JP2003328234A - Polyester-based hot melt hollow conjugate short fiber and nonwoven fabric - Google Patents

Polyester-based hot melt hollow conjugate short fiber and nonwoven fabric

Info

Publication number
JP2003328234A
JP2003328234A JP2002131545A JP2002131545A JP2003328234A JP 2003328234 A JP2003328234 A JP 2003328234A JP 2002131545 A JP2002131545 A JP 2002131545A JP 2002131545 A JP2002131545 A JP 2002131545A JP 2003328234 A JP2003328234 A JP 2003328234A
Authority
JP
Japan
Prior art keywords
polyester
fiber
heat
nonwoven fabric
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002131545A
Other languages
Japanese (ja)
Other versions
JP4076369B2 (en
Inventor
Hiroyuki Watanabe
博之 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP2002131545A priority Critical patent/JP4076369B2/en
Publication of JP2003328234A publication Critical patent/JP2003328234A/en
Application granted granted Critical
Publication of JP4076369B2 publication Critical patent/JP4076369B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyester-based hot melt hollow conjugate short fiber suitable for obtaining a nonwoven fabric having bulkiness, flexibility and heat resistance. <P>SOLUTION: This polyester-based hot melt hollow conjugate short fiber is a side by side type conjugate fiber constituted by a polyester having ethylene terephthalate main recurring unit and a low melting point polyester having 20-80°C glass transition temperature, 90-130°C crystallization temperature and 130-180°C melting point, and has a continuous hollow part having 10-30% void rate in fiber axis direction. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、短繊維からなる乾
式不織布や湿式不織布等の不織布分野において主体繊維
を熱接着するための熱接着性繊維であって、柔軟性と嵩
高性及び耐熱性を有する不織布を得るのに好適なポリエ
ステル系熱接着性中空複合短繊維及びこれから得られる
不織布に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-adhesive fiber for thermally adhering a main fiber in a non-woven fabric field such as a dry non-woven fabric or a wet non-woven fabric composed of short fibers, which has flexibility, bulkiness and heat resistance. The present invention relates to a polyester-based heat-bondable hollow composite staple fiber suitable for obtaining a nonwoven fabric and a nonwoven fabric obtained therefrom.

【0002】[0002]

【従来の技術】合成繊維、特にポリエステル繊維は、そ
の優れた寸法安定性、耐候性、機械的特性、耐久性、さ
らにはリサイクル性等の点から、衣料、産業資材として
不可欠のものとなっており、不織布分野においても多く
使用されている。
2. Description of the Related Art Synthetic fibers, particularly polyester fibers, are indispensable as clothing and industrial materials because of their excellent dimensional stability, weather resistance, mechanical properties, durability and recyclability. And is often used in the field of non-woven fabrics.

【0003】このポリエステル繊維からなる不織布分野
において、最近、柔軟性と嵩高性及び耐熱性を兼ね備え
た不織布が望まれている。従来のポリエステル系短繊維
からなる不織布には、主体繊維を熱接着するために熱接
着性複合短繊維が使用されており、一般的には、芯部に
ポリエチレンテレフタレート、鞘部にイソフタル酸を共
重合した低融点ポリマーを配した熱接着性複合短繊維が
用いられている。
In the field of non-woven fabrics made of this polyester fiber, recently, a non-woven fabric having flexibility, bulkiness and heat resistance has been desired. Conventional non-woven fabrics made of polyester-based short fibers use heat-adhesive composite short fibers for heat-bonding the main fibers.Generally, polyethylene terephthalate is used for the core and isophthalic acid is used for the sheath. Thermoadhesive composite staple fibers having a polymerized low melting point polymer are used.

【0004】しかし、この熱接着性複合短繊維の芯成分
に使用しているポリエチレンテレフタレートはポリマー
自体の剛性が高いため、不織布に柔軟性を付与すること
が困難であった。このような問題を解決する方法とし
て、熱接着性複合短繊維の繊度を細くすることにより、
繊維の剛性を低減し、不織布に柔軟性を付与することも
数多く試みられている。
However, since polyethylene terephthalate used as the core component of the heat-adhesive short composite fibers has a high rigidity of the polymer itself, it is difficult to impart flexibility to the nonwoven fabric. As a method of solving such a problem, by narrowing the fineness of the heat-adhesive composite staple fiber,
Many attempts have been made to reduce the rigidity of fibers and impart flexibility to nonwoven fabrics.

【0005】しかしながら、製糸工程において1dtex前
後の細繊度繊維を得ようとすると、操業性の悪化を招い
たり、製糸工程が煩雑なものとなったりするなど、容易
に熱接着性複合短繊維を得ることは困難であった。
However, if a fine fiber having a fineness of about 1 dtex is to be obtained in the spinning process, the operability is deteriorated and the spinning process is complicated, so that the heat-adhesive composite staple fiber is easily obtained. It was difficult.

【0006】一方、不織布に耐熱性を付与するために、
特開平7−119011号公報や特開平9−132850号公報に
は、芯部にポリエチレンテレフタレート、鞘部にテレフ
タル酸成分、脂肪族ラクトン成分、エチレングリコール
成分及び1,4−ブタンジオール成分を共重合した低融
点ポリマーを配した熱接着性複合短繊維を用いることが
提案されている。
On the other hand, in order to impart heat resistance to the nonwoven fabric,
In Japanese Unexamined Patent Publication No. 7-119011 and Japanese Unexamined Patent Publication No. 9-132850, a core is made of polyethylene terephthalate and a sheath is made of a terephthalic acid component, an aliphatic lactone component, an ethylene glycol component and a 1,4-butanediol component. It has been proposed to use thermoadhesive composite staple fibers having the low melting point polymer.

【0007】このような熱接着性複合短繊維は、耐熱性
については従来のポリエステル系熱接着性複合短繊維よ
りも良好であるが、繊維形状が芯鞘構造であるため、得
られる不織布の嵩高性に劣り、柔軟性も十分なものでは
なかった。
Such heat-bondable composite short fibers have better heat resistance than conventional polyester heat-bondable composite short fibers, but since the fiber shape is a core-sheath structure, the bulkiness of the resulting nonwoven fabric is high. It was inferior in sex and had insufficient flexibility.

【0008】また、不織布に耐熱性と柔軟性を付与する
ために、特開2001-115340号公報には、芯部にポリトリ
メチレンテレフタレート、鞘部にテレフタル酸成分、脂
肪族ラクトン成分、エチレングリコール成分及び1,4
−ブタンジオール成分を共重合した低融点ポリマーを配
した熱接着性複合短繊維を用いることが提案されてい
る。
Further, in order to impart heat resistance and flexibility to the non-woven fabric, Japanese Patent Laid-Open No. 2001-115340 discloses that polytrimethylene terephthalate is used for the core and terephthalic acid component, aliphatic lactone component, ethylene glycol are used for the sheath. Ingredients and 1,4
It has been proposed to use thermoadhesive composite staple fibers having a low melting point polymer copolymerized with a butanediol component.

【0009】なるほど、この熱接着性複合短繊維は、耐
熱性と柔軟性については従来のポリエステル系熱接着性
複合短繊維よりも良好であるが、やはり繊維形状が芯鞘
構造であるため、得られる不織布の嵩高性には劣るもの
であった。このように、不織布に柔軟性と嵩高性及び耐
熱性を付与することが可能である熱接着性複合短繊維
は、未だに得られていないのが現状である。
The heat-adhesive conjugate short fibers are better than the conventional polyester heat-adhesive conjugate short fibers in heat resistance and flexibility, but the fiber shape is also a core-sheath structure, The resulting non-woven fabric was inferior in bulkiness. As described above, the present situation is that a thermoadhesive conjugate short fiber capable of imparting flexibility, bulkiness and heat resistance to a non-woven fabric has not yet been obtained.

【0010】[0010]

【発明が解決しようとする課題】本発明は、上記のよう
な問題点を解決し、優れた柔軟性と嵩高性及び耐熱性を
有する不織布を得ることができる熱接着性中空複合短繊
維及びその不織布を提供することを技術的な課題とする
ものである。
DISCLOSURE OF THE INVENTION The present invention solves the above problems and provides a heat-adhesive hollow composite staple fiber capable of obtaining a nonwoven fabric having excellent flexibility, bulkiness and heat resistance, and the same. It is a technical subject to provide a non-woven fabric.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するために鋭意検討を行い、本発明に到達し
た。すなわち、本発明は、次の構成を有するものであ
る。 (1)主たる繰り返し単位がアルキレンテレフタレート
であるポリエステルと、ガラス転移点20〜80℃、結
晶化温度80〜130℃、融点130〜180℃である
低融点ポリエステルとで構成されたサイドバイサイド型
複合繊維であって、繊維軸方向に連続する中空部を有
し、中空率が10〜30%であることを特徴とするポリ
エステル系熱接着性中空複合短繊維。 (2)複合繊維を構成する低融点ポリエステルが、テレ
フタル酸成分、エチレングリコール成分及び1,4−ブ
タンジオール成分を含有し、かつ、アジピン酸成分及び
/又は脂肪族ラクトン成分を含有する共重合ポリエステ
ルである請求項1記載のポリエステル系熱接着性中空複
合短繊維。 (3)(1)又は(2)記載のポリエステル系熱接着性
中空複合短繊維を含むことを特徴とする不織布。
Means for Solving the Problems The inventors of the present invention have made extensive studies in order to solve the above problems and arrived at the present invention. That is, the present invention has the following configurations. (1) A side-by-side type composite fiber composed of a polyester whose main repeating unit is alkylene terephthalate and a low melting point polyester having a glass transition point of 20 to 80 ° C, a crystallization temperature of 80 to 130 ° C and a melting point of 130 to 180 ° C. A polyester-based heat-adhesive hollow composite staple fiber having a hollow portion continuous in the fiber axis direction and having a hollow ratio of 10 to 30%. (2) Copolymerized polyester in which the low melting point polyester constituting the conjugate fiber contains a terephthalic acid component, an ethylene glycol component and a 1,4-butanediol component, and also contains an adipic acid component and / or an aliphatic lactone component. The polyester-based heat-adhesive hollow composite short fiber according to claim 1. (3) A nonwoven fabric comprising the polyester-based heat-bondable hollow composite short fiber according to (1) or (2).

【0012】[0012]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明の熱接着性中空複合短繊維は、主たる繰り
返し単位がアルキレンテレフタレートであるポリエステ
ル(ポリエステルA)と低融点ポリエステル(ポリエス
テルB)とで構成されたサイドバイサイド型の複合繊維
である。ポリマー同士が剥離したり、製糸工程、加工工
程で操業性が悪化することがないようにするため、本発
明では複合繊維の両成分ともにポリエステルを使用す
る。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. The heat-adhesive hollow composite staple fiber of the present invention is a side-by-side composite fiber composed of a polyester (polyester A) whose main repeating unit is alkylene terephthalate and a low melting point polyester (polyester B). In the present invention, polyester is used for both components of the conjugate fiber in order to prevent the polymers from peeling off and the operability from being deteriorated in the yarn making process and the processing process.

【0013】本発明において、ポリエステルAは、紡糸
の操業性、原綿物性、コスト等を考慮し、ポリエチレン
テレフタレート(以下、PETと略する。)を用いるこ
とが好ましい。ポリエステルBは低融点ポリエステルで
あり、熱処理により溶融するが、ポリエステルAは不織
布を構成する主体繊維とともに、不織布を形成する成分
となる。したがって、得られる不織布の効果を損なわな
い範囲であれば、1,4−ブタンジオール、1,6−ヘ
キサンジオールなどのジオール成分、ビスフェノールA
のエチレンオキシド付加体などの芳香族ジオール成分、
アジピン酸やセバシン酸などの脂肪族ジカルボン酸成
分、イソフタル酸などの芳香族ジカルボン酸成分などを
共重合したものでもよく、さらに、安定剤、蛍光剤、顔
料、抗菌剤、消臭剤、強化剤等を添加したものでもよ
い。
In the present invention, it is preferable to use polyethylene terephthalate (hereinafter abbreviated as PET) as the polyester A in consideration of spinning operability, raw cotton physical properties, cost and the like. Polyester B is a low-melting point polyester and is melted by heat treatment, but polyester A is a component that forms the nonwoven fabric together with the main fibers that form the nonwoven fabric. Therefore, as long as the effect of the obtained nonwoven fabric is not impaired, diol components such as 1,4-butanediol and 1,6-hexanediol, bisphenol A, etc.
Aromatic diol components such as ethylene oxide adducts of
It may be a copolymer of an aliphatic dicarboxylic acid component such as adipic acid or sebacic acid, an aromatic dicarboxylic acid component such as isophthalic acid, etc., and further, a stabilizer, a fluorescent agent, a pigment, an antibacterial agent, a deodorant, a toughening agent. Etc. may be added.

【0014】一方、ポリエステルBは、ガラス転移点
(Tg)が20〜80℃、結晶化温度(Tc)が80〜
130℃、融点(Tm)が130〜180℃であること
が必要である。Tgが20℃未満では、溶融紡糸時に単
糸間の密着が発生し、製糸性が悪くなり、一方、Tgが
80℃を超えると、製糸工程において高温で延伸するこ
とが必要になり、延伸による塑性変形と同時に部分的な
結晶化が始まり、糸切れが発生するなど、延伸性が低下
する。
On the other hand, polyester B has a glass transition point (Tg) of 20 to 80 ° C. and a crystallization temperature (Tc) of 80 to.
It is necessary that the temperature is 130 ° C and the melting point (Tm) is 130 to 180 ° C. If the Tg is less than 20 ° C, adhesion between the single yarns will occur during melt spinning, resulting in poor spinnability. On the other hand, if the Tg exceeds 80 ° C, it will be necessary to perform stretching at a high temperature in the spinning process. At the same time as plastic deformation, partial crystallization starts and yarn breakage occurs, and the drawability decreases.

【0015】また、ポリエステルBのTcが80℃未満
では、熱延伸工程において結晶化が進行してしまうた
め、次の熱処理工程において安定な結晶構造を再構築す
ることが困難となる。一方、Tcが130℃を超えると
Tmも並行して高まり、高温で熱処理する必要が生じ
て、熱接着処理時にA成分の分解が起こりやすくなるば
かりか、経済的にも不利となる。
If the Tc of the polyester B is less than 80 ° C., crystallization will proceed in the hot drawing step, making it difficult to reconstruct a stable crystal structure in the next heat treatment step. On the other hand, when Tc exceeds 130 ° C., Tm also rises in parallel, and heat treatment at a high temperature is required, which easily causes decomposition of the component A during the heat-bonding process and is economically disadvantageous.

【0016】さらに、ポリエステルBのTmが130℃
未満では、たとえ繊維化しても、高温雰囲気下で使用し
た場合、耐熱性を得ることができない。一方、Tmが1
80℃を超えると、不織布化する際に高温下での熱処理
が必要となり、経済的にも不利となるので好ましくな
い。また、ポリエステルAとの融点差も縮小し、加工性
が悪化するとともに、得られる不織布の柔軟性も乏しく
なる。
Furthermore, the Tm of polyester B is 130 ° C.
If it is less than the above range, even if it is made into a fiber, heat resistance cannot be obtained when used in a high temperature atmosphere. On the other hand, Tm is 1
If it exceeds 80 ° C., heat treatment at a high temperature is required when forming a nonwoven fabric, which is economically disadvantageous, which is not preferable. Further, the melting point difference from the polyester A is also reduced, the processability is deteriorated, and the obtained nonwoven fabric is poor in flexibility.

【0017】ポリエステルBは、具体的には、テレフタ
ル酸成分、エチレングリコール成分及び1,4−ブタン
ジオール成分を含有し、かつ、アジピン酸成分と脂肪族
ラクトン成分の少なくとも一成分を含有する共重合ポリ
エステルである。これらの共重合量を調整することによ
り、上記したような低融点のポリエステルとすることが
できる。
Polyester B is specifically a copolymer containing a terephthalic acid component, an ethylene glycol component and a 1,4-butanediol component and at least one component of an adipic acid component and an aliphatic lactone component. It is polyester. The polyester having a low melting point as described above can be obtained by adjusting the copolymerization amount of these.

【0018】まず、テレフタル酸成分、エチレングリコ
ール成分及び1,4−ブタンジオール成分を含有するこ
とでTmを180℃程度にすることができる。このと
き、エチレングリコール成分と1,4−ブタンジオール
成分のモル比を50/50とすると、Tmを最も低くす
ることができる。さらに、アジピン酸成分と脂肪族ラク
トン成分の少なくとも一成分を共重合させることによ
り、Tmをさらに低下させることができる。
First, by containing a terephthalic acid component, an ethylene glycol component and a 1,4-butanediol component, Tm can be set to about 180 ° C. At this time, if the molar ratio of the ethylene glycol component and the 1,4-butanediol component is 50/50, Tm can be minimized. Furthermore, by copolymerizing at least one of the adipic acid component and the aliphatic lactone component, Tm can be further reduced.

【0019】1,4−ブタンジオール成分を共重合する
ことにより、得られる不織布に柔軟性を付与することが
できる。従って、上記のTmとの関係を考慮して、エチ
レングリコール成分と1,4−ブタンジオール成分のモ
ル比を40/60〜60/40とすることが好ましい。
By copolymerizing the 1,4-butanediol component, flexibility can be imparted to the resulting nonwoven fabric. Therefore, it is preferable to set the molar ratio of the ethylene glycol component and the 1,4-butanediol component to 40/60 to 60/40 in consideration of the above relationship with Tm.

【0020】さらに、脂肪族ラクトン成分を単独で共重
合する場合、全酸成分(テレフタル酸成分及び脂肪族ラ
クトン成分の合計)に対して10〜20モル%となるよ
うにすることが好ましい。脂肪族ラクトン成分が10モ
ル%未満では結晶性はよくなるが、Tmが180℃を超
えやすく、不織布化する際、高温下での熱処理が必要と
なり、加工性等が悪化するため好ましくない。また、2
0モル%を超えると、Tg、Tc、Tmの各温度が低く
なり、紡糸時に密着が発生したり、製糸性が低下しやす
い。上記した熱特性を満足しうる脂肪族ラクトン成分と
しては、炭素数4〜11のラクトンが好ましく、中でも
好適なラクトンとして、ε−カプロラクトンやδ−バレ
ロラクトンが挙げられる。
Furthermore, when the aliphatic lactone component is copolymerized alone, it is preferably 10 to 20 mol% with respect to the total acid components (the total of the terephthalic acid component and the aliphatic lactone component). When the content of the aliphatic lactone component is less than 10 mol%, the crystallinity is improved, but the Tm is likely to exceed 180 ° C., and when forming a nonwoven fabric, heat treatment at a high temperature is required, and the workability is deteriorated, which is not preferable. Also, 2
When it exceeds 0 mol%, the temperatures of Tg, Tc, and Tm become low, and adhesion tends to occur during spinning and the spinnability tends to deteriorate. As the aliphatic lactone component that can satisfy the above-mentioned thermal characteristics, a lactone having 4 to 11 carbon atoms is preferable, and preferable lactones include ε-caprolactone and δ-valerolactone.

【0021】アジピン酸成分を単独で共重合する場合
も、全酸成分(テレフタル酸成分及びアジピン酸成分の
合計)に対して10〜20モル%となるようにすること
が好ましい。また、脂肪族ラクトン成分とアジピン酸成
分を併用する場合も、全酸成分に対して10〜20モル
%となるようにすることが好ましい。これらの範囲外の
ものであると、上記の脂肪族ラクトン成分の場合と同様
の理由で好ましくない。
Even when the adipic acid component is copolymerized alone, it is preferably 10 to 20 mol% with respect to the total acid components (the total of the terephthalic acid component and the adipic acid component). Also, when the aliphatic lactone component and the adipic acid component are used in combination, it is preferable that the content be 10 to 20 mol% with respect to the total acid component. Outside of these ranges, it is not preferable for the same reason as in the case of the above-mentioned aliphatic lactone component.

【0022】なお、低融点共重合ポリエステルであるポ
リエステルBは、本発明の効果を損なわない範囲で、イ
ソフタル酸、フタル酸、セバシン酸、ジエチレングリコ
ール、トリエチレングリコールなどの共重合成分を少量
含有していてもよい。
Polyester B, which is a low melting point copolyester, contains a small amount of a copolymerization component such as isophthalic acid, phthalic acid, sebacic acid, diethylene glycol and triethylene glycol within a range not impairing the effects of the present invention. May be.

【0023】次に、本発明の繊維は、ポリエステルAと
ポリエステルBがサイドバイサイド型に貼り合わされた
ものであり、中空部を有するものである。このような形
とすることにより、低融点ポリエステルであるポリエス
テルBが溶融すると、ポリエステルAのみがC型断面形
状のものとなり、嵩高性に優れた不織布を得ることが可
能となる。
Next, the fiber of the present invention is obtained by bonding polyester A and polyester B in a side-by-side type, and has a hollow portion. With such a shape, when polyester B, which is a low-melting polyester, is melted, only polyester A has a C-shaped cross-sectional shape, and a nonwoven fabric excellent in bulkiness can be obtained.

【0024】ポリエステルAとポリエステルBの構成比
(A/B)は、体積比で40/60〜60/40である
ことが好ましく、特に、45/55〜55/45である
ことがより好ましい。ポリエステルAの割合が60%を
超えると、熱接着性が低下して不織布性能が低下するた
め好ましくない。一方、ポリエステルAの割合が40%
未満ではポリエステルBが溶融した後のポリエステルA
のC型形状が小さいものとなり、得られる不織布は嵩高
性が不足し、ペーパーライクなものになるため好ましく
ない。
The composition ratio (A / B) of polyester A and polyester B is preferably 40/60 to 60/40 in volume ratio, and more preferably 45/55 to 55/45. When the proportion of the polyester A exceeds 60%, the thermal adhesiveness is deteriorated and the nonwoven fabric performance is deteriorated, which is not preferable. On the other hand, the proportion of polyester A is 40%
If less than, polyester A after melting polyester B
The resulting C-shaped product is small, and the resulting nonwoven fabric lacks bulkiness and becomes paper-like, which is not preferable.

【0025】そして、本発明の熱接着性中空複合短繊維
は、繊維軸方向に連続する中空部を有し、中空部の割合
である中空率が10〜30%であることが必要である。
なお、中空率とは繊維軸方向に対して垂直方向の繊維の
断面積に占める中空部の断面積をいう。中空率が10%
未満では、得られる不織布の嵩高性が不十分となる。一
方、中空率が30%を超えると、溶融紡糸時に中空割れ
が発生し、紡糸操業性、品位が低下するため好ましくな
い。
The heat-adhesive hollow composite staple fiber of the present invention must have a hollow portion continuous in the fiber axis direction, and the hollow ratio, which is the ratio of the hollow portion, must be 10 to 30%.
The hollow ratio means the cross-sectional area of the hollow portion in the cross-sectional area of the fiber in the direction perpendicular to the fiber axis direction. Hollow rate is 10%
When it is less than 1, the bulkiness of the resulting nonwoven fabric becomes insufficient. On the other hand, if the hollow ratio exceeds 30%, hollow cracks will occur during melt spinning, and spinning operability and quality will deteriorate, which is not preferable.

【0026】本発明の熱接着性中空複合短繊維は、糸条
をカットして短繊維とするものであるが、その繊維長は
特に限定されるものではなく、用途に応じて3〜150
mm程度に切断したものとすればよい。
The heat-adhesive hollow composite short fibers of the present invention are obtained by cutting yarns into short fibers, but the fiber length is not particularly limited, and is 3 to 150 depending on the application.
It may be cut into about mm.

【0027】本発明の熱接着性中空複合短繊維の製造方
法について説明する。まず、上記したポリエステルAと
ポリエステルBを用いて、通常用いられるサイドバイサ
イド型複合中空紡糸装置により溶融紡糸し、サイドバイ
サイド型の熱接着性中空複合未延伸糸を得る。次いで未
延伸糸を集束した後、常法により延伸し、必要に応じて
押し込み式クリンパーにより機械捲縮を付与し、仕上げ
油剤を付与した後、用途に応じて3〜150mmに切断
し、熱接着性中空複合短繊維とする。
The method for producing the heat-bondable hollow composite staple fiber of the present invention will be described. First, the polyester A and the polyester B described above are melt-spun by a commonly used side-by-side type composite hollow spinning device to obtain a side-by-side type heat-bondable hollow composite undrawn yarn. Next, the unstretched yarn is bundled, then stretched by a conventional method, and if necessary, mechanical crimps are imparted by a push-in type crimper, a finishing oil is imparted, and then cut into 3 to 150 mm depending on the application, and heat-bonded. Hollow composite short fibers.

【0028】次に、本発明の不織布について説明する。
本発明の不織布は、上記した本発明のポリエステル系熱
接着性中空複合短繊維を含むものである。すなわち、本
発明の不織布は、本発明の短繊維のみからなるもので
も、本発明の短繊維と主体繊維からなるものでもよい。
中でも本発明の熱接着性中空複合短繊維が10〜50質
量%、好ましくは25〜50質量%の割合となるように
主体繊維と混綿することが好ましい。また、主体繊維は
特に限定されるものではないが、ポリエステル系の繊維
を用いることが好ましく、嵩高性を向上させるためには
中空部を有する繊維とすることが好ましい。
Next, the nonwoven fabric of the present invention will be described.
The nonwoven fabric of the present invention contains the above-mentioned polyester-based heat-adhesive hollow composite short fibers of the present invention. That is, the nonwoven fabric of the present invention may be composed of only the short fibers of the present invention or may be composed of the short fibers of the present invention and a main fiber.
Above all, it is preferable to mix the heat-adhesive hollow composite short fibers of the present invention with the main fibers so that the ratio is 10 to 50% by mass, preferably 25 to 50% by mass. In addition, although the main fiber is not particularly limited, it is preferable to use a polyester fiber, and it is preferable to use a fiber having a hollow portion in order to improve bulkiness.

【0029】本発明の不織布の製造方法について説明す
る。本発明の熱接着性中空複合短繊維のみ、又は熱接着
性中空複合短繊維と主体繊維とを混綿し、カード機にか
けウエブを作成する。このウエブを、熱接着性中空複合
短繊維の低融点成分のTm以上、低融点成分のTm+5
0℃以下の温度に設定した熱処理装置で熱処理して低融
点成分を溶融し、接着させ、不織布を作成する。次い
で、一旦、室温まで冷却した後、低融点成分のTc以
上、低融点成分のTc+30℃以下の温度で結晶化熱処
理を行い、熱接着性中空複合短繊維の低融点成分の結晶
性を促進させ、本発明の不織布を得る。この場合、熱処
理の前にニードリング加工を行ってもよい。熱処理装置
としては、熱風ドライヤー、回転ドラム乾燥機等が用い
られる。
The method for producing the nonwoven fabric of the present invention will be described. Only the heat-bondable hollow composite short fibers of the present invention or the heat-bondable hollow composite short fibers and the main fiber are mixed and subjected to a card machine to prepare a web. This web was heated to a temperature of at least Tm of the low melting point component of the heat-bondable hollow composite short fiber, Tm + 5 of the low melting point component.
The low melting point component is melted by heat treatment with a heat treatment apparatus set to a temperature of 0 ° C. or less, and bonded to form a nonwoven fabric. Then, after once cooling to room temperature, crystallization heat treatment is performed at a temperature of Tc of the low melting point component or higher and Tc of the low melting point component of + 30 ° C. or lower to promote the crystallinity of the low melting point component of the heat-adhesive hollow composite short fiber. , To obtain the nonwoven fabric of the present invention. In this case, the needling process may be performed before the heat treatment. As the heat treatment device, a hot air dryer, a rotary drum dryer or the like is used.

【0030】[0030]

【実施例】次に、本発明を実施例により具体的に説明す
る。なお、実施例中の性能評価は、下記方法に従って測
定したものである。 (1)Tg、Tc及びTm パ−キンエルマー社製示差走査型熱量計DSC−7型を
用い、昇温速度20℃/分で測定した。 (2)単糸繊度 JIS L−1015の方法により測定した。 (3)不織布の目付及び密度 JIS P−8142の方法により測定した。 (4)中空率(%) 繊維を構成する単繊維のうち、任意に選んだ30本にお
いて、繊維軸方向に対して垂直方向に切断したときの繊
維の断面積に占める中空部の断面積を下記式にて求め、
その平均値とした。 中空率(%)=(A/B)×100 A:中空部の断面積 B:単繊維全体の断面積 (5)不織布の耐熱性(以下の不織布の作成条件は、耐
熱性の評価のみに利用) a:不織布の作成条件 主体繊維:ポリエステル系(PET)短繊維 4.4d
tex×51mm 混 率:主体繊維/熱接着性中空複合短繊維=70/
30(質量比) 処理温度:熱接着性中空複合短繊維のポリエステルBの
(Tm+30℃)×1分 結晶化処理:110℃×20分 目 付:50g/m2 b:室温下での不織布強力(測定温度:23℃) aで得られた不織布を幅2.5cm、長さ15cmの短
冊状に切断し、試料を作製し た。この試料を測定温度
23℃で、オリエンテック社製UTM−4型のテンシロ
ンを用 いて、引っ張り速度10cm/分の条件で伸長
切断し、最大強力を読み取った。 c:高温雰囲気下での不織布強力(測定温度:110
℃) aで得られた不織布を幅2.5cm、長さ15cmの短
冊状に切断し、試料を作製し た。この試料を温度11
0℃の恒温槽で1分間放置後、オリエンテック社製UT
M−4 型のテンシロンを用いて、引っ張り速度10c
m/分の条件で伸長切断し、最大強力を 読み取った。 d:不織布の強力保持率(%)(耐熱性) 室温下での不織布強力(A)と高温雰囲気下での不織布
強力(B)より、下記式で高温 雰囲気下での強力保持
率を算出した。高温雰囲気下での強力保持率は、50%
以上を耐 熱性良好とした。 強力保持率(%)=(B/A)×100 (6)不織布の柔軟性(剛軟度) JIS L−1096に準じ、以下の方法で行った。得
られた不織布を用いて試料幅10cm、試料長10cm
の試料片を3枚準備し、DAIEI KEIKI製風合
メータ(MODEL FM−2)を使用して評価した。
まず、15mm幅のスリット上に試料片を置いて、アー
ムが試料をスリット間に押し込む時に、最高何cNの力
が必要かを試料の表裏について、縦横方向、4箇所で測
定し、その合計値を求めた。試料片3枚の平均値を不織
布剛軟度(cN)として評価した。なお、剛軟度が70
cN以下を合格とした。 (7)不織布の嵩高性 得られた不織布を縦20cm×横20cmに切り、試料
を10枚作成する。試料を10枚重ね、その上に荷重1
90gの板(25cm×25cm)を載せ、試料の四隅
の高さを測定し、平均高さ(h)を求める。下記式にて
嵩高性を算出した。嵩高性が30cm3/g以上を合格
とした。 嵩高性(cm3 /g)=(20×20×h)/80 (8)紡糸操業性評価 ○:糸切れ、単糸間の密着もなく、操業性が良好 ×:糸切れ、単糸間の密着のいずれか一方でも発生し、
操業性が不良 (9)総合評価 ○:紡糸操業性が良好で不織布の高温雰囲気下での強力
保持率が50%以上、 嵩高性が30cm3 /g
以上、剛軟度が70cN以下。 ×:紡糸操業性、不織布の高温雰囲気下での強力保持
率、嵩高性、剛軟度のいずれか一つでも劣っている。
EXAMPLES Next, the present invention will be specifically described by way of examples. The performance evaluations in the examples are measured according to the following methods. (1) Tg, Tc, and Tm Using a differential scanning calorimeter DSC-7 type manufactured by Perkin Elmer Co., Ltd., measurement was performed at a temperature rising rate of 20 ° C./min. (2) Single yarn fineness It was measured by the method of JIS L-1015. (3) Unit weight and density of nonwoven fabric It was measured by the method of JIS P-8142. (4) Hollow ratio (%) Of 30 monofilaments constituting the fiber, the cross-sectional area of the hollow part in the cross-sectional area of the fiber when cut in the direction perpendicular to the fiber axis direction in 30 selected arbitrarily Calculated by the following formula,
The average value was used. Hollow ratio (%) = (A / B) × 100 A: Cross-sectional area of hollow part B: Cross-sectional area of whole monofilament (5) Heat resistance of non-woven fabric (The following non-woven fabric preparation conditions are for evaluation of heat resistance only) Utilization) a: Conditions for making non-woven fabric Main fiber: Polyester (PET) short fiber 4.4d
tex × 51 mm Mixing ratio: Main fiber / Heat-bonding hollow composite short fiber = 70 /
30 (mass ratio) Treatment temperature: Heat-adhesive hollow composite short fiber polyester B (Tm + 30 ° C.) × 1 minute Crystallization treatment: 110 ° C. × 20 minutes Marking: 50 g / m 2 b: Strength of nonwoven fabric at room temperature (Measurement temperature: 23 ° C.) The nonwoven fabric obtained in a was cut into a strip having a width of 2.5 cm and a length of 15 cm to prepare a sample. This sample was stretch-cut at a measuring temperature of 23 ° C. using a UTM-4 type Tensilon manufactured by Orientec Co., Ltd. at a pulling speed of 10 cm / min, and the maximum strength was read. c: Strength of non-woven fabric in high temperature atmosphere (measurement temperature: 110
C.) The non-woven fabric obtained in a) was cut into a strip having a width of 2.5 cm and a length of 15 cm to prepare a sample. This sample is placed at temperature 11
After leaving for 1 minute in a 0 ° C constant temperature bath, UT manufactured by Orientec
Tensile speed of 10c using M-4 type Tensilon
It was stretched and cut under the condition of m / min, and the maximum strength was read. d: Strength retention of nonwoven fabric (%) (heat resistance) From the strength of the nonwoven fabric at room temperature (A) and the strength of the nonwoven fabric at high temperature (B), the strength retention at high temperature was calculated by the following formula. . 50% strength retention in high temperature atmosphere
The above was regarded as good heat resistance. Strength retention rate (%) = (B / A) × 100 (6) Flexibility (rigidity) of the nonwoven fabric It was measured by the following method according to JIS L-1096. Sample width 10 cm, sample length 10 cm using the obtained non-woven fabric
3 sample pieces were prepared and evaluated using a feel meter (MODEL FM-2) manufactured by DAIEI KEIKI.
First, a sample piece was placed on a slit with a width of 15 mm, and when the arm pushed the sample between the slits, the maximum force required was measured at 4 points in the vertical and horizontal directions on the front and back sides of the sample, and the total value was obtained. I asked. The average value of three sample pieces was evaluated as the non-woven fabric bending resistance (cN). The bending resistance is 70
A value of cN or less was accepted. (7) Bulkiness of Nonwoven Fabric The obtained nonwoven fabric is cut into a length of 20 cm and a width of 20 cm to prepare 10 samples. Stack 10 samples and load 1 on top
A 90 g plate (25 cm × 25 cm) is placed, the heights of the four corners of the sample are measured, and the average height (h) is determined. The bulkiness was calculated by the following formula. A bulkiness of 30 cm 3 / g or more was accepted. Bulkiness (cm 3 / g) = (20 × 20 × h) / 80 (8) Spinning operability evaluation ○: No yarn breakage, no adhesion between single yarns, good operability ×: Yarn breakage, single yarn interval Occurs on either side of
Poor operability (9) Comprehensive evaluation ◯: Good spinning operability, strong retention of nonwoven fabric in high temperature atmosphere of 50% or more, and bulkiness of 30 cm 3 / g
As described above, the bending resistance is 70 cN or less. X: The spinning operability, the tenacity retention of the nonwoven fabric in a high temperature atmosphere, the bulkiness, and the bending resistance are all inferior.

【0031】実施例1 ポリエステルAとして、融点256℃、〔η〕が0.6
8のPET、ポリエステルBとして、ε−カプロラクト
ンを全酸成分に対して15モル%と1,4−ブタンジオ
ールをグリコール成分に対し60モル%共重合した、T
g40℃、Tc94℃、Tm160℃の低融点共重合ポ
リエステルを用い、溶融複合紡糸装置を用いて、紡糸温
度270℃、吐出量642g/分で紡糸し、速度700
m/分で引き取り、サイドバイサイド型中空複合繊維の
未延伸糸を得た。なお、ポリエステルAとポリエステル
Bの構成比(A/B)は、体積比で50/50であっ
た。次いで、この未延伸糸を11万dtexのトウに収
束し、延伸倍率3.8倍、延伸温度55℃で延伸を行
い、押し込み式クリンパーで捲縮を付与した後、切断し
て単糸繊度4.4dtex、繊維長51mmの熱接着性
中空複合短繊維を得た。さらに、得られた熱接着性中空
複合短繊維30質量%と、主体繊維として、繊度6.6
dtex、繊維長51mmの中空複合短繊維70質量%
を混綿し、カード機にかけウェブとなした後、連続熱処
理機にて190℃、1分間の熱処理を行い、一旦冷却
後、110℃×20分の結晶化熱処理を行い、目付20
0g/m2の不織布を得た。(耐熱性の評価用としては
前記の条件で不織布を作成した。)
Example 1 Polyester A having a melting point of 256 ° C. and an [η] of 0.6
As PET 8 and polyester B, 15 mol% of ε-caprolactone was copolymerized with respect to the total acid component, and 60 mol% of 1,4-butanediol was copolymerized with respect to the glycol component.
Using a low melting point copolyester of g40 ° C., Tc94 ° C. and Tm160 ° C., a melt composite spinning device was used to spin at a spinning temperature of 270 ° C. and a discharge rate of 642 g / min.
It was taken out at m / min to obtain an undrawn yarn of a side-by-side type hollow composite fiber. The composition ratio (A / B) of polyester A and polyester B was 50/50 by volume. Then, the undrawn yarn was converged on a tow of 110,000 dtex, drawn at a draw ratio of 3.8 times, and drawn at a drawing temperature of 55 ° C., crimped with a push-in type crimper, and then cut to obtain a single yarn fineness of 4 A heat-adhesive hollow composite short fiber having a fiber length of 51 mm with a fiber length of 0.4 dtex was obtained. Furthermore, 30% by mass of the obtained heat-adhesive hollow composite short fibers and, as a main fiber, a fineness of 6.6.
70% by mass of hollow composite short fibers with dtex and fiber length of 51 mm
After being mixed into a card and made into a web by a card machine, it is heat-treated at 190 ° C. for 1 minute in a continuous heat treatment machine, cooled once, and then heat-treated at a crystallization temperature of 110 ° C. for 20 minutes to give a basis weight of 20.
A non-woven fabric of 0 g / m 2 was obtained. (For evaluation of heat resistance, a nonwoven fabric was prepared under the above conditions.)

【0032】実施例2 ポリエステルBの共重合成分として、ε−カプロラクト
ンに代えてアジピン酸(共重合量15モル%)を用いた
以外は、実施例1と同様にして熱接着性中空複合短繊維
と不織布を得た。
Example 2 As a copolymerization component of polyester B, heat-adhesive hollow composite short fibers were prepared in the same manner as in Example 1 except that adipic acid (copolymerization amount: 15 mol%) was used instead of ε-caprolactone. And obtained a non-woven fabric.

【0033】実施例3〜4 ポリエステルBのε−カプロラクトンの共重合量を表1
のように変更し、カードウエブの連続熱処理機での熱処
理温度を実施例3は205℃、実施例4は185℃とし
た以外は、実施例1と同様にして熱接着性中空複合短繊
維と不織布を得た。
Examples 3 to 4 The copolymerization amount of ε-caprolactone of polyester B is shown in Table 1.
And the heat treatment temperature in the continuous heat treatment machine of the card web was changed to 205 ° C. in Example 3 and 185 ° C. in Example 4 to obtain a heat-bondable hollow composite short fiber in the same manner as in Example 1. A non-woven fabric was obtained.

【0034】比較例1 ポリエステルAを融点230℃、〔η〕が0.92のP
TTに変更した以外は、実施例1と同様にして熱接着性
中空複合短繊維と不織布を得た。
Comparative Example 1 Polyester A having a melting point of 230 ° C. and a P of [η] of 0.92
A heat-adhesive hollow composite short fiber and a nonwoven fabric were obtained in the same manner as in Example 1 except that the TT was changed.

【0035】比較例2 ポリエステルBのε−カプロラクトンの共重合量を表1
のように変更し、カードウエブの連続熱処理機での熱処
理温度を225℃とした以外は、実施例1と同様にして
熱接着性中空複合短繊維と不織布を得た。
Comparative Example 2 The copolymerization amount of ε-caprolactone of polyester B is shown in Table 1.
The thermal adhesive hollow composite short fibers and the non-woven fabric were obtained in the same manner as in Example 1 except that the heat treatment temperature was 225 ° C. in the continuous heat treatment machine for the card web.

【0036】比較例3 ポリエステルBのε−カプロラクトンの共重合量を表1
のように変更し、カードウエブの連続熱処理機での熱処
理温度を170℃とした以外は、実施例1と同様にして
熱接着性中空複合短繊維と不織布を得た。
Comparative Example 3 The copolymerization amount of ε-caprolactone of polyester B is shown in Table 1.
The thermal adhesive hollow composite short fibers and the nonwoven fabric were obtained in the same manner as in Example 1 except that the heat treatment temperature was 170 ° C. in the continuous heat treatment machine for the card web.

【0037】比較例4 ポリエステルBの共重合成分として、ε−カプロラクト
ンに代えてイソフタル酸を40モル%共重合し、非晶性
共重合ポリエステル(Tg62℃、軟化点温度110
℃)とし、カードウエブの連続熱処理機での熱処理温度
を150℃とした以外は、実施例1と同様にして熱接着
性中空複合短繊維と不織布を得た。
Comparative Example 4 As a copolymerization component of polyester B, 40 mol% of isophthalic acid was copolymerized in place of ε-caprolactone to obtain an amorphous copolymerized polyester (Tg 62 ° C., softening point temperature 110).
C.) and the heat treatment temperature of the continuous heat treatment machine for the card web was 150 ° C., to obtain a heat-bondable hollow composite short fiber and a nonwoven fabric in the same manner as in Example 1.

【0038】比較例5 ポリエステルAを芯成分、ポリエステルBを鞘成分と
し、中空部のない芯鞘構造糸とした以外は実施例1と同
様にして熱接着性複合短繊維と不織布を得た。
Comparative Example 5 A heat-bondable composite staple fiber and a nonwoven fabric were obtained in the same manner as in Example 1 except that polyester A was used as the core component, polyester B was used as the sheath component, and a core-sheath structure yarn having no hollow portion was used.

【0039】実施例1〜4、比較例1〜5で得られた熱
接着性複合短繊維と不織布の物性値と評価結果を表1、
2に示す。
Table 1 shows the physical property values and evaluation results of the heat-bondable composite short fibers and nonwoven fabrics obtained in Examples 1 to 4 and Comparative Examples 1 to 5.
2 shows.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】表1、表2から明らかなように、実施例1
〜4の熱接着性中空複合短繊維は紡糸操業性に優れ、得
られた不織布は、耐熱性、嵩高性、柔軟性ともに優れた
ものであった。一方、比較例1の熱接着性中空複合短繊
維は中空率が低かったため、得られた不織布は嵩高性に
劣るものであった。比較例2は、熱接着性中空複合短繊
維のポリエステルBの共重合成分のε−カプロラクトン
の共重合量が少なく、Tmが高かったため、加工性が悪
く、得られた不織布は柔軟性に劣るものであった。比較
例3では、熱接着性中空複合短繊維のポリエステルBの
共重合成分のε−カプロラクトンの共重合量が多く、Tg
が低かったため、紡糸時に融着が生じ、中空率も低くな
り、得られた不織布は嵩高性に劣るものであった。比較
例4では、熱接着性中空複合短繊維のポリエステルBの
共重合成分がイソフタル酸であり、非晶性であったた
め、得られた不織布は耐熱性と柔軟性に劣るものであっ
た。比較例5では、熱接着性複合短繊維の断面形状が非
中空の芯鞘構造であるため、得られた不織布は嵩高性に
劣るものであった。
As is clear from Tables 1 and 2, Example 1
The heat-adhesive hollow composite staple fibers of Nos. 4 to 4 were excellent in spinnability, and the resulting nonwoven fabric was excellent in heat resistance, bulkiness and flexibility. On the other hand, since the heat-adhesive hollow composite short fibers of Comparative Example 1 had a low hollow ratio, the obtained nonwoven fabric was inferior in bulkiness. In Comparative Example 2, since the copolymerization amount of ε-caprolactone as the copolymerization component of polyester B of the heat-adhesive hollow composite short fiber was small and the Tm was high, the processability was poor, and the obtained nonwoven fabric was inferior in flexibility. Met. In Comparative Example 3, the amount of ε-caprolactone as a copolymerization component of polyester B of the heat-adhesive hollow composite short fiber was large, and Tg
Was low, the fusion occurred during spinning, the hollow ratio was also low, and the obtained nonwoven fabric was inferior in bulkiness. In Comparative Example 4, since the copolymerization component of polyester B of the heat-adhesive hollow composite short fibers was isophthalic acid and was amorphous, the obtained nonwoven fabric was inferior in heat resistance and flexibility. In Comparative Example 5, the cross-sectional shape of the heat-adhesive conjugate short fiber had a non-hollow core-sheath structure, and thus the obtained nonwoven fabric was inferior in bulkiness.

【0043】[0043]

【発明の効果】本発明の熱接着性中空複合短繊維によれ
ば、優れた嵩高性と柔軟性及び耐熱性とを同時に有する
不織布を得ることが可能であり、本発明の繊維を用いた
不織布は優れた性能を生かして様々な用途に使用するこ
とができる。
EFFECTS OF THE INVENTION According to the heat-adhesive hollow composite short fiber of the present invention, it is possible to obtain a nonwoven fabric having excellent bulkiness, flexibility and heat resistance at the same time, and a nonwoven fabric using the fiber of the present invention is obtained. Can be used in various applications by taking advantage of its excellent performance.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 主たる繰り返し単位がアルキレンテレフ
タレートであるポリエステルと、ガラス転移点20〜8
0℃、結晶化温度80〜130℃、融点130〜180
℃である低融点ポリエステルとで構成されたサイドバイ
サイド型複合繊維であって、繊維軸方向に連続する中空
部を有し、中空率が10〜30%であることを特徴とす
るポリエステル系熱接着性中空複合短繊維。
1. A polyester whose main repeating unit is alkylene terephthalate, and a glass transition point of 20 to 8
0 ° C, crystallization temperature 80-130 ° C, melting point 130-180
A side-by-side type composite fiber composed of a low melting point polyester having a temperature of 0 ° C., having a hollow portion continuous in the fiber axis direction, and having a hollow ratio of 10 to 30%. Hollow composite staple fiber.
【請求項2】 複合繊維を構成する低融点ポリエステル
が、テレフタル酸成分、エチレングリコール成分及び
1,4−ブタンジオール成分を含有し、かつ、アジピン
酸成分及び/又は脂肪族ラクトン成分を含有する共重合
ポリエステルである請求項1記載のポリエステル系熱接
着性中空複合短繊維。
2. A low melting point polyester constituting a composite fiber contains a terephthalic acid component, an ethylene glycol component and a 1,4-butanediol component, and an adipic acid component and / or an aliphatic lactone component. The heat-adhesive polyester-based hollow composite staple fiber according to claim 1, which is a polymerized polyester.
【請求項3】 請求項1又は2記載のポリエステル系熱
接着性中空複合短繊維を含むことを特徴とする不織布。
3. A non-woven fabric comprising the polyester-based heat-adhesive hollow composite staple fiber according to claim 1 or 2.
JP2002131545A 2002-05-07 2002-05-07 Polyester-based heat-bondable hollow composite short fiber and nonwoven fabric Expired - Fee Related JP4076369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002131545A JP4076369B2 (en) 2002-05-07 2002-05-07 Polyester-based heat-bondable hollow composite short fiber and nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002131545A JP4076369B2 (en) 2002-05-07 2002-05-07 Polyester-based heat-bondable hollow composite short fiber and nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2003328234A true JP2003328234A (en) 2003-11-19
JP4076369B2 JP4076369B2 (en) 2008-04-16

Family

ID=29695883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002131545A Expired - Fee Related JP4076369B2 (en) 2002-05-07 2002-05-07 Polyester-based heat-bondable hollow composite short fiber and nonwoven fabric

Country Status (1)

Country Link
JP (1) JP4076369B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7241015B2 (en) 2003-03-27 2007-07-10 Hitachi, Ltd. Optical unit and projection type image display unit using it
KR100957687B1 (en) 2007-12-27 2010-05-12 도레이첨단소재 주식회사 Polypropylene nonwoven fabric of hollow filament and manufacturing method thereof
KR101017294B1 (en) 2008-12-29 2011-02-28 도레이첨단소재 주식회사 Polyester hollow spunbond nonwoven fabric for air filter and method of preparing the same
JP2013133560A (en) * 2011-12-27 2013-07-08 Toray Ind Inc Polyester-based thermally bondable conjugate fiber and fiber structure
JP2014043657A (en) * 2012-08-27 2014-03-13 Nippon Ester Co Ltd Polyester hollow composite binder fiber
CN115613365A (en) * 2022-11-14 2023-01-17 江苏动亦智能自动化科技有限公司 Processing technology of high-temperature band seamless ring

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7241015B2 (en) 2003-03-27 2007-07-10 Hitachi, Ltd. Optical unit and projection type image display unit using it
KR100957687B1 (en) 2007-12-27 2010-05-12 도레이첨단소재 주식회사 Polypropylene nonwoven fabric of hollow filament and manufacturing method thereof
KR101017294B1 (en) 2008-12-29 2011-02-28 도레이첨단소재 주식회사 Polyester hollow spunbond nonwoven fabric for air filter and method of preparing the same
JP2013133560A (en) * 2011-12-27 2013-07-08 Toray Ind Inc Polyester-based thermally bondable conjugate fiber and fiber structure
JP2014043657A (en) * 2012-08-27 2014-03-13 Nippon Ester Co Ltd Polyester hollow composite binder fiber
CN115613365A (en) * 2022-11-14 2023-01-17 江苏动亦智能自动化科技有限公司 Processing technology of high-temperature band seamless ring

Also Published As

Publication number Publication date
JP4076369B2 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
JP4591206B2 (en) Long fiber nonwoven fabric
JP3778808B2 (en) Polyester-based heat-adhesive conjugate fiber and method for producing the same
TW200809022A (en) Spontaneously elongative and thermo conjugate fiber and method for producing the same
CA2004952A1 (en) Polyesters and their use as binders filaments and fibers
JP4076369B2 (en) Polyester-based heat-bondable hollow composite short fiber and nonwoven fabric
JPH09268490A (en) Polyester-based heat-resistant wet type nonwoven fabric and its production
JP3692931B2 (en) POLYESTER SHORT FIBER HAVING LATIN CRIMMING CHARACTERISTICS AND PROCESS FOR PRODUCING THE SAME
JP2004107860A (en) Thermally adhesive sheath core type conjugated short fiber and non-woven fabric of the same
JP2021147738A (en) Polyester-based sheath-core type conjugate fiber
JP6112931B2 (en) Polyester composite short fiber
JP2001115340A (en) Polyester hot-melting type conjugated staple fiber and non-woven fabric therefrom
JP2703294B2 (en) Polyester conjugate fiber, nonwoven fabric containing the fiber, and method for producing the nonwoven fabric
JP2795487B2 (en) Fiber laminate
JPH07119011A (en) Polyester-based heat-resistant nonwoven fabric and its production
JPH10298828A (en) Heat-sealable composite binder fiber and nonwoven fabric and solid cotton
JP3313878B2 (en) Polyester binder fiber
JP6110144B2 (en) Short cut composite fiber for wet nonwoven fabric
JPH11217731A (en) Thermoadhesive conjugate fiber and its production
JP2882636B2 (en) Far-infrared radiating composite fiber, woven or knitted fabric containing the fiber and nonwoven fabric
JP4628808B2 (en) Low shrinkable thermal adhesive fiber
JPH11158734A (en) Antimicrobial, thermally bondable conjugate yarn and antimicrobial yarn structure
JP2004270045A (en) Nonwoven fabric composed of polyester heat adhesive conjugated fiber
JP4988484B2 (en) Short fiber nonwoven fabric
JPH11241261A (en) Polyesterfiber structure having shape-memory ability
JP2002327336A (en) Thermobonding conjugate short fiber and nonwoven fabric having the same short fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080129

R150 Certificate of patent or registration of utility model

Ref document number: 4076369

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees