JP4955278B2 - Polyester fiber for airlaid nonwoven fabric and method for producing the same - Google Patents

Polyester fiber for airlaid nonwoven fabric and method for producing the same Download PDF

Info

Publication number
JP4955278B2
JP4955278B2 JP2006028313A JP2006028313A JP4955278B2 JP 4955278 B2 JP4955278 B2 JP 4955278B2 JP 2006028313 A JP2006028313 A JP 2006028313A JP 2006028313 A JP2006028313 A JP 2006028313A JP 4955278 B2 JP4955278 B2 JP 4955278B2
Authority
JP
Japan
Prior art keywords
fiber
polyester
nonwoven fabric
crimp
polyester fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006028313A
Other languages
Japanese (ja)
Other versions
JP2007204900A (en
Inventor
裕憲 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Fibers Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2006028313A priority Critical patent/JP4955278B2/en
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to MYPI20082952A priority patent/MY144282A/en
Priority to CN200780004635.7A priority patent/CN101379236B/en
Priority to EP07713960A priority patent/EP1988201A1/en
Priority to US12/278,489 priority patent/US20090243141A1/en
Priority to PCT/JP2007/052297 priority patent/WO2007091665A1/en
Priority to TW096104308A priority patent/TW200745400A/en
Publication of JP2007204900A publication Critical patent/JP2007204900A/en
Priority to HK09104692.4A priority patent/HK1126260A1/en
Application granted granted Critical
Publication of JP4955278B2 publication Critical patent/JP4955278B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Nonwoven Fabrics (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

本発明は、エアレイド不織布用繊維に関するもので、更に詳しくは、スクリーンからの紡出量が優れる、エアレイド不織布用ポリエステル系繊維に関するものである。   The present invention relates to a fiber for an air laid nonwoven fabric, and more particularly to a polyester fiber for an air laid nonwoven fabric that has an excellent amount of spinning from a screen.

エアレイド不織布は、従来広く用いられているカード法で製造される不織布に比べ、繊維の配向が進行方向と幅方向の差がなく均一であり、また、抄造法による不織布に比べ嵩高性を発現し易い特徴があり、近年特に生産量を伸ばしている分野である。一般に、エアレイド法不織布用繊維は、特許文献1に示される如く、嵩高性を付与するために平面ジグザグ状やスパイラル状の顕在捲縮を付与している。しかし、嵩高性をよくするために捲縮数または捲縮率を大きくすると、空気開繊工程で繊維の開繊性が低下し、未開繊束やウェブ斑の発生が多くなり、得られた不織布は外観品位が劣り、不織布強力の低い劣悪なものとなることが多い。殊に、ポリエステル系繊維は、特許文献1に示されるようなポリオレフィン系繊維に比べ、繊維摩擦が高いため、紡出量を高くすることが難しい。紡出量を上げるには、ポリジメチルシロキサン系のシリコーン系平滑剤を油剤成分中に25重量%以上に多く添加する必要があった。よって、シリコーン系平滑剤に由来して防炎性に劣る傾向があった。   Air-laid non-woven fabrics have a uniform fiber orientation with no difference between the direction of travel and the width direction, compared to non-woven fabrics manufactured by the card method, which is widely used in the past, and are more bulky than non-woven fabrics made by papermaking. It is a field that has easy-to-use features and has recently increased production. In general, as shown in Patent Document 1, the airlaid nonwoven fabric fibers are imparted with a flat zigzag or spiral-shaped apparent crimp in order to impart bulkiness. However, if the number of crimps or the crimp rate is increased in order to improve bulkiness, the fiber opening property is reduced in the air opening process, and unopened bundles and web spots are more frequently generated. Often have poor appearance quality and poor nonwoven fabric strength. In particular, polyester fibers have higher fiber friction than polyolefin fibers as disclosed in Patent Document 1, and therefore it is difficult to increase the spinning amount. In order to increase the spinning amount, it was necessary to add a polydimethylsiloxane-based silicone leveling agent in an amount of 25% by weight or more in the oil component. Therefore, there was a tendency to be inferior in flameproofness due to the silicone-based smoothing agent.

また、繊度が細くなるほど、繊維の表面積が多くなり、繊維束として凝集しやすくなるために開繊性が難しくなる。一般的な押し込み捲縮法のクリンパーを用いると、細繊度になるほど捲縮数が多いために、開繊性は一層悪化する方向であった。ポリエステル系繊維、殊にポリエチレンテレフタレート繊維は、ポリオレフィン等に比べ剛性が高いために、捲縮度が大きくなり、スクリーン通過性は悪い傾向にあった、一方、繊維長が長くなると、できた不織布の強度を上げることができるが、反面、スクリーンの通過性が悪くなり、生産能力が落ちてしまう欠点がある。特許文献2には捲縮周期に対する捲縮の高さの比(H/L)、いわゆる捲縮の傾斜を繊度毎に最適なように規定して、エアレイド性の良好な繊維が提案されている。しかしながら、実施例として例示されている捲縮数は繊度が小さい場合には捲縮数の設定が小さすぎるため、押し込み式クリンパーのスタフィング圧を低くしなければならず、反って捲縮がノークリンプに近い捲縮斑を発現しやすいものであった。また、繊度が大きい場合には捲縮数設定が大きすぎるため、スタフィング圧を大きくすると背圧が高くなるためクリンパーががたつき易くなる。クリンパー前でトウをスチーム等で加熱してやることで、繊維の剛性が低下し、がたつきは減少するが、捲縮度が上がり、かつH/Lが高くなりすぎるためにスクリーンの通過性が悪くなり、紡出量が低下するのみならず、毛玉状の繊維塊を生じやすくなるといった欠点があった。
よって、著しく紡出性が優れるエアレイド不織布用ポリエステル系繊維は、従来提案されていなかった。
In addition, the finer the fineness, the larger the surface area of the fibers, and the easier it is to aggregate as a fiber bundle, making it difficult to open. When a crimper of a general indentation crimping method is used, the number of crimps increases as the fineness becomes finer, so that the openability is further deteriorated. Polyester fibers, especially polyethylene terephthalate fibers, have higher rigidity than polyolefins, etc., so the degree of crimping tends to be large and the screen penetration tends to be poor. On the other hand, when the fiber length is long, The strength can be increased, but on the other hand, there is a drawback in that the passing ability of the screen is deteriorated and the production capacity is lowered. Patent Document 2 proposes a fiber having a good airlaid property by defining the ratio of the crimp height to the crimp cycle (H / L), that is, the so-called crimp inclination to be optimum for each fineness. . However, the number of crimps exemplified as an example is too small when the fineness is small, so the stuffing pressure of the push-in crimper has to be lowered, and the crimp does not crimp. It was easy to develop near crimped spots. In addition, when the fineness is large, the number of crimps is set too large. Therefore, if the stuffing pressure is increased, the back pressure is increased and the crimper is likely to rattle. Heating the tow with steam or the like before the crimper reduces the rigidity of the fiber and reduces rattling, but the crimpability increases and the H / L becomes too high, so the screen does not pass well. As a result, not only the spinning amount is reduced, but also a fuzzy fiber mass tends to be formed.
Therefore, conventionally, a polyester fiber for airlaid nonwoven fabric that is remarkably excellent in spinnability has not been proposed.

特開平11−81116号公報JP-A-11-81116 特開2005−42289号公報JP 2005-42289 A

本発明は、上記従来技術を背景になされたもので、その目的は、エアレイド性、特にスクリーンからの紡出性に極めて優れ、地合いの良好かつ嵩高なエアレイド不織布を製造可能とする、エアレイド不織布用ポリエステル系繊維を提供することにある。   The present invention has been made against the background of the above-described prior art, and its purpose is for air-laid nonwoven fabrics that are extremely excellent in air laid properties, in particular, spinnability from screens, and that can produce air-laid nonwoven fabrics that are well-formed and bulky. It is to provide a polyester fiber.

本発明者等は、上記課題を解決するために鋭意検討を重ねた結果、ポリエステル系繊維の未延伸糸をガラス転移点(Tg)より高い温度で定長熱処理すること、あるいは延伸後、前述の温度範囲でオーバーフィードをさせることで、捲縮数が多いにもかかわらず、捲縮率が低く、スクリーン通過後にその嵩性能を回復するエアレイド不織布用複合繊維の発明に到達した。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have conducted constant length heat treatment of unstretched yarn of polyester fiber at a temperature higher than the glass transition point (Tg), or after stretching, By overfeeding in the temperature range, the inventors have reached the invention of a composite fiber for airlaid nonwoven fabric that has a low crimp rate and recovers its bulk performance after passing through a screen, despite a large number of crimps.

より具体的には、上記課題は未延伸糸をポリエステルのガラス転移点より10℃以上高い温度下0.60〜1.2の倍率で定長熱処理することにより得られるエアレイド不織布用ポリエステル系繊維であって、80モル%以上がアルキレンテレフタレートの繰返しであるポリエステルからなり、繊度が10デシテックス以下または繊維長が8mm以上であり、当該定長熱処理後の伸度が130〜600%、捲縮数が8.5山/25mm以上、捲縮率/捲縮数が0.65以下、かつ捲縮弾性率が70%以上、180℃乾熱収縮率が−20〜2%であることを特徴とするエアレイド不織布用ポリエステル系繊維、並びに1500m/min以下の紡糸速度で引き取った未延伸糸をポリエステルのガラス転移点より10℃以上高い温度下0.60〜1.2の倍率で定長熱処理することを特徴とするエアレイド不織布用ポリエステル系繊維の製造方法による発明により解決することができる。 More specifically, the above-mentioned problem is a polyester fiber for air laid nonwoven fabric obtained by subjecting an undrawn yarn to a constant length heat treatment at a magnification of 0.60 to 1.2 at a temperature 10 ° C. or more higher than the glass transition point of the polyester. there, at least 80 mol% consists of polyester a repeat of alkylene terephthalate, fineness is not less 10 dtex or less, or a fiber length of more than 8 mm, elongation after the fixed-length heat treatment from 130 to 600%, the number of crimps 8.5 crest / 25 mm or more, crimp ratio / crimp number is 0.65 or less, crimp elastic modulus is 70% or more, and 180 ° C. dry heat shrinkage is −20 to 2%. The polyester fiber for air laid nonwoven fabric and the undrawn yarn taken at a spinning speed of 1500 m / min or less at a temperature higher by 10 ° C. or more than the glass transition point of the polyester at 0.60 This can be solved by the invention according to the method for producing polyester-based fibers for air-laid nonwoven fabric, characterized in that the heat treatment is performed at a constant ratio of 1.2.

本発明は、細繊度または繊維長が長いエアレイド不織布用ポリエステル系繊維において、スクリーン通過性が良好、すなわち生産性の極めて高く、かつ風合いが柔軟で嵩高なエアレイド不織布用繊維を提供することを可能とした。また、従来の押し込み型クリンパーで安定して捲縮を付与でき、従って捲縮も均一で、地合いの良好な不織布が生産可能となる。   The present invention makes it possible to provide a fiber for an air laid nonwoven fabric having a high fineness or a long fiber length and having a high screenability, that is, a very high productivity and a soft and bulky texture. did. In addition, a conventional indentation type crimper can stably provide crimps, and therefore, crimps are uniform and a non-woven fabric with good texture can be produced.

以下本発明の実施形態について詳細に説明する。
先ず、実施形態が単一成分繊維の場合、繊維を構成する合成重合体としては、アルキレンテレフタレートを主たる繰返し成分とするポリエステルが好ましい。アルキレンテレフタレートを主たる成分とするポリエステルとは、構成する繰返し単位の80モル%以上がアルキレンテレフタレートの繰返しで占められるポリエステルであり、具体的にはポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート等のポリアルキレンテレフタレートを意味する。好ましくは構成する繰返し単位の90モル%以上がアルキレンテレフタレートで占められていることである。またエチレンテレフタレートの繰返し単位で80モル%以上が占められていることが好ましい。また必要に応じて、他のジカルボン酸成分、オキシカルボン酸成分、他のジオール成分の1種または2種以上を共重合単位として有するものを含んでも良い。
Hereinafter, embodiments of the present invention will be described in detail.
First, when the embodiment is a single-component fiber, the synthetic polymer constituting the fiber is preferably a polyester having alkylene terephthalate as a main repeating component. Polyester having alkylene terephthalate as a main component is a polyester in which 80 mol% or more of the constituting repeating units are occupied by repeating alkylene terephthalate. Means alkylene terephthalate. Preferably, 90% by mole or more of the constituting repeating units are occupied by alkylene terephthalate. Moreover, it is preferable that 80 mol% or more is occupied by the repeating unit of ethylene terephthalate. Moreover, you may include what has 1 type, or 2 or more types of another dicarboxylic acid component, an oxycarboxylic acid component, and another diol component as a copolymerization unit as needed.

その場合、他の共重合成分として好適なジカルボン酸成分としては、ジフェニルジカルボン酸、ナフタレンジカルボン酸などの芳香族ジカルボン酸またはそれらのエステル形成性誘導体、5−ナトリウムスルホイソフタル酸ジメチル、5−ナトリウムスルホイソフタル酸ビス(2−ヒドロキシエチル)などの金属スルホネート基含有芳香族ジカルボン酸誘導体、シュウ酸、アジピン酸、セバシン酸、ドデカン2酸などの脂肪族ジカルボン酸またはそのエステル形成性誘導体を挙げることができる。また、オキシカルボン酸成分の例としては、p−オキシ安息香酸、p−β−オキシエトキシ安息香酸またはそれらのエステル形成性誘導体などを挙げることができる。   In this case, examples of the dicarboxylic acid component suitable as the other copolymerization component include aromatic dicarboxylic acids such as diphenyldicarboxylic acid and naphthalenedicarboxylic acid or ester-forming derivatives thereof, dimethyl 5-sodium sulfoisophthalate, 5-sodium sulfo Examples thereof include metal sulfonate group-containing aromatic dicarboxylic acid derivatives such as bis (2-hydroxyethyl) isophthalate, aliphatic dicarboxylic acids such as oxalic acid, adipic acid, sebacic acid, and dodecanedioic acid, or ester-forming derivatives thereof. . Examples of the oxycarboxylic acid component include p-oxybenzoic acid, p-β-oxyethoxybenzoic acid, or ester-forming derivatives thereof.

共重合成分として好適なジオール成分としては、エチレングリコール、ジエチレングリコール、1,3−プロパンジオール、1,4−ブタンジオール、1,6−ヘキサンジオール、ネオペンチルグリコールなどの脂肪族ジオール、1,4−ビス(β−オキシエトキシ)ベンゼン、ポリエチレングリコール、ポリトリメチレングリコール、ポリブチレングリコールなどのポリアルキレングリコールなどを挙げることができる。   Examples of suitable diol components as the copolymerization component include ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, aliphatic diols such as neopentyl glycol, 1,4- Examples thereof include polyalkylene glycols such as bis (β-oxyethoxy) benzene, polyethylene glycol, polytrimethylene glycol, and polybutylene glycol.

この中から、使用される目的に応じて適切なアルキレンテレフタレートを選択し、本発明の要件を満たす単糸繊度、捲縮性能、繊維長を付与する。このようなアルキレンテレフタレートを主たる成分とするポリエステルからなる、本発明のエアレイド不織布用繊維は以下の方法で製造することができる。   Among these, an appropriate alkylene terephthalate is selected according to the purpose to be used, and a single yarn fineness, crimping performance, and fiber length satisfying the requirements of the present invention are imparted. The fiber for air laid nonwoven fabric of the present invention, which is made of polyester having such an alkylene terephthalate as a main component, can be produced by the following method.

ペレット化したポリエステルを常法で乾燥後、スクリュー押出機等を装備した公知のポリエステル繊維紡糸設備で溶融紡糸し、1500m/min以下の紡糸速度で引き取った未延伸糸をポリエステルのガラス転移点より10℃以上高い温度で0.60〜1.2の倍率で定長熱処理する製造方法により得られる。紡糸速度は1500m/min以下であることが必要であり、好ましくは1300m/min以下、更に好ましくは1200m/min以下である。1500m/minを超えると未延伸糸の配向が上がり、本発明が目標とする高接着性を阻害する上、断糸が多くなり、生産性が悪くなる。また紡糸速度がこの範囲より遅くても当然のごとく生産性が悪くなる。ここでいう定長熱処理は、溶融紡糸により得た未延伸糸を0.60〜1.2倍のドラフトをかけた状態で行う。実質は、熱処理前後で繊維軸方向の変形がないように1.0倍で行うが、樹脂の性質上未延伸糸に熱伸長が生じる場合は延伸機のローラー間での糸条の弛みを防ぐために、1.0倍より大きいドラフトをかけてもよい。1.2倍を超えたドラフトを付与することは未延伸糸を延伸させることになるので好ましくない。また、樹脂の性質上強い熱収縮を生じる場合も繊維の配向を上げてしまう方向であるので、1.0倍より大きいドラフトをかける代わりに未延伸糸が延伸中に弛みを生じない程度の1.0倍未満のドラフト(オーバーフィード)としても差し支えない。ただし、ドラフトは0.60倍程度が下限であり、これを下回るとポリエステル系繊維の伸度を600%以下に抑えることが困難となる。定長熱処理の温度がポリエステルのガラス転移点より10℃以上高くないと熱接着時の収縮率が大きくなり好ましくない。定長熱処理はヒータープレート上、熱風吹付け、高温空気中、蒸気吹付け、シリコンオイルバス等の液体熱媒中で実施すればよいが、熱効率がよく、その後の繊維処理剤付与の際に洗浄の必要がない温水中で実施することが好ましい。   The pelletized polyester is dried by a conventional method, melt-spun in a known polyester fiber spinning equipment equipped with a screw extruder or the like, and an undrawn yarn taken up at a spinning speed of 1500 m / min or less is 10 from the glass transition point of the polyester. It is obtained by a production method in which constant-length heat treatment is performed at a magnification of 0.60 to 1.2 at a temperature higher than C.degree. The spinning speed needs to be 1500 m / min or less, preferably 1300 m / min or less, and more preferably 1200 m / min or less. If it exceeds 1500 m / min, the orientation of the undrawn yarn is increased, which hinders the high adhesiveness targeted by the present invention, and increases the number of yarn breaks, resulting in poor productivity. Moreover, even if the spinning speed is slower than this range, the productivity is naturally deteriorated. The constant length heat treatment here is performed in a state where an undrawn yarn obtained by melt spinning is subjected to a draft of 0.60 to 1.2 times. Substantially, it is performed at a magnification of 1.0 so that there is no deformation in the fiber axis direction before and after heat treatment. However, when thermal elongation occurs in the undrawn yarn due to the nature of the resin, the yarn is prevented from loosening between the rollers of the drawing machine. Therefore, a draft larger than 1.0 times may be applied. Giving a draft exceeding 1.2 times is not preferable because the undrawn yarn is drawn. In addition, in the case where strong heat shrinkage occurs due to the nature of the resin, the orientation of the fiber is also increased, so that the undrawn yarn does not loosen during drawing instead of applying a draft larger than 1.0 times. It may be a draft (overfeed) of less than 0 times. However, the lower limit of the draft is about 0.60 times, and if it is less than this, it becomes difficult to suppress the elongation of the polyester fiber to 600% or less. If the temperature of the constant-length heat treatment is not higher than the glass transition point of the polyester by 10 ° C. or more, the shrinkage rate at the time of heat bonding is undesirably increased. Constant-length heat treatment may be performed on a heater plate, in hot air spray, in high-temperature air, steam spray, or in a liquid heat medium such as a silicon oil bath. It is preferable to carry out in warm water where there is no need for water.

またもう一つの方法としては、公知のポリエステル繊維の溶融紡糸装置を用いて、1500m/min以下の紡糸速度で引き取った未延伸糸をポリエステルのガラス転移点より低い温度で延伸した後、ポリエステルのガラス転移点より10℃以上高い温度で0.50〜0.9の倍率でオーバーフィード熱処理する方法がある。延伸方法、オーバーフィードの加熱方法としては、前述の定長熱処理の方法と同様であるが、特に加熱効率の良い温水中で実施するのが好ましい。延伸倍率としては、1.1倍以上であれば特に制限を受けないが、未延伸糸の破断伸度の60〜80%程度で行うことが好ましい。このような延伸方法であっても、低モデュラスの複合繊維を得ることができる。   Another method is to use a known polyester fiber melt spinning apparatus to stretch undrawn yarn taken at a spinning speed of 1500 m / min or less at a temperature lower than the glass transition point of polyester, and then polyester glass. There is a method of performing overfeed heat treatment at a temperature of 0.50 to 0.9 at a temperature 10 ° C. or more higher than the transition point. The stretching method and the overfeed heating method are the same as the above-mentioned constant length heat treatment method, but it is particularly preferable to carry out in warm water with good heating efficiency. The draw ratio is not particularly limited as long as it is 1.1 times or more, but is preferably about 60 to 80% of the breaking elongation of the undrawn yarn. Even with such a drawing method, a low modulus composite fiber can be obtained.

本発明の製造方法によって開繊性が良好である低い捲縮性能(すなわち、捲縮率/捲縮数が小さい)繊維を製造できるのは、ポリエステル繊維が実質延伸されていない状態で定長熱処理を受けるため、剛性率が実質低く、クリンパーボックスでの繊維の変形を受けやすいが固定もされにくく、またクリンパーボックスに入る前に予熱をされていないため、可塑化効果が少ないため、捲縮率が高くなりにくい。従って、毛玉状に絡みにくく、スクリーンより排出されやすくなり、ウェブ上での欠点ともなり難い。更には、上記のような紡糸延伸条件で製造されたポリエステル繊維は自己伸張性を呈することが多いため、エアレイド不織布は嵩高となり、繊維自体の低モデュラスと相まって風合いのよい、柔軟な不織布に仕上がる。   The low crimping performance (that is, the crimp ratio / the number of crimps is small) with good openability can be produced by the production method of the present invention because the polyester fiber is not substantially stretched. Therefore, the crimping rate is low due to the fact that the rigidity is substantially low, the fiber is easily deformed by the crimper box, but is not easily fixed, and is not preheated before entering the crimper box. Is difficult to increase. Therefore, it is difficult to be entangled in the shape of a hairball, it is easy to be discharged from the screen, and it is difficult to be a defect on the web. Furthermore, since the polyester fibers produced under the spinning and drawing conditions as described above often exhibit self-stretchability, the air-laid nonwoven fabric is bulky and is finished into a soft nonwoven fabric with a good texture in combination with the low modulus of the fiber itself.

本発明においては更に、JIS L1015:2005 8.12.1〜8.12.2に定める捲縮率(CD)と捲縮数(CN)の比、CD/CNが0.65以下となるように捲縮率を小さく、かつ捲縮弾性率(JIS L1015:2005 8.12.3に記載。残留捲縮率を捲縮率で除し、百分率表示したもの)が70%以上となるように、捲縮数、捲縮率を低く、かつ捲縮弾性率(CE)を高く設定したものである。捲縮数、捲縮率を低く設定することによりスクリーンを通過しやすくなり、また捲縮弾性率としては高くなるようにすると、スクリーン通過後に捲縮が回復することによって、結束状の繊維塊が繊維間の凝集を断ち切って開繊しやすくなり、更に紡出性が上がる。捲縮数(CN)の範囲は8.5山/25mm以上、好ましくは9〜20山/25mm程度、より好ましくは9.5〜13山/25mmが適切である。CNが20山/25mmを超えると繊維間の絡合が強すぎて毛玉を生じやすいことがあり、逆に8.5山/25mmを下回ると繊維長が長くなった場合にスクリーンを通過しにくくなり、結束上の繊維塊を生じやすく、開繊性、スクリーン通過性が悪くなる。捲縮率(CD)と捲縮数の比、CD/CNが0.65を超えると、捲縮の山が鋭くなり、繊維間の絡合が強まる方向であるため、やはりスクリーン通過性が悪くなる。捲縮弾性率が70%を下回ると、スクリーン通過後で結束状繊維が残りやすくなる。このようなCD/CN比の範囲、CEの範囲を達成する為には、例えば複合繊維に捲縮をかける際に温度をかけずに行うのが好ましい。更には冷風などで冷却しながら複合繊維に捲縮をかけるのがより好ましい。   In the present invention, the ratio of the crimp ratio (CD) to the number of crimps (CN) as defined in JIS L1015: 2005 8.12.1 to 8.12.2, CD / CN is 0.65 or less. And the crimp elastic modulus (described in JIS L1015: 2005 8.12.3. The residual crimp rate is divided by the crimp rate and expressed as a percentage) to be 70% or more. The number of crimps and the crimp rate are set low, and the crimp elastic modulus (CE) is set high. By setting the number of crimps and the crimp rate low, it becomes easier to pass through the screen, and when the crimp elastic modulus is made higher, the crimp is recovered after passing through the screen. It breaks agglomeration between fibers and becomes easier to open, further improving the spinnability. The range of the number of crimps (CN) is 8.5 peaks / 25 mm or more, preferably about 9-20 peaks / 25 mm, more preferably 9.5-13 peaks / 25 mm. If CN exceeds 20 ridges / 25 mm, the entanglement between the fibers may be too strong and pills are likely to occur. Conversely, if the CN is less than 8.5 ridges / 25 mm, the fiber will pass through the screen when the fiber length becomes long. It becomes difficult to form a lump of fibers on the bundle, and the spreadability and screenability are deteriorated. When the ratio of crimp (CD) to the number of crimps, CD / CN exceeds 0.65, the peak of crimp becomes sharp and the entanglement between fibers is intensified. Become. When the crimp elastic modulus is less than 70%, the bundled fibers are likely to remain after passing through the screen. In order to achieve such a range of CD / CN ratio and CE, for example, it is preferable to carry out crimping on the composite fiber without applying temperature. Furthermore, it is more preferable to crimp the composite fiber while cooling with cold air or the like.

さらに本発明の対象となるのが、繊維形成性樹脂成分および熱接着性樹脂成分からなる複合繊維であり、繊度が10デシテックス以下または繊維長が8mm以上のエアレイド不織布用複合繊維である。これらの値より、繊度が小さくなる、または繊維長が長い繊維は、一般的にはエアレイド不織布製造装置に設けられたスクリーンを通過しにくい。その原因は、繊度が小さいと繊維間の凝集が強く開繊しにくいためであり、また繊維長が長いと繊維がスクリーンの孔を通過する大きさに丸まらないためである。この傾向からさらに捲縮性能が強いと繊維が交絡して毛玉状となり、スクリーンの孔が塞がり易くなる。また、偶発的にその毛玉がスクリーンを通過した場合には、ウェブに毛玉状の欠点や地合い斑を生じやすくなり、不織布の品質上問題が発生する。本発明はこの点に鑑みて、従来品質上の問題があった低繊度又は繊維長が長い場合であっても、地合いが良好で品質の良い不織布を得るための複合繊維であり、繊度が10デシテックス以下または繊維長が8mm以上であることが必要である。好ましくは繊度1〜9デシテックス又は繊維長9〜50mm、より好ましくは繊度5〜9デシテックス又は繊維長9.5〜30mmである。   Further, an object of the present invention is a composite fiber composed of a fiber-forming resin component and a heat-adhesive resin component, and is a composite fiber for an airlaid nonwoven fabric having a fineness of 10 dtex or less or a fiber length of 8 mm or more. From these values, a fiber having a small fineness or a long fiber length is generally difficult to pass through a screen provided in an air laid nonwoven fabric manufacturing apparatus. The reason is that if the fineness is small, the aggregation between the fibers is strong and it is difficult to open the fibers, and if the fiber length is long, the fibers are not rounded to the size that passes through the holes of the screen. From this tendency, if the crimping performance is further strong, the fibers are entangled and become pilled, and the screen holes are easily blocked. Moreover, when the pill ball accidentally passes the screen, it becomes easy to produce a fuzz ball-like defect and a textured spot on the web, which causes a problem in quality of the nonwoven fabric. In view of this point, the present invention is a composite fiber for obtaining a non-woven fabric having a good texture and good quality even when the fiber has a low fineness or a long fiber length, which has been problematic in terms of quality, and has a fineness of 10 It is necessary that it is not more than decitex or the fiber length is not less than 8 mm. The fineness is preferably 1 to 9 dtex or the fiber length is 9 to 50 mm, more preferably the fineness is 5 to 9 dtex or the fiber length is 9.5 to 30 mm.

本発明のポリエステル系繊維の180℃乾熱収縮率は−20〜2%である特徴をもつ。熱接着時の収縮が少ないために繊維交点での接着点のズレが少なく、接着点が強固になる。更に収縮率が負、いわゆる自己伸長の状態になると熱接着前に不織布中の繊維密度が低下し、嵩高に仕上がることによって柔く風合いの良い不織布ができる。収縮率が−2%を超えると、接着強度が低下する方向で繊維密度が上がるために風合いが硬くなる方向である。一方、収縮率が−20%を下回り自己伸長になると、熱接着時に接着点がずれ、やはり不織布強度が低下する方向に移行する。   The polyester fiber of the present invention has a feature that the 180 ° C. dry heat shrinkage is −20 to 2%. Since there is little shrinkage at the time of thermal bonding, there is little shift of the bonding point at the fiber intersection, and the bonding point becomes strong. Further, when the shrinkage rate is negative, that is, a so-called self-elongation state, the fiber density in the non-woven fabric is lowered before heat bonding, and a non-woven fabric that is soft and has a good texture can be obtained by being bulky. When the shrinkage rate exceeds -2%, the fiber density increases in the direction in which the adhesive strength decreases, and thus the texture becomes hard. On the other hand, when the shrinkage rate is less than −20% and self-elongates, the adhesion point is shifted during thermal bonding, and the nonwoven fabric strength is also lowered.

前述の高い破断伸度と低い乾熱収縮率を両立するためには、上述のように延伸ドラフトとして0.60〜1.2倍の定長熱処理を行うことによって達成される。更にドラフトが1.0倍未満、いわゆるオーバーフィード率大きく、具体的には0.50〜0.90倍の倍率に設定し、熱処理の温度を高くすると、自己伸張率が大きくなる傾向になり好ましい。このような処理を行うと適度な自己伸張性を付与することにより、不織布であれば嵩高に仕上がり、繊維構造体であれば低密度に仕上がる特徴を付与できる利点がある。180℃乾熱収縮率の好ましい範囲は−11〜1.5%、更に好ましくは−8〜0%である。   In order to achieve both the above-mentioned high breaking elongation and a low dry heat shrinkage rate, it is achieved by performing a constant length heat treatment of 0.60 to 1.2 times as a drawing draft as described above. Further, when the draft is less than 1.0 times, the so-called overfeed rate is large, specifically, the magnification is set to 0.50 to 0.90 times, and the temperature of the heat treatment is increased, the self-stretching rate tends to increase, which is preferable. . When such a treatment is performed, there is an advantage that by imparting appropriate self-stretchability, a non-woven fabric can be given a bulky finish and a fiber structure can be given a low-density finish. The preferable range of the 180 ° C. dry heat shrinkage is −11 to 1.5%, more preferably −8 to 0%.

断面形状は、中実でも中空でもよく、3角形や星型などの異型断面や異型中空となってもよい。これらの中空繊維や異型繊維は公知の紡糸口金を用いて溶融紡糸することによって得ることができる。   The cross-sectional shape may be solid or hollow, and may be an irregular cross-section such as a triangle or a star or an irregular hollow. These hollow fibers and atypical fibers can be obtained by melt spinning using a known spinneret.

以下、実施例により、本発明を更に具体的に説明するが、本発明はこれによって何ら限定を受けるものでは無い。なお、実施例における各項目は次の方法で測定した。   Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited thereto. In addition, each item in an Example was measured with the following method.

(1)固有粘度(IV)
ポリマーを一定量計量し、o−クロロフェノールに0.012g/mlの濃度に溶解してから、常法に従って35℃にて求めた。
(1) Intrinsic viscosity (IV)
A fixed amount of the polymer was weighed and dissolved in o-chlorophenol at a concentration of 0.012 g / ml, and then determined at 35 ° C. according to a conventional method.

(2)融点(Tm)、ガラス転移点(Tg)
TAインスツルメント・ジャパン(株)社製のサーマル・アナリスト2200を使用し、昇温速度20℃/分で測定した。
(2) Melting point (Tm), glass transition point (Tg)
A thermal analyst 2200 manufactured by TA Instrument Japan Co., Ltd. was used, and the temperature was measured at a temperature rising rate of 20 ° C./min.

(3)繊度
JIS L 1015:2005 8.5.1 A法に記載の方法により測定した。
(3) Fineness Measured by the method described in JIS L 1015: 2005 8.5.1 Method A.

(4)強度・伸度
JIS L 1015:2005 8.7.1法に記載の方法により測定した。本発明の繊維は定長熱処理の効率により、強伸度にバラツキを生じやすいので、単糸で測定する場合は測定点数を増やす必要がある。測定点数は50以上が好ましいため、ここでは測定点数を50とし、その平均値として定義する。
(4) Strength / Elongation Measured by the method described in JIS L 1015: 2005 8.7.1. Since the fiber of the present invention tends to vary in the strength and elongation due to the efficiency of the constant length heat treatment, it is necessary to increase the number of measurement points when measuring with a single yarn. Since the number of measurement points is preferably 50 or more, here, the number of measurement points is defined as 50, which is defined as the average value.

(5)捲縮数(CN)、捲縮率(CD)、捲縮弾性率(CE)
JIS L 1015:2005 8.12.1〜8.12.3法に記載の方法により測定した。
(5) Crimp number (CN), crimp rate (CD), crimp elastic modulus (CE)
It was measured by the method described in JIS L 1015: 2005 8.12.1 to 8.12.3.

(6)180℃乾熱収縮率
JIS L 1015:2005 8.15 b)において、180℃において実施した。
(6) 180 degreeC dry heat shrinkage rate It implemented at 180 degreeC in JISL1015: 2005 8.15 b).

(7)ウェブ品位
Dan−Webforming社のフォーミングドラムユニット(幅:600mm幅、フォーミングドラムのスクリーンの孔形状:2.4mm×20mmの長方形、開孔率:40%)を用いてドラム回転数200rpm、ニードルロール回転数900rpm、ウェブ搬送速度30m/分の条件で、梱包体を開梱して取り出した短繊維100%からなる目付30g/m2のエアレイドウェブを採取した。
エアレイドウェブの30cm四方における外観を観察し、以下の基準で評価する。
レベル1:直径5mm以上の繊維塊や目付斑(濃淡)が見られず、均一な地合いである。
レベル2:直径5mm以上の繊維塊は5個未満で、目付斑(濃淡)が目視で確認できる。
レベル3:直径5mm以上の繊維塊が5個以上見られ、目付斑(濃淡)が目立ち、不均一な地合いである。
(7) Web Quality Using a Dan-Webforming forming drum unit (width: 600 mm width, forming drum screen hole shape: 2.4 mm × 20 mm rectangle, opening rate: 40%), drum rotation speed 200 rpm, needle An airlaid web having a basis weight of 30 g / m 2 made of 100% short fibers taken out by unpacking the package was collected under conditions of a roll rotation speed of 900 rpm and a web conveyance speed of 30 m / min.
The appearance of the air laid web in a 30 cm square is observed and evaluated according to the following criteria.
Level 1: A fiber lump with a diameter of 5 mm or more and spotted spots (shading) are not seen, and the texture is uniform.
Level 2: The number of fiber masses having a diameter of 5 mm or more is less than 5, and spotted spots (shading) can be visually confirmed.
Level 3: 5 or more fiber masses having a diameter of 5 mm or more are seen, spotted spots (shading) are conspicuous, and the texture is uneven.

(8)最大紡出量
上記「ウェブ品位」の測定方法において、ドラムへの繊維供給量を2kg/hrずつ上げていき、5分間定常状態で運転したときにドラムから繊維が排出されない状態になったとき、詰りを生じる前の水準の繊維供給量を最大紡出量と定義する。
(8) Maximum spinning amount In the above-mentioned “web quality” measuring method, the fiber supply amount to the drum is increased by 2 kg / hr, and the fiber is not discharged from the drum when operated in a steady state for 5 minutes. The fiber supply amount at a level before the occurrence of clogging is defined as the maximum spinning amount.

[実施例1]
IV=0.64dl/g、Tg=70℃、Tm=256℃のポリエチレンテレフタレート(PET)を用い、290℃で溶融したのち、公知の丸孔口金を用いて、吐出量0.15g/min/孔、紡糸速度1150m/minにて紡糸し、未延伸糸を得た。これを、PETのガラス転移点より20℃高い90℃の温水中で1.0倍の定長熱処理を行い、ラウリルホスフェートカリウム塩/ポリオキシエチレン変性シリコーン=80/20からなる油剤の水溶液に糸条を浸漬した後、押し込み型クリンパーを用いて11個/25mmの機械捲縮を付与し、135℃で乾燥した後、繊維長10mmに切断した。切断前のトウで測定した単糸繊度は1.2dtex、強度1.5cN/dtex、伸度350%、CN=10.8山/25mm、CD=3.8%、CD/CN=0.35、CE=79%、180℃乾熱収縮率は−0.2%であった。このときのエアレイドウェブ品位はレベル1、最大紡出量は120kg/hrであった。
[Example 1]
Polyethylene terephthalate (PET) with IV = 0.64 dl / g, Tg = 70 ° C., Tm = 256 ° C. was melted at 290 ° C., and a discharge rate of 0.15 g / min / Spinning was performed at a hole and a spinning speed of 1150 m / min to obtain an undrawn yarn. This was subjected to heat treatment at a constant length of 1.0 times in warm water of 90 ° C., which is 20 ° C. higher than the glass transition point of PET, and the yarn was put into an aqueous solution of an oil agent composed of lauryl phosphate potassium salt / polyoxyethylene- modified silicone = 80/20. After dipping the strip, 11 crimps / 25 mm of mechanical crimps were applied using an indentation type crimper, dried at 135 ° C., and then cut into a fiber length of 10 mm. The single yarn fineness measured with the tow before cutting was 1.2 dtex, strength 1.5 cN / dtex, elongation 350%, CN = 10.8 peak / 25 mm, CD = 3.8%, CD / CN = 0.35. CE = 79%, 180 ° C. dry heat shrinkage was −0.2%. At this time, the airlaid web quality was level 1, and the maximum spinning amount was 120 kg / hr.

[比較例1]
吐出量を0.40g/min/孔、紡糸速度1150m/min、70℃の温水中で2.9倍延伸した後、更に90℃の温水中で1.15倍延伸した他は実施例1と同様とした。単糸繊度は1.2dtex、強度4.8cN/dtex、伸度47%、CN=12.0山/25mm、CD=14.5%、CD/CN=1.20、CE=79% であった。180℃乾熱収縮率は+5.1%であった。これのときのエアレイドウェブ品位はレベル1だったが、最大紡出量は40kg/hrと低いものであった。
[Comparative Example 1]
Example 1 except that the discharge amount was 0.40 g / min / hole, the spinning speed was 1150 m / min, and the film was stretched 2.9 times in warm water at 70 ° C. and then stretched 1.15 times in warm water at 90 ° C. Same as above. Single yarn fineness was 1.2 dtex, strength 4.8 cN / dtex, elongation 47%, CN = 12.0 mountain / 25 mm, CD = 14.5%, CD / CN = 1.20, CE = 79%. It was. The 180 ° C. dry heat shrinkage rate was + 5.1%. The airlaid web quality at this time was level 1, but the maximum spinning amount was as low as 40 kg / hr.

[実施例2]
吐出量を0.10g/min/孔、紡糸速度1150m/min、90℃の温水中で0.7倍オーバーフィード定長熱処理した他は実施例1と同様とした。単糸繊度は1.3dtex、強度1.2cN/dtex、伸度370%、CN=9.7山/25mm、CD=3.3%、CD/CN=0.34、CE=85% であった。180℃乾熱収縮率は−10.1%であった。これのときのエアレイドウェブ品位はレベル1、最大紡出量は115kg/hrであった。
[Example 2]
The same procedure as in Example 1 was performed except that the amount of discharge was 0.10 g / min / hole, the spinning speed was 1150 m / min, and the heat treatment was performed 0.7 times overfeed in warm water at 90 ° C. The single yarn fineness is 1.3 dtex, strength 1.2 cN / dtex, elongation 370%, CN = 9.7 mountain / 25 mm, CD = 3.3%, CD / CN = 0.34, CE = 85%. It was. The 180 ° C. dry heat shrinkage ratio was −10.1%. The airlaid web quality at this time was level 1, and the maximum spinning amount was 115 kg / hr.

参考例3]
吐出量を0.25g/min/孔、紡糸速度1100m/min、63℃の温水中で3.0倍延伸した後、更に90℃の温水中で0.65倍オーバーフィード定長熱処理した他は実施例1と同様とした。単糸繊度は1.2dtex、強度3.0cN/dtex、伸度130%、CN=12.0山/25mm、CD=12.5%、CD/CN=1.04、CE=64% であった。180℃乾熱収縮率は−7.5%であった。これのときのエアレイドウェブ品位はレベル1、最大紡出量は130kg/hrであった。
[ Reference Example 3]
The amount of discharge was 0.25 g / min / hole, spinning speed was 1100 m / min, drawn 3.0 times in warm water at 63 ° C., and further subjected to 0.65 times overfeed constant length heat treatment in warm water at 90 ° C. Same as Example 1. The single yarn fineness was 1.2 dtex, strength 3.0 cN / dtex, elongation 130%, CN = 12.0 mountain / 25 mm, CD = 12.5%, CD / CN = 1.04, CE = 64%. It was. The 180 ° C. dry heat shrinkage percentage was −7.5%. The airlaid web quality at this time was level 1, and the maximum spinning amount was 130 kg / hr.

[実施例4]
IV=0.64dl/g、Tg=65℃、Tm=215℃のイソフタル酸15モル%共重合ポリエチレンテレフタレート(PETI)を用い、280℃となるように溶融したのち、公知の丸孔口金を用いて、吐出量0.15g/min/孔、紡糸速度1150m/minにて紡糸し、未延伸糸を得た。これを、PETIのガラス転移点より25℃高い90℃の温水中で1.0倍の定長熱処理を行い、ラウリルホスフェートカリウム塩/ポリオキシエチレン変性シリコーン=80/20からなる油剤の水溶液に糸条を浸漬した後、押し込み型クリンパーを用いて11個/25mmの機械捲縮を付与し、110℃で乾燥した後、繊維長10.0mmに切断した。切断前のトウで測定した単糸繊度は1.25dtex、強度1.2cN/dtex、伸度390%、CN=11.0山/25mm、CD=3.2%、CD/CN=0.29、CE=84% であった。180℃乾熱収縮率は+1.1%であった。これのときのエアレイドウェブ品位はレベル1、最大紡出量は110kg/hrであった。
[Example 4]
After melting to 280 ° C. using 15 mol% copolymerized polyethylene terephthalate (PETI) of isophthalic acid with IV = 0.64 dl / g, Tg = 65 ° C. and Tm = 215 ° C., a known round hole cap is used. Then, spinning was performed at a discharge rate of 0.15 g / min / hole and a spinning speed of 1150 m / min to obtain an undrawn yarn. This was subjected to heat treatment at a constant length of 1.0 in warm water at 90 ° C., 25 ° C. higher than the glass transition point of PETI. After the strip was immersed, 11 crimps / 25 mm of mechanical crimps were applied using an indentation type crimper, dried at 110 ° C., and then cut into a fiber length of 10.0 mm. The single yarn fineness measured with the tow before cutting was 1.25 dtex, strength 1.2 cN / dtex, elongation 390%, CN = 11.0 peak / 25 mm, CD = 3.2%, CD / CN = 0.29. CE = 84%. The 180 ° C. dry heat shrinkage rate was + 1.1%. The airlaid web quality at this time was level 1, and the maximum spinning amount was 110 kg / hr.

[比較例2]
吐出量を0.40g/min/孔、紡糸速度1150m/min、70℃の温水中で2.9倍延伸した後、更に90℃の温水中で1.15倍延伸した他は実施例4と同様とした。単糸繊度は1.3dtex、強度4.2cN/dtex、伸度55%、CN=10.8山/25mm、CD=13.1%、CD/CN=1.21、CE=63% であった。180℃乾熱収縮率は+4.6%であった。これのときのエアレイドウェブ品位はレベル1だったが、最大紡出量は30kg/hrと低いものであった。
[Comparative Example 2]
Example 4 is the same as in Example 4 except that the discharge amount was 0.40 g / min / hole, the spinning speed was 1150 m / min, and the film was stretched 2.9 times in warm water at 70 ° C. and then stretched 1.15 times in warm water at 90 ° C. Same as above. The single yarn fineness was 1.3 dtex, strength 4.2 cN / dtex, elongation 55%, CN = 10.8 crest / 25 mm, CD = 13.1%, CD / CN = 1.21, CE = 63%. It was. The 180 ° C. dry heat shrinkage rate was + 4.6%. The airlaid web quality at this time was level 1, but the maximum spinning amount was as low as 30 kg / hr.

本発明は、細繊度または繊維長が長いエアレイド不織布用ポリエステル系繊維において、スクリーン通過性が良好、すなわち生産性の極めて高く、かつ風合いが柔軟で嵩高なエアレイド不織布用繊維を提供することを可能とした。また、従来の押し込み型クリンパーで安定して捲縮を付与でき、従って捲縮も均一で、地合いの良好な不織布が生産可能となる。   The present invention makes it possible to provide a fiber for an air laid nonwoven fabric having a high fineness or a long fiber length and having a high screenability, that is, a very high productivity and a soft and bulky texture. did. In addition, a conventional indentation type crimper can stably provide crimps, and therefore, crimps are uniform and a non-woven fabric with good texture can be produced.

Claims (3)

未延伸糸をポリエステルのガラス転移点より10℃以上高い温度下0.60〜1.2の倍率で定長熱処理することにより得られるエアレイド不織布用ポリエステル系繊維であって、80モル%以上がアルキレンテレフタレートの繰返しであるポリエステルからなり、繊度が10デシテックス以下または繊維長が8mm以上であり、当該定長熱処理後の伸度が130〜600%、捲縮数が8.5山/25mm以上、捲縮率/捲縮数が0.65以下、かつ捲縮弾性率が70%以上、180℃乾熱収縮率が−20〜2%であることを特徴とするエアレイド不織布用ポリエステル系繊維。 A polyester fiber for airlaid nonwoven fabric obtained by subjecting an undrawn yarn to a constant length heat treatment at a magnification of 0.60 to 1.2 at a temperature 10 ° C. or more higher than the glass transition point of the polyester, wherein 80 mol% or more is alkylene It is made of polyester which is a repetition of terephthalate, has a fineness of 10 dtex or less or a fiber length of 8 mm or more, an elongation of 130 to 600% after the constant length heat treatment , a number of crimps of 8.5 crests / 25 mm or more, A polyester fiber for an airlaid nonwoven fabric having a crimp ratio / crimp number of 0.65 or less, a crimp elastic modulus of 70% or more, and a 180 ° C. dry heat shrinkage of -20 to 2%. 該ポリエステル系繊維の断面形状が中実丸型断面、中空丸型断面、異型中実断面または異型中空断面であることを特徴とする、請求項1記載のエアレイド不織布用ポリエステル系繊維。   2. The polyester fiber for air-laid nonwoven fabric according to claim 1, wherein the cross-sectional shape of the polyester fiber is a solid round cross section, a hollow round cross section, an irregular solid cross section, or an irregular hollow cross section. 1500m/min以下の紡糸速度で引き取った未延伸糸をポリエステルのガラス転移点より10℃以上高い温度下0.60〜1.2の倍率で定長熱処理することを特徴とする、請求項1または2記載のエアレイド不織布用ポリエステル系繊維の製造方法。   The undrawn yarn taken at a spinning speed of 1500 m / min or less is subjected to a constant length heat treatment at a magnification of 0.60 to 1.2 at a temperature higher by 10 ° C. or more than the glass transition point of the polyester. The manufacturing method of the polyester fiber for air laid nonwoven fabric of 2 description.
JP2006028313A 2006-02-06 2006-02-06 Polyester fiber for airlaid nonwoven fabric and method for producing the same Expired - Fee Related JP4955278B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2006028313A JP4955278B2 (en) 2006-02-06 2006-02-06 Polyester fiber for airlaid nonwoven fabric and method for producing the same
CN200780004635.7A CN101379236B (en) 2006-02-06 2007-02-02 Process for production of polyester fiber for air-laid nonwoven fabrics
EP07713960A EP1988201A1 (en) 2006-02-06 2007-02-02 Process for production of polyester fiber for air-laid nonwoven fabrics
US12/278,489 US20090243141A1 (en) 2006-02-06 2007-02-02 Manufacturing method of polyester fiber for airlaid nonwoven fabrics
MYPI20082952A MY144282A (en) 2006-02-06 2007-02-02 Manufacturing method of polyester fiber for airlaid nonwoven fabrics
PCT/JP2007/052297 WO2007091665A1 (en) 2006-02-06 2007-02-02 Process for production of polyester fiber for air-laid nonwoven fabrics
TW096104308A TW200745400A (en) 2006-02-06 2007-02-06 Process for production of polyester fiber for air-laid nonwoven fabrics
HK09104692.4A HK1126260A1 (en) 2006-02-06 2009-05-22 Process for production of polyester fiber for air-laid nonwoven fabrics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006028313A JP4955278B2 (en) 2006-02-06 2006-02-06 Polyester fiber for airlaid nonwoven fabric and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011180452A Division JP4945004B2 (en) 2011-08-22 2011-08-22 Method for producing polyester fiber for airlaid nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2007204900A JP2007204900A (en) 2007-08-16
JP4955278B2 true JP4955278B2 (en) 2012-06-20

Family

ID=38484605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006028313A Expired - Fee Related JP4955278B2 (en) 2006-02-06 2006-02-06 Polyester fiber for airlaid nonwoven fabric and method for producing the same

Country Status (1)

Country Link
JP (1) JP4955278B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5396855B2 (en) * 2008-12-26 2014-01-22 Esファイバービジョンズ株式会社 Fiber bundle

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256920A (en) * 1999-03-10 2000-09-19 Teijin Ltd Thermo-adhesive polyester conjugate fiber
JP3598027B2 (en) * 1999-10-12 2004-12-08 帝人ファイバー株式会社 Special composite crimped yarn
JP2001172829A (en) * 1999-12-16 2001-06-26 Japan Vilene Co Ltd Polyester-based conjugate fiber with crimping potential and nonwoven fabric using the same
JP2001207333A (en) * 2000-01-25 2001-08-03 Japan Vilene Co Ltd Highly shrinkable polyester-based fiber and fibrous sheet using the same
JP2002054036A (en) * 2000-08-08 2002-02-19 Teijin Ltd Crimped polyester fiber and method for producing the same
JP2002061024A (en) * 2000-08-10 2002-02-28 Teijin Ltd Crimped porous hollow fiber
JP3778808B2 (en) * 2001-04-04 2006-05-24 帝人ファイバー株式会社 Polyester-based heat-adhesive conjugate fiber and method for producing the same
JP3322868B1 (en) * 2001-08-09 2002-09-09 宇部日東化成株式会社 Fibers for nonwoven fabrics and nonwoven fabrics and methods for producing them
JP2003089958A (en) * 2001-09-19 2003-03-28 Teijin Ltd Heat-bondable polyester short fiber
JP2003166127A (en) * 2001-11-30 2003-06-13 Teijin Ltd Polyester heat-bondable conjugated fiber and method for producing the same
JP4027728B2 (en) * 2002-06-21 2007-12-26 帝人ファイバー株式会社 Nonwoven fabric made of polyester staple fibers
JP4031382B2 (en) * 2003-03-05 2008-01-09 帝人ファイバー株式会社 Thermal adhesive composite fiber for airlaid nonwoven fabric
JP4485860B2 (en) * 2003-07-10 2010-06-23 日本エステル株式会社 Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP4084260B2 (en) * 2003-08-06 2008-04-30 帝人ファイバー株式会社 Polyester composite false twisted yarn

Also Published As

Publication number Publication date
JP2007204900A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP4820211B2 (en) Self-extensible thermoadhesive conjugate fiber and method for producing the same
JP4027728B2 (en) Nonwoven fabric made of polyester staple fibers
JP5021938B2 (en) Thermal adhesive composite fiber and method for producing the same
US20060182964A1 (en) Process for producing nonwoven fabric
JP4881026B2 (en) Heat-adhesive conjugate fiber for airlaid nonwoven fabric and method for producing the same
KR20080096815A (en) Heat-bondable conjugated fiber and process for production thereof
US20090243141A1 (en) Manufacturing method of polyester fiber for airlaid nonwoven fabrics
JP4856435B2 (en) Thermal adhesive composite fiber and method for producing the same
JP2008163485A (en) Woven fabric for beverage extraction filter
JP4323507B2 (en) Polyester short fiber
JP2003171860A (en) Fiber for air laid nonwoven fabric
JP2011195967A (en) Bulky fiber for non-woven fabric
JP4955278B2 (en) Polyester fiber for airlaid nonwoven fabric and method for producing the same
JP3892748B2 (en) Short fiber nonwoven fabric
JP4130035B2 (en) Multi-divided hollow polyester fiber and woven / knitted fabric, artificial leather and nonwoven fabric using the fiber
JP4945004B2 (en) Method for producing polyester fiber for airlaid nonwoven fabric
JP7197326B2 (en) hollow deformed crimped filament
JPH0327195A (en) Bulky paper having water-dispersing and dissolving performance and preparation thereof
JP2911060B2 (en) Composite fiber aggregate
JP2011195978A (en) Heat-bonding composite fiber for producing wet nonwoven fabric, and method of producing the same
JP2009287157A (en) Staple fiber nonwoven fabric
JP2009215662A (en) Staple fiber for nonwoven fabric and stape fiber nonwoven fabric
JP2009133051A (en) Short fiber nonwoven fabric
JP2009150034A (en) Staple fiber nonwoven fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110708

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees