial fineness to obtain the strength at 90 ° C.

【0035】F.沸収 沸収(%)=[(L0-L1)/L0)]×100(%) L0:延伸糸をかせ取りし初荷重0.09cN/dtex下で測定し
たかせの原長 L1:L0を測定したかせを実質的に荷重フリーの状態で沸
騰水中で15分間処理し、風乾後初荷重0.09cN/dtex下で
のかせ長 G.ポリマーのTgおよび融点 PERKIN ELMER社製DSC-7を用いて2nd runでTgおよび融点
を測定した。この時、試料重量を10mg、昇温速度を16℃
/分とした。
F. Evaporation / evaporation (%) = [(L0-L1) / L0)] × 100 (%) L0: Skein the drawn yarn and measure the original length L1: L0 of the skein measured under an initial load of 0.09 cN / dtex Skein skeins were treated in boiling water for 15 minutes in a substantially load-free state, and after air drying, skein length G. under an initial load of 0.09 cN / dtex. Was measured a T g and a melting point in the 2nd the run with a T g and a melting point manufactured by PERKIN ELMER DSC-7 of the polymer. At this time, the sample weight is 10 mg, and the heating rate is 16 ° C.
/ Minute.

【0036】H.ブレンドポリエステルのブレンド状態
観察 ブレンド繊維の横断面方向に超薄切片を切り出し、透過
型電子顕微鏡(TEM)にてポリエステルのブレンド状態
を観察した。
H. Observation of blended state of blended polyester An ultrathin section was cut in the cross-sectional direction of the blended fiber, and the blended state of the polyester was observed with a transmission electron microscope (TEM).

【0037】TEM装置 :日立社製H-7100FA型 条件 :加速電圧 100kV ここで、島ドメインのサイズとしては、ドメインを円と
仮定し面積から直径換算でサイズを計算した。また、海
島比は画像解析ソフトを用いて算出した。
TEM apparatus: H-7100FA manufactured by Hitachi Ltd. Condition: Accelerating voltage 100 kV Here, as the size of the island domain, it was assumed that the domain was a circle, and the size was calculated by converting the area into a diameter. The sea-island ratio was calculated using image analysis software.

【0038】I.広角X線回折 理学電機社製4036A2型X線回折装置を用い、以下の条件
で赤道線方向の回折強度を測定した。
I. Wide-angle X-ray diffraction Rigaku Denki's 4036A2 type X-ray diffractometer was used to measure the diffraction intensity in the equatorial line direction under the following conditions.

【0039】 X線源 : Cu-Kα線(Niフィルター) 出力 : 40kV×20mA スリット : 2mmφ−1゜−1゜ 検出器 : シンチレーションカウンター 計数記録装置 : 理学電機社製RAD-C型 ステップスキャン : 0.05゜ステップ 積算時間 : 2秒 J.小角X線散乱 理学電機社製RU-200型X線発生装置を用い、小角X線散
乱写真を撮影した。
X-ray source: Cu-Kα ray (Ni filter) Output: 40 kV × 20 mA Slit: 2 mm φ-1 ° -1 ° Detector: Scintillation counter counting recorder: RAD-C type step scan manufactured by Rigaku Denki: 0.05 ° Step integration time: 2 seconds J. Small-angle X-ray scattering A small-angle X-ray scattering photograph was taken using an RU-200 type X-ray generator manufactured by Rigaku Denki.

【0040】 X線源 : Cu-Kα線(Niフィルター) 出力 : 50kV×150mA スリット : 0.5mmφ カメラ半径 : 405mm 露出時間 : 300分 フィルム : Kodak DEF-5 そして、写真上の散乱点間距離r(mm)からBraggの式を
用いて長周期を算出した。
X-ray source: Cu-Kα ray (Ni filter) Output: 50kV × 150mA Slit: 0.5mmφ Camera radius: 405mm Exposure time: 300 minutes Film: Kodak DEF-5 And the distance between scattering points r ( mm) to calculate the long period using the Bragg equation.

【0041】J=λ/2sin[{tan-1(r/R)}/2] J :長周期(nm) R :カメラ半径(405mm) λ:X線の波長(0.15418nm) K.仮撚加工糸の捲縮特性、CR値 仮撚加工糸をかせ取りし、実質的に荷重フリーの状態で
沸騰水中15分間処理し、24時間風乾した。このサンプル
に0.088cN/dtex(0.1gf/d)相当の荷重をかけ水中に浸
漬し、2分後のかせ長L'0を測定した。次に、水中で0.00
88cN/dtex相当の荷重を除き0.0018cN/dtex(2mgf/d)相
当の微荷重に交換し、2分後のかせ長L'1を測定した。そ
して下式によりCR値を計算した。
J = λ / 2sin [{tan −1 (r / R)} / 2] J: long period (nm) R: camera radius (405 mm) λ: wavelength of X-ray (0.15418 nm) K. Crimping characteristics of false-twisted yarn, CR value False-twisted yarn was squeezed, treated in boiling water for 15 minutes in a substantially load-free state, and air-dried for 24 hours. A load equivalent to 0.088 cN / dtex (0.1 gf / d) was applied to this sample and the sample was immersed in water, and the skein length L'0 was measured after 2 minutes. Then in water 0.00
Except for the load equivalent to 88 cN / dtex, the load was changed to a small load equivalent to 0.0018 cN / dtex (2 mgf / d), and the skein length L'1 was measured 2 minutes later. Then, the CR value was calculated by the following formula.

【0042】CR(%)=[(L'0−L'1)/L'0]×100(%) L.捲縮糸の捲縮数 捲縮糸を実質的に荷重フリーの状態で100℃熱水中で自
由に収縮させた後、捲縮数を数えた。
CR (%) = [(L'0-L'1) / L'0] × 100 (%) Number of crimps of crimped yarn The number of crimps was counted after shrinking the crimped yarn in hot water at 100 ° C in a substantially load-free state.

【0043】実施例1 特定の芳香族ポリエステルとしてビスフェノールAエチ
レンオキサイド付加物を6mol%、さらにイソフタル酸を6
mol%共重合した極限粘度0.65の共重合PET(融点220℃)
を用い、これと重量平均分子量15万のホモポリL乳酸
(光学純度99%L乳酸)を235℃で2軸混練機を用い溶融
ブレンドし、ブレンドポリエステルチップを得た。この
時、共重合PETのブレンド比はブレンドポリエステルに
対し20重量%とした。このブレンドポリエステルチップ
のTgは61℃とホモポリL乳酸の60℃とほぼ同等であっ
た。このブレンドポリエステルチップを乾燥し、紡糸温
度を235℃として溶融紡糸し、紡出した糸条5をチムニ
ー4により25℃の冷却風で冷却固化させた後、集束給油
ガイド6により繊維用油剤を塗布し、交絡ガイド7によ
り糸に交絡を付与した(図4)。これの溶融紡糸性には
全く問題が無く、100kg巻き取りでの糸切れはゼロであ
った。その後、周速1500m/分の非加熱の第1引き取りロ
ーラー8で引き取った後、非加熱の第2引き取りローラ
ー9を介し巻き取った。この糸を第1ローラー13温度
90℃で予熱した後、2.8倍に延伸し、第2ローラー14
で130℃で熱セットを行い、非加熱の第3ローラー15
を介し巻き取り、84dtex、36フィラメント、丸断面の延
伸糸16を得た。ここでの延伸性にも全く問題が無く、
100kg巻き取りでの糸切れはゼロであった。
Example 1 As a specific aromatic polyester, 6 mol% of bisphenol A ethylene oxide adduct and 6 parts of isophthalic acid were used.
Copolymer PET with an intrinsic viscosity of 0.65 that was copolymerized with mol% (melting point 220 ° C)
And a homopoly L lactic acid having a weight average molecular weight of 150,000 (optical purity 99% L lactic acid) were melt-blended at 235 ° C. using a biaxial kneader to obtain a blended polyester chip. At this time, the blending ratio of the copolymerized PET was set to 20% by weight based on the blended polyester. The T g of this blended polyester chip was 61 ° C., which was almost the same as 60 ° C. of homopoly L lactic acid. This blended polyester chip is dried, melt-spun at a spinning temperature of 235 ° C., the spun yarn 5 is cooled and solidified by a chimney 4 with a cooling air of 25 ° C., and then a fiber oil agent is applied by a focusing oil supply guide 6. Then, the yarn was entangled by the entanglement guide 7 (FIG. 4). There was no problem with the melt spinnability of this, and there was no yarn breakage after winding 100 kg. After that, it was taken up by an unheated first take-up roller 8 at a peripheral speed of 1500 m / min, and then wound up by an unheated second take-up roller 9. This thread the temperature of the first roller 13
After preheating at 90 ℃, stretched 2.8 times, the second roller 14
Heat-set at 130 ° C with a non-heated third roller 15
The filament was wound up through to obtain a stretched yarn 16 of 84 dtex, 36 filaments and a round cross section. There is no problem with the stretchability here,
There was no yarn breakage after winding 100 kg.

【0044】得られた繊維の90℃での強伸度曲線を図
2、物性値を表1に示すが、従来のポリ乳酸繊維(比較
例1)に比べ降伏応力が高く、90℃での力学特性が大幅
に向上していた。また、これの広角X線回折を行ったと
ころ、PET部分が配向結晶化していることが確認され
た。さらに、これの小角X線散乱により長周期を測定し
たところ19nmと共重合PET単独糸(参考例1)の10nmに
比べ大幅に増加していた。また、糸横断面のTEM観察を
行ったところ、図1に示すように均一に分散した海島構
造を採っており、島のドメインサイズは直径換算でサブ
ミクロンオーダーであった。さらに、海島が逆転してい
る部分も有り、相溶性に優れていることを示唆するもの
であった。また、画像解析により求めた海島比は45面積
%:55面積%であり、仕込み比から予想された81面積%:1
9面積%よりも大幅に島比が大きく、ポリ乳酸が共重合PE
Tドメインに侵入し見かけ上島比が増大しているものと
考えられた。さらに、PET部分の長周期構造が19nmと共
重合PET単独糸の10nmに比べ約2倍となっていることか
ら、PET分子鎖がポリ乳酸分子鎖を挟み込んで強く拘束
していると考えられた。
The strength-elongation curve of the obtained fiber at 90 ° C. is shown in FIG. 2 and the physical properties are shown in Table 1. The yield stress is higher than that of the conventional polylactic acid fiber (Comparative Example 1) and the 90 ° C. The mechanical properties were greatly improved. In addition, wide-angle X-ray diffraction was performed, and it was confirmed that the PET portion was oriented and crystallized. Furthermore, when the long period was measured by small-angle X-ray scattering, it was found to be 19 nm, which was a large increase compared with 10 nm of the copolymer PET single yarn (Reference Example 1). In addition, TEM observation of the cross section of the yarn revealed that it had a uniformly dispersed sea-island structure as shown in FIG. 1, and the domain size of the island was in the submicron order in terms of diameter. Furthermore, there was a part where the sea island was reversed, suggesting that the compatibility was excellent. The sea-island ratio calculated by image analysis is 45 areas.
%: 55 area%, 81 area% predicted from the charging ratio: 1
The island ratio is significantly larger than 9 area%, and polylactic acid is a copolymerized PE.
It is considered that the apparent insular ratio increased by invading the T domain. Furthermore, since the long-period structure of the PET portion is 19 nm, which is about twice as large as that of the copolymerized PET alone yarn, which is 10 nm, it was considered that the PET molecular chain sandwiches the polylactic acid molecular chain and strongly binds it. .

【0045】さらにこの繊維を筒編みし、180℃でアイ
ロン掛けテストを行ったが、筒編み地に穴が空くことは
無く、従来のポリ乳酸繊維(比較例1)に比べ耐熱性が
格段に向上していた。
Further, this fiber was cylindrically knitted and subjected to an ironing test at 180 ° C., but no hole was formed in the tubular knitted fabric, and the heat resistance was remarkably higher than that of the conventional polylactic acid fiber (Comparative Example 1). It was improving.

【0046】参考例1 実施例1で用いた共重合PETを紡糸温度280℃で実施例1
と同様に、溶融紡糸した後、延伸倍率3.0倍、延伸温度9
0℃、熱セット温度130℃で延伸・熱処理し、84dtex、36
フィラメントの丸断面延伸糸を得た。これの小角X線散
乱を測定したところ、長周期は10nmであった。
Reference Example 1 The copolymer PET used in Example 1 was used in Example 1 at a spinning temperature of 280 ° C.
After melt spinning, draw ratio 3.0 times, draw temperature 9
Stretching and heat treatment at 0 ℃, heat set temperature 130 ℃, 84dtex, 36
A filament cross-section stretched yarn was obtained. When the small-angle X-ray scattering of this was measured, the long period was 10 nm.

【0047】実施例2 共重合PETのブレンド比を35重量%とした以外は実施例1
と同様に、紡糸、延伸を行い84dtex、72フィラメント、
丸断面の延伸糸を得た。これの物性値を表1に示すが、
従来のポリ乳酸繊維(比較例1)に比べ90℃での力学特
性が大幅に向上していた。
Example 2 Example 1 except that the blending ratio of copolymerized PET was 35% by weight.
In the same way, spinning and drawing are performed, 84dtex, 72 filaments,
A drawn yarn having a round cross section was obtained. The physical properties of this are shown in Table 1,
Compared with the conventional polylactic acid fiber (Comparative Example 1), the mechanical properties at 90 ° C were significantly improved.

【0048】実施例3 共重合PETのブレンド比を10重量%とした以外は実施例1
と同様に、紡糸、延伸を行い84dtex、144フィラメン
ト、丸断面の延伸糸を得た。この物性値を表1に示す
が、従来のポリ乳酸繊維(比較例1)に比べ90℃での力
学特性が大幅に向上していた。
Example 3 Example 1 except that the blending ratio of copolymerized PET was 10% by weight.
In the same manner as above, spinning and drawing were carried out to obtain drawn yarn having 84 dtex, 144 filaments, and round cross section. The physical properties are shown in Table 1, and the mechanical properties at 90 ° C were significantly improved as compared with the conventional polylactic acid fiber (Comparative Example 1).

【0049】実施例4 特定の芳香族ポリエステルとして分子量1000のポリエチ
レングリコールを4重量%、さらにイソフタル酸を6mol%
共重合した極限粘度0.55の共重合PET(融点240℃)を用
い、これと重量平均分子量20万のホモポリL乳酸(光学
純度99%L乳酸)を250℃で2軸混練機を用い溶融ブレン
ドし、ブレンドポリエステルチップを得た。この時、共
重合PETのブレンド比はブレンドポリエステルに対し20
重量%とした。このブレンドポリエステルチップを乾燥
し、紡糸温度を250℃とした以外は実施例1と同様に紡
糸、延伸を行い164dtex、48フィラメント、丸断面の延
伸糸を得た。これの物性値を表1に示すが、従来のポリ
乳酸繊維(比較例1)に比べ90℃での力学特性が大幅に
向上していた。
Example 4 As a specific aromatic polyester, 4% by weight of polyethylene glycol having a molecular weight of 1000 and 6 mol% of isophthalic acid were used.
Copolymerized PET with a limiting viscosity of 0.55 (melting point 240 ° C) was used and melt-blended with homopoly L-lactic acid (optical purity 99% L-lactic acid) having a weight average molecular weight of 200,000 at 250 ° C using a twin-screw kneader. A blended polyester chip was obtained. At this time, the blending ratio of the copolymerized PET is 20 with respect to the blended polyester.
It was set to% by weight. This blended polyester chip was dried and spun and stretched in the same manner as in Example 1 except that the spinning temperature was 250 ° C to obtain a stretched yarn of 164 dtex, 48 filaments, and a round cross section. The physical properties of this are shown in Table 1, and the mechanical properties at 90 ° C. were significantly improved as compared with the conventional polylactic acid fiber (Comparative Example 1).

【0050】実施例5 特定の芳香族ポリエステルとしてアジピン酸を10mol%、
さらにイソフタル酸を6mol%共重合した極限粘度0.65の
共重合PET(融点225℃)を用い、これと実施例4で使用
したポリ乳酸を240℃で2軸混練機を用い溶融ブレンド
し、紡糸温度を240℃とした以外は、実施例4と同様に
紡糸、延伸を行い84dtex、48フィラメント、丸断面の延
伸糸を得た。この時、共重合PETのブレンド比はブレン
ドポリマーに対し20重量%とした。この物性値を表1に
示すが、従来のポリ乳酸繊維(比較例1)に比べ90℃で
の力学特性が大幅に向上していた。
Example 5 10 mol% of adipic acid as a specific aromatic polyester,
Further, copolymerized PET (melting point 225 ° C.) having an intrinsic viscosity of 0.65 in which 6 mol% of isophthalic acid was copolymerized was melt-blended with the polylactic acid used in Example 4 at 240 ° C. using a twin-screw kneader, and the spinning temperature was adjusted. Was drawn and stretched in the same manner as in Example 4 except that the temperature was 240 ° C. to obtain a stretched yarn with 84 dtex, 48 filaments and a round cross section. At this time, the blending ratio of the copolymerized PET was set to 20% by weight based on the blended polymer. The physical properties are shown in Table 1, and the mechanical properties at 90 ° C were significantly improved as compared with the conventional polylactic acid fiber (Comparative Example 1).

【0051】比較例1 実施例1で使用したポリ乳酸を乾燥した後、220℃で溶
融紡糸し、紡出した糸条5をチムニー4により25℃の冷
却風で糸を冷却固化させた後、集束給油ガイド6により
繊維用油剤を塗布し、交絡ガイド7により糸に交絡を付
与した(図4)。その後、周速1500m/分の非加熱の第1
引き取りローラー8で引き取った後、非加熱の第2引き
取りローラー9を介して糸を巻き取った。この未延伸糸
11を第1ローラー13温度90℃で予熱した後、2.8倍
に延伸し、第2ローラー14で130℃で熱セットを行
い、非加熱の第3ローラー15を介し巻き取り、84dte
x、24フィラメント、丸断面の延伸糸を得た。これの90
℃での強伸度曲線を図2、物性値を表1に示すが、90℃
での力学特性が低いものであった。さらにこの繊維を筒
編みし、180℃でアイロン掛けテストを行ったが、ポリ
乳酸繊維の融解のため筒編み地に大きな穴が空き、耐熱
性が不良なものであった。
Comparative Example 1 The polylactic acid used in Example 1 was dried, melt-spun at 220 ° C., and the spun yarn 5 was cooled and solidified by the chimney 4 with cooling air at 25 ° C. An oil agent for fibers was applied by the focusing refueling guide 6, and the yarn was entangled by the entanglement guide 7 (FIG. 4). After that, the 1st unheated peripheral speed of 1500m / min
After the yarn was taken up by the take-up roller 8, the yarn was wound up through the non-heated second take-up roller 9. This unstretched yarn 11 is preheated at a temperature of 90 ° C. for the first roller 13, then drawn 2.8 times, heat set at 130 ° C. for the second roller 14, and wound up through a non-heated third roller 15 to obtain 84 dte.
A drawn yarn with x, 24 filaments and a round cross section was obtained. 90 of this
The strength and elongation curve at ℃ is shown in Fig. 2 and the physical properties are shown in Table 1.
The mechanical properties at Further, this fiber was knitted and subjected to an ironing test at 180 ° C., but it was found that the polylactide fiber had a large hole in the knitted fabric and the heat resistance was poor.

【0052】比較例2 芳香族ポリエステルとして極限粘度0.55のホモPETを用
いた以外は、実施例4と同様に2軸混練機を用い280℃
で溶融ブレンドし、ブレンドポリエステルチップを得
た。ここで、ホモPETのブレンド比はブレンドポリエス
テルに対し10重量%とした。しかし、ホモPETとポリ乳酸
の相溶性が悪いため、きれいなガットが曳けずチップ品
質の悪いもののとなった。さらに、溶融ブレンド温度が
高すぎるためポリ乳酸の分解による発煙が見られた。こ
のブレンドポリエステルチップを乾燥し、紡糸温度280
℃として実施例4と同様に溶融紡糸を行ったが、ホモPE
Tとポリ乳酸の相溶性が悪いためゴム様の弾性的挙動が
強く発現し、曳糸性に乏しく紡糸不能であった。ここで
得られた吐出物をスライスしTEM観察を行ったところ、
ホモPETとポリ乳酸が完全に相分離していた。
Comparative Example 2 A biaxial kneader was used in the same manner as in Example 4 except that homo-PET having an intrinsic viscosity of 0.55 was used as the aromatic polyester, and 280 ° C.
Were melt-blended to obtain a blended polyester chip. Here, the blending ratio of homo-PET was set to 10% by weight based on the blended polyester. However, due to the poor compatibility between homo-PET and polylactic acid, a clean gut could not be pulled and the chip quality was poor. Further, since the melt blending temperature was too high, smoke was observed due to decomposition of polylactic acid. The blended polyester chips are dried and the spinning temperature is 280
Melt spinning was carried out in the same manner as in Example 4, except that homo PE
Due to the poor compatibility of T and polylactic acid, rubber-like elastic behavior was strongly exhibited, and the spinnability was poor and spinning was impossible. When TEM observation was performed by slicing the discharged product obtained here,
Homo PET and polylactic acid were completely phase separated.

【0053】比較例3 芳香族ポリエステルとして極限粘度0.85のホモPBTを用
い、250℃で比較例2と同様にポリ乳酸と溶融ブレンド
を行った。ここで、ホモPBTのブレンド比はブレンドポ
リエステルに対し10重量%とした。しかし、比較例3同
様、ホモPBTとポリ乳酸の相溶性が悪いため、きれいな
ガットが曳けずチップ品質の悪いもののとなった。この
ブレンドポリエステルチップを乾燥し、紡糸温度250℃
として比較例3と同様に溶融紡糸を行ったが、ホモPBT
とポリ乳酸の相溶性が悪いためゴム様の弾性的挙動が強
く発現し、曳糸性に乏しく紡糸不能であった。ここで得
られた吐出物をスライスしTEM観察を行ったところ、ホ
モPETとポリ乳酸が完全に相分離していた。
Comparative Example 3 Homo PBT having an intrinsic viscosity of 0.85 was used as an aromatic polyester and melt-blended with polylactic acid at 250 ° C. in the same manner as in Comparative Example 2. Here, the blend ratio of homo PBT was set to 10% by weight based on the blend polyester. However, as in Comparative Example 3, the compatibility between homo PBT and polylactic acid was poor, so that a clean gut could not be pulled and the chip quality was poor. The blended polyester chips are dried and the spinning temperature is 250 ° C.
Was melt-spun in the same manner as in Comparative Example 3, but homo PBT was used.
Due to the poor compatibility of polylactic acid, rubber-like elastic behavior was strongly exhibited, and the spinnability was poor and spinning was impossible. When the discharged product obtained here was sliced and observed by TEM, homo-PET and polylactic acid were completely phase-separated.

【0054】比較例4 ポリ乳酸と分子レベルで完全に相溶する高Tgポリマーと
して、ポリメチルメタクリレート(PMMA)をポリ乳酸に
ブレンドした例を示す。PMMA(住友化学社製スミペック
スLG21、Tg=105℃)と乾燥した実施例1で使用したポ
リ乳酸を220℃で2軸混練機を用い溶融ブレンドし、ブ
レンドポリマーチップを得た。この時、PMMAのブレンド
比はブレンドポリマーに対し50重量%とした。このブレ
ンドポリマーチップのTgは75℃とホモポリL乳酸の60℃
に比べ大きく向上した。このブレンドポリマーチップを
乾燥し、紡糸温度を220℃として実施例1と同様に溶融
紡糸した。巻き取った未延伸糸11を第1ローラー13
温度90℃で予熱した後、1.7倍に延伸し、第2ローラー
14で130℃で熱セットを行い、非加熱の第3ローラー
15を介し巻き取り、100dtex、36フィラメント、丸断
面の延伸糸16を得た。この糸の物性を表1に示すが、
室温強度が低く、また90℃での力学特性も低いものであ
った。このように、完全相溶系ではTgの加成性が成立し
ブレンドポリマーのTg向上が不充分であり、かつ高Tg
なっても必ずしも高温力学特性の向上につながるわけで
はなかった。
Comparative Example 4 An example in which polymethylmethacrylate (PMMA) is blended with polylactic acid as a high T g polymer which is completely compatible with polylactic acid at the molecular level is shown. PMMA (SUMIPEX LG21 manufactured by Sumitomo Chemical Co., Ltd., T g = 105 ° C.) and the dried polylactic acid used in Example 1 were melt-blended at 220 ° C. using a biaxial kneader to obtain a blended polymer chip. At this time, the blending ratio of PMMA was 50% by weight based on the blended polymer. The T g of this blended polymer chip is 75 ℃ and that of homopoly L lactic acid is 60 ℃.
Greatly improved compared to. The blended polymer chips were dried and melt-spun in the same manner as in Example 1 except that the spinning temperature was 220 ° C. The undrawn yarn 11 wound up is taken up by the first roller 13
After preheating at a temperature of 90 ° C, it is drawn 1.7 times, heat-set at 130 ° C with the second roller 14, and wound up through the unheated third roller 15, 100dtex, 36 filaments, a stretched yarn 16 with a round cross section. Got The physical properties of this yarn are shown in Table 1.
It had low room temperature strength and low mechanical properties at 90 ° C. Thus, in the completely compatible system is insufficient T g improve blend polymer satisfied additive property of T g, and did not necessarily lead to the improvement of high-temperature mechanical properties even in a high T g.

【0055】比較例5 特開2000-109664号公報の実施例2記載の方法で重合し
た重量平均分子量19万の脂肪族ポリエステルカーボネー
ト(カーボネート単位が14%)と乾燥した光学純度99%、
重量平均分子量20万のホモポリL乳酸を240℃で2軸混
練機を用い溶融ブレンドし、ブレンドポリマーチップを
得た。この時、脂肪族ポリエステルカーボネートのブレ
ンド比はブレンドポリマーに対し50重量%とした。この
ブレンドポリマーチップのTgは65℃であった。このブレ
ンドポリマーチップを乾燥し、紡糸温度を240℃とした
以外は実施例4と同様に溶融紡糸したが、脂肪族ポリエ
ステルカーボネートとポリ乳酸の相溶性が不良であるた
め、糸切れが頻発した。巻き取った未延伸糸を第1ロー
ラー13温度90℃で予熱した後、1.5倍に延伸し、第2
ローラー14で130℃で熱セットを行い、非加熱の第3
ローラー15を介し巻き取り、100dtex、36フィラメン
ト、丸断面の延伸糸16を得たが、延伸性は劣悪であり
糸切れが頻発した。この糸の物性を表1に示すが、室温
強度が低く、また90℃での力学特性も劣悪であった。
Comparative Example 5 Aliphatic polyester carbonate having a weight average molecular weight of 190,000 (14% carbonate unit) polymerized by the method described in Example 2 of JP-A-2000-109664 and dried optical purity 99%,
Homopoly L lactic acid having a weight average molecular weight of 200,000 was melt blended at 240 ° C. using a biaxial kneader to obtain a blended polymer chip. At this time, the blending ratio of the aliphatic polyester carbonate was 50% by weight based on the blended polymer. The T g of this blended polymer chip was 65 ° C. This blended polymer chip was dried and melt-spun in the same manner as in Example 4 except that the spinning temperature was 240 ° C. However, the compatibility of the aliphatic polyester carbonate and polylactic acid was poor, and thus the yarn was frequently broken. The unstretched yarn that has been wound up is preheated at a temperature of 90 ° C for the first roller 13 and then stretched 1.5 times,
Roller 14 sets the heat at 130 ℃,
It was wound around a roller 15 to obtain a drawn yarn 16 having a filament of 100 dtex, 36 filaments and a round cross section, but the drawability was poor and the yarn was frequently broken. The physical properties of this yarn are shown in Table 1, but the room temperature strength was low and the mechanical properties at 90 ° C were also poor.

【0056】[0056]

【表1】 実施例6 実施例1で得た高温力学特性に優れたポリ乳酸繊維に、
延伸倍率1.1倍、ヒーター温度130℃、加工速度400m/分
でフリクションディスク仮撚加工を施した。加工性に問
題無く、糸切れ、毛羽は発生しなかった。また、捲縮特
性の指標であるCR値は28%と仮撚加工糸として充分な捲
縮を有していた。さらに、沸収も5%と充分低いものであ
った。
[Table 1] Example 6 To the polylactic acid fiber excellent in high temperature mechanical properties obtained in Example 1,
Friction disk false twisting was performed at a draw ratio of 1.1 times, a heater temperature of 130 ° C., and a processing speed of 400 m / min. There was no problem in workability and no yarn breakage or fluff occurred. In addition, the CR value, which is an index of crimp characteristics, was 28%, which was sufficient crimp as a false twist textured yarn. Further, the boiling point was 5%, which was sufficiently low.

【0057】実施例7 紡糸速度を3000m/分として実施例1と同様に溶融紡糸を
行い、高配向未延伸糸を得た。これに延伸倍率1.5倍、
ヒーター温度130℃、加工速度400m/分でフリクションデ
ィスク仮撚加工を施した。加工性に問題無く、糸切れ、
毛羽は発生しなかった。また、捲縮特性の指標であるCR
値は25%と仮撚加工糸として充分な捲縮を有していた。
さらに、沸収も5%と充分低いものであった。
Example 7 Melt spinning was carried out in the same manner as in Example 1 at a spinning speed of 3000 m / min to obtain a highly oriented undrawn yarn. The draw ratio is 1.5 times,
Friction disk false twisting was performed at a heater temperature of 130 ° C and a processing speed of 400 m / min. There is no problem in workability, thread breakage,
No fluff was generated. In addition, CR, which is an index of crimp characteristics,
The value was 25%, which was sufficient crimp for false twisted yarn.
Further, the boiling point was 5%, which was sufficiently low.

【0058】比較例6 比較例1で得た従来ポリ乳酸繊維に、延伸倍率1.3倍、
ヒーター温度130℃、加工速度400m/分でフリクションデ
ィスク仮撚加工を施したが、熱板上で糸が弛み糸かけ不
能であった。次に、熱板温度110℃に下げて加工を施し
たところ、やはり糸かけに問題があったが、糸を巻き取
ることは可能であった。ただし、捲縮特性の指標である
CR値は10%と捲縮がほとんど無いものであった。さら
に、熱セットが不足したため沸収も25%と高すぎるもの
であった。
Comparative Example 6 The conventional polylactic acid fiber obtained in Comparative Example 1 was added with a draw ratio of 1.3 times,
Although friction disk false twisting was performed at a heater temperature of 130 ° C and a processing speed of 400 m / min, the yarn was slack on the hot plate and the yarn could not be applied. Next, when the hot plate temperature was lowered to 110 ° C. and processing was performed, there was still a problem in threading, but it was possible to wind the thread. However, it is an index of crimp characteristics
The CR value was 10% and there was almost no crimp. Furthermore, the boiling point was 25%, which was too high due to insufficient heat setting.

【0059】実施例8 実施例1で得られた糸を経糸および緯糸に用い、平織り
を作製した。経糸の糊付け乾燥を110℃で行ったが、糸
が伸びるトラブルは発生しなかった。得られた平織りを
常法にしたがい60℃で精練した後、140℃で中間セット
を施した。さらに常法にしたがい110℃で染色した。得
られた布帛は、きしみ感、ソフト感があり、衣料用とし
て優れた風合いを有していた。
Example 8 A plain weave was produced by using the yarn obtained in Example 1 as a warp yarn and a weft yarn. The warp was pasted and dried at 110 ° C., but no trouble of stretching the yarn occurred. The plain weave obtained was scoured at 60 ° C. according to a conventional method and then subjected to intermediate setting at 140 ° C. Further, it was dyed at 110 ° C. according to a conventional method. The obtained cloth had a squeaky feeling and a soft feeling, and had an excellent texture for clothing.

【0060】比較例7 比較例1で得られた糸を経糸および緯糸に用い、平織り
を作製した。経糸の糊付け乾燥を110℃で行ったが、糸
が伸びてしまい乾燥が不可能であった。
Comparative Example 7 A plain weave was produced by using the yarn obtained in Comparative Example 1 as a warp and a weft. The warp yarn was glued and dried at 110 ° C, but the yarn was stretched and could not be dried.

【0061】実施例9 実施例1で得たブレンドポリマーを溶融紡糸し、これを
1600m/分で引き取りトウとし、90℃水槽中で4倍に延伸
した。そして、クリンパーを通した後、カットし、90℃
で弛緩熱処理を施し、単糸繊度6dtex、繊維長60mmのカ
ットファイバーを得た。これを220℃で熱圧縮成形し厚
さ3mmのボードを得た。これを幅2cmにカットし、支点間
距離50cmとして、中心に1kgの重りを乗せ、100℃で20分
間保持した。冷却後、重りを取り去りボードの残留ソリ
を観察したがソリは見られなかった。
Example 9 The blend polymer obtained in Example 1 was melt-spun and
The tow was collected at 1600 m / min and stretched 4 times in a 90 ° C water bath. Then, after passing through the crimper, cut it and keep it at 90 ° C.
Was subjected to a relaxation heat treatment to obtain a cut fiber with a single yarn fineness of 6 dtex and a fiber length of 60 mm. This was thermocompression-molded at 220 ° C. to obtain a board having a thickness of 3 mm. This was cut into a width of 2 cm, the distance between the fulcrums was set to 50 cm, a weight of 1 kg was placed on the center, and it was held at 100 ° C for 20 minutes. After cooling, the weight was removed and the residual warp of the board was observed, but no warp was found.

【0062】比較例8 比較例1で使用したポリ乳酸を用いた以外は、実施例9
と同様にしてボードを得た。これを実施例9と同様にソ
リを観察したところ、顕著な残留ソリが見られた。
Comparative Example 8 Example 9 was repeated except that the polylactic acid used in Comparative Example 1 was used.
I got a board in the same way as. When the warp was observed in the same manner as in Example 9, a remarkable residual warp was found.

【0063】実施例10 実施例1で得られたブレンドポリエステルチップを乾燥
し、240℃で溶融紡糸を行った。このとき、口金吐出孔
はY型とし、その口金吐出孔長は0.5mmのものを用い
た。紡出糸は800m/分で引き取り、次いで、1段目の延
伸倍率を1.4倍、トータル倍率を4.0倍の条件で2段延伸
を行い、さらにジェットノズルを用いて捲縮を付与して
から450dtex、90フィラメントのカーペット用の嵩高加
工糸を巻き取った。これの捲縮数は15個/mであり、良好
な捲縮を示した。
Example 10 The blended polyester chips obtained in Example 1 were dried and melt-spun at 240 ° C. At this time, the mouthpiece discharge hole was Y-shaped, and the mouthpiece discharge hole length was 0.5 mm. The spun yarn is drawn at 800 m / min, then drawn in two steps under the conditions of the first step draw ratio of 1.4 times and the total draw ratio of 4.0 times, and further crimped using a jet nozzle before 450 dtex. , 90 filament filament bulky yarn was wound up. The number of crimps was 15 / m, indicating a good crimp.

【0064】比較例9 比較例1で使用したポリ乳酸を用いた以外は、実施例1
0と同様にしてカーペット用嵩高加工糸を得た。これの
捲縮数は6個/mであり、不充分な捲縮であった。
Comparative Example 9 Example 1 was repeated except that the polylactic acid used in Comparative Example 1 was used.
A bulky processed yarn for carpet was obtained in the same manner as in No. 0. The number of crimps was 6 / m, which was an insufficient crimp.

【0065】実施例11 実施例1で得られたブレンドポリエステルチップを乾燥
し、240℃に加熱された直径150mmのスクリューを備えた
単軸押出機に投入して、溶融押出を行い、繊維焼結ステ
ンレス金属フィルター内で濾過した後、Tダイよりシー
ト状に吐出し、該シートを表面温度25℃の冷却ドラム上
に、ドラフト比3で20m/分の速度で密着固化させ急冷
し、実質的に無配向の未延伸フィルムを得た。
Example 11 The blended polyester chips obtained in Example 1 were dried, charged into a single-screw extruder equipped with a screw having a diameter of 150 mm and heated to 240 ° C., melt-extruded, and fiber-sintered. After filtering in a stainless metal filter, it was discharged in a sheet form from a T die, and the sheet was adhered and solidified at a draft ratio of 3 at a speed of 20 m / min and rapidly cooled on a cooling drum having a surface temperature of 25 ° C. An unoriented unstretched film was obtained.

【0066】続いて、該未延伸フィルムを、加熱された
複数のロール群からなる縦延伸機を用い、ロールの周速
差を利用して、85℃の温度でフィルムの縦方向に3.5倍
の倍率で延伸した。その後、このフィルムの両端部をク
リップで把持して、テンターに導き、延伸温度85℃、延
伸倍率3.0倍でフィルムの幅方向に延伸した。次いで、1
60℃の温度で熱処理を行った後、室温まで冷却した後、
フィルムエッジを除去し、厚さ20μmの二軸配向フィル
ムを得た。
Subsequently, the unstretched film was stretched 3.5 times in the machine direction of the film at a temperature of 85 ° C. by using a longitudinal stretching machine consisting of a plurality of heated roll groups and utilizing the peripheral speed difference of the rolls. It was stretched at a ratio. After that, both ends of this film were held by clips, introduced into a tenter, and stretched in the width direction of the film at a stretching temperature of 85 ° C. and a stretching ratio of 3.0 times. Then 1
After heat treatment at a temperature of 60 ℃, after cooling to room temperature,
The film edge was removed to obtain a biaxially oriented film having a thickness of 20 μm.

【0067】これの縦方向強度は100MPa、横方向強度は
130MPa、縦方向熱収縮は0.5%、横方向熱収縮は0.5%であ
り、強度、収縮とも充分なものであった。なお、熱収縮
は乾熱120℃雰囲気中に無荷重下30分間放置した時の寸
法変化から求めた。また、90℃での強度は縦方向は45MP
a、横方向が50MPaと充分なものであった。
The longitudinal strength of this is 100 MPa and the lateral strength is
The heat shrinkage at 130 MPa was 0.5% in the longitudinal direction, and the heat shrinkage in the lateral direction was 0.5%. Both strength and shrinkage were sufficient. The heat shrinkage was determined from the dimensional change when left in an atmosphere of dry heat of 120 ° C for 30 minutes under no load. The strength at 90 ℃ is 45MP in the vertical direction.
a, the transverse direction was 50 MPa, which was sufficient.

【0068】比較例10 比較例1で使用したポリ乳酸を用いた以外は、実施例1
1と同様にして、製膜を行ったが160℃での熱処理した
際にポリ乳酸の部分融解が原因と考えられる破れが発生
し、実質的に製膜不能であった。そこで、熱処理温度を
160℃から140℃に低下させて製膜を行い、厚さ20μmの
二軸配向フィルムを得た。
Comparative Example 10 Example 1 was repeated except that the polylactic acid used in Comparative Example 1 was used.
Film formation was carried out in the same manner as in 1, but when heat treatment was carried out at 160 ° C., breakage thought to be caused by partial melting of polylactic acid occurred, and film formation was substantially impossible. Therefore, the heat treatment temperature
The film was formed by lowering the temperature from 160 ° C to 140 ° C to obtain a biaxially oriented film having a thickness of 20 µm.

【0069】これの縦方向強度は110MPa、横方向強度は
150MPa、縦方向熱収縮は2.5%、横方向熱収縮は2.5%であ
り、強度は充分であったが、収縮が大きくなってしまっ
た。さらに、90℃での強度は縦方向は10MPa、横方向が1
3MPaと高温力学特性が著しく劣るものであった。
The longitudinal strength of this is 110 MPa, and the lateral strength is
The heat shrinkage was 150MPa, the longitudinal heat shrinkage was 2.5%, and the transverse heat shrinkage was 2.5%. Although the strength was sufficient, the shrinkage became large. Furthermore, the strength at 90 ℃ is 10MPa in the vertical direction and 1 in the horizontal direction.
The high temperature mechanical properties of 3MPa were extremely inferior.

【0070】実施例12 実施例1で得られたブレンドポリエステルチップを乾燥
し、240℃に加熱された直径150mmのスクリューを備えた
単軸押出機に投入して、シリンダー温度240℃、金型温
度40℃で射出成形し、縦100mm、横20mm、厚さ3mmの試験
片を作製した。雰囲気温度120℃とし、これに支点間距
離80mmで1kgの重りを30分間乗せたが、室温まで冷却し
た時の残留変形は無かった。
Example 12 The blended polyester chips obtained in Example 1 were dried and charged into a single-screw extruder equipped with a screw having a diameter of 150 mm heated to 240 ° C., a cylinder temperature of 240 ° C., and a mold temperature. Injection molding was performed at 40 ° C. to prepare a test piece having a length of 100 mm, a width of 20 mm, and a thickness of 3 mm. The ambient temperature was 120 ° C, and a weight of 1 kg was placed on the fulcrum at a distance of 80 mm for 30 minutes, but there was no residual deformation when cooled to room temperature.

【0071】比較例11 比較例1で使用したポリ乳酸を用い、押出機温度および
シリンダー温度を220℃とした以外は、実施例12と同
様にして試験片を作製した。雰囲気温度120℃とし、こ
れに支点間距離80mmで1kgの重りを30分間乗せたが、室
温まで冷却した時に顕著な残留変形が見られた。
Comparative Example 11 A test piece was produced in the same manner as in Example 12 except that the polylactic acid used in Comparative Example 1 was used and the extruder temperature and the cylinder temperature were 220 ° C. When the ambient temperature was 120 ° C and a weight of 1 kg was placed on the fulcrum at a distance of 80 mm for 30 minutes, significant residual deformation was observed when cooled to room temperature.

【0072】実施例13 脂肪族ポリエステルとして実施例1で用いたポリ乳酸と
ポリブチレンサクシネート(昭和高分子“ビオノーレ”
融点118℃)を3:1でブレンドしたものを用い、これ
に実施例1と同様に共重合PETを20重量%ブレンドしたブ
レンドポリエステルチップを235℃で作製した。そし
て、やはり実施例1と同様にして、84dtex、36フィラメ
ント、丸断面の延伸糸を得た。これの90℃での強度は0.
7cN/dtex、0.5cN/dtex応力下での伸びは12%と充分な高
温力学特性を有していた。
Example 13 Polylactic acid and polybutylene succinate used in Example 1 as an aliphatic polyester (Showa High Polymer "Bionore")
A blended polyester chip having a melting point of 118 ° C.) blended in a ratio of 3: 1 was blended with 20% by weight of copolymerized PET in the same manner as in Example 1 to prepare a blended polyester chip at 235 ° C. Then, in the same manner as in Example 1, 84dtex, 36 filaments, a drawn yarn having a round cross section was obtained. Its strength at 90 ° C is 0.
The elongation under stress of 7cN / dtex and 0.5cN / dtex was 12%, which had sufficient high temperature mechanical properties.

【0073】実施例14 脂肪族ポリエステルとして実施例13のポリブチレンサ
クシネートを用いた以外は、実施例1と同様にして、84
dtex、36フィラメント、丸断面の延伸糸を得た。これの
90℃での強度は0.7cN/dtex、0.5cN/dtex応力下での伸び
は14%と充分な高温力学特性を有していた。
Example 14 The procedure of Example 1 was repeated except that the polybutylene succinate of Example 13 was used as the aliphatic polyester.
A drawn yarn of dtex, 36 filaments, round cross section was obtained. Of this
The strength at 90 ℃ was 0.7 cN / dtex, and the elongation under stress of 0.5 cN / dtex was 14%, which was sufficient for high temperature mechanical properties.

【0074】比較例12 実施例13のポリブチレンサクシネートを比較例1と同
様に220℃で溶融紡糸し、さらに延伸倍率2.2倍、延伸温
度75℃、熱セット温度85℃で延伸・熱処理することによ
り84dtex、36フィラメント、丸断面の延伸糸を得た。こ
れの90℃での強度は0.2cN/dtexと高温力学特性が著しく
劣るものであった。
Comparative Example 12 Polybutylene succinate of Example 13 was melt-spun at 220 ° C. in the same manner as in Comparative Example 1, and further stretched / heat-treated at a draw ratio of 2.2 times, a stretching temperature of 75 ° C. and a heat setting temperature of 85 ° C. A 84dtex, 36 filament, round drawn yarn was obtained. Its strength at 90 ℃ was 0.2cN / dtex, which was extremely inferior in high temperature mechanical properties.

【0075】[0075]

【発明の効果】本発明の脂肪族ポリエステルに特定の芳
香族ポリエステルがブレンドされていることを特徴とす
るポリエステル樹脂組成物を使用することにより、脂肪
族ポリエステルの欠点であった高温力学特性や耐熱性を
大幅に向上することができ、脂肪族ポリエステルの用途
展開を大きく拡げることができる。
EFFECTS OF THE INVENTION By using a polyester resin composition characterized in that a specific aromatic polyester is blended with the aliphatic polyester of the present invention, the disadvantages of the aliphatic polyester are high temperature mechanical properties and heat resistance. The properties can be significantly improved, and the application of the aliphatic polyester can be greatly expanded.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のブレンドポリエステル内の特定の芳香
族ポリエステルと脂肪族ポリエステルのブレンド状態を
示すTEM写真である。
FIG. 1 is a TEM photograph showing a blended state of a specific aromatic polyester and an aliphatic polyester in the blended polyester of the present invention.

【図2】本発明および従来ポリ乳酸繊維の90℃での強伸
度曲線を示す図である。
FIG. 2 is a diagram showing strength-elongation curves at 90 ° C. of the present invention and conventional polylactic acid fibers.

【図3】従来ポリ乳酸繊維およびナイロン6繊維の強伸
度曲線を示す図である。
FIG. 3 is a view showing strength / elongation curves of conventional polylactic acid fiber and nylon 6 fiber.

【図4】紡糸、延伸装置を示す図である。FIG. 4 is a view showing a spinning and drawing device.

【符号の説明】[Explanation of symbols]

1:スピンブロック 2:紡糸パック 3:口金 4:チムニー 5:糸条 6:集束給油ガイド 7:交絡ガイド 8:第1引き取りローラー 9:第2引き取りローラー 10:巻き取り糸 11:未延伸糸 12:フィードローラー 13:第1ローラー 14:第2ローラー 15:第3ローラー 16:延伸糸 1: Spin block 2: Spin pack 3: Base 4: Chimney 5: Thread 6: Focused refueling guide 7: Confounding guide 8: First take-up roller 9: Second take-up roller 10: Winding thread 11: Undrawn yarn 12: Feed roller 13: First roller 14: Second roller 15: Third roller 16: drawn yarn

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4F071 AA43 AA45 BA01 BB05 BB06 BB08 BC01 4J002 CF031 CF052 CF062 CF072 CF181 CF191 GK01 4L035 BB31 BB89 BB91 EE20 4L036 MA05 RA04 UA25    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4F071 AA43 AA45 BA01 BB05 BB06                       BB08 BC01                 4J002 CF031 CF052 CF062 CF072                       CF181 CF191 GK01                 4L035 BB31 BB89 BB91 EE20                 4L036 MA05 RA04 UA25

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】脂肪族ポリエステルに、ジオール成分の炭
素数が6以上の芳香族ポリエステルまたは炭素数が6以上
のジオール成分および/またはジカルボン酸成分が共重
合された芳香族ポリエステルが5〜40重量%ブレンドされ
ていることを特徴とするポリエステル樹脂組成物。
1. An aromatic polyester in which a diol component has 6 or more carbon atoms or an aromatic polyester in which a diol component having 6 or more carbon atoms and / or a dicarboxylic acid component is copolymerized with an aliphatic polyester is 5 to 40 wt. % Blended polyester resin composition.
【請求項2】ジオール成分の炭素数が6以上の芳香族ポ
リエステルまたは炭素数が6以上のジオール成分および
/またはジカルボン酸成分が共重合された芳香族ポリエ
ステルが結晶性であり、融点が170〜250℃であることを
特徴とする請求項1記載のポリエステル樹脂組成物。
2. An aromatic polyester having a carbon number of 6 or more in the diol component or an aromatic polyester in which a diol component having a carbon number of 6 or more and / or a dicarboxylic acid component is copolymerized is crystalline and has a melting point of 170 to 170. The polyester resin composition according to claim 1, which has a temperature of 250 ° C.
【請求項3】脂肪族ポリエステルがポリ乳酸であること
を特徴とする請求項1または2記載のポリエステル樹脂
組成物。
3. The polyester resin composition according to claim 1 or 2, wherein the aliphatic polyester is polylactic acid.
【請求項4】脂肪族ポリエステルと、ジオール成分の炭
素数が6以上の芳香族ポリエステルまたは炭素数が6以上
のジオール成分および/またはジカルボン酸成分が共重
合された芳香族ポリエステルのブレンド状態が海島構造
であり、島サイズが直径換算で0.001〜10μmの部分を少
なくとも一部に有することを特徴とする請求項1〜3記
載のポリエステル樹脂組成物。
4. A blended state of an aliphatic polyester and an aromatic polyester having a diol component having 6 or more carbon atoms or an aromatic polyester obtained by copolymerizing a diol component having 6 or more carbon atoms and / or a dicarboxylic acid component is sea island. The polyester resin composition according to any one of claims 1 to 3, wherein the polyester resin composition has a structure, and has at least a portion having an island size of 0.001 to 10 µm in terms of diameter.
【請求項5】請求項1〜4記載のポリエステル樹脂組成
物を少なくとも一部に有することを特徴とする成形体。
5. A molded article comprising at least a part of the polyester resin composition according to any one of claims 1 to 4.
【請求項6】成形体が繊維または繊維製品であることを
特徴とする請求項5記載の成形体。
6. The molded product according to claim 5, wherein the molded product is a fiber or a fiber product.
【請求項7】繊維が捲縮糸であることを特徴とする請求
項6記載の繊維。
7. The fiber according to claim 6, wherein the fiber is a crimped yarn.
【請求項8】成形体がフィルムまたはシートであること
を特徴とする請求項5記載の成形体。
8. The molded product according to claim 5, wherein the molded product is a film or a sheet.
【請求項9】成形体が射出成形体または押出成形体また
はブロー成形体であることを特徴とする請求項5記載の
成形体。
9. The molded product according to claim 5, which is an injection molded product, an extrusion molded product or a blow molded product.
JP2001370574A 2001-12-04 2001-12-04 Polyester resin composition Expired - Fee Related JP3925176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001370574A JP3925176B2 (en) 2001-12-04 2001-12-04 Polyester resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001370574A JP3925176B2 (en) 2001-12-04 2001-12-04 Polyester resin composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006147508A Division JP4487973B2 (en) 2006-05-28 2006-05-28 Polyester resin composition

Publications (3)

Publication Number Publication Date
JP2003171536A true JP2003171536A (en) 2003-06-20
JP2003171536A5 JP2003171536A5 (en) 2005-01-06
JP3925176B2 JP3925176B2 (en) 2007-06-06

Family

ID=19179775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001370574A Expired - Fee Related JP3925176B2 (en) 2001-12-04 2001-12-04 Polyester resin composition

Country Status (1)

Country Link
JP (1) JP3925176B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004087813A1 (en) * 2003-03-28 2004-10-14 Kureha Chemical Industry Company, Limited Poly(glycolic acid)-based resin composition and formed article therefrom
JP2006348246A (en) * 2005-06-20 2006-12-28 Matsushita Electric Works Ltd Thermoplastic resin composition and molded article
JP2007039637A (en) * 2005-07-08 2007-02-15 Toray Ind Inc Resin composition and shaped article composed of the same
JP2007224290A (en) * 2006-01-25 2007-09-06 Toray Ind Inc Thermoplastic resin composition and molded product thereof
JP2008007923A (en) * 2006-06-27 2008-01-17 Far Eastern Textile Ltd Deep-dyeable modified polylactic acid fiber, constitutive composition thereof and method for producing the composition
JP2008069467A (en) * 2006-09-12 2008-03-27 Unitica Fibers Ltd Polyester conjugated fiber
JP2009097012A (en) * 2007-09-28 2009-05-07 Unitika Ltd Polyester resin composition, molding body obtained from resin composition thereof, and fiber obtained from resin composition thereof
JP2009518514A (en) * 2005-12-07 2009-05-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Poly (trimethylene terephthalate) / poly (alpha-hydroxy acid) molded article
JP2009144274A (en) * 2007-12-13 2009-07-02 Unitika Ltd Polylactic acid-based filament nonwoven fabric
JP2009293044A (en) * 2009-09-18 2009-12-17 Kureha Corp Polyglygolic acid-based resin composition and molded article of the same
JP2012140633A (en) * 2005-07-08 2012-07-26 Toray Ind Inc Resin composition and molding made therefrom
US8829099B2 (en) 2005-07-08 2014-09-09 Toray Industries, Inc. Resin composition and molded article composed of the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179868B2 (en) 2003-03-28 2007-02-20 Kureha Corporation Polyglycolic acid-based resin composition and shaped product thereof
WO2004087813A1 (en) * 2003-03-28 2004-10-14 Kureha Chemical Industry Company, Limited Poly(glycolic acid)-based resin composition and formed article therefrom
JP2006348246A (en) * 2005-06-20 2006-12-28 Matsushita Electric Works Ltd Thermoplastic resin composition and molded article
JP2007039637A (en) * 2005-07-08 2007-02-15 Toray Ind Inc Resin composition and shaped article composed of the same
US8829099B2 (en) 2005-07-08 2014-09-09 Toray Industries, Inc. Resin composition and molded article composed of the same
JP2012140633A (en) * 2005-07-08 2012-07-26 Toray Ind Inc Resin composition and molding made therefrom
JP2009518514A (en) * 2005-12-07 2009-05-07 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Poly (trimethylene terephthalate) / poly (alpha-hydroxy acid) molded article
JP2007224290A (en) * 2006-01-25 2007-09-06 Toray Ind Inc Thermoplastic resin composition and molded product thereof
JP4579896B2 (en) * 2006-06-27 2010-11-10 遠東新世紀股▲分▼有限公司 Dense dye modified polylactic acid fiber, composition thereof and method for producing the same
JP2008007923A (en) * 2006-06-27 2008-01-17 Far Eastern Textile Ltd Deep-dyeable modified polylactic acid fiber, constitutive composition thereof and method for producing the composition
JP2008069467A (en) * 2006-09-12 2008-03-27 Unitica Fibers Ltd Polyester conjugated fiber
JP4608683B2 (en) * 2006-09-12 2011-01-12 ユニチカトレーディング株式会社 Polyester composite fiber
JP2009097012A (en) * 2007-09-28 2009-05-07 Unitika Ltd Polyester resin composition, molding body obtained from resin composition thereof, and fiber obtained from resin composition thereof
JP2009144274A (en) * 2007-12-13 2009-07-02 Unitika Ltd Polylactic acid-based filament nonwoven fabric
JP2009293044A (en) * 2009-09-18 2009-12-17 Kureha Corp Polyglygolic acid-based resin composition and molded article of the same

Also Published As

Publication number Publication date
JP3925176B2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
KR100901325B1 (en) Polylatic acid fiber
KR100546741B1 (en) Polylactic acid resin, textile products obtained therefrom, and processes for producing textile products
KR100954704B1 (en) Machine crimped synthetic fiber having latent three-dimensional crimpability and method for production thereof
WO2007046397A1 (en) Crimped yarn, method for manufacture thereof, and fiber structure
JP3893995B2 (en) Resin composition and molded body
JP4872339B2 (en) Core-sheath type composite fiber, crimped yarn, and fiber structure using them
JP3925176B2 (en) Polyester resin composition
JP3966043B2 (en) Production method of polylactic acid fiber excellent in heat resistance
MXPA04012282A (en) Poly(trimethylene dicarboxylate) fibers, their manufacture and use.
JP4872630B2 (en) Crimped yarns, fiber structures using them, and patches.
JP3982305B2 (en) Polylactic acid fiber with excellent hydrolysis resistance
JP2006233375A (en) Synthetic fiber and fiber structure composed of the same
JP2008106410A (en) Crimped yarn and fiber structure using the same
JP4487973B2 (en) Polyester resin composition
JP2005232627A (en) Crimp yarn having excellent heat resistance, and fiber structure
JP4729819B2 (en) Polylactic acid fiber with excellent high-temperature mechanical properties
JP3463597B2 (en) Aliphatic polyester false twist yarn with excellent gloss
JP4100063B2 (en) Composite fibers and fiber structures
JP3786004B2 (en) Aliphatic polyester resin composition, molded article and method for producing the same
JP2011157647A (en) Wiping cloth
JP2003293237A (en) Method for polylactic acid fiber
JP3895190B2 (en) Polyester composite false twisted yarn for cut pile knitted fabric and method for producing the same
JP4003506B2 (en) Polylactic acid fiber having 31 helical structure
JP4729832B2 (en) Polylactic acid crimped yarn with excellent high-temperature mechanical properties
JP3925275B2 (en) Polylactic acid crimped yarn excellent in heat resistance and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060528

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070219

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110309

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120309

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130309

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140309

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees