JP7448194B2 - Polyester core-sheath composite fiber - Google Patents

Polyester core-sheath composite fiber Download PDF

Info

Publication number
JP7448194B2
JP7448194B2 JP2020051536A JP2020051536A JP7448194B2 JP 7448194 B2 JP7448194 B2 JP 7448194B2 JP 2020051536 A JP2020051536 A JP 2020051536A JP 2020051536 A JP2020051536 A JP 2020051536A JP 7448194 B2 JP7448194 B2 JP 7448194B2
Authority
JP
Japan
Prior art keywords
core
melting point
temperature
sheath
composite fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020051536A
Other languages
Japanese (ja)
Other versions
JP2021147738A (en
Inventor
慶 石原
淳記 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP2020051536A priority Critical patent/JP7448194B2/en
Publication of JP2021147738A publication Critical patent/JP2021147738A/en
Application granted granted Critical
Publication of JP7448194B2 publication Critical patent/JP7448194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Filtering Materials (AREA)

Description

本発明は、低融点ポリエステルを鞘部に配し、高融点ポリエステルを芯部に配したポリエステル系芯鞘型複合繊維である。 The present invention is a polyester core-sheath type composite fiber in which a low melting point polyester is arranged in the sheath part and a high melting point polyester is arranged in the core part.

従来から、ポリエステル繊維は、機械的物性に優れ、コストは比較的安価であることから、衣料用、産業資材用等、種々の用途に使用されている。また熱接着性の芯鞘型ポリエステル系複合繊維は不織布や布帛の形態維持、メッシュ織物の経糸と緯糸との交点を融着する等の目的に使用されている。 Since polyester fibers have excellent mechanical properties and are relatively inexpensive, they have been used for various purposes such as clothing and industrial materials. In addition, heat-adhesive core-sheath type polyester composite fibers are used for purposes such as maintaining the shape of nonwoven fabrics and fabrics, and fusing the intersections of warps and wefts of mesh fabrics.

ポリエステル系重合体を用いた熱接着性の芯鞘型複合繊維としては、ポリエチレンテレフタレートを(PET)を芯部とし、イソフタル酸成分を多く共重合したポリエステル系共重合体を鞘部とした繊維が広く使用されてきた。しかしながら、このような複合繊維はイソフタル酸が多く共重合されていると非晶性となり、ガラス転移点以上の温度で軟化が始まるため、繊維製造時に熱固定することができなかった。 Heat-adhesive core-sheath composite fibers using polyester polymers include fibers with a core made of polyethylene terephthalate (PET) and a sheath made of a polyester copolymer copolymerized with a large amount of isophthalic acid. has been widely used. However, when such composite fibers are copolymerized with a large amount of isophthalic acid, they become amorphous and begin to soften at temperatures above the glass transition point, so they cannot be heat-set during fiber production.

このように製造時に熱固定がされてない複合繊維を、不織布等の繊維製品を得る際の構成繊維に適用すると、加熱接着処理工程において、複合繊維の収縮が大きく、寸法安定性が悪く、また、このようにして得られた繊維製品を高温雰囲気下で使用すると、接着箇所における接着強力が低下して変形するという問題があった。 If composite fibers that are not heat-set during manufacturing are used as constituent fibers to obtain textile products such as nonwoven fabrics, the composite fibers will shrink significantly during the heat bonding process, resulting in poor dimensional stability. However, when the fiber products obtained in this manner are used in a high temperature atmosphere, there is a problem in that the adhesive strength at the bonding points decreases and the fiber products become deformed.

このような問題を解決するものとして、特許文献1には、芳香族ポリエステルと脂肪族ポリラクトンとからなる低融点の共重合ポリエステルを鞘部とした芯鞘型の熱接着性複合繊維が提案されている。また、特許文献2には、テレフタル酸成分、脂肪族ラクトン成分、エチレングリコール成分及び1、4―ブタンジオール成分からなる特定の共重合ポリエステルを鞘部とした熱接着性複合繊維が提案されている。これらの複合繊維の鞘部に用いられる共重合ポリエステルは結晶性を有するため、繊維製造時の熱固定が可能となり、加熱接着処理を行う際の繊維の収縮率を低くすることができる。しかしながら、脂肪族ポリラクトンや1、4―ブタンジオール成分に起因しガラス転移点が低くなるため、紡糸後の未延伸糸が経時により収縮し、膠着するといった問題があった。またこれらの原料は高コストであるため、得られる複合繊維も比較的高コストになるといった問題もあった。 As a solution to these problems, Patent Document 1 proposes a core-sheath type heat-adhesive conjugate fiber whose sheath is made of a low-melting-point copolyester consisting of an aromatic polyester and an aliphatic polylactone. There is. Further, Patent Document 2 proposes a heat-adhesive composite fiber having a sheath made of a specific copolyester consisting of a terephthalic acid component, an aliphatic lactone component, an ethylene glycol component, and a 1,4-butanediol component. . Since the copolymerized polyester used in the sheath of these composite fibers has crystallinity, it is possible to heat-fix the fiber during fiber production, and it is possible to reduce the shrinkage rate of the fiber during heat bonding treatment. However, since the glass transition point is lowered due to the aliphatic polylactone and 1,4-butanediol components, there is a problem that the undrawn yarn after spinning shrinks over time and becomes stuck. Furthermore, since these raw materials are expensive, there is also the problem that the resulting composite fibers are also relatively expensive.

特開平9-324323号公報Japanese Patent Application Publication No. 9-324323 特開2000-314032号公報Japanese Patent Application Publication No. 2000-314032

本発明は、上記のような問題を解決し、紡糸後の未延伸糸の収縮や膠着が起こりにくく、繊維製品を得る際に熱接着性繊維として用いた場合に寸法安定性が良好であり、200℃以下での熱処理により十分な接着効果が得られ、さらに高温下での使用においても、接着強力の低下による変形が起こりにくく、かつ低コストにて得ることができる芯鞘型ポリエステル系複合繊維を提供することを課題とする。 The present invention solves the above-mentioned problems, and the undrawn yarn after spinning is unlikely to shrink or stick, and has good dimensional stability when used as a heat-adhesive fiber to obtain textile products. A core-sheath type polyester composite fiber that can be obtained at a low cost, with sufficient adhesion effects obtained by heat treatment at temperatures below 200°C, and even when used at high temperatures, deformation due to a decrease in adhesion strength is unlikely to occur. The challenge is to provide the following.

本発明は、上記のような問題を解決するため鋭意検討した結果、本発明に到達した。 The present invention was achieved as a result of intensive studies to solve the above problems.

すなわち、本発明は、芯部に高融点ポリエステル、鞘部に低融点ポリエステルが配されてなる芯鞘型のポリエステル系複合繊維であり、
芯部に配されてなる高融点ポリエステルが、ポリエチレンテレフタレートであり、
鞘部に配されてなる低融点ポリエステルが、ジオール成分がエチレングリコールとジエチレングリコールとを構成成分とし、かつ全ジオール成分に対してジエチレングリコールを2.0~4.5モル%有し、エチレングリコールとジエチレングリコール以外の脂肪族グリコール成分を構成成分とせず、かつ酸成分が脂肪族カルボン酸を構成成分とせず、テレフタル酸とイソフタル酸とを構成成分とし、全酸成分に対してイソフタル酸を18~20モル%有する共重合ポリエステルであり、
該ポリエステル系複合繊維を示差走査熱量測定した際のガラス転移温度が65℃以上、
低融点ポリエステルの融解開始温度が176℃以上、融解ピーク温度が190~205℃、融解完了温度が222℃以下、b/aが0.001~0.030であり、
高融点ポリエステルの融解開始温度が240℃以上、融解ピーク温度が245~256℃、融解完了温度が266℃以下、b/aが0.100以上であることを特徴とする芯鞘型複合繊維を要旨とする。
That is, the present invention is a core-sheath type polyester composite fiber in which a high melting point polyester is arranged in the core part and a low melting point polyester is arranged in the sheath part,
The high melting point polyester arranged in the core is polyethylene terephthalate,
The low melting point polyester disposed in the sheath has a diol component consisting of ethylene glycol and diethylene glycol, and has 2.0 to 4.5 mol% of diethylene glycol based on the total diol component, and contains ethylene glycol and diethylene glycol. The acid component is not an aliphatic carboxylic acid, but is terephthalic acid and isophthalic acid, and isophthalic acid is 18 to 20 moles based on the total acid component. It is a copolymerized polyester having %,
The polyester composite fiber has a glass transition temperature of 65° C. or higher when measured by differential scanning calorimetry,
The low melting point polyester has a melting start temperature of 176°C or higher, a melting peak temperature of 190 to 205°C, a melting completion temperature of 222°C or lower, and a b/a of 0.001 to 0.030,
A core-sheath type composite fiber characterized by a high melting point polyester having a melting start temperature of 240°C or higher, a melting peak temperature of 245 to 256°C, a melting completion temperature of 266°C or lower, and a b/a of 0.100 or higher. This is the summary.

なお、b/aにおけるaは、融点を示すDSC曲線における傾きが最大である接線とベースラインとの交点の温度A1(℃)と温度A2(℃)との差(A1-A2)であり、bは、ピークトップの熱量B2(mW)とピークトップ温度におけるベースラインの熱量B1(mW)との差(B2-B1)を試料量(mg)で除した値である。 Note that a in b/a is the difference (A1-A2) between the temperature A1 (°C) and the temperature A2 (°C) at the intersection of the tangent line with the maximum slope in the DSC curve indicating the melting point and the baseline, b is the value obtained by dividing the difference (B2-B1) between the peak top heat amount B2 (mW) and the baseline heat amount B1 (mW) at the peak top temperature by the sample amount (mg).

以下、本発明について詳細に説明する。 The present invention will be explained in detail below.

本発明の複合繊維は、芯部に高融点ポリエステル、鞘部に低融点ポリエステルが配されてなる芯鞘型のポリエステル系複合繊維である。このポリエステル系複合繊維を示差走査熱量測定した際のガラス転移温度が65℃以上である。ガラス転移温度が65℃未満であると、複合繊維を製造するにあたり、紡糸後の未延伸糸において結晶化しにくいため、収縮や膠着が起こり易く、生産効率がよくない。より好ましいガラス転移温度は、70℃以上である。 The conjugate fiber of the present invention is a core-sheath type polyester conjugate fiber in which a high melting point polyester is arranged in the core portion and a low melting point polyester is arranged in the sheath portion. The glass transition temperature of this polyester composite fiber when measured by differential scanning calorimetry is 65° C. or higher. If the glass transition temperature is less than 65° C., when producing composite fibers, it is difficult to crystallize the undrawn yarn after spinning, which tends to cause shrinkage and sticking, resulting in poor production efficiency. A more preferable glass transition temperature is 70°C or higher.

また、ポリエステル系複合繊維を示差走査熱量測定した際、低融点ポリエステルの融解開始温度が176℃以上、融解ピーク温度が190~205℃、融解完了温度が222℃以下であり、b/aが0.001~0.030である。融解開始温度が176℃未満であると、高温下での使用において、接着強力が低下して、繊維製品の変形が起こり易くなる。同様に融解ピーク温度が190℃未満であると高温下での使用において、接着強力が低下して、繊維製品の変形が起こり易くなる。融解ピーク温度が205℃を超え、融解完了温度が222℃を超えると、このポリエステル系複合繊維の鞘部の低融点ポリエステルを熱接着成分として機能させようとしても、一般的な熱処理装置では、熱接着に要する高い温度に対応していないことが多く、高い熱量を与えることが難しいため、所望の熱接着性を発揮し難い。また、熱接着するに十分な高い温度にできた場合であっても、主体繊維等の他の繊維と併用した用いた場合に、高温熱処理により主体繊維(他の繊維)が熱劣化する恐れがある。上記の理由から、より良好に所望の効果を発揮するためには、融解開始温度は178℃以上、融解ピーク温度は192~203℃、融解完了温度は220℃以下が好ましい。 Furthermore, when polyester composite fibers were subjected to differential scanning calorimetry, the melting start temperature of the low melting point polyester was 176°C or higher, the melting peak temperature was 190 to 205°C, the melting completion temperature was 222°C or lower, and b/a was 0. It is between .001 and 0.030. When the melting start temperature is less than 176°C, the adhesive strength decreases and the textile product is likely to be deformed when used at high temperatures. Similarly, if the melting peak temperature is less than 190°C, the adhesive strength decreases and the textile product is likely to be deformed when used at high temperatures. If the melting peak temperature exceeds 205°C and the melting completion temperature exceeds 222°C, even if you try to make the low melting point polyester in the sheath of the polyester composite fiber function as a thermal adhesive component, general heat treatment equipment will not be able to heat it. They are often not compatible with the high temperatures required for bonding, and it is difficult to apply a high amount of heat, making it difficult to exhibit desired thermal adhesive properties. In addition, even if the temperature is high enough for thermal bonding, there is a risk that the main fiber (other fibers) may be thermally degraded by high-temperature heat treatment when used in combination with other fibers such as the main fiber. be. For the above reasons, in order to better exhibit the desired effect, it is preferable that the melting start temperature is 178°C or higher, the melting peak temperature is 192 to 203°C, and the melting completion temperature is 220°C or lower.

低融点ポリエステルの融解ピークのb/aは、0.001~0.030であり、0.001未満であると、明確な融解ピークを示さなくなり、ガラス転移温度以上から徐々に軟化が始まるため、高温下での使用において、接着強力の低下による変形が起こり易くなる。また、得られる複合繊維の熱収縮率が高い値となる。一方、b/aが0.030を超えると、融解挙動が明確になるものの、十分な接着性を得るために熱処理装置内の温度制御を厳格に制御する必要があり、取扱いの難易度が高くなる。このような理由から、低融点ポリエステルのb/aは0.003~0.025であることが好ましい。 The b/a of the melting peak of the low melting point polyester is 0.001 to 0.030, and if it is less than 0.001, it will not show a clear melting peak and will start to soften gradually from the glass transition temperature or higher. When used at high temperatures, deformation tends to occur due to a decrease in adhesive strength. Moreover, the heat shrinkage rate of the obtained composite fiber becomes a high value. On the other hand, when b/a exceeds 0.030, although the melting behavior becomes clear, it is necessary to strictly control the temperature in the heat treatment equipment to obtain sufficient adhesion, making handling difficult. Become. For these reasons, the b/a of the low melting point polyester is preferably 0.003 to 0.025.

なお、融解ピークのb/aとは、融点を示すDSC曲線から得られるピークのシャープさを示す値である。図1に、融解ピークのb/aを説明するために、融点を示すDSC曲線の一例を示すが、aは、融点を示すDSC曲線における傾きが最大である接線とベースラインとの交点の温度A1(℃)とA2(℃)の差(A1-A2)であり、bは、ピークトップの熱量B2(mW)とピークトップ温度におけるベースラインの熱量B1(mW)との差(B2-B1)を試料量(mg)で除した値である。 Note that b/a of the melting peak is a value indicating the sharpness of the peak obtained from the DSC curve indicating the melting point. Figure 1 shows an example of a DSC curve showing the melting point in order to explain b/a of the melting peak, where a is the temperature at the intersection of the baseline and the tangent line with the maximum slope in the DSC curve showing the melting point. It is the difference (A1-A2) between A1 (°C) and A2 (°C), and b is the difference (B2-B1) between the heat amount B2 (mW) at the peak top and the baseline heat amount B1 (mW) at the peak top temperature. ) divided by the sample amount (mg).

ポリエステル系複合繊維を示差走査熱量測定した際、高融点ポリエステルの融解開始温度は240℃以上、融解ピーク温度は245~256℃、融解完了温度が266℃以下であり、融解ピークのb/aが0.100以上である。融解開始温度が240℃未満で、融解ピーク温度が245℃未満であると、熱収縮率の高い複合繊維となり、熱接着処理時の寸法安定性に劣るものとなる。また、鞘部の低融点ポリエステルを接着成分として機能させるために加熱により溶融させた際、芯部の機械的特性が損なわれやすくなり、芯部の本来の機能、すなわち、繊維形態を維持し機械的強度を保持する機能が保てなくなる。一方、融解ピーク温度が256℃を超え、融解完了温度が266℃を超えると、一般的な溶融紡糸装置での製造が難しくなり、特殊な溶融紡糸装置が必要になり、製造時のエネルギーコストは高くなるため、得られる複合繊維のコストが高くなる。上記の理由から、より良好に所望の効果を発揮するためには、融解開始温度が242℃以上、融解ピーク温度が248~252℃、融解完了温度が264℃以下であることが好ましい。 When polyester composite fibers were subjected to differential scanning calorimetry, the melting start temperature of the high melting point polyester was 240°C or higher, the melting peak temperature was 245 to 256°C, the melting completion temperature was 266°C or lower, and the b/a of the melting peak was It is 0.100 or more. If the melting start temperature is less than 240°C and the melting peak temperature is less than 245°C, the composite fiber will have a high thermal shrinkage rate and will have poor dimensional stability during thermal bonding treatment. In addition, when the low-melting polyester in the sheath is melted by heating to function as an adhesive component, the mechanical properties of the core are likely to be impaired, and the original function of the core, that is, maintaining the fiber form and mechanical The ability to maintain physical strength becomes impossible. On the other hand, if the melting peak temperature exceeds 256°C and the melting completion temperature exceeds 266°C, it will be difficult to manufacture using general melt spinning equipment, and special melt spinning equipment will be required, resulting in lower energy costs during production. As a result, the cost of the resulting composite fiber increases. For the above reasons, in order to better exhibit the desired effect, it is preferable that the melting start temperature is 242°C or higher, the melting peak temperature is 248 to 252°C, and the melting completion temperature is 264°C or lower.

高融点ポリエステルの融解ピークのb/aが0.100未満であると、繊維の熱収縮率が高くなり、低融点ポリエステルを熱接着成分として機能させるための熱処理時において、寸法安定性が劣るものとなる。さらに、強度などの機械的特性に劣る繊維となる。高融点ポリエステルの融解ピークのb/aは0.105以上であることが好ましい。 If b/a of the melting peak of the high melting point polyester is less than 0.100, the thermal shrinkage rate of the fiber will be high and the dimensional stability will be poor during heat treatment to make the low melting point polyester function as a thermal adhesive component. becomes. Furthermore, the fibers are inferior in mechanical properties such as strength. The b/a of the melting peak of the high melting point polyester is preferably 0.105 or more.

上記の熱特性を得るために、鞘部の低融点ポリエステルにおいて、酸成分は、テレフタル酸とイソフタル酸により構成され、全カルボン酸成分に対してイソフタル酸を18~20モル%含む。イソフタル酸の共重合量が18モル%を下回ると、融解開始温度、融解ピーク温度が規定の範囲よりも高くなるため、一般的な熱処理装置では熱融着に必要な高い温度設定が難しく、取扱いが困難となる。また、高い温度設定が可能であったとしても、芯鞘型複合繊維と併用して、他の繊維を主体繊維に用いた場合に、高温での熱処理によって主体繊維が劣化しやすくなる。一方、20モル%を上回ると融解開始温度およびピーク温度、完了温度、b/aが上記した範囲を下回るため、高温下で使用した場合に、接着強力が低下して変形が起こり易くなる。
In order to obtain the above thermal properties, the acid component in the low melting point polyester of the sheath is composed of terephthalic acid and isophthalic acid, and contains 18 to 20 mol% of isophthalic acid based on the total carboxylic acid component. If the amount of copolymerized isophthalic acid is less than 18 mol%, the melting start temperature and melting peak temperature will be higher than the specified range, so it is difficult to set the high temperature required for heat fusion using general heat treatment equipment, and handling becomes difficult. becomes difficult. Further, even if it is possible to set a high temperature, when other fibers are used as the main fiber in combination with the core-sheath composite fiber, the main fiber is likely to deteriorate due to heat treatment at high temperatures. On the other hand, if it exceeds 20 mol %, the melting start temperature, peak temperature, completion temperature, and b/a will fall below the above ranges, so when used at high temperatures, adhesive strength will decrease and deformation will easily occur.

また、上記の熱特性を得るために、鞘成分の低融点ポリエステルにおいて、ジオール成分は、エチレングリコールとジエチレングリコールにより構成され、全グリコール成分に対して、ジエチレングリコールを2.0~4.5モル%含む。ジエチレングリコールの含有量が2.0モル%を下回ると繊維の鞘成分の結晶性が高くなり過ぎ、b/aが規定の範囲である0.030を超え、熱処理時の温度制御をより厳しくする必要があり、取扱いが難しくなる。一方、4.5モル%を上回ると、繊維の結晶性が低下し、b/aが規定の範囲である0.001を下回るため、高温下での使用において、接着強力の低下による変形が起こり易くなる。
In addition, in order to obtain the above thermal properties, the diol component in the low melting point polyester of the sheath component is composed of ethylene glycol and diethylene glycol, and contains 2.0 to 4.5 mol% of diethylene glycol based on the total glycol component. nothing. When the content of diethylene glycol is less than 2.0 mol%, the crystallinity of the fiber sheath component becomes too high, and b/a exceeds the specified range of 0.030, requiring stricter temperature control during heat treatment. This makes handling difficult. On the other hand, if it exceeds 4.5 mol%, the crystallinity of the fiber decreases and b/a falls below the specified range of 0.001, resulting in deformation due to a decrease in adhesive strength when used at high temperatures. It becomes easier.

低融点ポリエステルは、上記した含有比率であって、テレフタル酸、イソフタル酸、エチレングリコール、ジエチレングリコールの4成分から構成されることが好ましい。また、低融点ポリエステルにおいて、脂肪族カルボン酸や脂肪族グリコールが共重合ポリマー中に一定量含まれると、得られる複合繊維のガラス転移点が低下し、紡糸後の未延伸糸に収縮や膠着が発生しやすくなることから、テレフタル酸、イソフタル酸、エチレングリコール、ジエチレングリコールの4成分以外の成分として、脂肪族カルボン酸や脂肪族グリコールを重合時に添加しない。なお、本発明の効果を損なわない範囲であれば、低融点ポリエステルに、酸化防止剤、艶消剤、着色剤、滑剤等の添加剤を含有してもよい。
The low melting point polyester preferably has the above content ratio and is composed of four components: terephthalic acid, isophthalic acid, ethylene glycol, and diethylene glycol. In addition, in low melting point polyester, if a certain amount of aliphatic carboxylic acid or aliphatic glycol is contained in the copolymer, the glass transition point of the resulting conjugate fiber decreases, causing shrinkage and agglutination of the undrawn yarn after spinning. Since this tends to occur, aliphatic carboxylic acids and aliphatic glycols are not added during polymerization as components other than the four components of terephthalic acid, isophthalic acid, ethylene glycol, and diethylene glycol. Note that the low melting point polyester may contain additives such as an antioxidant, a matting agent, a coloring agent, and a lubricant, as long as they do not impair the effects of the present invention.

芯部を構成する高融点ポリエステルはポリエチレンテレフタレート(PET)である。PETを用いることで、上記した高融点ポリエステルの熱特性を得られやすくなり、本発明の複合繊維を熱接着繊維として用いた場合に寸法安定性が良好となり、また機械的特性に優れたものとなる。本発明の効果を損なわない範囲であれば、高融点ポリエステルは酸化防止剤、艶消剤、着色剤、滑剤、結晶核剤等の添加剤を含有してもよい。


The high melting point polyester constituting the core is polyethylene terephthalate (PET) . By using PET, it is easier to obtain the thermal properties of the high melting point polyester described above, and when the composite fiber of the present invention is used as a thermal adhesive fiber, it has good dimensional stability and excellent mechanical properties. Become. The high melting point polyester may contain additives such as antioxidants, matting agents, colorants, lubricants, crystal nucleating agents, etc., as long as they do not impair the effects of the present invention.


鞘部に用いる低融点ポリエステルの固有粘度〔η〕は0.63~070の範囲であることが好ましく0.65~0.70の範囲であることがより好ましい。0.63未満であると紡糸および延伸時に鞘部の低融点ポリエステル側に張力が掛かりにくくなり、低融点ポリエステルの配向結晶化が進みにくくなり、本発明が目的とする熱特性を有する繊維を得ることが難しくなる。また、本発明の複合繊維を湿式不織布用の繊維として用いた場合に、鞘部同士の密着が生じ、水中での水分散性が低下し、斑のある湿式不織布となってしまう恐れがある。さらに繊維製造時に、紡糸ノズルにおける計量性が低下し、繊維セクション分布に劣るものとなる。 The intrinsic viscosity [η] B of the low melting point polyester used for the sheath portion is preferably in the range of 0.63 to 0.70, more preferably in the range of 0.65 to 0.70. If it is less than 0.63, it will be difficult to apply tension to the low melting point polyester side of the sheath during spinning and drawing, making it difficult for the oriented crystallization of the low melting point polyester to proceed, thereby obtaining a fiber having the thermal properties aimed at by the present invention. things become difficult. Furthermore, when the composite fiber of the present invention is used as a fiber for a wet-laid nonwoven fabric, there is a risk that the sheath parts will adhere to each other, resulting in a decrease in water dispersibility in water, resulting in a wet-laid nonwoven fabric with unevenness. Furthermore, during fiber production, the meterability in the spinning nozzle is reduced, resulting in poor fiber section distribution.

低融点ポリエステルの固有粘度〔η〕は芯部に用いる高融点ポリエステルの固有粘度〔η〕よりも低いことが好ましい。低融点ポリエステルの固有粘度が、高融点ポリエステルの固有粘度よりも低いことにより、紡糸、延伸時において、熱収縮しやすい鞘部に過度な引張張力が掛かることを防ぎ、熱接着時の収縮を低くすることができ、寸法安定性に優れた芯鞘複合繊維を得ることができる。 The intrinsic viscosity [η] B of the low melting point polyester is preferably lower than the intrinsic viscosity [η] A of the high melting point polyester used for the core. The intrinsic viscosity of low-melting point polyester is lower than that of high-melting point polyester, which prevents excessive tensile tension from being applied to the sheath, which is prone to heat shrinkage, during spinning and stretching, and reduces shrinkage during heat bonding. A core-sheath composite fiber with excellent dimensional stability can be obtained.

芯部に用いる高融点ポリエステルの固有粘度〔η〕は0.72~0.77であることが好ましく、かつ鞘部の低融点ポリエステルの固有粘度〔η〕との差が、下記(1)を満足し、強度が3.6cN/dtex以上、破断伸度が40~70%であることが好ましい。
(1)0.03≦〔η〕―〔η〕
上記した高融点ポリエステルの固有粘度の範囲とし、かつ2つのポリエステルにおいて(1)式を満たす粘度バランスに設計することで、紡糸、延伸時において芯部にも張力が掛かり易くなり、芯部の配向結晶化が促進され、熱接着時の収縮率を低くすることができ、寸法安定性に優れた芯鞘複合繊維を得ることができる。また機械的特性に優れた繊維構造体を得られやすくなる。
It is preferable that the intrinsic viscosity [η] A of the high melting point polyester used for the core is 0.72 to 0.77, and the difference from the intrinsic viscosity [η] B of the low melting point polyester used for the sheath is as follows (1 ), the strength is preferably 3.6 cN/dtex or more, and the elongation at break is 40 to 70%.
(1) 0.03≦[η] A - [η] B
By setting the intrinsic viscosity of the high melting point polyester in the range described above and designing the two polyesters to have a viscosity balance that satisfies formula (1), tension is easily applied to the core during spinning and drawing, and the orientation of the core is Crystallization is promoted, the shrinkage rate during thermal bonding can be lowered, and a core-sheath composite fiber with excellent dimensional stability can be obtained. In addition, it becomes easier to obtain a fiber structure with excellent mechanical properties.

本発明の複合繊維は、いわゆるステープル繊維の形態の場合、繊維長が25~102mmであり、機械捲縮が付与されている形態がよい。ステープル繊維の場合、上記した熱特性を有することから、本発明の複合繊維からなるウェブは、130℃、5分間熱処理したときのウェブ収縮率は40%以下となり、熱処理時の寸法安定性が良好である。なお、ウェブ収縮率は36%以下であることがより好ましい。なお、ウェブ収縮率は、下記の方法により測定する。 When the composite fiber of the present invention is in the form of a so-called staple fiber, it is preferable that the fiber length is 25 to 102 mm and mechanically crimped. In the case of staple fiber, since it has the above-mentioned thermal properties, the web made of the composite fiber of the present invention has a web shrinkage rate of 40% or less when heat treated at 130°C for 5 minutes, and has good dimensional stability during heat treatment. It is. In addition, it is more preferable that the web shrinkage rate is 36% or less. Note that the web shrinkage rate is measured by the following method.

短繊維をカード機に投入し、目付100g/mのウェブを作製し、得られたウェブより、200×200mmの試料片を裁断により採取し、その試料片を、130℃に設定した恒温乾燥機中に5分間放置後取り出し、熱処理前後のウェブの面積より寸法変化率(ウェブ収縮率)を算出した。測定サンプル数はn=2とした。なお、熱処理前後のウェブの寸法を測定する際は、ウェブの上層、下層の両面それぞれの縦方向の3箇所(2辺および横方向の2辺の中間点同士を結んだ縦方向の1辺)と横方向の2箇所(2辺)の長さ(1サンプルについて両面で縦方向は合計6箇所、横方向は合計4箇所)を測定し、縦方向および横方向の長さの平均値をそれぞれ求め、縦方向(平均値)と横方向(平均値)とを乗じた値をウェブ面積とした。ウェブ収縮率は、下式に基づき、算出した。
ウェブ収縮率(%)=[(熱処理前のウェブ面積-熱処理後のウェブ面積)/熱処理前のウェブ面積]×100
The short fibers were put into a carding machine to produce a web with a basis weight of 100 g/m 2 . A 200 x 200 mm sample piece was cut from the resulting web, and the sample piece was dried at a constant temperature of 130°C. After being left in the machine for 5 minutes, the web was taken out, and the dimensional change rate (web shrinkage rate) was calculated from the area of the web before and after heat treatment. The number of measurement samples was n=2. In addition, when measuring the dimensions of the web before and after heat treatment, three points in the vertical direction on both sides of the upper and lower layers of the web (one vertical side connecting the midpoints of two sides and two horizontal sides) are used. and the length in two locations (two sides) in the horizontal direction (a total of 6 locations in the vertical direction and 4 locations in the horizontal direction on both sides of one sample), and the average value of the length in the vertical and horizontal directions was calculated. The web area was determined by multiplying the vertical direction (average value) by the horizontal direction (average value). The web shrinkage rate was calculated based on the following formula.
Web shrinkage rate (%) = [(web area before heat treatment - web area after heat treatment) / web area before heat treatment] x 100

また、本発明の複合繊維は、いわゆるショートカット繊維の形態の場合、繊維長が1~20mm、機械捲縮が付与されていない形態がよい。ショートカット繊維の場合、上記した熱特性を有することから、複合繊維は、70℃、15分間熱処理したときの繊維の熱収縮率は7.0%以下となり、熱処理時の寸法安定性が良好である。 Further, when the composite fiber of the present invention is in the form of a so-called short-cut fiber, it is preferable that the fiber length is 1 to 20 mm and that it is not mechanically crimped. In the case of short-cut fibers, since they have the above-mentioned thermal properties, the composite fibers have a thermal shrinkage rate of 7.0% or less when heat-treated at 70°C for 15 minutes, and have good dimensional stability during heat treatment. .

本発明の複合繊維の繊度は1.1~35dtexであることが好ましい。1.1dtexを下回ると、紡糸性が悪化し、得られる複合繊維の品質が悪くなる。また35dtexを上回ると紡糸での冷却不足により繊維同士の密着が発生しやすくなる。繊度は1.3~25dtexであることがより好ましい。 The fineness of the composite fiber of the present invention is preferably 1.1 to 35 dtex. When it is less than 1.1 dtex, spinnability deteriorates and the quality of the obtained composite fiber deteriorates. Moreover, if it exceeds 35 dtex, fibers tend to adhere to each other due to insufficient cooling during spinning. The fineness is more preferably 1.3 to 25 dtex.

本発明の複合繊維の芯鞘比率は30/70~70/30wt%であることが好ましく、40/60~60/40wt%がより好ましく、45/55~55/45wt%であることがさらに好ましい。芯比率が30wt%を下回ると、鞘の接着成分が多くなるため、熱収縮率が高くなる傾向となる。一方、芯比率が70wt%を上回ると、鞘の接着成分が少なくなるため、熱接着性に劣る傾向となる。 The core/sheath ratio of the composite fiber of the present invention is preferably 30/70 to 70/30 wt%, more preferably 40/60 to 60/40 wt%, and even more preferably 45/55 to 55/45 wt%. . When the core ratio is less than 30 wt%, the adhesive component of the sheath increases, so the heat shrinkage rate tends to increase. On the other hand, when the core ratio exceeds 70 wt%, the adhesive component of the sheath decreases, so the thermal adhesiveness tends to be poor.

本発明の複合繊維は、芯部に高融点ポリエステル、鞘部に低融点ポリエステルを配した芯鞘型の複合形態となるように溶融紡糸して未延伸糸を得、得られた未延伸糸を熱延伸することにより得る。熱延伸した糸は、所望に応じて機械捲縮を付与し、所望の長さに切断することにより得られる。なお、未延伸糸を熱延伸する際の条件は、熱延伸温度(ローラー温度)を50~80℃とし、延伸倍率3.0~5.5倍がよい。 The composite fiber of the present invention is obtained by melt spinning to obtain an undrawn yarn in a core-sheath type composite form in which a high melting point polyester is placed in the core and a low melting point polyester is placed in the sheath. Obtained by hot stretching. The hot drawn yarn is obtained by mechanically crimping it as desired and cutting it to a desired length. The conditions for hot stretching the undrawn yarn are preferably a hot stretching temperature (roller temperature) of 50 to 80°C and a stretching ratio of 3.0 to 5.5 times.

本発明の複合繊維を用いて、各種の繊維製品を得ることができる。本発明の複合繊維単独で繊維製品としてもよい。本発明の複合繊維は、熱接着機能を有するいわゆるバインダー繊維(熱接着性繊維)でありながら、特定の熱特性を有することから、熱接着のための熱処理において収縮しにくく寸法安定性が良好であるため、複合繊維単独で品位の高い繊維製品を得ることができる。 Various textile products can be obtained using the composite fiber of the present invention. The composite fiber of the present invention may be used alone as a textile product. Although the composite fiber of the present invention is a so-called binder fiber (thermally adhesive fiber) that has a thermal adhesive function, it has specific thermal properties, so it is difficult to shrink during heat treatment for thermal adhesive and has good dimensional stability. Therefore, high-quality textile products can be obtained using composite fibers alone.

また、熱処理を施した際に溶融することのない繊維(主体繊維)を適宜混合することによって繊維製品としてもよい。混合する際の混合量は、繊維製品の要求性能に応じて適宜選択すればよく、繊維製品中の複合繊維の割合は、10~90質量%程度がよい。なお、主体繊維としては、ポリエステル系繊維を選択することにより、本発明のポリエステル系複合繊維の接着成分である低融点ポリエステルとの相溶性が良好であり、熱接着特性を良好に発揮することができる。 Furthermore, fiber products may be produced by appropriately mixing fibers that do not melt when subjected to heat treatment (main fibers). The mixing amount during mixing may be appropriately selected depending on the required performance of the textile product, and the proportion of composite fiber in the textile product is preferably about 10 to 90% by mass. In addition, by selecting polyester fiber as the main fiber, it has good compatibility with the low melting point polyester, which is the adhesive component of the polyester composite fiber of the present invention, and can exhibit good thermal adhesive properties. can.

本発明の複合繊維を用いた繊維製品としては、不織布、固綿、マルチフィラメント糸、紡績糸、マルチフィラメント糸や紡績糸を用いた織物・編物・組紐等が挙げられる。これらの繊維製品は、熱を付与して、熱接着成分である低融点ポリエステルを溶融させて、繊維同士を接着させる。低融点ポリエステルを溶融させるための温度設定としては、低融点ポリエステルの融点以上の温度を付与すればよいが、設定温度の上限は、高融点成分の融点未満とする。 Examples of textile products using the composite fiber of the present invention include nonwoven fabrics, hard cotton, multifilament yarns, spun yarns, and woven fabrics, knitted fabrics, and braids using multifilament yarns and spun yarns. These fiber products are made by applying heat to melt the low melting point polyester, which is a thermal adhesive component, and bond the fibers together. The temperature setting for melting the low melting point polyester may be set to a temperature equal to or higher than the melting point of the low melting point polyester, but the upper limit of the set temperature is less than the melting point of the high melting point component.

繊維製品が不織布の場合は、乾式であっても、湿式であっていずれでもよく、目付けも特に限定するものではない。不織布化手段としては、本発明の複合繊維の低融点ポリエステルが熱接着成分となって繊維同士が熱接着により一体化するものであるが、熱接着前に、構成繊維同士を三次元的に交絡させてもよい。 When the textile product is a nonwoven fabric, it may be dry or wet, and the basis weight is not particularly limited. As a means for forming a non-woven fabric, the low melting point polyester of the composite fiber of the present invention serves as a thermal bonding component, and the fibers are integrated by thermal bonding, but before thermal bonding, the constituent fibers are three-dimensionally entangled with each other. You may let them.

乾式不織布の製造方法について一例を挙げる。本発明の複合繊維以外の他の繊維と混合する場合は、他の繊維を準備して任意の混合割合で計量し、不織布の構成繊維となる繊維をカード機に投入し、解繊して乾式ウェブを作製する。得られたウェブを、熱風処理がなされる連続熱処理機にて、低融点ポリエステルが溶融または軟化する温度で熱接着処理を施し、構成繊維同士が熱接着により一体化した乾式不織布を得る。 An example of a method for producing a dry nonwoven fabric will be given below. When mixing with other fibers other than the composite fiber of the present invention, prepare the other fibers and weigh them at the desired mixing ratio, feed the fibers that will become the constituent fibers of the nonwoven fabric into a carding machine, defibrate them, and dry them. Create a web. The obtained web is subjected to thermal bonding treatment in a continuous heat treatment machine that performs hot air treatment at a temperature at which the low melting point polyester melts or softens, thereby obtaining a dry nonwoven fabric in which the constituent fibers are integrated by thermal bonding.

湿式不織布の製造方法としては、本発明の複合繊維以外の他の繊維と混合する場合は、他の繊維を準備して任意の混合割合で計量し、パルプ離解機に投入し、攪拌(混綿、解繊)し、これを抄紙機にて湿式ウェブを作製する。この湿式ウェブをプレス機にて余分な水分を脱水した後、低融点ポリエステルが溶融または軟化する温度で熱接着処理を施し、構成繊維同士が熱接着により一体化した湿式不織布を得る。 When mixing with other fibers other than the composite fibers of the present invention, the method for manufacturing wet-laid nonwoven fabrics is as follows: Prepare the other fibers, weigh them at an arbitrary mixing ratio, put them into a pulp disintegrator, and stir (mix cotton, This is then used to create a wet web using a paper machine. After removing excess water from this wet web using a press, it is subjected to thermal bonding treatment at a temperature at which the low melting point polyester melts or softens, thereby obtaining a wet nonwoven fabric in which the constituent fibers are integrated by thermal bonding.

このような不織布は、高温状態での使用においても接着点が変形しにくく、形態安定性が良好である。したがって、高温下で使用される工業用資材、例えば、エアフィルター・液体フィルター等の各種ろ過材、自動車の各種内装材、壁装材・防振材・断熱材等の各種建築資材等に好適に使用できる。 In such a nonwoven fabric, the bonding points are not easily deformed even when used in high temperature conditions, and the shape stability is good. Therefore, it is suitable for industrial materials used under high temperatures, such as various filtration media such as air filters and liquid filters, various interior materials for automobiles, and various building materials such as wall covering materials, vibration-proofing materials, and heat insulation materials. Can be used.

本発明によれば、紡糸後の未延伸糸の収縮や膠着が起こりにくく、熱接着性繊維として繊維製品に用いた場合に寸法安定性が良好であり、200℃以下での熱処理により十分な接着効果が得られ、さらに高温下での使用においても、接着強力の低下による変形が起こりにくく、低コストである芯鞘型ポリエステル系複合繊維を提供することができる。 According to the present invention, the undrawn yarn after spinning is unlikely to shrink or stick together, has good dimensional stability when used in textile products as a heat-adhesive fiber, and has sufficient adhesion by heat treatment at 200°C or less. It is possible to provide a core-sheath type polyester conjugate fiber that is effective, is less likely to be deformed due to a decrease in adhesive strength even when used at high temperatures, and is inexpensive.

融解ピークのb/aを説明するために、融点を示すDSC曲線の一例を示すものである。In order to explain b/a of the melting peak, an example of a DSC curve showing the melting point is shown.

次に、本発明を実施例により具体的に説明する。なお、実施例における特性値等の測定法は次のとおりである。
(1)繊維のガラス転移温度、融解開始温度/ピーク温度/終了温度、融解ピークb/a
示差走査型熱量計(パーキンエルマー社製Diamond DSC)を用い、繊維試料を約8.5mg秤量し、25℃から280℃まで昇温速度20℃/分で測定した。
(2)固有粘度〔η〕
フェノールとテトラクロロエタンとの等重量混合物を溶媒とし、20℃で、樹脂(0.2g)を試料として投入し、濃度0.5%溶液とし、常法に基づき20℃にて相対粘度〔ηcr〕を測定し、その値を用いて、下記式により固有粘度〔η〕を算出した。
〔η〕=(-1+√(1+1.24〔ηcr〕))/ 0.31
(3)低融点ポリエステルの共重合量
ポリエステル樹脂を重水素化ヘキサフルオロイソプロパノールと重水素化クロロホルムとの容量比1/20の混合溶媒に溶解させ、日本電子社製LA―400型NMR装置にて 1H-NMRを測定し、得られたチャートの各共重合成分のプロトンのピークの積分強度から求めた。
(4)ジエチレングリコール(DEG)含有量
ポリエステル樹脂2.2gを三角フラスコに投入し、0.8等量の水酸化カリウムメタノール溶液を加え、マグネチックスターラ攪拌下加熱還流してケン化を行う。その後、テレフタル酸を加え中和し、沈殿物を濾過し、ガスクロマトグラフィにて濾液中のDEG含有量を測定した。
(5)未延伸糸の収縮・膠着
紡糸後の未延伸糸を40℃の雰囲気下で72時間保管した後に、目視で確認を行い、収縮・膠着が発生した場合を「有り」、発生しない場合を「無し」とした。
(6)繊維繊度
測定サンプルを20mmの長さに切断すること、繊維を100本取り出し、質量を測定すること、測定回数を4回とした以外は、JIS L1015 8.5.1 A法に準じて測定した。
(7)繊維長
測定数を25本とした以外は、JIS L1015 8.4.1 直接法(C法)に準じて測定した。
Next, the present invention will be specifically explained using examples. In addition, the measuring method of characteristic values etc. in an Example is as follows.
(1) Glass transition temperature of fiber, melting start temperature/peak temperature/end temperature, melting peak b/a
Using a differential scanning calorimeter (Diamond DSC manufactured by PerkinElmer), about 8.5 mg of the fiber sample was weighed and measured from 25°C to 280°C at a heating rate of 20°C/min.
(2) Intrinsic viscosity [η]
Using an equal weight mixture of phenol and tetrachloroethane as a solvent, a resin (0.2 g) was added as a sample at 20°C to make a solution with a concentration of 0.5%, and the relative viscosity [η cr ] was measured, and using the value, the intrinsic viscosity [η] was calculated using the following formula.
[η]=(-1+√(1+1.24[η cr ]))/0.31
(3) Copolymerization amount of low melting point polyester The polyester resin was dissolved in a mixed solvent of deuterated hexafluoroisopropanol and deuterated chloroform at a volume ratio of 1/20, and analyzed using a JEOL LA-400 NMR device. 1H-NMR was measured, and it was determined from the integrated intensity of the proton peak of each copolymer component in the obtained chart.
(4) Diethylene glycol (DEG) content 2.2 g of polyester resin is placed in an Erlenmeyer flask, 0.8 equivalents of potassium hydroxide methanol solution is added, and saponification is carried out by heating to reflux while stirring with a magnetic stirrer. Thereafter, terephthalic acid was added for neutralization, the precipitate was filtered, and the DEG content in the filtrate was measured by gas chromatography.
(5) Shrinkage and adhesion of undrawn yarn After storing the spun undrawn yarn in an atmosphere at 40°C for 72 hours, visually check the result.If shrinkage or adhesion occurs, it is "Yes," and if it does not, it is checked visually. was set as “none”.
(6) Fiber fineness measurement Follow JIS L1015 8.5.1 A method except that the sample was cut to a length of 20 mm, 100 fibers were taken out and the mass was measured, and the number of measurements was 4 times. It was measured using
(7) Measurement was performed according to JIS L1015 8.4.1 direct method (C method), except that the number of fiber length measurements was 25.

実施例1
固有粘度0.70のポリエチレンテレフタレートを芯部に、固有粘度0.69、イソフタル酸共重合量19モル%、DEG含有量3.6モル%である共重合ポリエステルを鞘部に配するよう、孔数1535H、孔径0.5mmの紡糸口金を用い、吐出量1771g/分、芯鞘比率50/50wt%、紡糸温度280℃、紡糸速度776m/分の条件で溶融紡糸を行った。得られた未延伸糸を収束し、115ktexのトウとし、延伸温度76℃、延伸倍率4.0倍の条件で延伸した。次いで、押し込み式クリンパーで機械捲縮を付与し、ラウリルフォスフェートカリウム塩を主成分とする油剤を繊維に付着させた後で、温度87℃の乾燥機にて弛緩熱処理を行い、繊維長51mmに切断し、繊度4.4dtexの芯鞘型複合繊維を得た。
Example 1
The holes were made such that polyethylene terephthalate with an intrinsic viscosity of 0.70 was placed in the core and copolyester with an intrinsic viscosity of 0.69, an isophthalic acid copolymerization amount of 19 mol%, and a DEG content of 3.6 mol% was placed in the sheath. Melt spinning was performed using a spinneret with a diameter of 1,535 mm and a hole diameter of 0.5 mm under the conditions of a discharge rate of 1,771 g/min, a core/sheath ratio of 50/50 wt%, a spinning temperature of 280° C., and a spinning speed of 776 m/min. The obtained undrawn yarn was converged to form a tow of 115 ktex, and stretched at a stretching temperature of 76° C. and a stretching ratio of 4.0 times. Next, mechanical crimping was applied using a push-in crimper, and an oil agent containing potassium lauryl phosphate as a main component was applied to the fibers, followed by relaxation heat treatment in a dryer at a temperature of 87°C to a fiber length of 51 mm. It was cut to obtain a core-sheath type composite fiber with a fineness of 4.4 dtex.

実施例2
実施例1において、固有粘度0.74のポリエチレンテレフタレートを芯部に用いたこと以外は実施例1と同様にして芯鞘型複合繊維を得た。
Example 2
A core-sheath type composite fiber was obtained in the same manner as in Example 1 except that polyethylene terephthalate having an intrinsic viscosity of 0.74 was used for the core.

実施例3
実施例1において、固有粘度0.74のポリエチレンテレフタレートを芯部に用い、孔数2174H、孔径0.35mmの紡糸口金を用い、吐出量1404g/分、紡糸速度900m/分で溶融紡糸を行い、延伸倍率3.8倍の条件で延伸した以外は、実施例1と同様に行い、繊度2.2dtex、繊維長51mmの芯鞘型複合繊維を得た。
Example 3
In Example 1, polyethylene terephthalate with an intrinsic viscosity of 0.74 was used as the core, and melt spinning was performed using a spinneret with a hole number of 2174H and a hole diameter of 0.35 mm at a discharge rate of 1404 g/min and a spinning speed of 900 m/min. A core-sheath composite fiber having a fineness of 2.2 dtex and a fiber length of 51 mm was obtained in the same manner as in Example 1 except that the stretching was performed at a stretching ratio of 3.8 times.

実施例4
実施例1において、孔数65H、孔径0.7mmの紡糸口金を用い、吐出量327g/分、紡糸速度1113m/分で溶融紡糸を行い、得られた未延伸糸を収束し、70ktexのトウの状態で、延伸倍率4.0倍の条件で延伸し、繊維長64mmに切断した以外は、実施例1と同様に行い、繊度13dtexの芯鞘型複合繊維を得た。
Example 4
In Example 1, melt spinning was performed using a spinneret with a hole number of 65H and a hole diameter of 0.7 mm at a discharge rate of 327 g/min and a spinning speed of 1113 m/min, and the resulting undrawn yarn was converged to form a tow of 70 ktex. A core-sheath composite fiber having a fineness of 13 dtex was obtained in the same manner as in Example 1, except that the fiber was stretched at a stretching ratio of 4.0 times and cut into fiber lengths of 64 mm.

実施例5
実施例1において、孔数65H、孔径0.7mmの紡糸口金を用い、吐出量430g/分、紡糸速度757m/分で溶融紡糸を行い、得られた未延伸糸を収束し、70ktexのトウの状態で、延伸倍率4.7倍の条件で延伸し、繊維長64mmに切断した以外は、実施例1と同様に行い、繊度22dtexの芯鞘型複合繊維を得た。
Example 5
In Example 1, melt spinning was performed using a spinneret with a hole number of 65H and a hole diameter of 0.7 mm at a discharge rate of 430 g/min and a spinning speed of 757 m/min, and the resulting undrawn yarn was converged to form a tow of 70 ktex. A core-sheath composite fiber having a fineness of 22 dtex was obtained in the same manner as in Example 1, except that the fiber was stretched at a stretching ratio of 4.7 times and cut into fiber lengths of 64 mm.

比較例1
実施例1において、固有粘度0.70、イソフタル酸共重合量15モル%、DEG含有量3.0モル%である共重合ポリエステルを鞘部に配し、孔数639H、孔径0.5mmの紡糸口金を用い、吐出量706g/分、紡糸温度273℃、紡糸速度1160m/分で溶融紡糸を行った。得られた未延伸糸を収束し、70ktexのトウとし、延伸倍率3.4倍の条件で延伸し、繊維長64mmに切断した以外は、実施例1と同様に行い、繊度3.3dtexの芯鞘型複合繊維を得た。
Comparative example 1
In Example 1, a copolymerized polyester having an intrinsic viscosity of 0.70, an isophthalic acid copolymerization amount of 15 mol%, and a DEG content of 3.0 mol% was arranged in the sheath, and the number of holes was 639H and the pore diameter was 0.5 mm. Melt spinning was performed using a spinneret at a discharge rate of 706 g/min, a spinning temperature of 273° C., and a spinning speed of 1160 m/min. The process was carried out in the same manner as in Example 1, except that the obtained undrawn yarn was converged to form a tow of 70 ktex, drawn at a draw ratio of 3.4 times, and cut to a fiber length of 64 mm, and a core with a fineness of 3.3 dtex was A sheath type composite fiber was obtained.

比較例2
実施例1において、固有粘度0.69、イソフタル酸共重合量32モル%、DEG含有量4.9モル%である共重合ポリエステルを鞘部に配し、孔数639H、孔径0.5mmの紡糸口金を用い、吐出量1011g/分、紡糸温度270℃、紡糸速度1052m/分で溶融紡糸を行った。得られた未延伸糸を収束し、190ktexのトウとし、延伸倍率3.8倍の条件で延伸した以外は、実施例1と同様に行い、繊度4.4dtexの芯鞘型複合繊維を得た。
Comparative example 2
In Example 1, a copolymerized polyester having an intrinsic viscosity of 0.69, an isophthalic acid copolymerization amount of 32 mol%, and a DEG content of 4.9 mol% was arranged in the sheath, and the number of holes was 639H and the pore diameter was 0.5 mm. Melt spinning was performed using a spinneret at a discharge rate of 1011 g/min, a spinning temperature of 270° C., and a spinning speed of 1052 m/min. The obtained undrawn yarn was converged to form a tow of 190 ktex, and the same procedure as in Example 1 was performed, except that it was stretched at a draw ratio of 3.8 times, to obtain a core-sheath type composite fiber with a fineness of 4.4 dtex. .

比較例3
実施例1において、イソフタル酸に代えて1,4-ブタンジオールを構成成分とし、固有粘度0.73、1,4-ブタンジオール共重合量50モル%である共重合ポリエステルを鞘部に配し、孔数639H、孔径0.5mmの紡糸口金を用い、吐出量915g/分、紡糸温度265℃、紡糸速度1163m/分で溶融紡糸を行った。得られた未延伸糸を収束し、190ktexのトウとし、延伸倍率3.2倍の条件で延伸した以外は、実施例1と同様に行い、繊度4.4dtexの芯鞘型複合繊維を得た。
Comparative example 3
In Example 1, a copolymerized polyester containing 1,4-butanediol as a constituent component instead of isophthalic acid and having an intrinsic viscosity of 0.73 and a copolymerized amount of 1,4-butanediol of 50 mol% was arranged in the sheath. Melt spinning was performed using a spinneret with a hole number of 639H and a hole diameter of 0.5 mm at a discharge rate of 915 g/min, a spinning temperature of 265° C., and a spinning speed of 1163 m/min. The obtained undrawn yarn was converged to form a tow of 190 ktex, and the same procedure as in Example 1 was performed, except that it was stretched at a draw ratio of 3.2 times, to obtain a core-sheath type composite fiber with a fineness of 4.4 dtex. .

得られた実施例および比較例の複合繊維の物性等を表1に示す。表1から明らかなように、実施例1~5で得られた複合繊維は、本発明が目的とする熱融解特性を有するものであった。 Table 1 shows the physical properties of the composite fibers of the obtained Examples and Comparative Examples. As is clear from Table 1, the composite fibers obtained in Examples 1 to 5 had the thermal melting properties aimed at by the present invention.

一方、表1にから明らかなように、比較例1は融解開始温度、融解ピーク温度、融解完了温度が高いものであり、本発明が目的とするものではなかった。
比較例2は、融解ピークが検出されず、鞘成分の結晶性が低いものであった。
比較例3は、ガラス転移温度が低いため、未延伸糸において、収縮・膠着が発生した。よって、生産効率の良好ではないものであった。
On the other hand, as is clear from Table 1, Comparative Example 1 had a high melting start temperature, high melting peak temperature, and high melting completion temperature, and was not the object of the present invention.
In Comparative Example 2, no melting peak was detected and the sheath component had low crystallinity.
In Comparative Example 3, since the glass transition temperature was low, shrinkage and sticking occurred in the undrawn yarn. Therefore, the production efficiency was not good.

得られた実施例1の複合繊維および比較例1の複合繊維を用いて、それぞれの複合繊維からなる不織布を作成した。また、不織布を作成する際の熱処理温度(熱接着処理)を180℃、190℃、200℃、210℃の4水準とし、それぞれの複合繊維からなる不織布を4種類作成した。そして、それぞれの処理条件で得られた不織布について、強力を測定した。 Using the obtained conjugate fibers of Example 1 and Comparative Example 1, nonwoven fabrics made of the respective conjugate fibers were created. Furthermore, the heat treatment temperature (thermal bonding treatment) when creating the nonwoven fabric was set to four levels: 180°C, 190°C, 200°C, and 210°C, and four types of nonwoven fabrics made of each composite fiber were created. The strength of the nonwoven fabrics obtained under each treatment condition was then measured.

なお、不織布の作成および不織布強力の測定方法について、以下に記載する。
<不織布作製>
ユニチカ社製レギュラーポリエステル繊維<121>1.7T51mmを60wt%、熱接着性の芯鞘型複合繊維を40wt%の条件になるよう混綿し、熱処理後における不織布の目付が50g/m程度となるように、カード機(大和機工製SC-500DI3HC)に繊維を投入し、ウェブを作製する。その後、連続熱処理機(辻井染機工業製NFD-500E2)を用いて、風量57m/min、処理時間1分とし、上記した4水準それぞれの熱処理温度で処理して、4種の不織布を作製した。
<不織布強力>
上記で得られた不織布より試料(MD150mm、CD50mm)を切り出し、精密万能試験機オートグラフ(島津製作所製AG-50KNI)を用い、引張速度100mm/min、チャック間距離100mmの条件で不織布のMD強力を測定した。なおサンプル数はn=5とした。また、不織布強力測定前に、試料の目付を測定し、上記の不織布のMD強力を、目付50g/mに換算し、この値を不織布強力とした。
The method for producing the nonwoven fabric and measuring the strength of the nonwoven fabric will be described below.
<Nonwoven fabric production>
Unitika's regular polyester fiber <121> 1.7T51mm is mixed at 60wt% and heat-adhesive core-sheath composite fiber at 40wt%, and the nonwoven fabric has a basis weight of about 50g/ m2 after heat treatment. The fibers are put into a carding machine (SC-500DI3HC manufactured by Daiwa Kiko) to produce a web. Thereafter, using a continuous heat treatment machine (NFD-500E2 manufactured by Tsujii Senki Kogyo) at an air volume of 57 m 3 /min and a treatment time of 1 minute, treatment was performed at each of the four levels of heat treatment temperature described above to produce four types of nonwoven fabrics. did.
<Strong non-woven fabric>
A sample (MD 150 mm, CD 50 mm) was cut out from the nonwoven fabric obtained above, and the MD strength of the nonwoven fabric was measured using a precision universal testing machine Autograph (AG-50KNI manufactured by Shimadzu Corporation) at a tensile speed of 100 mm/min and a distance between chucks of 100 mm. was measured. Note that the number of samples was n=5. Furthermore, before measuring the strength of the nonwoven fabric, the basis weight of the sample was measured, and the MD strength of the nonwoven fabric was converted to a basis weight of 50 g/m 2 , and this value was defined as the strength of the nonwoven fabric.

実施例1の複合繊維により得られた不織布強力は、180℃熱処理の不織布:1.9N/50mm幅、190℃熱処理の不織布:24.0N/50mm幅、200℃熱処理の不織布:79.6N/50mm幅、210℃熱処理の不織布:96.7N/50mm幅であった。 The strength of the nonwoven fabric obtained from the composite fiber of Example 1 was as follows: 180°C heat-treated nonwoven fabric: 1.9N/50mm width, 190°C heat-treated nonwoven fabric: 24.0N/50mm width, 200°C heat-treated nonwoven fabric: 79.6N/ 50 mm width, 210° C. heat-treated nonwoven fabric: 96.7 N/50 mm width.

一方、比較例1の複合繊維により得られた不織布は、180℃熱処理のものおよび190℃熱処理のものは、いずれも熱接着が不足し、不織布形態を保持できておらず、ほぼウェブに近い状態であってハンドリングができないものであり、190℃熱処理の不織布:2.1N/50mm幅、210℃熱処理の不織布:123.8N/50mm幅であった。 On the other hand, the nonwoven fabrics obtained using the composite fibers of Comparative Example 1, those heat-treated at 180°C and those heat-treated at 190°C, both lacked thermal adhesion and were unable to maintain the nonwoven fabric form, leaving them almost web-like. The nonwoven fabric heat-treated at 190° C. had a width of 2.1 N/50 mm, and the nonwoven fabric heat-treated at 210° C. had a width of 123.8 N/50 mm.

本発明の不織布は、比較例と比べて、190℃~210℃の範囲にて熱接着処理可能であり、200℃前後の温度でいずれも一定以上の強力が得られており、特別な高温の熱処理機を必要とせず、また、熱処理装置内の厳格な温度制御を要しないことから、汎用性が高いことがわかる。 Compared to comparative examples, the nonwoven fabric of the present invention can be thermally bonded in the range of 190°C to 210°C, and has strength above a certain level at temperatures around 200°C. It can be seen that this method has high versatility since it does not require a heat treatment machine or strict temperature control within the heat treatment equipment.

得られた実施例1、2の複合繊維、比較例2の複合繊維を用いて、ウェブ収縮率について測定した。ウェブ収縮率は、上述した方法であるが、以下にも記載する。
<ウェブ収縮率>
短繊維をカード機(大和機工製C-200)に投入し、目付100g/mのウェブを作製し、得られたウェブより、200×200mmの試料片を裁断により採取する。その後、130℃に設定した箱型の恒温乾燥機中に5分間放置後取り出し、熱処理前後のウェブの面積より寸法変化率(ウェブ収縮率)を算出した。測定サンプル数はn=2とした。寸法測定に関しては、上記したとおりである。
Using the obtained composite fibers of Examples 1 and 2 and Comparative Example 2, the web shrinkage rate was measured. Web shrinkage is determined by the method described above, but also described below.
<Web shrinkage rate>
The short fibers are put into a card machine (C-200 manufactured by Daiwa Kiko) to produce a web with a basis weight of 100 g/m 2 , and sample pieces of 200 x 200 mm are cut out from the obtained web. Thereafter, the web was left in a box-shaped constant temperature dryer set at 130° C. for 5 minutes and then taken out, and the dimensional change rate (web shrinkage rate) was calculated from the area of the web before and after the heat treatment. The number of measurement samples was n=2. Regarding the dimension measurement, it is as described above.

実施例1の複合繊維からなるウェブのウェブ収縮率は34%、実施例2の複合繊維からなるウェブのウェブ収縮率は30%であった。一方、比較例2の複合繊維からなるウェブのウェブ収縮率は70%と収縮の高いものであった。本発明の複合繊維が、寸法安定性に優れることがわかる。

The web made of the composite fibers of Example 1 had a web shrinkage rate of 34%, and the web made of the composite fibers of Example 2 had a web shrinkage rate of 30%. On the other hand, the web made of composite fibers of Comparative Example 2 had a high web shrinkage rate of 70%. It can be seen that the composite fiber of the present invention has excellent dimensional stability.

Claims (7)

芯部に高融点ポリエステル、鞘部に低融点ポリエステルが配されてなる芯鞘型のポリエステル系複合繊維であり、
芯部に配されてなる高融点ポリエステルが、ポリエチレンテレフタレートであり、
鞘部に配されてなる低融点ポリエステルが、ジオール成分がエチレングリコールとジエチレングリコールとを構成成分とし、かつ全ジオール成分に対してジエチレングリコールを2.0~4.5モル%有し、エチレングリコールとジエチレングリコール以外の脂肪族グリコール成分を構成成分とせず、かつ酸成分が脂肪族カルボン酸を構成成分とせず、テレフタル酸とイソフタル酸とを構成成分とし、全酸成分に対してイソフタル酸を18~20モル%有する共重合ポリエステルであり、
該ポリエステル系複合繊維を示差走査熱量測定した際のガラス転移温度が65℃以上、
低融点ポリエステルの融解開始温度が176℃以上、融解ピーク温度が190~205℃、融解完了温度が222℃以下、b/aが0.001~0.030であり、
高融点ポリエステルの融解開始温度が240℃以上、融解ピーク温度が245~256℃、融解完了温度が266℃以下、b/aが0.100以上であることを特徴とする芯鞘型複合繊維。
なお、b/aにおけるaは、融点を示すDSC曲線における傾きが最大である接線とベースラインとの交点の温度A1(℃)と温度A2(℃)との差(A1-A2)であり、bは、ピークトップの熱量B2(mW)とピークトップ温度におけるベースラインの熱量B1(mW)との差(B2-B1)を試料量(mg)で除した値である。
It is a core-sheath type polyester composite fiber with a high melting point polyester in the core and a low melting point polyester in the sheath.
The high melting point polyester arranged in the core is polyethylene terephthalate,
The low melting point polyester disposed in the sheath has a diol component consisting of ethylene glycol and diethylene glycol, and has 2.0 to 4.5 mol% of diethylene glycol based on the total diol component, and contains ethylene glycol and diethylene glycol. The acid component is not an aliphatic carboxylic acid, but is terephthalic acid and isophthalic acid, and isophthalic acid is 18 to 20 moles based on the total acid component. It is a copolymerized polyester having %,
The polyester composite fiber has a glass transition temperature of 65° C. or higher when measured by differential scanning calorimetry,
The low melting point polyester has a melting start temperature of 176°C or higher, a melting peak temperature of 190 to 205°C, a melting completion temperature of 222°C or lower, and a b/a of 0.001 to 0.030,
A core-sheath type composite fiber characterized in that a high melting point polyester has a melting start temperature of 240°C or higher, a melting peak temperature of 245 to 256°C, a melting completion temperature of 266°C or lower, and a b/a of 0.100 or higher.
Note that a in b/a is the difference (A1-A2) between the temperature A1 (°C) and the temperature A2 (°C) at the intersection of the tangent line with the maximum slope in the DSC curve indicating the melting point and the baseline, b is the value obtained by dividing the difference (B2-B1) between the peak top heat amount B2 (mW) and the baseline heat amount B1 (mW) at the peak top temperature by the sample amount (mg).
鞘部に配される低融点ポリエステルは、固有粘度〔η〕Bが0.63~0.70であり、芯部に配される高融点ポリエステルの固有粘度よりも低いことを特徴とする請求項1記載の芯鞘型複合繊維。 A claim characterized in that the low melting point polyester disposed in the sheath portion has an intrinsic viscosity [η]B of 0.63 to 0.70, which is lower than the intrinsic viscosity of the high melting point polyester disposed in the core portion. The core-sheath type composite fiber according to 1 . 芯鞘型複合繊維は、繊維長が25~102mmの短繊維であり、機械捲縮を有してなり、130℃で5分間熱処理したときのウェブの収縮率が40%以下であることを特徴とする請求項1または2に記載の芯鞘型複合繊維。 Core-sheath type composite fibers are short fibers with a fiber length of 25 to 102 mm, are mechanically crimped, and are characterized by a web shrinkage rate of 40% or less when heat treated at 130°C for 5 minutes. The core-sheath type composite fiber according to claim 1 or 2 . 芯鞘型複合繊維は、繊維長が1~20mmのショートカット繊維であり、機械捲縮を有しないことを特徴とする請求項1または2に記載の芯鞘型複合繊維。 The core-sheath type conjugate fiber according to claim 1 or 2 , wherein the core-sheath type conjugate fiber is a short-cut fiber having a fiber length of 1 to 20 mm and has no mechanical crimp. 芯部に配される高融点ポリエステルの固有粘度〔η〕Aが0.72~0.77であり、鞘部に配される低融点ポリエステルの固有粘度〔η〕Bとの差が、下記式(1)を満足することを特徴とする請求項1~のいずれか1項記載の芯鞘型複合繊維。
(1)0.03≦〔η〕A-〔η〕B
The intrinsic viscosity [η]A of the high melting point polyester disposed in the core is 0.72 to 0.77, and the difference from the intrinsic viscosity [η]B of the low melting point polyester disposed in the sheath is expressed by the following formula: The core-sheath type composite fiber according to any one of claims 1 to 4 , which satisfies (1).
(1) 0.03≦[η]A-[η]B
請求項1~のいずれか1項記載の芯鞘型複合繊維を含む不織布であって、該芯鞘型複合繊維の鞘成分が溶融固着することよって、不織布を構成する繊維同士が一体化していることを特徴とする不織布。 A nonwoven fabric comprising the core-sheath type composite fiber according to any one of claims 1 to 5 , wherein the sheath components of the core-sheath type composite fiber are melted and fixed, so that the fibers constituting the nonwoven fabric are integrated with each other. A nonwoven fabric characterized by 請求項記載の不織布によって構成されるろ過材。
A filtration medium comprising the nonwoven fabric according to claim 6 .
JP2020051536A 2020-03-23 2020-03-23 Polyester core-sheath composite fiber Active JP7448194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020051536A JP7448194B2 (en) 2020-03-23 2020-03-23 Polyester core-sheath composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020051536A JP7448194B2 (en) 2020-03-23 2020-03-23 Polyester core-sheath composite fiber

Publications (2)

Publication Number Publication Date
JP2021147738A JP2021147738A (en) 2021-09-27
JP7448194B2 true JP7448194B2 (en) 2024-03-12

Family

ID=77847751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020051536A Active JP7448194B2 (en) 2020-03-23 2020-03-23 Polyester core-sheath composite fiber

Country Status (1)

Country Link
JP (1) JP7448194B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116536794A (en) * 2023-05-05 2023-08-04 优彩环保资源科技股份有限公司 Preparation method of sheath-core composite three-dimensional curled low-melting-point polyester fiber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302833A (en) 2001-04-04 2002-10-18 Teijin Ltd Polyester-based thermoadhesive conjugate fiber and method for producing the same
JP2004181341A (en) 2002-12-03 2004-07-02 Teijin Fibers Ltd Wet nonwoven fabric for filter and polyester binder fiber for use therein
JP2014065989A (en) 2012-09-26 2014-04-17 Toray Ind Inc Polyester binder fiber for papermaking
WO2018190342A1 (en) 2017-04-12 2018-10-18 ユニチカ株式会社 Method of manufacturing needle punched nonwoven fabric
JP2018178325A (en) 2017-04-19 2018-11-15 ユニチカ株式会社 Method for manufacturing fiber board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002302833A (en) 2001-04-04 2002-10-18 Teijin Ltd Polyester-based thermoadhesive conjugate fiber and method for producing the same
JP2004181341A (en) 2002-12-03 2004-07-02 Teijin Fibers Ltd Wet nonwoven fabric for filter and polyester binder fiber for use therein
JP2014065989A (en) 2012-09-26 2014-04-17 Toray Ind Inc Polyester binder fiber for papermaking
WO2018190342A1 (en) 2017-04-12 2018-10-18 ユニチカ株式会社 Method of manufacturing needle punched nonwoven fabric
JP2018178325A (en) 2017-04-19 2018-11-15 ユニチカ株式会社 Method for manufacturing fiber board

Also Published As

Publication number Publication date
JP2021147738A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
CN106133216A (en) Polyester binder fiber
JP7448194B2 (en) Polyester core-sheath composite fiber
JP2008303323A (en) Low-melting polyester resin, thermally adhesive composite binder fiber comprising the same and polyester-base nonwoven fabric
JP2009019094A (en) Wet nonwoven fabric
JP2010209500A (en) Short-cut polyester conjugate fiber
JPH09268490A (en) Polyester-based heat-resistant wet type nonwoven fabric and its production
JP2008280636A (en) Woven or knitted fabric for forming and filter using the same
JP6110142B2 (en) Composite short fiber for airlaid nonwoven fabric
JP2004107860A (en) Thermally adhesive sheath core type conjugated short fiber and non-woven fabric of the same
JP6132532B2 (en) Polyester composite fiber
JP6537431B2 (en) Core-sheath composite binder fiber
JP5117259B2 (en) Polyester composite staple fiber and staple fiber nonwoven fabric
JP4351100B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP6110144B2 (en) Short cut composite fiber for wet nonwoven fabric
JP5344963B2 (en) Short fiber nonwoven fabric
JP2009263838A (en) Polyester conjugated staple fiber
JP4988484B2 (en) Short fiber nonwoven fabric
JP2009275319A (en) Flame-retardant polyester composite staple fiber
JP4918111B2 (en) Method for producing nonwoven fabric containing heat-adhesive conjugate fiber
JP2882636B2 (en) Far-infrared radiating composite fiber, woven or knitted fabric containing the fiber and nonwoven fabric
JP2003328234A (en) Polyester-based hot melt hollow conjugate short fiber and nonwoven fabric
JP2009062666A (en) Staple fiber nonwoven fabric
JP2009215662A (en) Staple fiber for nonwoven fabric and stape fiber nonwoven fabric
JP7264618B2 (en) Polyester heat-fusible fiber, method for producing the same, and wet-laid nonwoven fabric using the same
JP5829085B2 (en) Manufacturing method of solid cotton

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240221

R150 Certificate of patent or registration of utility model

Ref document number: 7448194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150