JP4485860B2 - Short fiber for nonwoven fabric and short fiber nonwoven fabric - Google Patents

Short fiber for nonwoven fabric and short fiber nonwoven fabric Download PDF

Info

Publication number
JP4485860B2
JP4485860B2 JP2004198136A JP2004198136A JP4485860B2 JP 4485860 B2 JP4485860 B2 JP 4485860B2 JP 2004198136 A JP2004198136 A JP 2004198136A JP 2004198136 A JP2004198136 A JP 2004198136A JP 4485860 B2 JP4485860 B2 JP 4485860B2
Authority
JP
Japan
Prior art keywords
fiber
nonwoven fabric
fibers
short
short fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004198136A
Other languages
Japanese (ja)
Other versions
JP2005042289A (en
Inventor
恒夫 飯塚
哲生 吉川
利繁 江塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP2004198136A priority Critical patent/JP4485860B2/en
Publication of JP2005042289A publication Critical patent/JP2005042289A/en
Application granted granted Critical
Publication of JP4485860B2 publication Critical patent/JP4485860B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、乾式不織布や湿式不織布等の不織布に用いられる短繊維であって、不織布の製造工程における、空気流、カード機等による短繊維の送り込み、分散、解繊、積層工程等のウェブ形成工程において繊維塊が生成しない適度な捲縮形態を付与した不織布用短繊維及びこの短繊維を含有してなる短繊維不織布に関するものである。   The present invention is a short fiber used in a nonwoven fabric such as a dry nonwoven fabric or a wet nonwoven fabric, and in the nonwoven fabric manufacturing process, web formation such as air flow, feeding of a short fiber by a card machine, dispersion, defibration, lamination process, etc. The present invention relates to a short fiber for a nonwoven fabric provided with an appropriate crimped form in which no fiber lump is generated in the process, and a short fiber nonwoven fabric containing the short fiber.

衛生材料分野をはじめとして、様々な分野において、ポリエステル、ポリアミド、ポリオレフィン等の熱可塑性樹脂からなる短繊維を用い、均一に分散させて、バインダー樹脂による接着や熱風による接着、熱ロールによる圧着、高圧水流や金属針による交絡等により得られる乾式、湿式不織布が使用されている。   In various fields including the sanitary materials field, short fibers made of thermoplastic resin such as polyester, polyamide, polyolefin, etc. are used and dispersed uniformly. Adhesion with binder resin, adhesion with hot air, pressure bonding with hot roll, high pressure Dry and wet nonwoven fabrics obtained by water flow or entanglement with metal needles are used.

このような短繊維を用いて乾式不織布を得る場合、特にエアレイド法では、繊維を解繊して空気の流れにのせて搬送し、金網又は細孔を有するスクリーンを通過させた後、ワイヤーメッシュ上に落下堆積させる方法を採用するが、短繊維の解繊、搬送、分散、積層工程において、繊維−繊維間及び繊維−金属間の摩擦が大きく、静電気が発生しやすく、このため繊維塊が生成されるという問題が生じやすい。   In the case of obtaining a dry nonwoven fabric using such short fibers, especially in the airlaid method, the fibers are defibrated and transported in a flow of air, passed through a screen having a wire mesh or pores, and then on a wire mesh. However, in the process of defibrating, transporting, dispersing, and laminating short fibers, the friction between fibers and fibers and fibers and metals is large, and static electricity is easily generated. The problem of being apt to occur.

繊維塊が生じると、各工程での通過性が悪化し、操業性が低下することはもちろん、得られる不織布においても堆積した繊維が不均一となり、斑の生じた不織布となり製品品位が著しく低下する。   When a fiber lump is formed, the passability in each process deteriorates and the operability is deteriorated. In addition, even in the obtained non-woven fabric, the accumulated fibers become non-uniform, resulting in a non-uniform non-woven fabric, and the product quality is remarkably lowered. .

今日では製品の差別化、高級化及び高機能化等のために、機能性を有する熱可塑性樹脂が多く用いられ、中には低温加工を必要とするもの、高粘着性を有する熱可塑性樹脂等、従来の繊維に比べてさらに繊維−繊維間の摩擦及び繊維−金属間の摩擦が大きくなる繊維が使用されている。また、製造加工効率を向上させるために加工速度の高速化がはかられている。
これらの要因により、エアレイド法による製造工程における静電気の発生量は多くなり、繊維塊の発生も多くなっている。
Today, many functional thermoplastic resins are used for product differentiation, upgrading, and high functionality. Some of them require low-temperature processing, high-viscosity thermoplastic resins, etc. As compared with the conventional fiber, a fiber having a greater fiber-fiber friction and fiber-metal friction is used. In addition, in order to improve manufacturing processing efficiency, the processing speed is increased.
Due to these factors, the amount of static electricity generated in the manufacturing process by the airlaid method is increased, and the generation of fiber mass is also increased.

このような問題を解決するためには、制電性や平滑性を有する繊維処理剤を繊維表面に付与することが有効である。平滑性及び制電性を付与する仕上げ油剤としては、ワックスまたは脂肪酸を中心とする脂肪類、長鎖アルキル基を含有する第4級アンモニウム塩が広く使用されている。しかしながら、これらの脂肪類は制電性はある程度付与できるが、十分な平滑性は付与できなかった。   In order to solve such problems, it is effective to apply a fiber treatment agent having antistatic properties and smoothness to the fiber surface. As finishing oil agents that impart smoothness and antistatic properties, fats mainly composed of waxes or fatty acids, and quaternary ammonium salts containing long-chain alkyl groups are widely used. However, although these fats can impart antistatic properties to some extent, they cannot impart sufficient smoothness.

一方、優れた平滑性を有する繊維仕上げ油剤としてシリコーン系仕上げ油剤が知られており、例えばジメチルシロキサン乳化重合物、アミン変成シリコーン等が付与された繊維及び繊維コードが提案されている(例えば、特許文献1参照。)   On the other hand, silicone finishing oils are known as fiber finishing oils having excellent smoothness. For example, fibers and fiber cords to which dimethylsiloxane emulsion polymer, amine-modified silicone and the like are added have been proposed (for example, patents). (See Reference 1.)

しかしながら、上記ジメチルシロキサン乳化重合物、アミン変性シリコーン共に制電性が十分でなく、さらには親水性を阻害すると共に繊維及び得られた製品に黄変が発生するという問題があった。また、これらは短繊維ではなく長繊維(繊維コード)に関するものであり、不織布の製造工程における静電気の発生による問題点を解決できるものではなかった。   However, both the dimethylsiloxane emulsion polymer and the amine-modified silicone have insufficient antistatic properties, and further, there is a problem that the hydrophilicity is inhibited and the fiber and the obtained product are yellowed. Moreover, these are not short fibers but long fibers (fiber cords), and cannot solve the problems caused by the generation of static electricity in the manufacturing process of the nonwoven fabric.

また、平滑性と制電性及び親水性の付与された繊維として、アルキルホスフェート塩とアミド基含有ポリオキシアルキレン変性シリコーン組成物の混合物を付与した高平滑性繊維が提案されている。(例えば、特許文献2参照。)   Further, as a fiber imparted with smoothness, antistatic property and hydrophilicity, a highly smooth fiber imparted with a mixture of an alkyl phosphate salt and an amide group-containing polyoxyalkylene-modified silicone composition has been proposed. (For example, see Patent Document 2.)

しかしながら、この繊維においても特別な処理剤を付与することにより平滑性や制電性を有するものとするため、操業性やコスト的にも不利になるという問題があった。また、得られる不織布に対するニーズは様々であり、不織布に高機能性を持たせる目的で様々な処理を施すため、繊維に付与された処理剤により、得られた不織布に変色や着色が生じる等の問題もあり、品質面でも不十分であった。
特公昭48−1480号公報 特開平9−67772号公報
However, since this fiber also has smoothness and antistatic properties by applying a special treatment agent, there is a problem that it is disadvantageous in terms of operability and cost. In addition, there are various needs for the obtained nonwoven fabric, and various treatments are performed for the purpose of imparting high functionality to the nonwoven fabric, so that the resulting nonwoven fabric may be discolored or colored by the treatment agent applied to the fibers. There were problems and quality was insufficient.
Japanese Patent Publication No. 48-1480 Japanese Patent Laid-Open No. 9-67772

本発明は、上記のような問題点を解決し、特別な処理剤を繊維表面に付与することなく、特に乾式不織布の製造工程において、繊維−繊維間や繊維−機械間の摩擦による静電気の発生により繊維塊が発生することを防ぐことができ、均一性に優れ、品質が高く、かつ嵩高性も十分な不織布を得ることができる不織布用短繊維及びこの短繊維を含有してなる短繊維不織布を提供することを技術的な課題とするものである。   The present invention solves the above problems and generates static electricity due to friction between fibers and fibers or between fibers and machines, particularly in the production process of a dry nonwoven fabric, without applying a special treatment agent to the fiber surface. The short fiber for a nonwoven fabric and the short fiber nonwoven fabric containing the short fiber, which can prevent the generation of fiber mass due to the above, can obtain a nonwoven fabric excellent in uniformity, high quality and sufficient bulkiness It is a technical challenge to provide

本発明者らは、上記課題を解決すべく鋭意検討の結果、本発明に到達したものである。
すなわち、本発明は、次の(ア)、(イ)を要旨とするものである。
(ア)アルキレンテレフタレート単位を主体とする融点220℃以上のポリエステルAと流動開始温度又は融点がポリエステルAより30℃以上低いポリマーBからなる複合繊維において、繊維長が1.0〜30mm、単糸繊度が0.3〜40dtex、かつ捲縮が付与されている短繊維であって、単糸の捲縮形態が捲縮部の最大山部において、山部の頂点と隣接する谷部の底点2点を結んだ三角形の高さ(H)と底辺(L)の比(H/L)が下記(1)式を満足し、捲縮数と捲縮率が下記(2)及び(3)式を同時に満足することを特徴とする不織布用短繊維。
(1)式:0.01T+0.1≦H/L≦0.02T+0.25
(2)式:0.1T+3.8≦捲縮数≦0.3T+7.3
(3)式:0.8T+0.3≦捲縮率≦1.0T+4.9
ただし、捲縮数は繊維長25mm当たりの数 Tは単糸繊度のデシテックス(dtex)数
(イ)(ア)記載の不織布用短繊維を含有してなることを特徴とする短繊維不織布。
The present inventors have reached the present invention as a result of intensive studies to solve the above problems.
That is, the gist of the present invention is the following (a) and (b).
(A) In a composite fiber composed of a polyester A mainly composed of alkylene terephthalate units and having a melting point of 220 ° C. or higher and a polymer B having a flow initiation temperature or a melting point 30 ° C. lower than that of the polyester A, the fiber length is 1.0 to 30 mm, A short fiber with a crimp of 0.3 to 40 dtex, and the crimped form of the single yarn connects the bottom points of the valleys adjacent to the peak of the peak at the maximum peak of the crimped part. The ratio (H / L) of the height (H) and base (L) of the triangular triangle satisfies the following formula (1), and the number of crimps and the crimp ratio satisfy the following formulas (2) and (3) at the same time: A short fiber for nonwoven fabric, characterized by:
(1) Formula: 0.01T + 0.1 ≦ H / L ≦ 0.02T + 0.25
(2) Formula: 0.1T + 3.8 ≦ crimp number ≦ 0.3T + 7.3
(3) Formula: 0.8T + 0.3 ≦ crimp rate ≦ 1.0T + 4.9
However, the number of crimps is a number per 25 mm fiber length. T is a short fiber nonwoven fabric characterized by containing the short fibers for nonwoven fabric described in the dtex number (b) (a) of the single yarn fineness .

本発明の不織布用短繊維は、特定の捲縮形態を満足しているため、特別な処理剤を繊維表面に付与することなく、繊維−繊維間や繊維−機械間の摩擦による静電気の発生により繊維塊が発生することを防ぐことができ、さらに、繊維間での静電気の保持(ため)、繊維の絡みを防ぐことができるので、均一性に優れ、品質が高く、かつ嵩高性も十分な不織布(乾式不織布及び湿式不織布)を得ることが可能となる。   Since the short fiber for nonwoven fabric of the present invention satisfies a specific crimped form, it does not give a special treatment agent to the fiber surface, and is caused by generation of static electricity due to friction between fibers and fibers and between fibers and machines. It is possible to prevent the generation of fiber clumps, and furthermore, since it is possible to prevent the entanglement of the fibers between the fibers and the fibers, the uniformity is excellent, the quality is high, and the bulkiness is sufficient. It becomes possible to obtain a nonwoven fabric (a dry nonwoven fabric and a wet nonwoven fabric).

また、本発明の短繊維不織布は、本発明の不織布用短繊維を含有してなるものであるため、乾式不織布及び湿式不織布ともに、均一性に優れ、品質が高く、かつ嵩高性も十分な不織布であり、様々な用途に使用することが可能となる。   Moreover, since the short fiber nonwoven fabric of the present invention comprises the short fiber for nonwoven fabric of the present invention, both the dry nonwoven fabric and the wet nonwoven fabric have excellent uniformity, high quality, and sufficient bulkiness. Therefore, it can be used for various purposes.

以下、本発明を詳細に説明する。
乾式不織布を得る場合、特にエアレイド法で製造する場合には、静電気の発生が多くなる。このエアレイド法に用いられる装置としては、例えば特開平5−9813号公報に開示されているような、複数の回転シリンダーをハウジング内に収納し、これらシリンダーを高速回転させることによってシリンダーの周縁に積極的に空気流を発生させ、この空気流によって繊維成分を所定方向に吹き飛ばし得る装置が挙げられる。そして、このエアレイド法によるウエブ形成(短繊維の解繊、搬送、分散、積層工程の全て)においては、空気流を積極的に発生させているために、繊維同士が摺擦され、また繊維と装置(金属)との摩擦によっても静電気の発生が多くなる。
Hereinafter, the present invention will be described in detail.
When a dry nonwoven fabric is obtained, particularly when it is produced by the airlaid method, static electricity is generated more. As an apparatus used in this airlaid method, for example, as disclosed in Japanese Patent Laid-Open No. 5-9813, a plurality of rotating cylinders are housed in a housing, and these cylinders are rotated at a high speed to positively move to the periphery of the cylinder. An apparatus that can generate an air flow and blow the fiber component in a predetermined direction by the air flow can be mentioned. In the web formation by the airlaid method (short fiber defibration, transport, dispersion, and lamination processes), since an air flow is actively generated, the fibers are rubbed with each other. The generation of static electricity also increases due to friction with the device (metal).

本発明の短繊維は繊維構造を特定のものとすることで、ウエブ形成の全ての工程(解繊、搬送、分散、積層工程)において、繊維同士、繊維と金属間での摩擦によって静電気を発生しにくく、かつ発生した静電気をためにくいものとなり、短繊維同士が集合して繊維塊を生じることが格段に減少される。   The short fiber of the present invention generates static electricity by friction between fibers and between fiber and metal in all web forming processes (defibration, transport, dispersion, and lamination processes) by making the fiber structure specific. It is difficult to prevent static electricity generated and the short fibers gather to form a fiber lump.

上記のような静電気の問題を考慮する場合、捲縮が多く、大きく付与されているほど電気をためやすいものとなる。つまり、繊維に捲縮が付与されていると、3次元的な立体構造を呈するため、その立体的な空間部分が多くなるほど静電気がたまりやすくなる。一方、捲縮がないフラットな状態となるほど、平面的な構造となり、静電気をためにくくなるが、繊維同士、あるいは繊維と金属との接触点(面)が増え、摩擦による静電気の発生が多くなる。   When considering the problem of static electricity as described above, there are many crimps. That is, if the fiber is crimped, it exhibits a three-dimensional structure, so that static electricity is more likely to accumulate as the three-dimensional space portion increases. On the other hand, as the flat state without crimping becomes flat, the structure becomes planar and it becomes difficult to accumulate static electricity, but the contact points (surfaces) between the fibers or between the fibers and the metal increase, and the generation of static electricity due to friction increases. .

嵩高性を考慮する場合、捲縮がないフラットな状態とするほど得られる不織布の嵩高性は低下する。一方、捲縮が付与されているほど、得られる不織布の嵩高性は向上するが、繊維の嵩高性も高くなるため、ウエブ形成の工程中において、繊維同士が絡み合い、繊維塊を生じやすくなり、均一性に劣った不織布となりやすい。   When considering the bulkiness, the bulkiness of the nonwoven fabric obtained decreases as the flat state without crimping decreases. On the other hand, the more the crimp is applied, the higher the bulkiness of the resulting nonwoven fabric, but the higher the bulkiness of the fibers. It tends to be a nonwoven fabric with poor uniformity.

また、静電気や繊維の絡み合いの問題、得られる不織布の風合い(嵩高性や柔軟性)は、単糸繊度によっても影響を受けるものである。つまり、静電気の問題においては、繊維同士あるいは繊維と金属との接触により静電気は発生するものなので、接触点や接触面の大きさを左右する単糸繊度の要因は大きいものとなる。また、捲縮により3次元的な立体構造を形成するので、単糸繊度はその空間部分の大きさを左右する要因となり、静電気をためる程度や繊維の絡みあいの程度を左右する要因となる。   Moreover, the problem of static electricity and fiber entanglement, and the texture (bulkness and flexibility) of the resulting nonwoven fabric are also affected by the single yarn fineness. That is, in the problem of static electricity, static electricity is generated by contact between fibers or between a fiber and a metal, and thus the single yarn fineness factor that determines the size of the contact point and the contact surface is large. Further, since a three-dimensional structure is formed by crimping, the single yarn fineness is a factor that affects the size of the space portion, and is a factor that affects the degree of static electricity and the degree of fiber entanglement.

そこで、本発明者等は、これらの要因を考えあわせて検討し、単糸繊度を考慮した特定の捲縮が付与された立体形状のものとすることにより、特に上記の効果(静電気、繊維絡みの防止と不織布風合いの向上)が向上されることを見出した。   Therefore, the present inventors considered these factors in consideration and made the above-mentioned effect (static electricity, fiber entanglement) particularly by adopting a three-dimensional shape to which specific crimps were given in consideration of the single yarn fineness. And the improvement of the texture of the nonwoven fabric was found to be improved.

まず、本発明の不織布用短繊維は、図1に示すように、単糸の捲縮形態において、捲縮部の最大山部における山部の頂点Pと、隣接する谷部の底点Q、Rの2点を結んで三角形とし、この三角形の高さ(H)と底辺(L)の比(H/L)が下記(1)式を満足するものである。特に乾式不織布をエアレイド法で得る際には、H/Lを(4)式とすることが好ましい。
ここで、最大山部とは、本発明の短繊維の繊維長において複数の山部がある場合、山部の高さ(H)が最大のものをいう。
(1)式:0.01T+0.1≦H/L≦0.02T+0.25
(4)式:0.01T+0.1≦H/L≦0.02T+0.2
First, the short fiber for nonwoven fabric of the present invention, as shown in FIG. 1, in the crimped form of a single yarn, the apex P of the peak in the maximum peak of the crimped part, and the bottom point Q of the adjacent valley, A triangle is formed by connecting two points R, and the ratio (H / L) of the height (H) to the base (L) of the triangle satisfies the following expression (1). In particular, when a dry nonwoven fabric is obtained by the air laid method, it is preferable that H / L is represented by the formula (4).
Here, when there are a plurality of peak portions in the fiber length of the short fiber of the present invention, the maximum peak portion means the one having the highest peak height (H).
(1) Formula: 0.01T + 0.1 ≦ H / L ≦ 0.02T + 0.25
(4) Formula: 0.01T + 0.1 ≦ H / L ≦ 0.02T + 0.2

捲縮の度合いを表すためには、一般的に捲縮率が用いられるが、捲縮率の測定方法は、荷重をかけたときと無荷重状態での長さの差から求めるものであり、本発明においては、後述する捲縮率を規定した(3)式を満足していたとしても、繊維中の一部の捲縮部に捲縮が大きくかかった部分があると、立体構造の空間部分が大きくなり、静電気をためやすく、繊維同士の絡み合いが生じやすくなる。そこで(1)式に規定するように、捲縮形態として最大山部における形態を特定のものとすることで、より静電気や繊維の絡みによる繊維塊の発生を防ぐことが可能となる。   In order to express the degree of crimp, the crimp rate is generally used, but the method for measuring the crimp rate is obtained from the difference in length between when a load is applied and when there is no load. In the present invention, even if the expression (3) that defines the crimping rate described later is satisfied, if there is a part where the crimping is greatly applied to some of the crimped parts in the fiber, the space of the three-dimensional structure A part becomes large, it is easy to accumulate static electricity, and it becomes easy to produce the entanglement of fibers. Therefore, as specified in the formula (1), by making the form at the maximum peak part specific as the crimped form, it becomes possible to prevent the generation of fiber mass due to static electricity or fiber entanglement.

H/Lが大きすぎると、立体構造の空間部分が大きくなり、静電気をためやすく、繊維の絡みが生じやすくなる。一方、H/Lが小さすぎると、繊維の形態がフラットに近いものとなり、繊維同士、あるいは繊維と金属との接触点(面)が多くなるため静電気が発生しやすく、繊維塊が生成して好ましくない。また、得られる不織布は嵩高性に乏しいものとなりやすい。   When H / L is too large, the space portion of the three-dimensional structure becomes large, static electricity is easily accumulated, and fiber entanglement tends to occur. On the other hand, if H / L is too small, the shape of the fiber is almost flat, and the number of contact points (surfaces) between the fibers or between the fiber and the metal increases. It is not preferable. Moreover, the obtained nonwoven fabric tends to be poor in bulkiness.

なお、H/Lの測定は、短繊維1gを採取し、ここから任意に20本の単繊維を取り出す。そして、取り出した単繊維について拡大写真(約10倍)を撮り、その写真から上記したように、最大山部における、山部の頂点Pと隣接する谷部の底点Q、Rの2点を結んで三角形とし、三角形の高さ(H)と底辺(L)の長さを測定し、その比(H/L)を算出するものである。このようにして20本分の単繊維の測定を行い、その平均値をとる。   For the measurement of H / L, 1 g of short fibers are collected, and 20 single fibers are arbitrarily taken out therefrom. Then, an enlarged photograph (about 10 times) is taken with respect to the taken out single fiber, and as described above from the photograph, two points of the bottom points Q and R of the valley part adjacent to the peak part P at the peak part are adjacent to the maximum peak part. A triangle is formed, and the height (H) and the base (L) of the triangle are measured, and the ratio (H / L) is calculated. In this way, 20 single fibers are measured and the average value is taken.

次に、本発明の短繊維は、(2)式:0.1T+3.8≦捲縮数≦0.3T+7.3 〔Tは単糸繊度のデシテックス(dtex)数〕を満足する。この捲縮数とは、JIS L1015 8.12.1に基づき測定、算出したものである。なお、捲縮数の測定において繊維長が短くて測定が困難となる場合は、捲縮付与後、カット前の繊維において測定し、繊維長25mmあたりの個数に換算する。 Next, the short fibers of the present invention, (2): 0.1 T + 3.8 ≦ crimps ≦ 0.3 T + 7.3 [T is decitex (dtex) number of single yarn fineness] you satisfied. The number of crimps is measured and calculated based on JIS L1015 8.12.1. In addition, when the fiber length is short and measurement is difficult in the measurement of the number of crimps, the measurement is performed on the fibers before the crimping and before the cut, and converted into the number per 25 mm fiber length.

捲縮数が(2)式より高くなると、3次元的な立体構造による空間部分となる捲縮部が多くなり、空気流での短繊維の送り込み、分散、解繊、積層工程において繊維間で発生した静電気をためやすくなり、また、繊維同士が絡みやすくなるため玉状の繊維塊が生成して好ましくない。一方、(2)式より低くなると、捲縮部が少なくなることから繊維の形態がフラットに近くなり、繊維同士あるいは繊維と金属との接触点(面)が多くなるため静電気の発生が生じやすく、糸状の繊維塊が生成して好ましくない。また、得られる不織布は嵩高性に乏しいものとなりやすい。   If the number of crimps is higher than the formula (2), the number of crimped portions that become space portions due to a three-dimensional structure increases, and the short fibers are fed, dispersed, defibrated, and laminated between the fibers in the air flow. The generated static electricity is easily accumulated, and the fibers are easily entangled with each other. On the other hand, when the value is lower than the expression (2), the crimped portion is reduced, so that the shape of the fiber is almost flat, and the number of contact points (surfaces) between the fibers or between the fiber and the metal increases, so that static electricity is likely to occur. This is not preferable because a fiber-like fiber lump is formed. Moreover, the obtained nonwoven fabric tends to be poor in bulkiness.

さらに、本発明の不織布用短繊維は、(3)式:0.8T+0.3≦捲縮率≦1.0T+4.9〔Tは単糸繊度のデシテックス(dtex)数〕を満足する。この捲縮率とは、JISL1015 8.12.2に基づき測定、算出したものである。なお、捲縮率の測定において繊維長が短くて測定が困難となる場合は、捲縮付与後、カット前の繊維において測定し、繊維長25mmあたりの個数に換算する。 Further, non-woven fabric short fiber of the present invention, (3): 0.8 T + 0.3 ≦ crimp ≦ 1.0 T + 4.9 [T is decitex (dtex) number of single yarn fineness] you satisfied. This crimp rate is measured and calculated based on JISL1015 8.12.2. In addition, when the fiber length is short in the measurement of the crimp rate, it is difficult to measure, and after the crimp is applied, the fiber is measured before being cut and converted to the number per 25 mm fiber length.

捲縮率が(3)式より高くなると、3次元的な立体構造による空間部分が大きくなり、空気流での短繊維の送り込み、分散、解繊、積層工程において繊維間で発生した静電気をためやすくなり、また、繊維同士が交絡しやすくなるため、玉状の繊維塊が生成して好ましくない。一方、(3)式より低くなると、繊維の形態がフラットに近いものとなり、繊維同士、あるいは繊維と金属との接触点(面)が多くなるため静電気の発生が生じやすく、玉状の繊維塊が生成して好ましくない。また、得られる不織布は嵩高性に乏しいものとなりやすい。   When the crimping rate is higher than that of equation (3), the space part due to the three-dimensional structure increases, and the static electricity generated between the fibers is reduced during the feeding, dispersion, defibration, and lamination processes of the short fibers in the air flow. Since it becomes easy and the fibers are easily entangled, a ball-shaped fiber lump is generated, which is not preferable. On the other hand, when the value is lower than the expression (3), the shape of the fiber becomes almost flat, and the number of contact points (surfaces) between the fibers or between the fiber and the metal increases. Is not preferable. Moreover, the obtained nonwoven fabric tends to be poor in bulkiness.

捲縮数と捲縮率においても、特に乾式不織布をエアレイド法で得る際には、捲縮数を(5)式、捲縮率を(6)式を満足するものとすることが好ましい。
(5)式:0.1T+4.8≦捲縮数≦0.2T+6.6
(6)式:0.8T+1.2≦捲縮率≦1.0T+2.8
In terms of the number of crimps and the crimp rate, it is preferable that the crimp number satisfies the formula (5) and the crimp rate satisfies the formula (6), particularly when a dry nonwoven fabric is obtained by the airlaid method.
(5) Formula: 0.1T + 4.8 ≦ crimp number ≦ 0.2T + 6.6
(6) Formula: 0.8T + 1.2 ≦ crimp rate ≦ 1.0T + 2.8

そして、本発明の短繊維は、繊維長が1.0〜30mm、単糸繊度が0.3〜40dtexであり、さらに好ましい繊維長は、2〜25mm、より好ましくは5〜15mmである。また、単糸繊度は、中でも0.5〜33dtexが好ましく、より好ましくは1.0〜25dtexである。なお、繊維長はJIS L1015 8.4.1A法に基づき測定したものであり、繊度はJIS L1015 8.5.1B法に基づき測定したものである。   The short fiber of the present invention has a fiber length of 1.0 to 30 mm and a single yarn fineness of 0.3 to 40 dtex, and a more preferable fiber length is 2 to 25 mm, more preferably 5 to 15 mm. The single yarn fineness is preferably 0.5 to 33 dtex, more preferably 1.0 to 25 dtex. The fiber length was measured based on the JIS L1015 8.4.1A method, and the fineness was measured based on the JIS L1015 8.5.1B method.

そして、本発明の短繊維は、融点220℃以上のアルキレンテレフタレート単位主体のポリエステルAと流動開始温度又は融点がポリエステルAより30℃以上低いポリマーBからなる複合繊維であって、ポリマーBのみが加熱により溶融するバインダー繊維とすることが好ましい。このように、本発明の短繊維をバインダー繊維として用いて不織布とする際には、ポリマーBは融着して接着成分となるが、ポリエステルAは溶融せずに不織布を構成する繊維部分となる。そして、本発明の短繊維を用いて得られる不織布は、本発明の短繊維のみからなるものでも、主体繊維となる他の繊維とともに用いたものでもよい。   The short fiber of the present invention is a composite fiber comprising a polyester A mainly composed of alkylene terephthalate units having a melting point of 220 ° C. or higher and a polymer B having a flow initiation temperature or melting point 30 ° C. lower than that of the polyester A, and only the polymer B is heated. It is preferable to use a binder fiber that melts by the above. Thus, when the short fiber of the present invention is used as a binder fiber to form a nonwoven fabric, the polymer B is fused and becomes an adhesive component, but the polyester A does not melt and becomes a fiber portion constituting the nonwoven fabric. . And the nonwoven fabric obtained using the short fiber of this invention may consist only of the short fiber of this invention, or may be used with the other fiber used as a main fiber.

本発明の短繊維におけるポリエステルAは、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等が挙げられ、中でもPETが好ましい。そして、 本発明の効果を損なわない限り、必要に応じて共重合成分を含有した共重合ポリエステルとしてもよい。例えば、共重合成分としては、テレフタル酸、イソフタル酸、シクロヘキサンジカルボン酸、アジピン酸、セバシン酸、ビスフェノ−ルS、ビスフェノ−ルA、シクロヘキサンジメタノ−ル、1,4−ブタンジオ−ル、1,6−ヘキサンジオ−ル、ジエチレングリコ−ル、ポリエチレングリコ−ル等が挙げられ、また、難燃成分として9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド(HCA)やイタコン酸(IA)等を共重合することもでき、これによりポリエステルAを難燃性とすることができる。   Examples of the polyester A in the short fiber of the present invention include polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), and among them, PET is preferable. And as long as the effect of this invention is not impaired, it is good also as a copolyester containing the copolymerization component as needed. For example, the copolymer components include terephthalic acid, isophthalic acid, cyclohexanedicarboxylic acid, adipic acid, sebacic acid, bisphenol S, bisphenol A, cyclohexane dimethanol, 1,4-butanediol, 1, 6-hexanediol, diethylene glycol, polyethylene glycol and the like, and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (HCA) and itaconic acid as flame retardant components (IA) or the like can also be copolymerized, whereby polyester A can be made flame retardant.

そして、ポリエステルAの融点が220℃未満であると、複合繊維を安定して製糸することが困難であるとともに、熱接着処理時に熱劣化しやすくなるため好ましくない。   When the melting point of the polyester A is less than 220 ° C., it is difficult to stably produce the composite fiber, and it is not preferable because the thermal degradation easily occurs during the thermal bonding treatment.

一方、ポリマーBは、流動開始温度又は融点がポリエステルAより30℃以上低いものであって、ポリオレフィン、あるいはアルキレンテレフタレート単位主体のポリエステルとして、PETやPBTに共重合成分を含有させた共重合ポリエステル等が挙げられる。   On the other hand, the polymer B has a flow starting temperature or melting point of 30 ° C. or more lower than that of the polyester A, and is a polyester mainly composed of polyolefin or alkylene terephthalate units, and a copolymer polyester containing a copolymer component in PET or PBT. Is mentioned.

ポリマーBの流動開始温度又は融点と、ポリエステルAの融点との差が30℃未満では、ポリマーBを融着させるためには熱処理温度を高くする必要があり、経済的に好ましくないばかりか、熱処理によりポリエステルAやポリマーBの分解が起こりやすくなる。なお、ポリマーBの流動開始温度又は融点と、ポリエステルAの融点との差は、好ましくは30℃〜180℃である。180℃を超えると、紡糸時に溶融粘度が低くなりすぎて繊維形成が困難となりやすい。   If the difference between the flow starting temperature or melting point of the polymer B and the melting point of the polyester A is less than 30 ° C., it is necessary to increase the heat treatment temperature in order to fuse the polymer B. As a result, the polyester A and the polymer B are easily decomposed. The difference between the flow start temperature or melting point of polymer B and the melting point of polyester A is preferably 30 ° C to 180 ° C. If it exceeds 180 ° C, the melt viscosity becomes too low during spinning, and fiber formation tends to be difficult.

ポリマーBは、ポリオレフィンとしては、ポリエチレンやポリブチレン等を用いることができる。共重合ポリエステルとしては、PETやPBTに各種の共重合成分を含有させたものを用いることが好ましく、中でもイソフタル酸を共重合させた共重合PETは、流動開始温度又は融点を低くすることができ、好ましい。   As the polymer B, polyethylene, polybutylene, or the like can be used as the polyolefin. As the copolyester, it is preferable to use PET or PBT containing various copolymer components, and among them, copolymerized PET obtained by copolymerizing isophthalic acid can lower the flow start temperature or the melting point. ,preferable.

このとき、イソフタル酸の共重合量は全酸成分に対して10〜50モル%とすることが好ましい。共重合量が10モル%未満であると、融点を低くすることが困難となりやすい。50モル%を超えると、ポリマーが非晶性となり、紡糸時に単糸密着が発生して製糸性が悪くなりやすい。   At this time, the copolymerization amount of isophthalic acid is preferably 10 to 50 mol% with respect to the total acid component. If the copolymerization amount is less than 10 mol%, it is difficult to lower the melting point. When it exceeds 50 mol%, the polymer becomes amorphous, and single yarn adhesion occurs at the time of spinning, which tends to deteriorate the yarn forming property.

さらには、ポリマーBとして、PETに1,4−ブタンジオール成分、脂肪族ラクトン成分及びアジピン酸成分の少なくとも一成分を含有する共重合ポリエステルは、融点を低くすることができ、かつ結晶性を有するため好ましい。つまり、結晶性を有することで、繊維の耐熱性が向上し、繊維の製造工程において熱処理を施すことが可能となり、繊維の物性値を用途に応じたものに調整することが容易となる。   Furthermore, as the polymer B, the copolyester containing at least one component of 1,4-butanediol component, aliphatic lactone component and adipic acid component in PET can lower the melting point and has crystallinity. Therefore, it is preferable. That is, by having crystallinity, the heat resistance of the fiber is improved, heat treatment can be performed in the fiber production process, and it becomes easy to adjust the physical property value of the fiber according to the application.

なお、脂肪族ラクトン成分としては、炭素数4〜11のラクトンが好ましく、特に好ましいラクトンとしては、ε−カプロラクトン(ε−CL)が挙げられる。   The aliphatic lactone component is preferably a lactone having 4 to 11 carbon atoms, and particularly preferred lactone is ε-caprolactone (ε-CL).

まず、脂肪族ラクトン成分を含有する場合、その共重合量は全酸成分に対して20モル%以下とすることが好ましく、10〜20モル%とするのがより好ましい。脂肪族ラクトン成分の割合が少ないと結晶性はよくなるが、融点を低くすることが困難となりやすい。一方、20モル%より多いと結晶性が低下し、紡糸時に単糸密着が発生して製糸性が悪くなり、好ましくない。   First, when an aliphatic lactone component is contained, the copolymerization amount is preferably 20 mol% or less, more preferably 10 to 20 mol%, based on the total acid component. When the proportion of the aliphatic lactone component is small, the crystallinity is improved, but it is difficult to lower the melting point. On the other hand, if the content is more than 20 mol%, the crystallinity is lowered, and single yarn adhesion occurs at the time of spinning, resulting in poor yarn forming properties.

次に、1,4−ブタンジオール成分を共重合する場合、全グリコール成分に対して40〜60モル%となるようにすることが好ましい。共重合量が40モル%未満であったり、60モル%を超えると、融点を低くすることが困難となりやすい。   Next, when the 1,4-butanediol component is copolymerized, it is preferably 40 to 60 mol% with respect to the total glycol component. When the copolymerization amount is less than 40 mol% or exceeds 60 mol%, it is difficult to lower the melting point.

アジピン酸成分を共重合する場合、その共重合量は全酸成分に対して、20モル%以下とすることが好ましく、10〜20モル%とするのがより好ましい。アジピン酸成分の共重合量が10モル%未満であると、結晶性はよくなるが、融点が高くなりやすい。一方、20モル%より多いと結晶性が低下し、紡糸時に単糸密着が発生して製糸性が悪くなり、好ましくない。   When the adipic acid component is copolymerized, the amount of copolymerization is preferably 20 mol% or less, more preferably 10 to 20 mol%, based on the total acid component. When the copolymerization amount of the adipic acid component is less than 10 mol%, the crystallinity is improved, but the melting point tends to be high. On the other hand, if the content is more than 20 mol%, the crystallinity is lowered, and single yarn adhesion occurs at the time of spinning, resulting in poor yarn forming properties.

また、ポリマーBとしては、上記のような共重合ポリエステルに、難燃成分として9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド(HCA)やイタコン酸(IA)のいずれか一方、もしくは両方を共重合したものでもよく、これにより、接着成分となるポリマーBに難燃性を付与することが可能となる。   Further, as the polymer B, any one of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (HCA) and itaconic acid (IA) as a flame retardant component can be used. Either one or both may be copolymerized, and this makes it possible to impart flame retardancy to the polymer B as an adhesive component.

そして、本発明の短繊維に難燃性を付与することを考慮すると、ポリエステルAにも上記の難燃成分を共重合することが好ましく、ポリエステルAとポリマーBのいずれか一方を上記したような難燃成分を共重合したものとすることが好ましく、さらにはポリエステルAとポリマーBの両者を上記したような難燃成分を共重合したものとすることが好ましい。   In consideration of imparting flame retardancy to the short fiber of the present invention, it is preferable to copolymerize the above flame retardant component also in the polyester A, and either one of the polyester A and the polymer B is as described above. It is preferable that a flame retardant component is copolymerized, and it is preferable that both polyester A and polymer B are copolymerized with the above flame retardant component.

共重合量としては、いずれかの成分を単独で用いるとき、両者を併用するときともに、共重合量は5〜20モル%とすることが好ましい。5モル%未満であると、難燃性を付与することが困難となりやすい。一方、20モル%を超えると、紡糸操業性が悪化しやすくなる。   The copolymerization amount is preferably 5 to 20 mol% when either component is used alone or when both components are used in combination. If it is less than 5 mol%, it tends to be difficult to impart flame retardancy. On the other hand, when it exceeds 20 mol%, the spinning operability tends to deteriorate.

また、ポリエステルA、ポリマーB中には、その効果を損なわない範囲で、酸化チタン等の艶消し剤、ヒンダートフェノール系化合物等の酸化防止剤、紫外線吸収剤、光安定剤、顔料、難燃剤、抗菌剤、導電性付与剤、親水剤、吸水剤等が配合されていてもよい。   In addition, in polyester A and polymer B, matting agents such as titanium oxide, antioxidants such as hindered phenol compounds, ultraviolet absorbers, light stabilizers, pigments, flame retardants, as long as the effect is not impaired. Further, an antibacterial agent, a conductivity imparting agent, a hydrophilic agent, a water absorbing agent, and the like may be blended.

また、本発明の短繊維の複合繊維の形態としては、ポリエステルAを芯部にポリマーBを鞘部に配した芯鞘型や、ポリエステルAとポリマーBを貼り合わせたサイドバイサイド型、ポリエステルAを島部にポリマーBを海部とした海島型とすることが好ましい。これにより、繊維表面に低融点のポリマーBが占める割合が多くなり、熱処理により融着しやすいものとすることができる。中でも製糸性の点から芯鞘型とすることが好ましく、得られる不織布の風合いや紡糸操業性を考慮すると、芯鞘比率としては、芯/鞘(質量比)を1/4〜4/1とすることが好ましい。   The short fiber composite fiber of the present invention includes a core-sheath type in which polyester A is arranged in the core and polymer B in the sheath, a side-by-side type in which polyester A and polymer B are bonded together, and polyester A is an island. It is preferable to use a sea-island type with the polymer B as the sea part. As a result, the proportion of the low-melting point polymer B on the fiber surface increases, and it can be easily fused by heat treatment. Among them, the core-sheath type is preferable from the viewpoint of yarn production, and the core / sheath (mass ratio) is set to 1/4 to 4/1 as the core-sheath ratio in consideration of the texture and spinning operability of the obtained nonwoven fabric. It is preferable to do.

そして、本発明の短繊維は必要に応じて中空部を有していたり、一方の成分が偏心しているものでもよい。   And the short fiber of this invention may have a hollow part as needed, and the one component may be eccentric.

本発明の不織布用短繊維は、乾式不織布、湿式不織布用の短繊維として好適なものであり、乾式不織布としては、特にエアレイド法により製造する不織布用の短繊維として好適なものである。エアレイド法によると、熱風による接着のみで容易に不織布を得ることが可能で、一般的に行われているバインダー樹脂による接着あるいは熱ロールによる圧着工程の省略が可能でコスト的に優位である。   The short fibers for nonwoven fabric of the present invention are suitable as short fibers for dry nonwoven fabrics and wet nonwoven fabrics, and the dry nonwoven fabrics are particularly suitable as short fibers for nonwoven fabrics produced by the airlaid method. According to the airlaid method, it is possible to easily obtain a non-woven fabric only by bonding with hot air, and it is possible to omit a bonding process using a binder resin or a pressure bonding process using a hot roll, which is advantageous in terms of cost.

さらに、本発明の不織布用短繊維は、湿式不織布の製造にも好適に用いることができる。上述したように、本発明の短繊維は特に乾式不織布の製造工程において、繊維−繊維間や繊維−機械間の摩擦による静電気の発生により繊維塊が発生することを防ぐことができるものであるが、湿式不織布においても単繊維のばらけがよく、単繊維同士の接触点(面)が少ないので、繊維の集束が生じ難いので、均一性に優れ、かつ嵩高性も十分な湿式不織布を得ることができる。   Furthermore, the short fiber for nonwoven fabric of this invention can be used suitably also for manufacture of a wet nonwoven fabric. As described above, the short fiber of the present invention can prevent the generation of fiber mass due to the generation of static electricity due to the friction between fiber and fiber or between fiber and machine, particularly in the production process of dry nonwoven fabric. Even in wet nonwoven fabrics, the dispersion of single fibers is good, and since there are few contact points (surfaces) between single fibers, it is difficult for fibers to converge, so that it is possible to obtain a wet nonwoven fabric with excellent uniformity and sufficient bulkiness it can.

なお、本発明の短繊維を上述したような本発明で規定する捲縮形態を満足するものとするには、後述するような製造工程における延伸条件(倍率、温度)及び押込み式クリンパー等の捲縮付与装置での捲縮付与条件(ニップ圧力、スタフィング圧力)を適切な値に調整することにより行うことができる。   In order to satisfy the crimped form defined in the present invention as described above, the short fibers of the present invention satisfy the stretching conditions (magnification, temperature) in the manufacturing process as described later, and crimps such as an indentation type crimper. This can be done by adjusting crimping conditions (nip pressure, stuffing pressure) in the crimping device to appropriate values.

次に、本発明の短繊維不織布について説明する。本発明の短繊維不織布は、上記のような本発明の不織布用短繊維を含有してなるものである。本発明の短繊維を含有することにより、嵩高性に優れた独特の風合いを有する不織布となるものである。中でも本発明の短繊維が30質量%以上含有されていることが好ましく、30質量%未満であると、不織布の風合いは嵩高性に乏しいものとなりやすい。   Next, the short fiber nonwoven fabric of the present invention will be described. The short fiber nonwoven fabric of the present invention comprises the short fiber for nonwoven fabric of the present invention as described above. By containing the short fiber of the present invention, the nonwoven fabric has a unique texture excellent in bulkiness. Among them, the short fiber of the present invention is preferably contained in an amount of 30% by mass or more, and if it is less than 30% by mass, the texture of the nonwoven fabric tends to be poor in bulkiness.

本発明の不織布においては、本発明の短繊維をバインダー繊維として用いることが好ましく、この場合、鞘部が接着成分となり、芯部は残存成分となり不織布を構成する繊維となる。また、本発明の不織布においては、本発明の短繊維のみからなるもの(100質量%使用)としてもよい。この場合、本発明の短繊維はバインダー繊維と主体繊維の両方の役割を果たすものとなる。   In the nonwoven fabric of this invention, it is preferable to use the short fiber of this invention as a binder fiber, and in this case, a sheath part becomes an adhesive component, a core part becomes a residual component, and becomes a fiber which comprises a nonwoven fabric. Moreover, in the nonwoven fabric of this invention, it is good also as what consists only of the short fiber of this invention (100 mass% use). In this case, the short fiber of the present invention serves as both a binder fiber and a main fiber.

また、本発明の不織布において、本発明の短繊維をバインダー繊維として用い、他の繊維を主体繊維として用いる場合は、本発明の短繊維を30質量%以上含有することが好ましい。このとき、中でも本発明の短繊維を45〜70質量%含有することが好ましい。   Moreover, in the nonwoven fabric of this invention, when using the short fiber of this invention as a binder fiber and using another fiber as a main fiber, it is preferable to contain 30 mass% or more of the short fiber of this invention. At this time, it is preferable to contain 45 to 70% by mass of the short fiber of the present invention.

本発明の不織布用短繊維は、上記したような捲縮形状を有することで、不織布の製造工程において、繊維同士の絡みを防ぎ、均一かつ嵩高なウエブとすることができる。そして、本発明の短繊維をバインダー繊維に用いた場合は、本発明の短繊維の鞘部が溶融して接着成分となるものであるが、ウエブの段階で主体繊維と本発明の短繊維とにより均一かつ嵩高なものとなっているため、本発明の短繊維の鞘部が溶融したとしても、主体繊維と本発明の短繊維の芯部からなる不織布もしくは本発明の短繊維の芯部のみからなる不織布は均一性と嵩高性に優れたものとなる。   By having the crimped shape as described above, the short fiber for nonwoven fabric of the present invention can prevent the fibers from being entangled in the nonwoven fabric production process, and can form a uniform and bulky web. And when the short fiber of the present invention is used as a binder fiber, the sheath portion of the short fiber of the present invention is melted to become an adhesive component, but at the web stage, the main fiber and the short fiber of the present invention Therefore, even if the sheath of the short fiber of the present invention is melted, only the nonwoven fabric composed of the main fiber and the core of the short fiber of the present invention or the core of the short fiber of the present invention is used. The nonwoven fabric made of is excellent in uniformity and bulkiness.

なお、本発明の不織布に用いる主体繊維としては、得られる不織布の均一性、嵩高性等の風合いを考慮すると、単糸の形状が本発明の短繊維と同様のものであり、本発明における(1)〜(3)式の形状、捲縮数、捲縮率を満足する短繊維とすることが好ましい。   The main fiber used in the nonwoven fabric of the present invention is the same as that of the short fiber of the present invention in terms of the shape of the single yarn in consideration of the texture of the obtained nonwoven fabric, such as uniformity and bulkiness. It is preferable to use a short fiber that satisfies the shapes, the number of crimps, and the crimp rate of formulas (1) to (3).

このような主体繊維しては、ポリエステルやポリアミド等からなる熱可塑性樹脂からなる合成繊維等を用いることができるが、中でもアルキレンテレフタレート単位を主体とするポリエステルであって、ポリエステルの融点が220〜280℃のものが好ましい。具体的には、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等が挙げられ、中でもPETが好ましい。また、これらのポリエステルは、必要に応じて以下に示す共重合成分を1種類又は複数種類共重合した共重合ポリエステルであってもよい。   As such a main fiber, a synthetic fiber made of a thermoplastic resin made of polyester, polyamide, or the like can be used. Among them, a polyester mainly composed of an alkylene terephthalate unit, and the melting point of the polyester is 220 to 280. C. is preferred. Specific examples include polyethylene terephthalate (PET) and polybutylene terephthalate (PBT). Among these, PET is preferable. Further, these polyesters may be copolymer polyesters obtained by copolymerizing one or more of the following copolymer components as required.

共重合成分としては、例えば、テレフタル酸、イソフタル酸、シクロヘキサンジカルボン酸、アジピン酸、セバシン酸、ビスフェノールS、ビスフェノールA、シクロヘキサンジメタノール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、ポリエチレングリコール等が挙げられる。   Examples of copolymer components include terephthalic acid, isophthalic acid, cyclohexanedicarboxylic acid, adipic acid, sebacic acid, bisphenol S, bisphenol A, cyclohexanedimethanol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, Examples include polyethylene glycol.

そして、本発明の短繊維不織布は、前記したように乾式不織布、湿式不織布のいずれでもよい。また、目付け等も特に限定するものではない。   The short fiber nonwoven fabric of the present invention may be either a dry nonwoven fabric or a wet nonwoven fabric as described above. Further, the basis weight and the like are not particularly limited.

次に、本発明の不織布用短繊維の製造方法について、一例を用いて説明する。ポリエステルAとポリマーBを通常用いられる複合紡糸装置を用いて溶融紡糸し、延伸することなく、一旦巻き取る。得られた未延伸糸を集束して1〜100ktex程度のトウとし、延伸倍率2〜6倍、温度20〜90℃程度で熱延伸を施す。そして、押し込み式クリンパーで捲縮を付与した後、必要に応じて仕上げ油剤を付与し、所望の繊維長にカットして本発明の短繊維を得る。   Next, the manufacturing method of the short fiber for nonwoven fabrics of this invention is demonstrated using an example. Polyester A and polymer B are melt-spun using a commonly used compound spinning apparatus, and are wound up without stretching. The obtained undrawn yarn is converged to form a tow of about 1 to 100 ktex, and hot drawn at a draw ratio of 2 to 6 times and a temperature of about 20 to 90 ° C. And after providing a crimp with an indentation type crimper, a finishing oil agent is provided as needed, and it cuts into desired fiber length, and obtains the short fiber of this invention.

このとき、本発明で規定する捲縮形態を満足するものとするため、延伸条件(倍率、温度)及び押込み式クリンパー等の捲縮付与装置での捲縮付与条件(ニップ圧力、スタフィング圧力)を適切に調整して行う。   At this time, in order to satisfy the crimping form defined in the present invention, the stretching conditions (magnification, temperature) and the crimping conditions (nip pressure, stuffing pressure) in the crimping apparatus such as a push-in crimper are set. Adjust appropriately.

次に、本発明の短繊維不織布の製造方法について、乾式不織布、湿式不織布のそれぞれについて一例を用いて説明する。なお、乾式不織布、湿式不織布ともに本発明の短繊維のみ(100%使用)使用した例について説明する。   Next, about the manufacturing method of the short fiber nonwoven fabric of this invention, each of a dry-type nonwoven fabric and a wet nonwoven fabric is demonstrated using an example. In addition, the example which used only the short fiber of this invention (100% use) is described for both a dry-type nonwoven fabric and a wet-type nonwoven fabric.

まず、乾式不織布(エアレイド法)の場合、図3に示す簡易エアレイド試験機を用い、試料投入ブロア13より、本発明の短繊維を投入し、解繊翼回転モータ15により解繊翼回転用スプロケット16を介して回転する、それぞれ5枚1組の第1解繊翼11と第2解繊翼12で解繊し、飛散落下させる。落下する短繊維を、下部にあるサクションボックス14で吸引しつつ、矢印方向に移動する集綿コンベア17の上に堆積させウェブを作成し、下流にある熱処理機18にて熱処理を施し(ポリマーBを溶融させて)、乾式不織布を得る。不織布の目付調整は、集綿コンベア17の移動速度を変化させることで行う。   First, in the case of a dry nonwoven fabric (airlaid method), the short fiber of the present invention is fed from the sample loading blower 13 using the simple airlaid testing machine shown in FIG. Each set of five rotating first defibrating blades 11 and second defibrating blades 12 is defibrated and scattered and dropped. Falling short fibers are sucked by the suction box 14 at the lower part and deposited on a cotton collecting conveyor 17 that moves in the direction of the arrow to create a web, which is then heat treated by a heat treatment machine 18 downstream (polymer B). To obtain a dry nonwoven fabric. The basis weight adjustment of the nonwoven fabric is performed by changing the moving speed of the cotton collection conveyor 17.

また、湿式不織布の場合、本発明の短繊維をパルプ離解機に投入し攪拌する。その後、得られた試料を抄紙機に移し、アルキルホスフェート金属塩を主成分とする分散油剤を添加した後、付帯の撹拌羽根にて撹拌を行い抄紙し、湿式不織布ウェブとする。この抄紙した湿式不織布ウェブに熱風乾燥機で熱処理を行い(ポリマーBを溶融させて)、湿式不織布を得る。   Moreover, in the case of a wet nonwoven fabric, the short fiber of this invention is thrown into a pulp disaggregator and stirred. Thereafter, the obtained sample is transferred to a paper machine, and after adding a dispersion oil mainly composed of an alkyl phosphate metal salt, stirring is performed with an accompanying stirring blade to make a paper, thereby obtaining a wet nonwoven web. The paper-made wet nonwoven web is subjected to heat treatment with a hot air dryer (polymer B is melted) to obtain a wet nonwoven fabric.

次に、本発明を実施例によって具体的に説明する。なお実施例における各特性値の測定方法は以下の通りである。
(1)流動開始温度
フロテスター(島津製作所CFT−500型)を用い、荷重100Kgf/cm
、ノズル径0.5mmの条件で、初期温度50℃より10℃/分の割合で昇温していき、ポリマーがダイから流出し始める温度として求めた。
(2)融点
示差走査型熱量計(パーキンエルマー社製DSC7)を用い、昇温速度20℃/分で測定した融解吸収曲線の極値を与える温度を融点とした。
(3)極限粘度
フェノールと四塩化エタンとの等質量混合物を溶媒として、温度20℃で測定した。
(4)繊度、繊維長、捲縮部のH/L、捲縮数、捲縮率
前記の方法で測定、算出した。
(5)繊維塊の生成
得られた短繊維を図2の簡易空気流撹拌試験機を用い繊維塊の生成を評価した。100gの短繊維を解綿機で予備解繊した後、サンプル送り込み用ブロア3から空気流にて撹拌タンク1に投入し、撹拌用ブロア2から20m/秒の空気流を吹き込み、攪拌タンク1内で1分間撹拌する。攪拌後の繊維をサンプリング口4より0.1g採取し、黒色紙の上に広げ、独立した繊維塊の有無を目視にて評価した。
○:繊維塊が発生していない
△:繊維塊が少量発生している
×:繊維塊が大量発生している
(6)不織布の均一性、嵩高性
〈乾式不織布〉
−均一性−
得られた乾式不織布の均一性の状態を目視にて観察し、以下のように3段階評価とした。
○:十分に解繊されて均一である
△:部分的に未解繊な部分がある
×:解繊が不十分で不均一である
−嵩高性−
得られた乾式不織布を20cm×20cmに切り出してサンプルとし、そのサンプル10枚を重ねた上に25cm×25cm×5mmのアクリル板(370g)を載せ、その上に1Kgの錘を載せてアクリル板の下面の4辺のそれぞれの辺の中央の高さを測定し、4点の平均値により以下のように3段階評価とした。
(1)得られた短繊維のみを用いて乾式不織布とした場合(実施例1〜39、比較例1〜14)
○:高さが8.5mm以上である
△:高さが7.5mm以上8.5mm未満である
×:高さが7.5mm未満である
(2)得られた短繊維と他の繊維を用いて乾式不織布とした場合(実施例63〜77、比較例27〜29)
○:高さが5.5mm以上である
△:高さが4.5mm以上5.5mm未満である
×:高さが4.5mm未満である
〈湿式不織布〉
−均一性−
得られた湿式不織布の均一性の状態を目視にて観察し以下のように3段階評価とした。
○:十分に分散しており均一である
△:部分的に分散の悪い部分がある
×:分散が不十分で不均一である
−嵩高性−
得られた湿式不織布を20cm×20cmに切り出してサンプルとし、そのサンプルを10枚重ねた上に25cm×25cm×5mmのアクリル板(370g)を載せ、その上に1kgの錘を載せてアクリル板の下面の4辺のそれぞれの辺の中央の高さを測定し、4点の平均値により以下のように3段階評価とした。
(1)得られた短繊維のみを用いて湿式不織布とした場合(実施例40〜62、比較例15〜26)
○:高さが7.5mm以上である
△:高さが6.5mm以上7.5mm未満である
×:高さが6.5mm未満である
(2)得られた短繊維と他の繊維を用いて湿式不織布とした場合(実施例78〜92、比較例30〜32)
○:高さが5.0mm以上である
△:高さが4.0mm以上5.0mm未満である
×:高さが4.0mm未満である
Next, the present invention will be specifically described with reference to examples. In addition, the measuring method of each characteristic value in an Example is as follows.
(1) Flow start temperature Using a flotester (Shimadzu Corporation CFT-500 type), a load of 100 kgf / cm 2
The temperature was increased from the initial temperature of 50 ° C. at a rate of 10 ° C./min under the condition of a nozzle diameter of 0.5 mm, and the temperature was determined as the temperature at which the polymer began to flow out of the die.
(2) Melting point The temperature which gives the extreme value of the melting absorption curve measured with a differential scanning calorimeter (DSC7 manufactured by Perkin Elmer Co., Ltd.) at a heating rate of 20 ° C./min was defined as the melting point.
(3) Intrinsic viscosity Measured at a temperature of 20 ° C. using an equal mass mixture of phenol and ethane tetrachloride as a solvent.
(4) Fineness, fiber length, H / L of crimped portion, number of crimps, crimp rate Measured and calculated by the above method.
(5) Formation of fiber masses The short fibers obtained were evaluated for the production of fiber masses using the simple air flow agitator of FIG. 100 g of short fibers are pre-defibrated by a cotton sacking machine, and then introduced into the stirring tank 1 by an air flow from the sample feeding blower 3, and an air flow of 20 m / second is blown from the stirring blower 2 to the inside of the stirring tank 1. For 1 minute. 0.1 g of the fiber after stirring was sampled from the sampling port 4 and spread on black paper, and the presence or absence of an independent fiber mass was visually evaluated.
○: No fiber lump is generated Δ: A small amount of fiber lump is generated x: A large amount of fiber lump is generated (6) Uniformity and bulkiness of the nonwoven fabric <dry nonwoven fabric>
-Uniformity-
The uniformity state of the obtained dry nonwoven fabric was observed visually, and was evaluated in three stages as follows.
○: Fully defibrated and uniform △: Partially undefibrated part ×: Incomplete defibration and non-uniformity-Bulkiness-
The obtained dry nonwoven fabric was cut into 20 cm × 20 cm to make a sample, and 10 cm of the samples were stacked, and an acrylic plate (370 g) of 25 cm × 25 cm × 5 mm was placed thereon, and a 1 kg weight was placed on the acrylic plate. The height of the center of each of the four sides of the lower surface was measured, and the three-level evaluation was performed as follows based on the average value of the four points.
(1) When using only the obtained short fiber as a dry nonwoven fabric (Examples 1 to 39, Comparative Examples 1 to 14)
○: The height is 8.5 mm or more Δ: The height is 7.5 mm or more and less than 8.5 mm ×: The height is less than 7.5 mm
(2) When the obtained short fibers and other fibers are used to form a dry nonwoven fabric (Examples 63 to 77, Comparative Examples 27 to 29)
○: The height is 5.5 mm or more Δ: The height is 4.5 mm or more and less than 5.5 mm ×: The height is less than 4.5 mm <wet nonwoven fabric>
-Uniformity-
The uniformity state of the obtained wet nonwoven fabric was observed with the naked eye, and was evaluated in three stages as follows.
○: Sufficiently dispersed and uniform Δ: Partially poorly dispersed portion ×: Insufficient dispersion and non-uniformity-bulkyness-
The obtained wet non-woven fabric was cut into 20 cm × 20 cm and used as a sample. A 10 cm pile of the samples was placed on a 25 cm × 25 cm × 5 mm acrylic plate (370 g), and a 1 kg weight was placed on the acrylic plate. The height of the center of each of the four sides of the lower surface was measured, and the three-level evaluation was performed as follows based on the average value of the four points.
(1) When it is set as a wet nonwoven fabric only using the obtained short fiber (Examples 40-62, comparative examples 15-26)
○: The height is 7.5 mm or more. Δ: The height is 6.5 mm or more and less than 7.5 mm. X: The height is less than 6.5 mm.
(2) When the obtained short fibers and other fibers are used to form a wet nonwoven fabric (Examples 78 to 92, Comparative Examples 30 to 32)
○: The height is 5.0 mm or more. Δ: The height is 4.0 mm or more and less than 5.0 mm. X: The height is less than 4.0 mm.

実施例1
ポリエステルAとして、融点が256℃、極限粘度0.61のPETを用い、ポリマーBとして、流動開始温度130℃、極限粘度0.57のイソフタル酸を33mol%共重合したポリエステルを用いた。複合紡糸装置を用い、ポリエステルAを芯、ポリマーBを鞘成分とし、芯鞘質量比率が1/1となるようにして、紡糸温度280℃、吐出量446g/min、紡糸速度1170m/minの条件で、ホール数560の丸型断面のノズルで紡出し、未延伸糸を得た。得られた未延伸糸を12.3ktexのトウに集束した後、延伸倍率3.09倍、延伸温度60℃で延伸を行い、押し込み式クリンパーで捲縮付与条件をニップ圧0.39MPa、スタフィング圧0.07MPaとして捲縮を付与した。捲縮形態、捲縮数、捲縮率は表1に示すものであった。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする通常用いられる紡績用油剤を0.2質量%の付着量となるように付与した後、切断して単糸繊度2.2dtex、繊維長5mmの短繊維を得た。
得られた短繊維のみを用いて、図3に示す簡易エアレイド試験機を用い、以下のようにして目付50g/m2の乾式不織布を得た。まず、試料投入ブロア13より投入された短繊維は、解繊翼回転モータ15より解繊翼回転用スプロケット16を介して回転する、それぞれ5枚1組の第1解繊翼11と第2解繊翼12で解繊され飛散落下させた。落下する短繊維を、下部にあるサクションボックス14で吸引しつつ、矢印方向に移動する集綿コンベア17の上に堆積させウェブを作成し、下流にある熱処理機18にて熱処理を施し(ポリマーBを融着させて)、乾式不織布を得た。このとき、不織布の目付調整は、集綿コンベア17の移動速度を変化させることで行った。
Example 1
As polyester A, a PET having a melting point of 256 ° C. and an intrinsic viscosity of 0.61 was used, and as polymer B, a polyester obtained by copolymerizing 33 mol% of isophthalic acid having a flow starting temperature of 130 ° C. and an intrinsic viscosity of 0.57 was used. Using a composite spinning apparatus, polyester A as a core, polymer B as a sheath component, a core-sheath mass ratio of 1/1, a spinning temperature of 280 ° C., a discharge rate of 446 g / min, and a spinning speed of 1170 m / min Then, spinning was performed with a nozzle having a round cross section with 560 holes to obtain an undrawn yarn. The resulting undrawn yarn was focused on a 12.3 ktex tow, then drawn at a draw ratio of 3.09 and a draw temperature of 60 ° C., and a crimping condition was applied by a push-in crimper with a nip pressure of 0.39 MPa and a stuffing pressure. Crimping was given as 0.07 MPa. The crimp form, the number of crimps, and the crimp rate are shown in Table 1. Thereafter, a commonly used spinning oil mainly composed of polyoxyethylene alkyl ether as a finishing oil was applied so as to have an adhesion amount of 0.2% by mass, and then cut to obtain a single yarn fineness of 2.2 dtex and a fiber length. 5 mm short fibers were obtained.
Using only the obtained short fibers, a dry nonwoven fabric having a basis weight of 50 g / m 2 was obtained using the simple airlaid tester shown in FIG. First, the short fibers fed from the sample feeding blower 13 are defibrated and scattered by a set of five first defibrating blades 11 and second defibrating blades 12 which are rotated by a defibrating blade rotating motor 15 via a defibrating blade rotating sprocket 16. I dropped it. Falling short fibers are sucked by the suction box 14 at the lower part and deposited on a cotton collecting conveyor 17 that moves in the direction of the arrow to create a web, which is then heat treated by a heat treatment machine 18 downstream (polymer B). ) To obtain a dry nonwoven fabric. At this time, the basis weight adjustment of the nonwoven fabric was performed by changing the moving speed of the cotton collecting conveyor 17.

実施例2〜、比較例1〜4、33、34
押し込み式クリンパーで捲縮を付与する条件(ニップ圧、スタフィング圧)を表1、2に示すように種々変更し、表1、2に示す捲縮形態、捲縮数、捲縮率のものとした以外は実施例1と同様に行って短繊維を得、さらに、実施例1と同様にして乾式不織布を得た。
Example 2-7, Comparative Examples 1-4, 33 and 34
Various conditions (nip pressure, stuffing pressure) for applying crimping with an indentation type crimper are changed as shown in Tables 1 and 2, and the crimping forms, the number of crimps and the crimping rate shown in Tables 1 and 2 are used. A short fiber was obtained in the same manner as in Example 1 except that the dry nonwoven fabric was obtained in the same manner as in Example 1.

実施例10
ポリマーBとして、イソフタル酸を20mol%共重合したポリエステル(融点206℃、極限粘度0.63)を用い、延伸倍率、押し込み式クリンパーで捲縮を付与する条件(ニップ圧、スタフィング圧)を表1に示すように種々変更し、表1に示す捲縮形態、捲縮数、捲縮率のものとした以外は実施例1と同様に行い、短繊維を得た。さらに、実施例1と同様にして乾式不織布を得た。
Example 10
As a polymer B, a polyester (melting point 206 ° C., intrinsic viscosity 0.63) copolymerized with 20 mol% of isophthalic acid was used. The draw ratio and the conditions for applying crimp with a push-in crimper (nip pressure, stuffing pressure) are shown in Table 1. As shown in Table 1, various changes were made, and the same procedure as in Example 1 was performed except that the crimped form, the number of crimps, and the crimping rate shown in Table 1 were used, and short fibers were obtained. Further, a dry nonwoven fabric was obtained in the same manner as in Example 1.

実施例11
ポリマーBとして、イソフタル酸を40mol%共重合したポリエステル(流動開始温度95℃、極限粘度0.56)を用い、延伸倍率、押し込み式クリンパーで捲縮を付与する条件(ニップ圧、スタフィング圧)を表1に示すように種々変更し、表1に示す捲縮形態、捲縮数、捲縮率のものとした以外は実施例1と同様に行い、短繊維を得た。さらに、実施例1と同様にして乾式不織布を得た。
Example 11
As the polymer B, polyester (copolymerization temperature: 95 ° C., intrinsic viscosity: 0.56) copolymerized with 40 mol% of isophthalic acid is used. Various changes were made as shown in Table 1, and the same procedure as in Example 1 was carried out except that the crimped form, the number of crimps, and the crimp rate shown in Table 1 were used, and short fibers were obtained. Further, a dry nonwoven fabric was obtained in the same manner as in Example 1.

実施例12〜13
ポリマーBとして、ε−CLを15mol%、1,4−ブタンジオール55mol%共重合したポリエステル(融点158℃、極限粘度0.73)を用い、延伸倍率、押し込み式クリンパーで捲縮を付与する条件(ニップ圧、スタフィング圧)を表1に示すように種々変更し、表1に示す捲縮形態、捲縮数、捲縮率のものとした以外は実施例1と同様に行い、短繊維を得た。さらに、実施例1と同様にして乾式不織布を得た。
Examples 12-13
As polymer B, a polyester (melting point: 158 ° C., intrinsic viscosity: 0.73) copolymerized with 15 mol% of ε-CL and 55 mol% of 1,4-butanediol is used. (Nip pressure, stuffing pressure) were variously changed as shown in Table 1, and the same procedure as in Example 1 was carried out except that the crimped form, the number of crimps, and the crimping rate shown in Table 1 were used. Obtained. Further, a dry nonwoven fabric was obtained in the same manner as in Example 1.

実施例14〜15
ポリマーBとして、融点132℃のポリエチレンを用い、延伸倍率、押し込み式クリンパーで捲縮を付与する条件(ニップ圧、スタフィング圧)を表1に示すように種々変更し、表1に示す捲縮形態、捲縮数、捲縮率のものとした以外は実施例1と同様に行い、短繊維を得た。さらに、実施例1と同様にして乾式不織布を得た。
Examples 14-15
Polyethylene having a melting point of 132 ° C. is used as the polymer B, and the draw ratio and the conditions for imparting crimp with a push-in crimper (nip pressure, stuffing pressure) are variously changed as shown in Table 1, and the crimp forms shown in Table 1 In the same manner as in Example 1 except that the number of crimps and the crimp rate were changed, short fibers were obtained. Further, a dry nonwoven fabric was obtained in the same manner as in Example 1.

実施例16〜17
ポリマーBとして、イソフタル酸を29mol%、9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド(HCA)を4.25mol%、イタコン酸を4.25mol%共重合したポリエステル(流動開始温度132℃、極限粘度0.61)を用い、延伸倍率、押し込み式クリンパーで捲縮を付与する条件(ニップ圧、スタフィング圧)を表1に示すように種々変更し、表1に示す捲縮形態、捲縮数、捲縮率のものとした以外は実施例1と同様に行い、短繊維を得た。さらに、実施例1と同様にして乾式不織布を得た。
Examples 16-17
As the polymer B, polyester obtained by copolymerizing 29 mol% of isophthalic acid, 4.25 mol% of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (HCA), and 4.25 mol% of itaconic acid ( Using the flow start temperature of 132 ° C. and the intrinsic viscosity of 0.61), the draw ratio and the crimping condition (nip pressure, stuffing pressure) with an indentation type crimper were variously changed as shown in Table 1 and shown in Table 1. A short fiber was obtained in the same manner as in Example 1 except that the crimped shape, the number of crimps, and the crimp rate were changed. Further, a dry nonwoven fabric was obtained in the same manner as in Example 1.

実施例18〜19
ポリエステルAとして、HCAを4.25mol%、イタコン酸を4.25mol%共重合したポリエステル(融点230℃、極限粘度0.63)を用い、ポリマーBとして実施例10と同じ共重合ポリエステルを用い、延伸倍率、押し込み式クリンパーで捲縮を付与する条件(ニップ圧、スタフィング圧)を表1に示すように種々変更し、表1に示す捲縮形態、捲縮数、捲縮率のものとした以外は実施例1と同様に行い、短繊維を得た。さらに、実施例1と同様にして乾式不織布を得た。
Examples 18-19
As polyester A, 4.25 mol% HCA and 4.25 mol% polyester copolymerized with itaconic acid (melting point: 230 ° C., intrinsic viscosity: 0.63) were used, and as polymer B, the same copolymer polyester as in Example 10 was used. The stretching ratio and the conditions (nip pressure, stuffing pressure) for imparting crimp with a push-in crimper are variously changed as shown in Table 1 to have the crimp form, number of crimps, and crimp rate shown in Table 1. Otherwise, the same procedure as in Example 1 was performed to obtain short fibers. Further, a dry nonwoven fabric was obtained in the same manner as in Example 1.

実施例20〜21
ポリエステルAとして実施例18と同じ共重合ポリエステル、ポリマーBとして実施例16と同じ共重合ポリエステルを用い、延伸倍率、押し込み式クリンパーで捲縮を付与する条件(ニップ圧、スタフィング圧)を表1に示すように種々変更し、表1に示す捲縮形態、捲縮数、捲縮率のものとした以外は実施例1と同様に行い、短繊維を得た。さらに、実施例1と同様にして乾式不織布を得た。
Examples 20-21
Table 1 shows the conditions (nip pressure, stuffing pressure) for imparting crimp with a draw ratio and a push-in crimper using the same copolymer polyester as Example 18 as polyester A and the same copolymer polyester as Example 16 as polymer B. Various changes were made as shown, and the same procedure as in Example 1 was carried out except that the crimped form, the number of crimps, and the crimping rate shown in Table 1 were used to obtain short fibers. Further, a dry nonwoven fabric was obtained in the same manner as in Example 1.

実施例22
ポリエステルA、ポリマーBに実施例1と同じものを用い、複合紡糸装置を用い、ポリエステルAを芯、ポリマーBを鞘成分とし、芯鞘質量比率が1/1となるようにして、紡糸温度280℃、吐出量268g/min、紡糸速度1100m/minの条件で、ホール数65の丸型断面のノズルで紡出し、未延伸糸を得た。得られた未延伸糸を14.3ktexのトウに集束した後、延伸倍率3.41倍、延伸温度60℃で延伸を行い、押し込み式クリンパーで捲縮付与条件をニップ圧0.44MPa、スタフィング圧0.14MPaとして、捲縮を付与した。捲縮形態、捲縮数、捲縮率は表1に示すものであった。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする通常用いられる紡績用油剤を0.2質量%の付着量となるように付与した後、切断して単糸繊度11dtex、繊維長5mmの短繊維を得た。さらに、実施例1と同様にして乾式不織布を得た。
Example 22
Using the same polyester A and polymer B as in Example 1, using a composite spinning apparatus, using polyester A as the core, polymer B as the sheath component, and a core-sheath mass ratio of 1/1, spinning temperature 280 Spinning was performed with a nozzle having a round cross section with 65 holes, under the conditions of ° C., discharge rate of 268 g / min, and spinning speed of 1100 m / min to obtain an undrawn yarn. The resulting undrawn yarn was focused on a 14.3 ktex tow, then drawn at a draw ratio of 3.41 times and a draw temperature of 60 ° C., and a crimping condition was applied by a push-in crimper with a nip pressure of 0.44 MPa and a stuffing pressure. Crimping was given as 0.14 MPa. The crimp form, the number of crimps, and the crimp rate are shown in Table 1. Then, after applying a commonly used spinning oil mainly composed of polyoxyethylene alkyl ether as a finishing oil so as to have an adhesion amount of 0.2% by mass, it was cut to obtain a single yarn fineness of 11 dtex and a fiber length of 5 mm. Short fibers were obtained. Further, a dry nonwoven fabric was obtained in the same manner as in Example 1.

実施例23〜27、比較例5〜8、35、36
押し込み式クリンパーで捲縮を付与する条件(ニップ圧、スタフィング圧)を表1、2に示すように種々変更し、表1、2に示す捲縮形態、捲縮数、捲縮率のものとした以外は、実施例22と同様に行い短繊維を得た。得られた短繊維のみを用いて実施例1と同様にして乾式不織布を得た。
Example 23-27, Comparative Examples 5 to 8, 35 and 36
Various conditions (nip pressure, stuffing pressure) for applying crimping with an indentation type crimper are changed as shown in Tables 1 and 2, and the crimping forms, the number of crimps and the crimping rate shown in Tables 1 and 2 are used. A short fiber was obtained in the same manner as in Example 22 except that. A dry nonwoven fabric was obtained in the same manner as in Example 1 using only the obtained short fibers.

実施例30
ポリエステルA、ポリマーBに実施例1と同じものを用い、ポリエステルAを芯、ポリマーBを鞘成分として複合紡糸装置を用い、紡糸温度280℃、吐出量428g/min、紡糸速度750m/minの条件で、ホール数65の丸型断面のノズルで紡出し、未延伸糸を得た。得られた未延伸糸を14.3ktexのトウに集束した後、延伸倍率3.99倍、延伸温度60℃で延伸を行い、押し込み式クリンパーで捲縮付与条件をニップ圧0.51MPa、スタフィング圧0.19MPaとして、捲縮を付与した。捲縮形態、捲縮数、捲縮率は表1に示すものであった。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする通常用いられる紡績用油剤を0.2質量%の付着量となるように付与した後、切断して単糸繊度22dtex、繊維長5mmの短繊維を得た。さらに、実施例1と同様にして乾式不織布を得た。
Example 30
The same polyester A and polymer B as in Example 1, polyester A as the core, polymer B as the sheath component and a compound spinning device, spinning temperature of 280 ° C., discharge rate of 428 g / min, spinning speed of 750 m / min Then, spinning was performed with a nozzle having a round cross section with 65 holes to obtain an undrawn yarn. The resulting undrawn yarn was focused on a 14.3 ktex tow, then drawn at a draw ratio of 3.99 times and a draw temperature of 60 ° C., and a crimping condition was applied by a push-in crimper with a nip pressure of 0.51 MPa and a stuffing pressure. Crimping was given as 0.19 MPa. The crimp form, the number of crimps, and the crimp rate are shown in Table 1. Then, after applying a commonly used spinning oil mainly composed of polyoxyethylene alkyl ether as a finishing oil so as to have an adhesion amount of 0.2% by mass, it was cut to obtain a single yarn fineness of 22 dtex and a fiber length of 5 mm. Short fibers were obtained. Further, a dry nonwoven fabric was obtained in the same manner as in Example 1.

実施例31〜35、比較例9〜12、37、38
押し込み式クリンパーで捲縮を付与する条件(ニップ圧、スタフィング圧)を表1、2に示すように種々変更し、表1、2に示す捲縮形態、捲縮数、捲縮率のものとした以外は、実施例30と同様に行い、短繊維を得た。得られた短繊維のみを用いて実施例1と同様にして乾式不織布を得た。
Example 31-35, Comparative Examples 9 to 12, 37 and 38
Various conditions (nip pressure, stuffing pressure) for applying crimping with an indentation type crimper are changed as shown in Tables 1 and 2, and the crimping forms, the number of crimps and the crimping rate shown in Tables 1 and 2 are used. Except that, short fibers were obtained in the same manner as in Example 30. A dry nonwoven fabric was obtained in the same manner as in Example 1 using only the obtained short fibers.

実施例38〜39、比較例13〜14
切断時の繊維長を変更し、表1、2に示す繊維長とした以外は、実施例1と同様に行い、短繊維を得た。得られた短繊維のみを用いて実施例1と同様にして乾式不織布を得た。
Examples 38-39, Comparative Examples 13-14
Short fibers were obtained in the same manner as in Example 1 except that the fiber length at the time of cutting was changed to the fiber lengths shown in Tables 1 and 2. A dry nonwoven fabric was obtained in the same manner as in Example 1 using only the obtained short fibers.

実施例1〜39、比較例1〜14で得られた短繊維の測定値及び評価結果を表1、2に示す。また、これらの短繊維を用いて乾式不織布を作成した際の均一性、嵩高性の評価結果を表1、2に示す。   Tables 1 and 2 show measured values and evaluation results of the short fibers obtained in Examples 1 to 39 and Comparative Examples 1 to 14. Tables 1 and 2 show the evaluation results of uniformity and bulkiness when a dry nonwoven fabric is prepared using these short fibers.

表1、2から明らかなように、実施例1〜39の短繊維は、(1)式を満足するものであったため、特に、実施例1〜7、10〜27、30〜35、38〜39の短繊維は、(1)〜(3)式を満足するものであったため、静電気の発生や静電気をためることがなく、繊維塊の発生がないものであった。このため、得られた乾式不織布は均一性、嵩高性に優れたものであった。
一方、比較例1、3、5、7、9、11の短繊維は、H/L比が(1)式の範囲より大きいため、いずれも静電気をためやすく、また、繊維の絡みも生じ、玉状の繊維塊が生じた。したがって、得られた乾式不織布は不均一で品位の劣るものであった。
As apparent from Tables 1 and 2, since the short fibers of Examples 1 to 39 satisfied the formula (1), in particular, Examples 1 to 7, 10 to 27, 30 to 35, 38 to Since the 39 short fibers satisfied the expressions (1) to (3), they did not generate static electricity, accumulate static electricity, and did not generate fiber clumps. For this reason, the obtained dry nonwoven fabric was excellent in uniformity and bulkiness.
On the other hand, since the H / L ratio of the short fibers of Comparative Examples 1, 3, 5, 7, 9, and 11 is larger than the range of the formula (1), all of them easily accumulate static electricity, and the fibers are entangled. A ball-shaped fiber mass was formed. Therefore, the obtained dry nonwoven fabric was non-uniform and inferior in quality.

また、比較例2、4、6、8、10、12の短繊維は、H/L比が(1)式の範囲より小さいため、いずれも繊維同士の及び繊維と機械間の接触点(面)が多くなり、静電気の発生が多くなり玉状の繊維塊が生成した。このため、得られた乾式不織布は不均一で品位にも劣り、嵩高性にも劣るものであった。また、比較例13の短繊維は、繊維長が短すぎたため、繊維切断時の摩擦熱で繊維の密着が発生し、不織布を得ることができなかった。比較例14の短繊維は、繊維長が長すぎたため静電気をためやすく、また、繊維の絡みも生じ、玉状の繊維塊が生じたため、得られた乾式不織布は不均一で品位の劣るものであった。比較例33、35、37の短繊維は、捲縮数が(2)式の範囲より大きかったため、比較例34、36、38の短繊維は、捲縮数が(2)式の範囲より小さかったため、いずれも繊維塊が少量発生し、得られた乾式不織布は部分的に未開繊な部分があり、均一性に劣るものであった。 Moreover, since the H / L ratio of the short fibers of Comparative Examples 2, 4, 6, 8, 10, and 12 is smaller than the range of the formula (1), the contact points (surfaces) between the fibers and between the fibers and the machine. ), The generation of static electricity increased, and a ball-like fiber lump was formed. For this reason, the obtained dry nonwoven fabric was non-uniform, inferior in quality, and inferior in bulkiness. Moreover, since the short fiber of the comparative example 13 had too short fiber length, the close_contact | adherence of the fiber generate | occur | produced with the frictional heat at the time of fiber cutting, and the nonwoven fabric was not able to be obtained. Since the short fiber of Comparative Example 14 was too long, it was easy to accumulate static electricity, and also entangled with the fiber, resulting in a ball-like fiber lump. The resulting dry nonwoven fabric was non-uniform and inferior in quality. there were. Since the short fibers of Comparative Examples 33, 35, and 37 had a larger number of crimps than the range of the formula (2), the short fibers of Comparative Examples 34, 36, and 38 had a smaller number of crimps than the range of the formula (2). Therefore, in all cases, a small amount of fiber lump was generated, and the obtained dry nonwoven fabric had partially unopened portions and was inferior in uniformity.

実施例40〜46、比較例15〜18
それぞれ実施例1〜7、比較例1〜4の短繊維のみを用いて、以下のようにして湿式不織布を作成した。
得られた短繊維をパルプ離解機(熊谷理機工業製)に投入し、3000rpmにて1分間攪拌した。その後、得られた試料を抄紙機(熊谷理機工業製角型シートマシン)に移し、アルキルホスフェート金属塩を主成分とする分散油剤を添加した後、付帯の撹拌羽根にて撹拌を行い抄紙をし、湿式不織布ウェブとした。抄紙した25×25cmの湿式不織布ウェブを、温度140℃、時間10分の熱処理を箱型熱風乾燥機で行い、目付50g/mの湿式不織布を得た。
得られた湿式不織布の均一性、嵩高性の評価結果を表3に示す。
Examples 40-46, Comparative Examples 15-18
Using only the short fibers of Examples 1 to 7 and Comparative Examples 1 to 4, respectively, wet nonwoven fabrics were prepared as follows.
The obtained short fiber was put into a pulp disintegrator (manufactured by Kumagai Riki Kogyo) and stirred at 3000 rpm for 1 minute. After that, the obtained sample was transferred to a paper machine (Kumagaya Riki Kogyo's square sheet machine), and after adding a dispersion oil mainly composed of an alkyl phosphate metal salt, stirring was performed with an accompanying stirring blade to make the paper. And it was set as the wet nonwoven fabric web. The paper-made 25 × 25 cm wet nonwoven web was subjected to heat treatment at a temperature of 140 ° C. for 10 minutes with a box-type hot air dryer to obtain a wet nonwoven fabric having a basis weight of 50 g / m 2 .
Table 3 shows the evaluation results of uniformity and bulkiness of the obtained wet nonwoven fabric.

実施例47〜62、比較例19〜26
表3に示すように、それぞれ実施例、比較例で得られた短繊維のみを用いて、実施例40と同様にして湿式不織布を作成した。
得られた湿式不織布の均一性、嵩高性の評価結果を表3に示す。
Examples 47-62, Comparative Examples 19-26
As shown in Table 3, wet nonwoven fabrics were prepared in the same manner as in Example 40 using only the short fibers obtained in Examples and Comparative Examples.
Table 3 shows the evaluation results of uniformity and bulkiness of the obtained wet nonwoven fabric.

表3から明らかなように、実施例40〜62の不織布を構成する短繊維は、(1)〜(3)式を満足するものであったため、水中分散性がよく繊維の集束がないものであった。このため、得られた湿式不織布は均一性に優れ、かつ嵩高性も十分なものであった。
一方、比較例15、19、23の不織布を構成する短繊維は、H/L比が(1)式の範囲より大きかったため、さらに捲縮数、捲縮率が(2)、(3)式の範囲より大きいため、比較例17、21、25の不織布を構成する短繊維は、H/L比が(1)式の範囲より大きいため、さらに捲縮率が(3)式の範囲より大きいため、いずれも水中分散性が悪く大きな繊維の集束が発生した。したがって、得られた湿式不織布は不均一で品位にも劣るものであった。また、比較例16、20、24の不織布を構成する短繊維は、H/L比が(1)式の範囲より小さいため、さらに捲縮数、捲縮率が(2)、(3)式の範囲より小さいため、また、比較例18、22、26の不織布を構成する短繊維はH/L比が(1)式の範囲より小さいため、さらに捲縮率が(3)式の範囲より小さいため、いずれも得られた湿式不織布は嵩高性が十分でなかった。
As is apparent from Table 3, the short fibers constituting the nonwoven fabrics of Examples 40 to 62 satisfy the formulas (1) to (3), and therefore have good dispersibility in water and do not converge the fibers. there were. For this reason, the obtained wet nonwoven fabric was excellent in uniformity and sufficient in bulkiness.
On the other hand, since the short fibers constituting the nonwoven fabrics of Comparative Examples 15, 19, and 23 had an H / L ratio larger than the range of the formula (1), the number of crimps and the crimp rate were further expressed by the formulas (2) and (3). Since the H / L ratio of the short fibers constituting the nonwoven fabrics of Comparative Examples 17, 21, and 25 is larger than the range of the formula (1), the crimp rate is further larger than the range of the formula (3). Therefore, in all cases, dispersibility in water was poor, and large fibers were converged. Therefore, the obtained wet nonwoven fabric was non-uniform and inferior in quality. Moreover, since the short fiber which comprises the nonwoven fabric of Comparative Examples 16, 20, and 24 has a H / L ratio smaller than the range of Formula (1), the number of crimps and a crimp rate are (2), (3) Formula In addition, since the H / L ratio of the short fibers constituting the nonwoven fabrics of Comparative Examples 18, 22, and 26 is smaller than the range of the formula (1), the crimp rate is further smaller than the range of the formula (3). Because of the small size, the obtained wet nonwoven fabrics were not sufficiently bulky.

実施例63〜67
バインダー繊維として実施例1の短繊維を用い、主体繊維(他の繊維)として参考例1の短繊維を用い、主体繊維とバインダー繊維の質量比(主体繊維/バインダー繊維)を表4に示すように種々変更した以外は実施例1と同様にして乾式不織布を得た。
Examples 63-67
As shown in Table 4, the short fibers of Example 1 are used as the binder fibers, the short fibers of Reference Example 1 are used as the main fibers (other fibers), and the mass ratio of the main fibers to the binder fibers (main fibers / binder fibers) is shown in Table 4. A dry nonwoven fabric was obtained in the same manner as in Example 1 except that various changes were made.

比較例27
バインダー繊維として比較例1の短繊維を用い、主体繊維(他の繊維)として参考例1の短繊維を用い、主体繊維とバインダー繊維の質量比(主体繊維/バインダー繊維)を50/50とした以外は実施例1と同様にして乾式不織布を得た。
Comparative Example 27
The short fiber of Comparative Example 1 was used as the binder fiber, the short fiber of Reference Example 1 was used as the main fiber (other fiber), and the mass ratio of the main fiber to the binder fiber (main fiber / binder fiber) was 50/50. Except that, a dry nonwoven fabric was obtained in the same manner as in Example 1.

実施例68〜72
バインダー繊維として実施例22の短繊維を用い、主体繊維(他の繊維)として参考例2の短繊維を用い、主体繊維とバインダー繊維の質量比(主体繊維/バインダー繊維)を表4に示すように種々変更した以外は実施例22と同様にして乾式不織布を得た。
Examples 68-72
As shown in Table 4, the short fibers of Example 22 are used as the binder fibers, the short fibers of Reference Example 2 are used as the main fibers (other fibers), and the mass ratio of the main fibers to the binder fibers (main fibers / binder fibers) is shown in Table 4. A dry nonwoven fabric was obtained in the same manner as in Example 22 except that various changes were made.

比較例28
バインダー繊維として比較例5の短繊維を用い、主体繊維(他の繊維)として参考例2の短繊維を用い、主体繊維とバインダー繊維の質量比(主体繊維/バインダー繊維)を50/50とした以外は実施例22と同様にして乾式不織布を得た。
Comparative Example 28
The short fiber of Comparative Example 5 was used as the binder fiber, the short fiber of Reference Example 2 was used as the main fiber (other fiber), and the mass ratio of the main fiber to the binder fiber (main fiber / binder fiber) was 50/50. Except that, a dry nonwoven fabric was obtained in the same manner as in Example 22.

実施例73〜77
バインダー繊維として実施例30の短繊維を用い、主体繊維(他の繊維)として参考例3の短繊維を用い、主体繊維とバインダー繊維の質量比(主体繊維/バインダー繊維)を表4に示すように種々変更した以外は実施例30と同様にして乾式不織布を得た。
Examples 73-77
As shown in Table 4, the short fibers of Example 30 are used as the binder fibers, the short fibers of Reference Example 3 are used as the main fibers (other fibers), and the mass ratio of the main fibers to the binder fibers (main fibers / binder fibers) is shown in Table 4. A dry nonwoven fabric was obtained in the same manner as in Example 30 except that various changes were made.

比較例29
バインダー繊維として比較例9の短繊維を用い、主体繊維(他の繊維)として参考例3の短繊維を用い、主体繊維とバインダー繊維の質量比(主体繊維/バインダー繊維)を50/50とした以外は実施例30と同様にして乾式不織布を得た。
Comparative Example 29
The short fiber of Comparative Example 9 was used as the binder fiber, the short fiber of Reference Example 3 was used as the main fiber (other fiber), and the mass ratio of the main fiber to the binder fiber (main fiber / binder fiber) was 50/50. Except that, a dry nonwoven fabric was obtained in the same manner as in Example 30.

参考例1
融点が256℃、極限粘度0.61のPETを用い、通常の溶融紡糸装置を用い、紡糸温度285℃、吐出量344g/min、紡糸速度950m/minの条件で、ホール数518の丸型断面のノズルで紡出し、未延伸糸を得た。得られた未延伸糸を12.3ktexのトウに集束した後、延伸倍率3.18倍、延伸温度70℃で延伸を行い、押し込み式クリンパーで捲縮を付与することなく、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする紡績用油剤を0.2質量%の付着量となるように付与した後、切断して単糸繊度2.2dtex、繊維長5mmの短繊維を得た。
Reference example 1
A round cross section with a hole number of 518 using PET with a melting point of 256 ° C. and an intrinsic viscosity of 0.61, using a normal melt spinning apparatus, spinning temperature of 285 ° C., discharge rate of 344 g / min, spinning speed of 950 m / min. The undrawn yarn was obtained. The resulting undrawn yarn was focused on a 12.3 ktex tow, then drawn at a draw ratio of 3.18 times and a draw temperature of 70 ° C., and applied as a finishing oil without applying crimp with a push-in crimper. A spinning oil mainly composed of ethylene alkyl ether was applied so as to give an adhesion amount of 0.2% by mass, and then cut to obtain a short fiber having a single yarn fineness of 2.2 dtex and a fiber length of 5 mm.

参考例2
融点が256℃、極限粘度0.61のPETを用い、通常の溶融紡糸装置を用い、紡糸温度285℃、吐出量328g/min、紡糸速度600/minの条件で、ホール数120の丸型断面のノズルで紡出し、未延伸糸を得た。得られた未延伸糸を14.2ktexのトウに集束した後、延伸倍率4.14倍、延伸温度75℃で延伸を行い、押し込み式クリンパーで捲縮を付与することなく、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする紡績用油剤を0.2質量%の付着量となるように付与した後、切断して単糸繊度11dtex、繊維長5mmの短繊維を得た。
Reference example 2
A round cross section with 120 holes, using a PET having a melting point of 256 ° C. and an intrinsic viscosity of 0.61, using a normal melt spinning apparatus, spinning temperature of 285 ° C., discharge rate of 328 g / min, spinning speed of 600 / min. The undrawn yarn was obtained. The resulting undrawn yarn was focused on a 14.2 ktex tow, then drawn at a draw ratio of 4.14 times and a draw temperature of 75 ° C., and without applying crimp with a push-in crimper, polyoxy as a finishing oil. A spinning oil mainly composed of ethylene alkyl ether was applied so as to give an adhesion amount of 0.2% by mass, and then cut to obtain a short fiber having a single yarn fineness of 11 dtex and a fiber length of 5 mm.

参考例3
融点が256℃、極限粘度0.61のPETを用い、通常の溶融紡糸装置を用い、紡糸温度285℃、吐出量283g/min、紡糸速度900m/minの条件で、ホール数40の丸型断面のノズルで紡出し、未延伸糸を得た。得られた未延伸糸を14.0ktexのトウに集束した後、延伸倍率3.57倍、延伸温度80℃で延伸を行い、押し込み式クリンパーで捲縮を付与することなく、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする紡績用油剤を0.2質量%の付着量となるように付与した後、切断して単糸繊度22dtex、繊維長5mmの短繊維を得た。
Reference example 3
A round cross-section with a hole number of 40 using a PET having a melting point of 256 ° C. and an intrinsic viscosity of 0.61, using a normal melt spinning apparatus at a spinning temperature of 285 ° C., a discharge rate of 283 g / min, and a spinning speed of 900 m / min. The undrawn yarn was obtained. The resulting undrawn yarn was focused on a 14.0 ktex tow, then stretched at a draw ratio of 3.57 times and a draw temperature of 80 ° C., and without applying crimp with a push-in crimper, polyoxy as a finishing oil. A spinning oil mainly composed of ethylene alkyl ether was applied so as to give an adhesion amount of 0.2% by mass, and then cut to obtain a short fiber having a single yarn fineness of 22 dtex and a fiber length of 5 mm.

実施例63〜77、比較例27〜29で得られた乾式不織布の均一性、嵩高性の評価結果を表4に示す。   Table 4 shows the evaluation results of the uniformity and bulkiness of the dry nonwoven fabrics obtained in Examples 63 to 77 and Comparative Examples 27 to 29.

表4から明らかなように、実施例63〜77の乾式不織布は、本発明の短繊維を含有しているため、均一性に優れ、かつ嵩高性も十分なものであった。中でも、本発明の短繊維を30質量%以上含有してなる不織布(実施例63〜66、68〜71、73〜76)は、均一性、嵩高性ともに優れたものであった。
一方、比較例27、28、29では、不織布を構成する短繊維が本発明の短繊維ではなく、H/L比が(1)式の範囲より大きく、さらに捲縮数、捲縮率が(2)、(3)式の範囲より大きいため、得られた乾式不織布は均一性が十分でなかった。
As is clear from Table 4, the dry nonwoven fabrics of Examples 63 to 77 contained the short fibers of the present invention, and thus were excellent in uniformity and sufficient in bulk. Especially, the nonwoven fabric (Examples 63-66, 68-71, 73-76) which contains the short fiber of this invention 30 mass% or more was excellent in both uniformity and bulkiness.
On the other hand, in Comparative Examples 27, 28 and 29, the short fibers constituting the nonwoven fabric are not the short fibers of the present invention, the H / L ratio is larger than the range of the formula (1), and the number of crimps and the crimp rate are ( Since it was larger than the range of the formulas (2) and (3), the obtained dry nonwoven fabric was not sufficiently uniform.

実施例78〜82
バインダー繊維として実施例1の短繊維を用い、主体繊維(他の繊維)として参考例1の短繊維を用い、主体繊維とバインダー繊維の質量比(主体繊維/バインダー繊維)を表5に示すように種々変更した以外は実施例40と同様にして湿式不織布を得た。
Examples 78-82
As shown in Table 5, the short fibers of Example 1 are used as the binder fibers, the short fibers of Reference Example 1 are used as the main fibers (other fibers), and the mass ratio of the main fibers to the binder fibers (main fibers / binder fibers) is shown in Table 5. A wet nonwoven fabric was obtained in the same manner as in Example 40 except that various changes were made.

比較例30
バインダー繊維として比較例1の短繊維を用い、主体繊維(他の繊維)として参考例1の短繊維を用い、主体繊維とバインダー繊維の質量比(主体繊維/バインダー繊維)を50/50とした以外は実施例40と同様にして湿式不織布を得た。
Comparative Example 30
The short fiber of Comparative Example 1 was used as the binder fiber, the short fiber of Reference Example 1 was used as the main fiber (other fiber), and the mass ratio of the main fiber to the binder fiber (main fiber / binder fiber) was 50/50. Except for this, a wet nonwoven fabric was obtained in the same manner as in Example 40.

実施例83〜87
バインダー繊維として実施例22の短繊維を用い、主体繊維(他の繊維)として参考例2の短繊維を用い、主体繊維とバインダー繊維の質量比(主体繊維/バインダー繊維)を表5に示すように種々変更した以外は実施例47と同様にして湿式不織布を得た。
Examples 83-87
As shown in Table 5, the short fibers of Example 22 are used as the binder fibers, the short fibers of Reference Example 2 are used as the main fibers (other fibers), and the mass ratio of the main fibers to the binder fibers (main fibers / binder fibers) is shown in Table 5. A wet nonwoven fabric was obtained in the same manner as in Example 47 except that various changes were made.

比較例31
バインダー繊維として比較例5の短繊維を用い、主体繊維(他の繊維)として参考例2の短繊維を用い、主体繊維とバインダー繊維の質量比(主体繊維/バインダー繊維)を50/50とした以外は実施例47と同様にして湿式不織布を得た。
Comparative Example 31
The short fiber of Comparative Example 5 was used as the binder fiber, the short fiber of Reference Example 2 was used as the main fiber (other fiber), and the mass ratio of the main fiber to the binder fiber (main fiber / binder fiber) was 50/50. Except for this, a wet nonwoven fabric was obtained in the same manner as in Example 47.

実施例88〜92
バインダー繊維として実施例30の短繊維を用い、主体繊維(他の繊維)として参考例3の短繊維を用い、主体繊維とバインダー繊維の質量比(主体繊維/バインダー繊維)を表5に示すように種々変更した以外は実施例53と同様にして湿式不織布を得た。
Examples 88-92
As shown in Table 5, the short fibers of Example 30 are used as the binder fibers, the short fibers of Reference Example 3 are used as the main fibers (other fibers), and the mass ratio of the main fibers to the binder fibers (main fibers / binder fibers) is shown in Table 5. A wet nonwoven fabric was obtained in the same manner as in Example 53 except that various changes were made.

比較例32
バインダー繊維として比較例9の短繊維を用い、主体繊維(他の繊維)として参考例3の短繊維を用い、主体繊維とバインダー繊維の質量比(主体繊維/バインダー繊維)を50/50とした以外は実施例53と同様にして湿式不織布を得た。
Comparative Example 32
The short fiber of Comparative Example 9 was used as the binder fiber, the short fiber of Reference Example 3 was used as the main fiber (other fiber), and the mass ratio of the main fiber to the binder fiber (main fiber / binder fiber) was 50/50. Except that, a wet nonwoven fabric was obtained in the same manner as in Example 53.

実施例78〜92、比較例30〜32で得られた湿式不織布の均一性、嵩高性の評価結果を表5に示す。   Table 5 shows the evaluation results of the uniformity and bulkiness of the wet nonwoven fabrics obtained in Examples 78 to 92 and Comparative Examples 30 to 32.

表5から明らかなように、実施例78〜92の湿式不織布は、本発明の短繊維を含有しているため、均一性に優れ、かつ嵩高性も十分なものであった。中でも、本発明の短繊維を30質量%以上含有してなる不織布(実施例78〜81、83〜86、88〜91)は、均一性、嵩高性ともに優れたものであった。
一方、比較例30、31、32では、不織布を構成する短繊維が本発明の短繊維ではなく、H/L比が(1)式の範囲より大きく、さらに捲縮数、捲縮率が(2)、(3)式の範囲より大きいため、得られた乾式不織布は均一性が十分でなかった。
As is apparent from Table 5, the wet nonwoven fabrics of Examples 78 to 92 were excellent in uniformity and sufficient in bulkiness because they contained the short fibers of the present invention. Especially, the nonwoven fabric (Examples 78-81, 83-86, 88-91) containing 30 mass% or more of the short fiber of this invention was excellent in both uniformity and bulkiness.
On the other hand, in Comparative Examples 30, 31, and 32, the short fibers constituting the nonwoven fabric are not the short fibers of the present invention, the H / L ratio is larger than the range of the formula (1), and the number of crimps and the crimp rate are ( Since it was larger than the range of the formulas (2) and (3), the obtained dry nonwoven fabric was not sufficiently uniform.

本発明の不織布用短繊維の捲縮形態を示す拡大説明図である。It is an expanded explanatory view which shows the crimped form of the short fiber for nonwoven fabrics of this invention. 実施例における繊維塊の生成を評価するための簡易空気流撹拌試験機を示す説明図である。It is explanatory drawing which shows the simple airflow stirring test machine for evaluating the production | generation of the fiber lump in an Example. 実施例において乾式不織布を製造した簡易エアレイド試験機を示す説明図である。It is explanatory drawing which shows the simple airlaid tester which manufactured the dry-type nonwoven fabric in the Example.

Claims (7)

アルキレンテレフタレート単位を主体とする融点220℃以上のポリエステルAと流動開始温度又は融点がポリエステルAより30℃以上低いポリマーBからなる複合繊維において、繊維長が1.0〜30mm、単糸繊度が0.3〜40dtex、かつ捲縮が付与されている短繊維であって、単糸の捲縮形態が捲縮部の最大山部において、山部の頂点と隣接する谷部の底点2点を結んだ三角形の高さ(H)と底辺(L)の比(H/L)が下記(1)式を満足し、捲縮数と捲縮率が下記(2)及び(3)式を同時に満足することを特徴とする不織布用短繊維。
(1)式:0.01T+0.1≦H/L≦0.02T+0.25
(2)式:0.1T+3.8≦捲縮数≦0.3T+7.3
(3)式:0.8T+0.3≦捲縮率≦1.0T+4.9
ただし、捲縮数は繊維長25mm当たりの数 Tは単糸繊度のデシテックス(dtex)数
In a composite fiber composed of a polyester A mainly composed of an alkylene terephthalate unit and having a melting point of 220 ° C. or higher and a polymer B having a flow initiation temperature or a melting point of 30 ° C. lower than that of the polyester A, the fiber length is 1.0-30 mm and the single yarn fineness is 0.3-40 dtex. And a short fiber to which crimps are imparted, wherein the crimped form of the single yarn is a triangle formed by connecting the two peak points of the valleys adjacent to the peak of the peak at the maximum peak of the crimped part. The ratio of height (H) to base (L) (H / L) satisfies the following formula (1), and the number of crimps and the crimp rate satisfy the following formulas (2) and (3) at the same time. A feature of short fibers for nonwoven fabrics.
(1) Formula: 0.01T + 0.1 ≦ H / L ≦ 0.02T + 0.25
(2) Formula: 0.1T + 3.8 ≦ crimp number ≦ 0.3T + 7.3
(3) Formula: 0.8T + 0.3 ≦ crimp rate ≦ 1.0T + 4.9
However, the number of crimps is the number per 25 mm of fiber length. T is the number of decitex (dtex) of single yarn fineness.
ポリエステルAを芯部に、ポリマーBを鞘部に配した芯鞘型複合繊維である請求項記載の不織布用短繊維。 The polyester A in the core section, the nonwoven fabric for the short fibers according to claim 1, wherein the polymer B is a core-sheath type composite fibers disposed in a sheath portion. ポリマーBがイソフタル酸を共重合したポリエチレンテレフタレートである請求項1〜いずれかに記載の不織布用短繊維。 Non-woven fabric short fibers according to claim 1-2 polymer B is polyethylene terephthalate obtained by copolymerizing isophthalic acid. ポリマーBが結晶性を有するポリエステルであって、テレフタル酸成分、エチレングリコール成分を含有し、1,4−ブタンジオール成分、脂肪族ラクトン成分及びアジピン酸成分の少なくとも一成分を含有する共重合ポリエステルである請求項1〜いずれかに記載の不織布用短繊維。 Polymer B is a polyester having crystallinity, comprising a terephthalic acid component, an ethylene glycol component, and a copolymerized polyester containing at least one component of a 1,4-butanediol component, an aliphatic lactone component, and an adipic acid component. The short fiber for nonwoven fabric according to any one of claims 1 and 2 . 9,10−ジヒドロ−9−オキサ−10−ホスファフェナントレン−10−オキサイド及び/又はイタコン酸をポリエステルAとポリマーBの少なくとも一方に共重合させた請求項1〜いずれかに記載の不織布用短繊維。 The nonwoven fabric according to any one of claims 1 to 4, wherein 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and / or itaconic acid is copolymerized with at least one of polyester A and polymer B. Short fiber. 請求項1〜のいずれかに記載の不織布用短繊維を含有してなることを特徴とする短繊維不織布。 A short fiber nonwoven fabric comprising the short fiber for nonwoven fabric according to any one of claims 1 to 5 . 請求項1〜のいずれかに記載の不織布用短繊維を30質量%以上含有してなる請求項記載の短繊維不織布。 The short fiber nonwoven fabric according to claim 6, comprising 30% by mass or more of the short fiber for nonwoven fabric according to any one of claims 1 to 5 .
JP2004198136A 2003-07-10 2004-07-05 Short fiber for nonwoven fabric and short fiber nonwoven fabric Active JP4485860B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004198136A JP4485860B2 (en) 2003-07-10 2004-07-05 Short fiber for nonwoven fabric and short fiber nonwoven fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003195163 2003-07-10
JP2004198136A JP4485860B2 (en) 2003-07-10 2004-07-05 Short fiber for nonwoven fabric and short fiber nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2005042289A JP2005042289A (en) 2005-02-17
JP4485860B2 true JP4485860B2 (en) 2010-06-23

Family

ID=34277257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004198136A Active JP4485860B2 (en) 2003-07-10 2004-07-05 Short fiber for nonwoven fabric and short fiber nonwoven fabric

Country Status (1)

Country Link
JP (1) JP4485860B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4537701B2 (en) * 2003-12-26 2010-09-08 日本エステル株式会社 Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP4831971B2 (en) * 2005-01-11 2011-12-07 日本エステル株式会社 Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP4881026B2 (en) * 2006-02-06 2012-02-22 帝人ファイバー株式会社 Heat-adhesive conjugate fiber for airlaid nonwoven fabric and method for producing the same
JP4955278B2 (en) * 2006-02-06 2012-06-20 帝人ファイバー株式会社 Polyester fiber for airlaid nonwoven fabric and method for producing the same
MY144282A (en) 2006-02-06 2011-08-29 Teijin Fibers Ltd Manufacturing method of polyester fiber for airlaid nonwoven fabrics
JP2009263839A (en) * 2007-09-11 2009-11-12 Nippon Ester Co Ltd Polyester conjugated staple fiber
JP4945004B2 (en) * 2011-08-22 2012-06-06 帝人ファイバー株式会社 Method for producing polyester fiber for airlaid nonwoven fabric
JP6313841B1 (en) * 2016-12-13 2018-04-18 ユニチカ株式会社 Manufacturing method of semi-finished products for automobile equipment
JP6671690B2 (en) 2017-04-19 2020-03-25 ユニチカ株式会社 Manufacturing method of fiber board
CN113403749A (en) * 2021-06-23 2021-09-17 山西景柏服饰股份有限公司 Method for manufacturing hot-melt lustre-finishing noil filling flocculus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813306A (en) * 1994-06-22 1996-01-16 Nippon Ester Co Ltd Heat-resistant nonwoven fabric and its production
JPH1136141A (en) * 1997-07-14 1999-02-09 Chisso Corp Bulky conjugate fiber, and fibrous form using the same
JP2000226735A (en) * 1999-02-04 2000-08-15 Nippon Ester Co Ltd Heat bonding conjugate fiber and nonwoven fabric using the same and production of the same nonwoven fabric
JP2003171860A (en) * 2001-12-03 2003-06-20 Teijin Ltd Fiber for air laid nonwoven fabric

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813306A (en) * 1994-06-22 1996-01-16 Nippon Ester Co Ltd Heat-resistant nonwoven fabric and its production
JPH1136141A (en) * 1997-07-14 1999-02-09 Chisso Corp Bulky conjugate fiber, and fibrous form using the same
JP2000226735A (en) * 1999-02-04 2000-08-15 Nippon Ester Co Ltd Heat bonding conjugate fiber and nonwoven fabric using the same and production of the same nonwoven fabric
JP2003171860A (en) * 2001-12-03 2003-06-20 Teijin Ltd Fiber for air laid nonwoven fabric

Also Published As

Publication number Publication date
JP2005042289A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
JP4831971B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
US6436855B1 (en) Hydrophilic fiber and non-woven fabric, and processed non-woven products made therefrom
EP1516079B1 (en) Polyester staple fiber and nonwoven fabric comprising same
EP0396771B1 (en) Wet-process nonwoven fabric and ultrafine polyester fibers therefor
JP4485860B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP4357255B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP4351100B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
JPH09273096A (en) Polyester-based wet nonwoven fabric
JP4455180B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP4537701B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP4633452B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP4791212B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP4455181B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP4783162B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP4783176B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP4791156B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP4783175B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP4791173B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP4704216B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP4787621B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP2512579B2 (en) Bulk paper manufacturing method
JP2555177B2 (en) Bulky paper and manufacturing method thereof
JPH0327195A (en) Bulky paper having water-dispersing and dissolving performance and preparation thereof
JP2003268630A (en) Sheath-core type conjugate staple fiber
JP2528983B2 (en) Wet non-woven fabric and ultra fine polyester fiber used for it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100325

R150 Certificate of patent or registration of utility model

Ref document number: 4485860

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 4