JP4783175B2 - Split composite short fiber and short fiber nonwoven fabric - Google Patents

Split composite short fiber and short fiber nonwoven fabric Download PDF

Info

Publication number
JP4783175B2
JP4783175B2 JP2006050361A JP2006050361A JP4783175B2 JP 4783175 B2 JP4783175 B2 JP 4783175B2 JP 2006050361 A JP2006050361 A JP 2006050361A JP 2006050361 A JP2006050361 A JP 2006050361A JP 4783175 B2 JP4783175 B2 JP 4783175B2
Authority
JP
Japan
Prior art keywords
fiber
nonwoven fabric
short fiber
fibers
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006050361A
Other languages
Japanese (ja)
Other versions
JP2007224472A (en
Inventor
恒夫 飯塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP2006050361A priority Critical patent/JP4783175B2/en
Publication of JP2007224472A publication Critical patent/JP2007224472A/en
Application granted granted Critical
Publication of JP4783175B2 publication Critical patent/JP4783175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、ポリエステル系重合体とポリアミド系重合体の2成分からなる分割型の複合繊維であって、分割後はポリエステル短繊維とポリアミド短繊維となるものであって、両成分の分割率が高く、分割性に優れており、エアレイド法による乾式不織布用いられる分割型複合短繊維に関するものである。
The present invention is a split type composite fiber composed of two components of a polyester polymer and a polyamide polymer, and after splitting, becomes a polyester short fiber and a polyamide short fiber, and the split ratio of both components is high, has excellent split resistance, Ru der relates splittable composite short fibers used in the dry nonwoven fabric by an air-laid method.

衛生材料分野をはじめとして、様々な分野において、ポリエステル、ポリアミド、ポリオレフィン等の熱可塑性樹脂からなる短繊維を用い、均一に分散させて、バインダー樹脂による接着や熱風による接着、熱ロールによる圧着、高圧水流や金属針による交絡等により得られる乾式不織布や湿式不織布が使用されている。   In various fields including the sanitary materials field, short fibers made of thermoplastic resin such as polyester, polyamide, polyolefin, etc. are used and dispersed uniformly. Adhesion with binder resin, adhesion with hot air, pressure bonding with hot roll, high pressure Dry nonwoven fabrics and wet nonwoven fabrics obtained by water flow or entanglement with metal needles are used.

中でも、ソフトな風合い、低通気度、ドレープ性、ワイピング性等に優れた不織布への要望が高く、このような不織布とするには、極細繊維からなる不織布とすることが提案されている。例えば特許文献1には、ウェブ状に堆積させた分割型複合繊維に高圧液体流を噴射することによって、繊維を分割させて極細繊維からなる不織布とすることが提案されている。   Among them, there is a high demand for nonwoven fabrics that are excellent in soft texture, low air permeability, drapeability, wiping properties, etc., and in order to make such nonwoven fabrics, it has been proposed to use nonwoven fabrics made of ultrafine fibers. For example, Patent Document 1 proposes that a high-pressure liquid flow is jetted onto divided composite fibers deposited in a web shape to divide the fibers into a nonwoven fabric made of ultrafine fibers.

また、特許文献2や特許文献3には、複合繊維からなる不織布を得た後に、複合繊維の一方の成分を溶剤で溶かすことによって、得られた極細繊維からなる不織布が提案されている。   Patent Document 2 and Patent Document 3 propose a nonwoven fabric made of ultrafine fibers obtained by obtaining a nonwoven fabric made of composite fibers and then dissolving one component of the composite fibers with a solvent.

しかしながら、いずれの不織布も複合繊維を分割もしくは溶出させる際の処理速度が遅く、また処理方法が複雑でコストが高くなるという欠点があり、また複合繊維が十分に分割もしくは溶出しないために、得られる不織布の品位も十分満足できるものではなかった。   However, any nonwoven fabric has the disadvantages that the processing speed when dividing or eluting the composite fiber is slow, the processing method is complicated and expensive, and the composite fiber is not sufficiently divided or eluted. The quality of the nonwoven fabric was not satisfactory.

また、短繊維を用いて乾式不織布を得る方法としてエアレイド法がある。エアレイド法では、繊維を解繊して空気の流れにのせて搬送し、金網又は細孔を有するスクリーンを通過させた後、ワイヤーメッシュ上に落下堆積させる方法を採用するが、短繊維の解繊、搬送、分散、積層工程において、繊維−繊維間及び繊維−金属間の摩擦が大きく、静電気が発生しやすく、このため繊維塊が生成されるという問題が生じやすい。   Moreover, there exists an airlaid method as a method of obtaining a dry nonwoven fabric using a short fiber. The airlaid method employs a method in which fibers are defibrated and transported in a flow of air, passed through a screen having a wire mesh or pores, and then dropped and deposited on a wire mesh. In the conveying, dispersing, and laminating processes, the friction between the fibers and the fibers and the fibers and the metal is large, and static electricity is likely to be generated.

繊維塊が生じると、各工程での通過性が悪化し、操業性が低下することはもちろん、得られる不織布においても堆積した繊維が不均一となり、斑の生じた不織布となり製品品位が著しく低下する。   When a fiber lump is formed, the passability in each process deteriorates and the operability is deteriorated. In addition, even in the obtained non-woven fabric, the accumulated fibers become non-uniform, resulting in a non-uniform non-woven fabric, and the product quality is remarkably lowered. .

今日では製品の高級化及び高機能化等の差別化のために、機能性を有する熱可塑性樹脂が多く用いられ、中には低温加工を必要とするもの、高粘着性を有する熱可塑性樹脂等が用いられ、従来の繊維に比べてさらに繊維−繊維間の摩擦及び繊維−金属間の摩擦が大きくなる繊維が使用されている。また、製造加工効率を向上させるために加工速度の高速化が図られている。これらの要因により、エアレイド法による製造工程における静電気の発生量は多くなり、繊維塊の発生も多くなっている。   Today, many functional thermoplastic resins are used to differentiate products such as higher grades and higher functionality, including those that require low-temperature processing, thermoplastic resins with high tackiness, etc. Are used, and fibers having higher fiber-fiber friction and fiber-metal friction than conventional fibers are used. Further, in order to improve manufacturing processing efficiency, the processing speed is increased. Due to these factors, the amount of static electricity generated in the manufacturing process by the airlaid method is increased, and the generation of fiber mass is also increased.

このようなエアレイド法によって得られる不織布においても、極細繊維で構成され、十分な品位を有する不織布が求められている。しかしながら、静電気の発生により繊維塊が生成されると、分割型複合繊維の分割率が低下するため、極細繊維で構成され、斑のない品位の高い不織布を得ることが困難であるという問題があった。
特開昭62−133164号公報 特開昭62−78213号公報 特開昭56−154512号公報
The nonwoven fabric obtained by such an airlaid method is also required to be a nonwoven fabric composed of ultrafine fibers and having sufficient quality. However, when a fiber lump is generated due to the generation of static electricity, the splitting rate of the split-type composite fibers decreases, and therefore there is a problem that it is difficult to obtain a high-quality nonwoven fabric that is made of ultrafine fibers and has no spots. It was.
JP-A-62-133164 JP-A-62-78213 JP 56-154512 A

本発明は、上記のような問題点を解決し、特に静電気の発生により繊維塊が発生しやすい乾式不織布の製造においても、空気攪拌による分割率が高く、極細繊維に容易に分割することによって、極細繊維からなり、未分割部が少なく均一性に優れ、ソフトな風合いを有し、かつ低通気度の不織布を得ることができる分割型複合短繊維及びこの分割型複合短繊維から分割された極細繊維を含有してなる短繊維不織布を提供することを技術的な課題とするものである。   The present invention solves the above-mentioned problems, and particularly in the production of dry nonwoven fabrics where fiber lumps are likely to occur due to the generation of static electricity, the split rate by air agitation is high, and by dividing easily into ultrafine fibers, A split type composite short fiber that is made of ultra fine fibers, has few undivided parts, is excellent in uniformity, has a soft texture, and can obtain a low air permeability nonwoven fabric, and an ultra fine split from this split type composite short fiber It is a technical problem to provide a short fiber nonwoven fabric containing fibers.

本発明者らは、上記課題を解決すべく鋭意検討の結果、本発明に到達したものである。   The present inventors have reached the present invention as a result of intensive studies to solve the above problems.

すなわち、本発明は、次の(ア)〜(ウ)を要旨とするものである。
(ア)ポリエステル系重合体Aとポリアミド系重合体Bの2成分からなる分割型複合繊維であって、該繊維はエアレイド法で乾式不織布を得るためのものであり、繊維の長手方向に対して垂直に切断した単糸の断面形状において、ポリアミド系重合体Bの周囲に接してポリエステル系重合体Aが複数個配列された形状を呈しており(ただし、複合繊維の断面形状が円形断面のものを除く。)、空気攪拌分割率が65%以上であり、繊維長が1.0〜30mm、単糸繊度が0.5〜20dtexであり、該繊維は、捲縮が付与されており、単糸の捲縮形態が捲縮部の最大山部において、山部の頂点と隣接する谷部の底点2点を結んだ三角形の高さ(H)と底辺(L)の比(H/L)が下記(1)式を満足することを特徴とする分割型複合短繊維。
(1)式:0.01T+0.10≦H/L≦0.02T+0.25
Tは単糸繊度のデシテックス(dtex)数
(イ)前記(ア)の分割型複合短繊維を用いて、エアレイド法によりウェブを作成して不織布を得ることを特徴とする短繊維不織布の製造方法。
(ウ)前記(イ)の短繊維不織布の製造方法により得られた短繊維不織布。
That is, the gist of the present invention is the following (a) to (c) .
(A) A split type composite fiber composed of two components of a polyester-based polymer A and a polyamide-based polymer B, the fiber for obtaining a dry nonwoven fabric by the airlaid method, and with respect to the longitudinal direction of the fiber The cross-sectional shape of a single yarn cut perpendicularly has a shape in which a plurality of polyester polymers A are arranged in contact with the periphery of the polyamide-based polymer B (however, the composite fiber has a circular cross-sectional shape) excluding.), and the air agitation split ratio is 65% or more, the fiber length is 1.0~30Mm, single yarn fineness of Ri 0.5~20dtex der, the fibers, crimping has been granted, the single yarn wound The ratio (H / L) of the height (H) to the base (L) of the triangle connecting the two peak points of the valleys adjacent to the peak of the peak at the maximum peak of the crimped part is as follows. A split-type composite short fiber characterized by satisfying the formula (1) .
(1) Formula: 0.01T + 0.10 ≦ H / L ≦ 0.02T + 0.25
T is a decitex (dtex) number of single yarn fineness (b) A method for producing a short fiber nonwoven fabric, wherein a web is formed by the air laid method using the split type composite short fiber of (a ) above, and a nonwoven fabric is obtained. .
(C) A short fiber nonwoven fabric obtained by the method for producing a short fiber nonwoven fabric of (a).

本発明の分割型複合短繊維は、空気攪拌による分割率が高く、ポリエステル短繊維とポリアミド短繊維の極細繊維に容易に分割するので、特に静電気の発生により繊維塊が発生しやすいエアレイド法による乾式不織布の製造においても好適に使用することができる。そして、未分割部が少なく均一性に優れ、ソフトな風合いを有し、かつ通気度の低い、極細繊維からなる不織布を得ることが可能となる。
The split type composite short fiber of the present invention has a high split ratio by air agitation, and is easily split into ultrafine fibers of polyester short fiber and polyamide short fiber, so that a dry mass by an airlaid method in which a fiber lump is likely to be generated particularly due to generation of static electricity. It can be suitably used in the production of nonwoven fabrics. And it becomes possible to obtain the nonwoven fabric which consists of an ultrafine fiber with few undivided parts, excellent uniformity, a soft texture, and low air permeability.

また、本発明の短繊維不織布は、本発明の分割型複合短繊維から分割されたポリエステル短繊維及びポリアミド短繊維の極細繊維を含有してなるものであるため、均一性とソフトな風合い、低通気度を有する不織布であり、様々な用途に使用することが可能となる。   In addition, since the short fiber nonwoven fabric of the present invention contains the ultrafine fibers of polyester short fibers and polyamide short fibers divided from the split type composite short fibers of the present invention, the uniformity and soft texture, low The nonwoven fabric has air permeability and can be used for various purposes.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の分割型複合短繊維(以下、複合短繊維と略する)は、ポリエステル系重合体(重合体Aとする)とポリアミド系重合体(重合体Bとする)の2成分からなり、繊維の長手方向に対して垂直に切断した単糸の断面形状において、重合体Bの周囲に接して重合体Aが複数個配列された形状を呈している(ただし、複合繊維の断面形状が円形断面のものを除く。)
The split type composite short fiber (hereinafter abbreviated as composite short fiber) of the present invention comprises two components, a polyester polymer (referred to as polymer A) and a polyamide polymer (referred to as polymer B). The cross-sectional shape of the single yarn cut perpendicularly to the longitudinal direction of each of the fibers has a shape in which a plurality of polymers A are arranged in contact with the periphery of the polymer B (however, the cross-sectional shape of the composite fiber is a circular cross-section) Except the ones.)

つまり、図1〜3に示すように、重合体Bを中心として、重合体Aがその周囲に複数個配列されたものであり、図1に示すものは、重合体Bを中心として重合体Aがその周囲に接して4個配列されているものである。図2に示すものは、重合体Bを中心として重合体Aがその周囲に接して8個配列されているものであり、図3に示すものは、重合体Bを中心として重合体Aがその周囲に接して12個配列されているものである。
That is, as shown in FIGS. 1-3, around the polymer B, are those polymer A are plural arranged around, as shown in FIG. 1, the polymer A as the center of a polymer B Are arranged in contact with the periphery. The one shown in FIG. 2 is one in which eight polymers A are arranged in contact with the periphery around the polymer B, and the one shown in FIG. 3 is the polymer A around the polymer B. Twelve are arranged in contact with the periphery.

重合体Bの周囲に配される重合体Aの個数は、2〜20個が好ましく、中でも3〜8個が好ましい。重合体A、Bの形状は特に限定されるものではなく、丸や楕円形状のもののみならず、三角や四角等の多角形のものであってもよい。これらの形状は、分割後に得られる繊維の形状や繊度、紡糸時の操業性を考慮して適宜選択すればよい。   The number of the polymers A arranged around the polymer B is preferably 2 to 20, and more preferably 3 to 8. The shapes of the polymers A and B are not particularly limited, and may be not only round or elliptical shapes but also polygonal shapes such as triangles and squares. These shapes may be appropriately selected in consideration of the shape and fineness of the fiber obtained after the division and the operability during spinning.

さらには、重合体Aと重合体Bの複合割合は、得ようとする不織布等の製品の用途を考慮して適宜調整すればよいが、重合体Aの割合が50質量%以上であることが好ましく、中でも75質量%以上であることが好ましい。   Furthermore, the composite ratio of the polymer A and the polymer B may be appropriately adjusted in consideration of the use of a product such as a nonwoven fabric to be obtained, but the ratio of the polymer A may be 50% by mass or more. Among these, 75% by mass or more is preferable.

次に、本発明の複合短繊維は、繊維長が1.0〜30mmであり、さらに好ましい繊維長は、2〜25mm、より好ましくは5〜15mmである。また、単糸繊度は0.5〜20dtexであり、好ましくは1.0〜15dtexである。なお、繊維長はJIS L1015 8.4.1(平均繊維長)A法に基づき測定したものであり、単糸繊度はJIS L1015 8.5.1(正量繊度)B法(簡便法)に基づき測定したものである。   Next, the composite short fiber of the present invention has a fiber length of 1.0 to 30 mm, and a more preferable fiber length is 2 to 25 mm, more preferably 5 to 15 mm. The single yarn fineness is 0.5 to 20 dtex, preferably 1.0 to 15 dtex. The fiber length was measured based on JIS L1015 8.4.1 (average fiber length) A method, and the single yarn fineness was measured according to JIS L1015 8.5.1 (positive fineness) B method (simple method). It is measured based on.

繊維長が1.0mm未満であると、繊維の切断時に発生する熱で繊維同士の融着が起きやすくなる。一方、30mmを超えると、空気攪拌時に繊維同士の絡みによる繊維塊が生じて、繊維の分割率が低下する。   When the fiber length is less than 1.0 mm, the fibers tend to be fused by heat generated when the fibers are cut. On the other hand, if it exceeds 30 mm, a fiber lump due to entanglement of fibers occurs during air agitation, and the fiber division rate decreases.

単糸繊度が0.5dtex未満であると、製糸時の操業性、生産性の面から好ましくない。一方、20dtexを超えると、分割後の繊維の繊度が十分に細くならず、極細繊維を得ることが困難となる。   If the single yarn fineness is less than 0.5 dtex, it is not preferable from the standpoints of operability and productivity during yarn production. On the other hand, if it exceeds 20 dtex, the fineness of the fibers after the division is not sufficiently reduced, and it becomes difficult to obtain ultrafine fibers.

なお、本発明の複合短繊維は、上記したような単糸の断面形状となるようにスリット孔が配置された紡糸孔が数十〜数千個穿孔された紡糸口金より溶融紡糸し、得られた糸条をさらに1〜100ktex程度の糸条束(トウ)として製造するものであるため、通常、数千〜数万本の単糸が集合したスフ状のものとなっている。   The composite short fiber of the present invention is obtained by melt-spinning from a spinneret in which dozens to thousands of spin holes having slit holes arranged so as to have the cross-sectional shape of a single yarn as described above are obtained. Further, since the yarn is manufactured as a yarn bundle (tow) of about 1 to 100 ktex, it is usually a suf-shaped one in which thousands to tens of thousands of single yarns are gathered.

さらに、本発明の複合短繊維は、空気攪拌分割率が65%以上である。空気攪拌分割率とは、空気中で攪拌した際に複合繊維が重合体Aからなるポリエステル短繊維と重合体Bからなるポリアミド短繊維に分割する割合を示すものである。つまり、本発明における空気攪拌分割率とは、以下のようにして測定、算出するものである。   Furthermore, the composite short fiber of the present invention has an air stirring division ratio of 65% or more. The air agitation division ratio indicates a ratio at which the composite fiber is divided into a polyester short fiber made of the polymer A and a polyamide short fiber made of the polymer B when stirred in the air. That is, the air stirring division ratio in the present invention is measured and calculated as follows.

本発明の複合短繊維を図7に示すような簡易空気流撹拌試験機を用い、複合短繊維100gをサンプル送り込み用ブロア3から空気流にて撹拌タンク1に投入し、撹拌用ブロア2から20m/秒の空気流を吹き込み、攪拌タンク1内で1分間撹拌する。攪拌後の短繊維をサンプリング口4より取り出し、任意の10ケ所を選び、繊維断面の拡大写真を撮影する。撮影した10枚の写真中において複合繊維から分割された重合体A(ポリエステル短繊維)の数を数え、分割前の重合体Aの配列数より下記式にて算出する。n数10の平均値とする。
空気攪拌分割率(%)=(分割された重合体Aの数/分割前の重合体Aの配列数)×100
例:図5の模式図において、分割された重合体Aの数=9、分割前の重合体Aの配列数=12、分割率(%)=(9/12)×100=75
The composite short fiber of the present invention is used in a simple air flow agitation tester as shown in FIG. 7, and 100 g of the composite short fiber is introduced into the agitation tank 1 by air flow from the sample feeding blower 3 and 20 m from the agitation blower 2. The air flow of / sec is blown and stirred in the stirring tank 1 for 1 minute. The short fibers after stirring are taken out from the sampling port 4, and arbitrary 10 positions are selected, and an enlarged photograph of the fiber cross section is taken. The number of the polymer A (polyester short fiber) divided from the composite fiber is counted in the 10 photographs taken, and is calculated from the number of arrays of the polymer A before the division by the following formula. The average value of n number 10 is used.
Air stirring division ratio (%) = (number of divided polymers A / number of arrangements of polymers A before division) × 100
Example: In the schematic diagram of FIG. 5, the number of divided polymers A = 9, the number of arrays of the polymer A before dividing = 12, the dividing ratio (%) = (9/12) × 100 = 75

空気攪拌分割率が65%以上であることによって、空気攪拌により、ポリエステル短繊維とポリアミド短繊維の極細繊維に容易に分割するので、エアレイド法による乾式不織布を製造する場合はもちろんのこと、湿式不織布を製造する場合においても、未分割部の少ない、均一性に優れ、通気度の低い、ソフトな風合いの不織布を得ることが可能となる。空気攪拌分割率が65%未満であると、上記のような効果を奏することが困難となる。空気攪拌分割率は中でも70%以上、さらには75%以上であることが好ましい。   When the air stirring division ratio is 65% or more, it is easily divided into ultrafine fibers of polyester short fibers and polyamide short fibers by air stirring, so of course when manufacturing dry nonwoven fabrics by airlaid method, wet nonwoven fabrics Even in the case of producing a non-divided portion, excellent uniformity, low air permeability, and soft texture nonwoven fabric can be obtained. If the air agitation division ratio is less than 65%, it is difficult to achieve the above effects. The air stirring division ratio is preferably 70% or more, and more preferably 75% or more.

なお、図4に示すような、重合体A、Bを放射状に配列した複合短繊維の場合、空気攪拌による分割が難しくなり、空気攪拌分割率が低くなり、65%以上とすることができない。   In addition, in the case of the composite short fiber in which the polymers A and B are arranged radially as shown in FIG. 4, division by air stirring becomes difficult, and the air stirring division ratio becomes low and cannot be made 65% or more.

さらに、本発明の複合短繊維は、捲縮が付与されている中でも単糸の捲縮形態が捲縮部の最大山部において、山部の頂点と隣接する谷部の底点2点を結んだ三角形の高さ(H)と底辺(L)の比(H/L)が下記(1)式を満足する
(1)式:0.01T+0.10≦H/L≦0.02T+0.25
Tは単糸繊度のデシテックス(dtex)数
Furthermore, the composite short fiber of the present invention is crimped . In particular, the ratio of the height (H) and the base (L) of the triangle connecting the top of the peak and two bottom points of the adjacent valley at the maximum peak of the crimped portion where the crimped form of the single yarn (H) / L) satisfies the following formula (1) .
(1) Formula: 0.01T + 0.10 ≦ H / L ≦ 0.02T + 0.25
T is the number of decitex (dtex) of single yarn fineness

このような形状とすることにより、静電気の発生が少なくなり、短繊維同士が集合して繊維塊を生じることが格段に減少されるため、空気攪拌分割率も高いものとなる。   By adopting such a shape, the generation of static electricity is reduced, and the fact that short fibers gather to form a fiber mass is remarkably reduced, so that the air stirring division ratio is also high.

つまり、上記のような捲縮形態を満足する場合は、空気攪拌分割率を70%以上とすることができ、エアレイド法で乾式不織布を得る場合に特に好適である。さらには、後述するように、本発明の複合短繊維の捲縮形態が(1)〜(3)式を全て満足する場合は、空気攪拌分割率を75%以上とすることができる。   That is, when the above crimped form is satisfied, the air stirring division ratio can be set to 70% or more, which is particularly suitable when a dry nonwoven fabric is obtained by the airlaid method. Furthermore, as will be described later, when the crimped form of the composite short fiber of the present invention satisfies all the expressions (1) to (3), the air stirring division ratio can be 75% or more.

乾式不織布を得る場合、特にエアレイド法で製造する場合には、静電気の発生が多くなる。このエアレイド法に用いられる装置としては、例えば特開平5−9813号公報に開示されているような、複数の回転シリンダーをハウジング内に収納し、これらシリンダーを高速回転させることによってシリンダーの周縁に積極的に空気流を発生させ、この空気流によって繊維成分を所定方向に吹き飛ばし得る装置が挙げられる。そして、このエアレイド法によるウエブ形成(短繊維の解繊、搬送、分散、積層工程の全て)においては、空気流を積極的に発生させているために、繊維同士が摩擦され、また繊維と装置(金属製部材)との摩擦によっても静電気の発生が多くなる。   When a dry nonwoven fabric is obtained, particularly when it is produced by the airlaid method, static electricity is generated more. As an apparatus used for this airlaid method, for example, as disclosed in Japanese Patent Laid-Open No. 5-9813, a plurality of rotating cylinders are housed in a housing, and these cylinders are rotated at a high speed to positively move to the periphery of the cylinder. An apparatus that can generate an air flow and blow the fiber component in a predetermined direction by the air flow can be mentioned. In the web formation by the airlaid method (short fiber defibration, transport, dispersion, and lamination processes), the air flow is actively generated, so that the fibers are rubbed with each other. The generation of static electricity also increases due to friction with the (metal member).

本発明の複合短繊維は、捲縮を有する繊維の形状を特定のものとすることで、ウエブ形成の各工程(解繊、搬送、分散、積層工程)において、繊維同士、繊維と金属間での摩擦による静電気を発生しにくく、かつ発生した静電気をためにくいものとなり、短繊維同士が集合して繊維塊を生じることが格段に減少される。   The composite short fiber of the present invention has a specific shape of the crimped fiber, so that in each step of web formation (defibration, transport, dispersion, lamination step), between fibers, between fibers and metal It is difficult to generate static electricity due to friction, and it is difficult to accumulate the generated static electricity, so that short fibers gather to form a fiber lump.

上記のような静電気の問題を考慮する場合、捲縮数が多く、捲縮が大きく又は強く付与されているほど形状的に電気をためやすいものとなる。つまり、繊維に捲縮が付与されていると、3次元的な立体形状を呈するため、その立体的な空間部分が多くなるほど静電気がたまりやすくなる。一方、捲縮がないフラットな状態となるほど、平面的な形状となり、静電気をためにくくなるが、繊維同士、あるいは繊維と金属との接触点(面)が増え、摩擦による静電気の発生が多くなる。   When considering the problem of static electricity as described above, the more the number of crimps and the larger or stronger the crimps are applied, the easier it is to store electricity in terms of shape. That is, if the fiber is crimped, it exhibits a three-dimensional solid shape, so that static electricity tends to accumulate as the three-dimensional space portion increases. On the other hand, as the flat state without crimping becomes flat, it becomes more flat and less likely to accumulate static electricity. However, the number of contact points (surfaces) between fibers or between fibers and metal increases, and the generation of static electricity due to friction increases. .

嵩高性を考慮する場合、捲縮がないフラットな状態とするほど得られる不織布の嵩高性は低下する。一方、捲縮が付与されているほど、得られる不織布の嵩高性は向上するが、繊維の嵩高性も高くなるため、ウエブ形成の工程中において、繊維同士が絡み合い、繊維塊を生じやすくなり、均一性に劣った不織布となりやすい。   When considering the bulkiness, the bulkiness of the nonwoven fabric obtained decreases as the flat state without crimping decreases. On the other hand, the more the crimp is applied, the higher the bulkiness of the resulting nonwoven fabric, but the higher the bulkiness of the fibers. It tends to be a nonwoven fabric with poor uniformity.

また、静電気や繊維の絡み合いの問題、得られる不織布の風合い(嵩高性や柔軟性)は、単糸繊度によっても影響を受けるものである。つまり、静電気の問題においては、繊維同士あるいは繊維と金属との接触により静電気は発生するものなので、接触点や接触面の大きさを左右する単糸繊度の要因は大きいものとなる。また、捲縮により3次元的な立体形状を形成するので、単糸繊度はその空間部分の大きさを左右する要因となり、静電気をためる程度や繊維の絡みあいの程度を左右する要因となる。   Moreover, the problem of static electricity and fiber entanglement, and the texture (bulkness and flexibility) of the resulting nonwoven fabric are also affected by the single yarn fineness. That is, in the problem of static electricity, static electricity is generated by contact between fibers or between a fiber and a metal, and thus the single yarn fineness factor that determines the size of the contact point and the contact surface is large. In addition, since a three-dimensional solid shape is formed by crimping, the single yarn fineness is a factor that determines the size of the space portion, and is a factor that determines the degree of static electricity and the degree of fiber entanglement.

そこで、本発明者等は、これらの要因を考えあわせて検討し、分割型複合短繊維の形状を、単糸繊度を考慮した特定の捲縮が付与された立体形状とすることにより、特に上記の効果(静電気、繊維絡みの防止と不織布風合いの向上)が向上され、さらに、分割型複合短繊維が空気攪拌で容易に分割され、前記した空気攪拌分割率もさらに高くなることを見出した。   Therefore, the present inventors have considered these factors in consideration, and by making the shape of the split-type composite short fibers into a three-dimensional shape to which a specific crimp considering the single yarn fineness is given, (The prevention of static electricity and fiber entanglement and the improvement of the nonwoven fabric texture) were further improved, and further, the split-type composite short fibers were easily divided by air agitation, and the above-mentioned air agitation division ratio was further increased.

まず、本発明の繊維は、図6に示すように、単糸の捲縮形態において、捲縮部の最大山部における山部の頂点Pと、隣接する谷部の底点Q、Rの2点を結んで三角形とし、この三角形の高さ(H)と底辺(L)の比(H/L)が下記(1)式を満足するものである。   First, as shown in FIG. 6, the fiber of the present invention is a single yarn crimped form in which the peak apex P of the peak portion at the maximum peak portion of the crimped portion and the bottom points Q and R of the adjacent valley portions are two. The points are connected to form a triangle, and the ratio (H / L) of the height (H) to the base (L) of the triangle satisfies the following formula (1).

ここで、最大山部とは、本発明の繊維の繊維長において複数の山部がある場合、山部の高さ(H)が最大のものをいう。
(1)式:0.01T+0.10≦H/L≦0.02T+0.25
Here, when there are a plurality of peak portions in the fiber length of the fiber of the present invention, the maximum peak portion means the one having the maximum peak height (H).
(1) Formula: 0.01T + 0.10 ≦ H / L ≦ 0.02T + 0.25

捲縮の度合いを表すためには、一般的に捲縮率が用いられるが、捲縮率の測定方法は、荷重をかけたときと無荷重状態での長さの差から求めるものである。しかし、本発明においては、後述する捲縮率を規定した(3)式を満足していたとしても、繊維中の一部の捲縮部に立体形状の空間部分が大きくなるような、捲縮が大きくかかった部分があると、静電気をためやすく、繊維同士の絡み合いが生じやすくなる。そこで(1)式に規定するように、捲縮形態として最大山部における形態を特定のものとすることで、捲縮による空間部分の大きさを特定のものとし、これにより静電気や繊維の絡みによる繊維塊の発生を防ぐことが可能となる。   In order to express the degree of crimp, the crimp rate is generally used, but the method for measuring the crimp rate is obtained from the difference in length between when a load is applied and when there is no load. However, in the present invention, even if the expression (3) that defines the crimping rate described later is satisfied, the crimping is such that the space part of the three-dimensional shape becomes large in some crimped parts in the fiber. If there is a part where the area is large, it is easy to accumulate static electricity, and the fibers tend to be entangled. Therefore, as specified in Equation (1), by specifying the shape at the maximum peak as a crimped shape, the size of the space portion due to crimping is specified, so that static electricity and fiber entanglement It is possible to prevent the generation of fiber lumps due to.

H/Lが大きすぎると、繊維の立体形状において、空間部分が大きくなり、静電気をためやすく、繊維の絡みが生じやすくなる。一方、H/Lが小さすぎると、繊維の形態がフラットに近いものとなり、繊維同士、あるいは繊維と金属との接触点(面)が多くなるため静電気が発生しやすく、繊維塊が生成し、空気攪拌分割率も低下する。このため、空気攪拌等の分割処理を行っても未分割部が多くなり、得られる不織布は均一性に乏しいものとなりやすい。   When H / L is too large, the space portion becomes large in the three-dimensional shape of the fiber, and static electricity is easily accumulated, and the fiber becomes entangled easily. On the other hand, if the H / L is too small, the shape of the fiber becomes nearly flat, and the contact points (surfaces) between the fibers or between the fibers and the metal increase, so static electricity is likely to be generated, and a fiber lump is generated. The air stirring division ratio also decreases. For this reason, even if division processing such as air stirring is performed, the number of undivided portions increases, and the resulting nonwoven fabric tends to be poor in uniformity.

なお、H/Lの測定は次のとおりである。まず、短繊維1gを採取し、ここから任意に20本の単繊維を取り出す。そして、取り出した単繊維について拡大写真(約10倍)を撮り、その写真から上記したように、最大山部における、山部の頂点Pと隣接する谷部の底点Q、Rの2点を結んで三角形とし、三角形の高さ(H)と底辺(L)の長さを測定し、その比(H/L)を算出するものである。このようにして20本分の単繊維の測定を行い、その平均値をとる。   In addition, the measurement of H / L is as follows. First, 1 g of short fibers are collected, and 20 single fibers are arbitrarily extracted therefrom. Then, an enlarged photograph (about 10 times) is taken with respect to the taken out single fiber, and as described above from the photograph, two points of the bottom points Q and R of the valley part adjacent to the peak part P at the peak part are adjacent to the maximum peak part. A triangle is formed, and the height (H) and the base (L) of the triangle are measured, and the ratio (H / L) is calculated. In this way, 20 single fibers are measured and the average value is taken.

次に、本発明の複合短繊維は、(2)式:0.1T+3.8≦捲縮数≦0.3T+7.3 〔Tは単糸繊度のデシテックス(dtex)数〕を満足することが好ましい。この捲縮数とは、JIS L1015 8.12.1に基づき測定、算出したものである。なお、捲縮数の測定において繊維長が短い場合は、捲縮付与後、カット前の繊維において測定し、繊維長25mmあたりの個数に換算する。   Next, the composite short fiber of the present invention preferably satisfies the formula (2): 0.1T + 3.8 ≦ crimped number ≦ 0.3T + 7.3 [T is the number of dtex of the single yarn fineness]. The number of crimps is measured and calculated based on JIS L1015 8.12.1. In addition, when the fiber length is short in the measurement of the number of crimps, it is measured on the fiber before cutting after the crimping and is converted into the number per 25 mm fiber length.

捲縮数が(2)式より高くなると、3次元的な立体形状による空間部分となる捲縮部が多くなり、空気流での短繊維の送り込み、分散、解繊工程等において繊維間で発生した静電気をためやすくなり、また、繊維同士が絡みやすくなるため玉状の繊維塊が生成し、空気攪拌分割率が低下して好ましくない。一方、(2)式より低くなると、捲縮部が少なくなることから繊維の形態がフラットに近くなり、繊維同士あるいは繊維と金属との接触点(面)が多くなるため静電気の発生が生じやすく、玉状の繊維塊が生成し、空気攪拌分割率が低下して好ましくない。このため、空気攪拌等による分割処理を行っても未分割部が多くなり、得られる不織布は均一性に乏しいものとなる。   If the number of crimps is higher than that in equation (2), the number of crimped parts that become a space part due to a three-dimensional solid shape will increase, and will be generated between fibers in the short fiber feeding, dispersion, and defibrating process by airflow This is not preferable because static electricity is easily accumulated and fibers are easily entangled with each other. On the other hand, when the value is lower than the expression (2), the crimped portion is reduced, so that the shape of the fiber is almost flat, and the number of contact points (surfaces) between the fibers or between the fiber and the metal increases, so that static electricity is easily generated. A ball-shaped fiber lump is formed, and the air stirring division ratio is lowered, which is not preferable. For this reason, even if it performs the division | segmentation process by air stirring etc., an undivided part increases and the nonwoven fabric obtained becomes a thing with poor uniformity.

さらに、本発明の複合短繊維は、(3)式:0.8T+0.3≦捲縮率≦1.0T+4.9〔Tは単糸繊度のデシテックス(dtex)数〕を満足することが好ましい。この捲縮率とは、JIS L1015 8.12.2に基づき測定、算出したものである。なお、捲縮率の測定において繊維長が短くて測定が困難となる場合は、捲縮付与後、カット前の繊維において測定し、繊維長25mmあたりの個数に換算する。   Furthermore, it is preferable that the composite short fiber of the present invention satisfies the following formula (3): 0.8T + 0.3 ≦ crimp rate ≦ 1.0T + 4.9 [T is the decitex (dtex) number of single yarn fineness]. This crimp rate is measured and calculated based on JIS L1015 8.12.2. In addition, when the fiber length is short in the measurement of the crimp rate, it is difficult to measure, and after the crimp is applied, the fiber is measured before being cut and converted to the number per 25 mm fiber length.

捲縮率が(3)式より高くなると、3次元的な立体形状による空間部分が多く又は大きくなり、空気流での短繊維の送り込み、分散、解繊工程等において繊維間で発生した静電気をためやすくなり、また、繊維同士が交絡しやすくなるため、玉状の繊維塊が生成し、空気攪拌分割率が低下して好ましくない。一方、(3)式より低くなると、繊維の形態がフラットに近いものとなり、繊維同士、あるいは繊維と金属との接触点(面)が多くなるため静電気の発生が生じやすく、玉状の繊維塊が生成し、空気攪拌分割率が低下して好ましくない。このため、空気攪拌等による分割処理を行っても未分割部が多くなり、得られる不織布は均一性に乏しいものとなる。   When the crimping rate is higher than that of Equation (3), the space portion due to the three-dimensional solid shape increases or becomes large, and static electricity generated between the fibers in the process of feeding, dispersing, and defibrating short fibers in the air flow. Therefore, the fibers are easily entangled with each other, so that a ball-like fiber lump is generated and the air stirring division ratio is lowered, which is not preferable. On the other hand, when the value is lower than the expression (3), the shape of the fiber becomes almost flat, and the number of contact points (surfaces) between the fibers or between the fiber and the metal increases. This is not preferable because the air stirring division ratio is reduced. For this reason, even if it performs the division | segmentation process by air stirring etc., an undivided part increases and the nonwoven fabric obtained becomes a thing with poor uniformity.

次に、本発明の複合短繊維を構成する重合体Aと重合体Bについて説明する。本発明の複合短繊維は、不織布を得る際には、分割後の重合体Aからなるポリエステル短繊維と重合体Bからなるポリアミド短繊維ともに主体繊維として使用することが好ましいものである。   Next, the polymer A and the polymer B constituting the composite short fiber of the present invention will be described. When the composite short fiber of the present invention is used to obtain a nonwoven fabric, it is preferable to use both the polyester short fiber made of polymer A after splitting and the polyamide short fiber made of polymer B as main fibers.

したがって、重合体Aは、融点が220℃以上であることが好ましく、中でも融点が220〜280℃であることが好ましい。具体的には、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等が挙げられ、中でもPETが好ましい。必要に応じて以下に示す共重合成分を1種類または複数種類共重合した共重合ポリエステルとしてもよい。   Therefore, the polymer A preferably has a melting point of 220 ° C. or higher, and more preferably has a melting point of 220 to 280 ° C. Specific examples include polyethylene terephthalate (PET) and polybutylene terephthalate (PBT). Among these, PET is preferable. If necessary, a copolymerized polyester obtained by copolymerizing one or more of the following copolymerization components may be used.

共重合成分としては、テレフタル酸、イソフタル酸、シクロヘキサンジカルボン酸、アジピン酸、セバシン酸、ビスフェノールA、ビスフェノールS、シクロヘキサンジメタノール、1,4−ブタンジオール、1,6−ヘキサジオール、ジエチレングリコール、ポリエチレングリコール等が挙げられる。   Copolymerization components include terephthalic acid, isophthalic acid, cyclohexanedicarboxylic acid, adipic acid, sebacic acid, bisphenol A, bisphenol S, cyclohexanedimethanol, 1,4-butanediol, 1,6-hexadiol, diethylene glycol, polyethylene glycol Etc.

一方の重合体Bは、融点が200℃以上であることが好ましく、中でも融点200〜280℃であることが好ましい。具体的には、脂肪族ポリアミド、芳香族ポリアミド等が挙げられ、中でもナイロン6、ナイロン66が好ましい。必要に応じて他のポリアミドが共重合された共重合ポリアミドとしてもよく、また2種類以上のポリアミドを混合して用いてもよい
さらに、本発明の複合短繊維中には、その効果を損なわない範囲で、酸化チタン等の艶消剤、ヒンダートフェノール系化合物等の酸化防止剤、紫外線吸収剤、光安定剤、顔料、難燃剤、抗菌剤、導電性付与剤、親水剤、吸水剤等が配合されていてもよい。
One polymer B preferably has a melting point of 200 ° C. or higher, and more preferably has a melting point of 200 to 280 ° C. Specific examples include aliphatic polyamides and aromatic polyamides, among which nylon 6 and nylon 66 are preferable. If necessary, it may be a copolymerized polyamide in which other polyamides are copolymerized, or two or more kinds of polyamides may be mixed and used. Further, the effect of the composite short fiber of the present invention is not impaired. In ranges, matting agents such as titanium oxide, antioxidants such as hindered phenol compounds, ultraviolet absorbers, light stabilizers, pigments, flame retardants, antibacterial agents, conductivity-imparting agents, hydrophilic agents, water absorbing agents, etc. It may be blended.

そして、本発明の複合短繊維は、乾式不織布用途において、アレイド法により製造する際に用いる。エアレイド法によると、繊維の生産機内へ搬送する際(予備解繊や風送)や解繊する際に繊維が容易にポリエステル短繊維とポリアミド短繊維に分割し、繊維を分割させる工程や設備を別途設ける必要がなくコスト的に有利である。
The composite short fiber of the present invention, the dry nonwoven fabric applications, used for producing the d Areido method. According to the airlaid method, when the fiber is transported into the production machine (preliminary defibration or air sending) or defibrated, the fiber is easily divided into short polyester fiber and short polyamide fiber, and the process and equipment for dividing the fiber There is no need to provide it separately, which is advantageous in terms of cost.

上記したように、本発明の複合短繊維は、不織布とする際には、分割後の重合体Aからなるポリエステル短繊維と重合体Bからなるポリアミド短繊維ともに主体繊維とすることが好ましい。したがって、バインダー繊維として低融点ポリマーを構成成分とする他の繊維を用い、熱処理を施してバインダー繊維を構成する低融点ポリマーを溶融させて不織布を得ることが好ましい。   As described above, when the composite short fiber of the present invention is made into a nonwoven fabric, it is preferable that both the polyester short fiber made of polymer A and the polyamide short fiber made of polymer B after splitting are main fibers. Therefore, it is preferable to use other fibers having a low-melting-point polymer as a constituent component as a binder fiber and heat-treat to melt the low-melting-point polymer constituting the binder fiber to obtain a nonwoven fabric.

バインダー繊維として低融点ポリマーを構成成分とする繊維を用いることで、熱風による熱処理のみでバインダー繊維を容易に溶融させ、主体繊維(重合体Aからなるポリエステル短繊維と重合体Bからなるポリアミド短繊維)を接着させることができるので、一般的に行われているバインダー樹脂による接着あるいは熱ロールによる圧着工程を省略することができ、コスト的に有利である。   By using a fiber having a low melting point polymer as a binder fiber, the binder fiber can be easily melted only by heat treatment with hot air, and a main fiber (polyester short fiber made of polymer A and polyamide short fiber made of polymer B) ) Can be adhered, so that a generally used bonding with a binder resin or a pressure bonding step with a hot roll can be omitted, which is advantageous in terms of cost.

そして、バインダー繊維として用いる他の繊維の形状としては、得られる不織布の均一性、柔軟性等を考慮すると、単糸の形状が本発明の短繊維と同様のものであり、本発明における(1)〜(3)式の形状、捲縮数、捲縮率を満足するものが好ましい。   The shape of the other fibers used as the binder fiber is the same as that of the short fiber of the present invention in consideration of the uniformity, flexibility, etc. of the resulting nonwoven fabric. ) To (3) are preferred to satisfy the shape, number of crimps, and crimp rate.

次に、本発明の短繊維不織布について説明する。本発明の短繊維不織布は、上述した複合短繊維を用いてエアレイド法によりウェブを作成して不織布を得るものであり、上記本発明の複合短繊維を40質量%以上用いること、中でも45質量%以上、さらには50〜90質量%用いることが好ましい。 Next, the short fiber nonwoven fabric of the present invention will be described. The short fiber nonwoven fabric of the present invention is a web obtained by producing the web by the airlaid method using the above-described composite short fiber, and the composite short fiber of the present invention is used in an amount of 40% by mass or more, especially 45% by mass. In addition, it is preferable to use 50 to 90% by mass.

そして、本発明の複合短繊維から分割した、ポリエステル短繊維とポリアミド短繊維を主体繊維とし、バインダー繊維として低融点ポリマーを構成成分とする他の繊維を用いて、バインダー繊維の低融点ポリマーを溶融させて主体繊維を接着したものとすることが好ましい。   Then, the low-melting-point polymer of the binder fiber is melted by using other fibers that are divided from the composite short-fiber of the present invention, the main fibers are polyester short fibers and polyamide short fibers, and the low-melting-point polymer is a constituent component of the binder fiber. It is preferable that the main fibers are bonded together.

本発明の短繊維不織布を製造する際において、本発明の複合短繊維の用いる割合が40質量%未満であると、得られる不織布は、極細繊維の割合が少なくなることから、均一性に劣り、低通気度、ソフト性にも劣るものとなる。また、機械的特性に乏しいものとなりやすい。
In the manufacture of staple fiber nonwoven fabric of the present invention, the ratio used of the composite staple fiber of the present invention is less than 40 wt%, the resulting nonwoven fabric, since the ratio of the ultrafine fibers is low, poor uniformity, Low air permeability and softness are also inferior. Also, it tends to have poor mechanical properties.

また、発明の複合短繊維の用いる割合が40質量%以上であれば、本発明の複合短繊維とともに、上記のようなバインダー繊維に加えて、主体繊維となる他の短繊維を用いてもよい。 Moreover, if the ratio of the composite short fiber of the present invention used is 40% by mass or more, in addition to the binder fiber of the present invention, other short fibers serving as main fibers may be used together with the binder fiber as described above. Good.

このように、バインダー繊維やバインダー繊維以外の他の繊維を用いる場合は、得られる不織布の均一性、柔軟性等を考慮して、単糸の形状が本発明の短繊維と同様のものであり、本発明における(1)〜(3)式の形状、捲縮数、捲縮率を満足するものとすることが好ましい。   As described above, when using a binder fiber or a fiber other than the binder fiber, the shape of the single yarn is the same as that of the short fiber of the present invention in consideration of the uniformity and flexibility of the resulting nonwoven fabric. In addition, it is preferable that the shape, the number of crimps, and the crimp rate of the expressions (1) to (3) in the present invention are satisfied.

次に、本発明の複合短繊維の製造方法について、一例を用いて説明する。   Next, the manufacturing method of the composite short fiber of this invention is demonstrated using an example.

ポリエステル系重合体とポリアミド系重合体とを、通常用いられる複合紡糸装置を用いて、単糸の断面形状がポリアミド系重合体の周囲に接してポリエステル系重合体が複数個配列された形状となるように穿孔した紡糸孔から複合紡糸する。このとき、数十〜数千個の紡糸孔が穿孔された紡糸口金を使用し、そして、紡糸した糸条を延伸することなく、一旦巻き取る。得られた未延伸糸条を集束して1〜100ktex程度のトウとし、延伸倍率2〜6倍、温度20〜90℃程度で熱延伸を施す。そして、押し込み式クリンパーで捲縮を付与した後、必要に応じて仕上げ油剤を付与し、所望の繊維長にカットして本発明の複合短繊維を得る。   Using a commonly used composite spinning device, a polyester polymer and a polyamide polymer are cross-sectionally contacted with the periphery of the polyamide polymer so that a plurality of polyester polymers are arranged. The composite spinning is performed from the spinning hole thus drilled. At this time, a spinneret in which several tens to several thousands of spinning holes are perforated is used, and the spun yarn is once wound without stretching. The obtained unstretched yarn is converged to make a tow of about 1 to 100 ktex, and subjected to heat stretching at a stretching ratio of 2 to 6 times and a temperature of about 20 to 90 ° C. And after providing crimp with a push-in type crimper, a finishing oil agent is provided if necessary, and it cuts into desired fiber length, and obtains the composite short fiber of this invention.

単糸の捲縮形態が本発明で規定する捲縮形態を満足するものとするには、延伸条件(倍率、温度)及び押込み式クリンパー等の捲縮付与装置での捲縮付与条件(ニップ圧力、スタフィング圧力)を調整することにより行う。   In order for the crimped form of the single yarn to satisfy the crimped form specified in the present invention, the drawing conditions (magnification, temperature) and the crimping conditions (nip pressure) in a crimping apparatus such as a push-in crimper , Adjusting the stuffing pressure).

次に、本発明の短繊維不織布(本発明の複合短繊維を主体繊維、バインダー繊維として他の繊維を用いる例)の製造方法について、一例を用いて説明する。   Next, a method for producing the short fiber nonwoven fabric of the present invention (an example in which the composite short fiber of the present invention is used as a main fiber and another fiber as a binder fiber) will be described using an example.

予備開繊として、図7に示すような簡易空気流撹拌試験機を用い、本発明の複合短繊維とバインダー繊維を所定の質量比で混綿し、サンプル送り込み用ブロア3から空気流にて撹拌タンク1に投入し、撹拌用ブロア2から20m/秒の空気流を吹き込み、攪拌タンク1内で1分間撹拌する。続いて、図8に示す簡易エアレイド試験機を用い、試料投入ブロア13より、予備開繊した本発明の複合短繊維とバインダー繊維を投入し、解繊翼回転モータ15により解繊翼回転用スプロケット16を介して回転する、それぞれ5枚1組の第1解繊翼11と第2解繊翼12で解繊し、飛散落下させる。これにより、本発明の複合短繊維はポリエステル短繊維とポリアミド短繊維に分割される。そして、落下する両短繊維とバインダー繊維を下部にあるサクションボックス14で吸引しつつ、矢印方向に移動する集綿コンベア17の上に堆積させウエブを作製する。続いて、下流にある熱処理機18にて熱処理(熱処理温度:バインダー繊維の融点+10℃程度)を施し、バインダー繊維を溶融させ、ポリアミド短繊維及びポリエステル短繊維を主体繊維とする乾式不織布を得る。不織布の目付調整は、集綿コンベア17の移動速度を変化させることで行う。   As a preliminary opening, a simple air flow agitation tester as shown in FIG. 7 is used to mix the composite short fiber and the binder fiber of the present invention at a predetermined mass ratio, and the agitation tank is supplied from the sample feeding blower 3 with an air flow. 1, an air flow of 20 m / second is blown from the stirring blower 2 and stirred in the stirring tank 1 for 1 minute. Subsequently, using the simple airlaid tester shown in FIG. 8, the composite short fiber and the binder fiber of the present invention that have been pre-opened are input from the sample input blower 13, and the disentanglement blade rotation motor 15 passes through the sprocket 16 for disentanglement blade rotation. Each set of five rotating first defibrating blades 11 and second defibrating blades 12 is defibrated and scattered and dropped. Thereby, the composite short fiber of this invention is divided | segmented into a polyester short fiber and a polyamide short fiber. Then, both the short fibers and the binder fibers that fall are sucked by the suction box 14 at the bottom, and deposited on the cotton collection conveyor 17 that moves in the direction of the arrow to produce a web. Subsequently, heat treatment (heat treatment temperature: melting point of binder fiber + about 10 ° C.) is performed by a heat treatment machine 18 located downstream, and the binder fiber is melted to obtain a dry nonwoven fabric mainly composed of polyamide short fibers and polyester short fibers. The basis weight adjustment of the nonwoven fabric is performed by changing the moving speed of the cotton collection conveyor 17.

次に、本発明を実施例によって具体的に説明する。なお、実施例における各特性値の測定方法は以下の通りである。
(1)融点
示差走査型熱量計(パーキンエルマー社製DSC7)を用い、昇温速度20℃/分で測定した融解吸収曲線の極値を与える温度を融点とした。
(2)相対粘度(ポリアミド)
96%硫酸を溶媒として、濃度1g/dl、温度25℃で測定した。
(3)極限粘度(ポリエステル)
フェノールと四塩化エタンとの等質量混合物を溶媒として、温度20℃で測定した。
(4)繊度、繊維長、捲縮部のH/L、捲縮数、捲縮率
前記の方法で測定、算出した。
(5)空気攪拌分割率
前記の方法で測定、算出した。
(6)繊維塊の生成
得られた複合短繊維を上記空気攪拌分割率と同様の条件、方法で空気攪拌する。攪拌後の短繊維を取り出す際に短繊維を0.1g採取し、黒色紙の上に広げ、繊維塊の有無を目視にて評価した。
○:繊維塊が発生していない
△:繊維塊が少量発生している
×:繊維塊が大量発生している
(8)不織布の均一性、通気度、柔軟性
−均一性−
得られた乾式不織布の均一性の状態を目視にて観察し、以下のように3段階評価とした。
○:十分に解繊されて均一である
△:部分的に未解繊な部分がある
×:解繊が不十分で不均一である
−通気度−
得られた乾式不織布を、織物通気度試験機(大栄科学精器製作所製AP−360型)を用いて通気度を測定し、5点の平均値により以下のように3段階評価とした。
分割前の繊度が2.2dtexの場合
○:通気度が20.0cc/cm/sec未満である。
△:通気度が20.0cc/cm/sec以上、30.0cc/cm/sec未満である。
×:通気度が30.0cc/cm/sec以上である。
分割前の繊度が17.0dtexの場合
○:通気度が30.0cc/cm/sec未満である。
△:通気度が30.0cc/cm/sec以上、40.0cc/cm/sec未満である。
×:通気度が40.0cc/cm/sec以上である。
−柔軟性−
得られた乾式不織布を20cm×20cmに切り出してサンプルとし、パネラーによる感触で柔軟性を以下のように3段階評価とした。
○:良好
△:やや不良
×:不良
Next, the present invention will be specifically described with reference to examples. In addition, the measuring method of each characteristic value in an Example is as follows.
(1) Melting point The temperature which gives the extreme value of the melting absorption curve measured with a differential scanning calorimeter (DSC7 manufactured by Perkin Elmer Co., Ltd.) at a temperature rising rate of 20 ° C./min was defined as the melting point.
(2) Relative viscosity (polyamide)
Measurement was performed at a concentration of 1 g / dl and a temperature of 25 ° C. using 96% sulfuric acid as a solvent.
(3) Intrinsic viscosity (polyester)
The measurement was carried out at a temperature of 20 ° C. using a mixture of equal mass of phenol and ethane tetrachloride as a solvent.
(4) Fineness, fiber length, H / L of crimped portion, number of crimps, crimp rate Measured and calculated by the above method.
(5) Air stirring division ratio Measured and calculated by the above method.
(6) Formation of fiber lump The obtained composite short fiber is air-stirred under the same conditions and method as the air-stirring division ratio. When taking out the short fibers after stirring, 0.1 g of the short fibers were collected and spread on black paper, and the presence or absence of a fiber lump was visually evaluated.
○: No fiber lump is generated Δ: A small amount of fiber lump is generated x: A large amount of fiber lump is generated (8) Uniformity, air permeability, and flexibility of the nonwoven fabric
The uniformity state of the obtained dry nonwoven fabric was observed visually, and was evaluated in three stages as follows.
○: Fully defibrated and uniform △: Partially undefibrated part ×: Insufficient defibration and non-uniformity-Air permeability-
The obtained dry nonwoven fabric was measured for air permeability using a fabric air permeability tester (AP-360 type, manufactured by Daiei Kagaku Seisaku Seisakusho), and was evaluated according to an average of 5 points as follows.
When fineness before division is 2.2 dtex ○: Air permeability is less than 20.0 cc / cm 2 / sec.
Δ: The air permeability is 20.0 cc / cm 2 / sec or more and less than 30.0 cc / cm 2 / sec.
X: Air permeability is 30.0 cc / cm 2 / sec or more.
When the fineness before division is 17.0 dtex ○: The air permeability is less than 30.0 cc / cm 2 / sec.
Δ: The air permeability is 30.0 cc / cm 2 / sec or more and less than 40.0 cc / cm 2 / sec.
X: The air permeability is 40.0 cc / cm 2 / sec or more.
-Flexibility-
The obtained dry nonwoven fabric was cut out into 20 cm × 20 cm as a sample, and the softness was evaluated by a three-stage evaluation as follows by the touch of the panel.
○: Good △: Somewhat bad ×: Bad

参考例1
芯ポリマーとして、融点が256℃、極限粘度0.61のPETを用い、鞘ポリマーとして、流動開始温度130℃、極限粘度0.57のイソフタル酸を33mol%共重合したPETを用いた。これらを通常の複合紡糸装置を用い、PETを芯、共重合PETを鞘成分とし、芯鞘質量比率が1/1となるようにして、紡糸温度280℃、吐出量446g/min、紡糸速度1170m/minの条件で、ホール数560の丸型断面のノズルで紡出し、未延伸糸を得た。得られた未延伸糸を12.3ktexのトウに集束した後、延伸倍率3.09倍、延伸温度60℃で延伸を行い、押し込み式クリンパーで捲縮付与条件をニップ圧0.39MPa、スタフィング圧0.07MPaとして捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする油剤を付着量0.2質量%となるように付与した後、切断して単糸繊度2.2dtex、繊維長5mmの短繊維を得た。
Reference example 1
As the core polymer, PET having a melting point of 256 ° C. and an intrinsic viscosity of 0.61 was used, and as the sheath polymer, PET obtained by copolymerizing 33 mol% of isophthalic acid having a flow start temperature of 130 ° C. and an intrinsic viscosity of 0.57 was used. Using a normal composite spinning apparatus, PET is the core, copolymer PET is the sheath component, the core-sheath mass ratio is 1/1, the spinning temperature is 280 ° C., the discharge rate is 446 g / min, and the spinning speed is 1170 m. Spinning was performed with a nozzle having a round cross section with 560 holes under the conditions of / min to obtain an undrawn yarn. The resulting undrawn yarn was focused on a 12.3 ktex tow, then drawn at a draw ratio of 3.09 and a draw temperature of 60 ° C., and a crimping condition was applied by a push-in crimper with a nip pressure of 0.39 MPa and a stuffing pressure. Crimping was given as 0.07 MPa. Thereafter, an oil agent mainly composed of polyoxyethylene alkyl ether as a finishing oil agent was applied so that the adhesion amount was 0.2% by mass, and then cut to obtain a short fiber having a single yarn fineness of 2.2 dtex and a fiber length of 5 mm. It was.

実施例1
融点256℃、極限粘度0.61のPETを重合体Aとし、融点が216℃、相対粘度2.53のナイロン6を重合体Bとし、これらを通常の複合溶融紡糸装置を用い、紡糸温度280℃、吐出量568g/min(PET426g/min、ナイロン142g/min)、紡糸速度1000m/minの条件で溶融紡糸を行った。このとき、単糸の断面形状が図1に示すような形状となるように複合紡糸を行い(紡糸孔数1014個の紡糸口金を使用)、未延伸糸を得た。得られた未延伸糸を12.3ktexのトウに集束した後、延伸倍率2.55倍、延伸温度70℃で延伸を行った。続いて押し込み式クリンパーで捲縮付与条件をニップ圧0.38MPa、スタフィング圧0.10MPaとして、捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする油剤を付着量0.2質量%となるように付与した後、切断して単糸繊度2.2dtex、繊維長5mmの複合短繊維を得た。
図7に示す簡易空気流撹拌試験機を用い、得られた複合短繊維を主体繊維、参考例1の複合短繊維をバインダー繊維とし、これらを質量比80/20(主体繊維/バインダー繊維)で混綿した後、サンプル送り込み用ブロア3から空気流にて撹拌タンク1に投入し、撹拌用ブロア2から20m/秒の空気流を吹き込み、攪拌タンク1内で1分間撹拌(予備開繊)した。
次に、図8に示す簡易エアレイド試験機を用い、以下のようにして目付100g/m2の乾式不織布を得た。まず、試料投入ブロア13より予備開繊した複合短繊維とバインダー繊維を投入し、解繊翼回転モータ15により解繊翼回転用スプロケット16を介して回転する、それぞれ5枚1組の第1解繊翼11と第2解繊翼12で解繊し、飛散落下させた。これにより、複合短繊維はポリエステル短繊維とポリアミド短繊維に分割された。そして、落下するこれらの短繊維とバインダー繊維を、下部にあるサクションボックス14で吸引しつつ、矢印方向に移動する集綿コンベア17の上に堆積させウェブを作成する。続いて、下流にある熱処理機18にて熱処理(熱処理温度:140℃)を施し、バインダー繊維(バインダー繊維を構成する鞘ポリマー)を溶融させて、ポリエステル短繊維及びポリアミド短繊維を主体繊維とする乾式不織布を得た。このとき、不織布の目付調整は、集綿コンベア17の移動速度を変化させることで行った。
Example 1
A PET having a melting point of 256 ° C. and an intrinsic viscosity of 0.61 is used as the polymer A, and a nylon 6 having a melting point of 216 ° C. and a relative viscosity of 2.53 is used as the polymer B. Melt spinning was carried out under the conditions of ° C., discharge rate of 568 g / min (PET 426 g / min, nylon 142 g / min) and spinning speed of 1000 m / min. At this time, composite spinning was carried out so that the cross-sectional shape of the single yarn was as shown in FIG. 1 (using a spinneret having 1014 spinning holes) to obtain an undrawn yarn. The resulting undrawn yarn was focused on a 12.3 ktex tow and then drawn at a draw ratio of 2.55 times and a draw temperature of 70 ° C. Subsequently, crimping was applied with a push-in type crimper with the nip pressure of 0.38 MPa and the stuffing pressure of 0.10 MPa. Then, after applying an oil agent mainly composed of polyoxyethylene alkyl ether as a finishing oil so as to have an adhesion amount of 0.2% by mass, it is cut into a composite short fiber having a single yarn fineness of 2.2 dtex and a fiber length of 5 mm. Obtained.
Using the simple air flow agitating tester shown in FIG. 7, the obtained composite short fiber is a main fiber, the composite short fiber of Reference Example 1 is a binder fiber, and these are in a mass ratio of 80/20 (main fiber / binder fiber). After the cotton blending, the sample feeding blower 3 was introduced into the stirring tank 1 by an air flow, and an air flow of 20 m / second was blown from the stirring blower 2 and stirred (preliminary opening) in the stirring tank 1 for 1 minute.
Next, using a simple airlaid tester shown in FIG. 8, a dry nonwoven fabric having a basis weight of 100 g / m 2 was obtained as follows. First, pre-opened composite short fibers and binder fibers are input from a sample input blower 13 and rotated by a defibrating blade rotating motor 15 via a defibrating blade rotating sprocket 16, respectively. The fiber was defibrated with the defibrating blade 12 and dropped. Thereby, the composite short fiber was divided | segmented into the polyester short fiber and the polyamide short fiber. Then, while dropping these short fibers and binder fibers with the suction box 14 at the bottom, they are deposited on the cotton collection conveyor 17 that moves in the direction of the arrow to create a web. Subsequently, heat treatment (heat treatment temperature: 140 ° C.) is performed in the heat treatment machine 18 on the downstream side, the binder fiber (sheath polymer constituting the binder fiber) is melted, and the polyester short fiber and the polyamide short fiber are used as main fibers. A dry nonwoven fabric was obtained. At this time, the basis weight adjustment of the nonwoven fabric was performed by changing the moving speed of the cotton collecting conveyor 17.

実施例2、比較例1
単糸の断面形状が表1に示すように図2、図4の形状となるように、それぞれ紡糸口金を変更した以外は、実施例1と同様に行って複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例1と同様にして乾式不織布を得た。
Example 2 and Comparative Example 1
Composite short fibers were obtained in the same manner as in Example 1 except that the spinneret was changed so that the cross-sectional shape of the single yarn was as shown in FIG. 2 and FIG. 4 as shown in Table 1.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 1.

実施例3〜14
押し込み式クリンパーで捲縮を付与する条件(ニップ圧、スタフィング圧)を表1に示すように種々変更し、表1に示す捲縮形態、捲縮数、捲縮率のものとした以外は、実施例1と同様に行って複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例1と同様にして乾式不織布を得た。
Examples 3-14
Various changes were made to the conditions (nip pressure, stuffing pressure) for applying crimp with the indentation type crimper as shown in Table 1, and the crimping form, number of crimps, and crimp rate shown in Table 1 were used. A composite short fiber was obtained in the same manner as in Example 1.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 1.

実施例15
融点が256℃、極限粘度0.61のPETを重合体Aとし、融点が257℃、相対粘度2.50のナイロン66を重合体Bとし、これらを通常の複合溶融紡糸装置を用い、紡糸温度290℃、吐出量580g/min(PET435g/min、ナイロン145g/min)、紡糸速度1000m/minの条件で溶融紡糸を行った。このとき、単糸の断面形状が図1に示すような形状となるように複合紡糸を行い(紡糸孔数1014個の紡糸口金を使用)、未延伸糸を得た。得られた未延伸糸を12.8ktexのトウに集束した後、延伸倍率2.60倍、延伸温度70℃で延伸を行った。続いて押し込み式クリンパーで捲縮付与条件をニップ圧0.40MPa、スタフィング圧0.12MPaとして、捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする油剤を付着量が0.2質量%となるように付与した後、切断して単糸繊度2.2dtex、繊維長5mmの複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例1と同様にして乾式不織布を得た。
Example 15
A PET having a melting point of 256 ° C. and an intrinsic viscosity of 0.61 is used as a polymer A, and a nylon 66 having a melting point of 257 ° C. and a relative viscosity of 2.50 is used as a polymer B. Melt spinning was performed under the conditions of 290 ° C., discharge rate of 580 g / min (PET 435 g / min, nylon 145 g / min) and spinning speed of 1000 m / min. At this time, composite spinning was carried out so that the cross-sectional shape of the single yarn was as shown in FIG. 1 (using a spinneret having 1014 spinning holes) to obtain an undrawn yarn. The resulting undrawn yarn was focused on a 12.8 ktex tow, and then drawn at a draw ratio of 2.60 times and a draw temperature of 70 ° C. Subsequently, crimping was applied using a push-in crimper with the crimping conditions set to a nip pressure of 0.40 MPa and a stuffing pressure of 0.12 MPa. Thereafter, an oil agent containing polyoxyethylene alkyl ether as a main component as a finishing oil agent was applied so that the amount of adhesion was 0.2% by mass, and then cut to form a composite short fiber having a single yarn fineness of 2.2 dtex and a fiber length of 5 mm. Got.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 1.

比較例2
単糸の断面形状が図4の形状となるように、紡糸口金を変更した以外は、実施例15と同様に行って複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例15と同様にして乾式不織布を得た。
Comparative Example 2
A composite short fiber was obtained in the same manner as in Example 15 except that the spinneret was changed so that the cross-sectional shape of the single yarn became the shape shown in FIG.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 15.

実施例16
実施例1と同様のPETを重合体Aとし、実施例1と同様のナイロン6を重合体Bとし、これらを通常の複合溶融紡糸装置を用い、紡糸温度280℃、吐出量452g/min(PET339g/min、ナイロン113g/min)、紡糸速度900m/minの条件で溶融紡糸を行った。このとき、単糸の断面形状が図1に示すような形状の繊維となるように複合紡糸を行い(紡糸孔数90個の紡糸口金を使用)、未延伸糸を得た。得られた未延伸糸を12.8ktexのトウに集束した後、延伸倍率3.28倍、延伸温度75℃で延伸を行った。続いて、押し込み式クリンパーで捲縮付与条件をニップ圧0.48MPa、スタフィング圧0.17MPaとして、捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする油剤を付着量が0.2質量%となるように付与した後、切断して単糸繊度17dtex、繊維長5mmの複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例1と同様にして乾式不織布を得た。
Example 16
The same PET as in Example 1 is used as the polymer A, and the same nylon 6 as in Example 1 is used as the polymer B. These are used in a normal composite melt spinning apparatus, and the spinning temperature is 280 ° C., the discharge amount is 452 g / min (PET 339 g). / Min, 113 g / min of nylon), and melt spinning was carried out under conditions of a spinning speed of 900 m / min. At this time, composite spinning was performed (using a spinneret with 90 spinning holes) so that the cross-sectional shape of the single yarn was a fiber having a shape as shown in FIG. 1, and an undrawn yarn was obtained. The resulting undrawn yarn was focused on a 12.8 ktex tow and then drawn at a draw ratio of 3.28 times and a draw temperature of 75 ° C. Subsequently, crimping was applied using a push-in crimper with the crimping conditions set to a nip pressure of 0.48 MPa and a stuffing pressure of 0.17 MPa. Thereafter, an oil agent mainly composed of polyoxyethylene alkyl ether as a finishing oil agent was applied so that the adhesion amount was 0.2% by mass, and then cut to obtain a composite short fiber having a single yarn fineness of 17 dtex and a fiber length of 5 mm. It was.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 1.

実施例17、比較例3
単糸の断面形状が表1に示すように図2、図4の形状となるように、それぞれ紡糸口金を変更した以外は、実施例16と同様に行って複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例16と同様にして乾式不織布を得た。
Example 17, Comparative Example 3
As shown in Table 1, composite short fibers were obtained in the same manner as in Example 16 except that the spinneret was changed so that the cross-sectional shape of the single yarn was as shown in FIG. 2 and FIG.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 16.

実施例18〜29
押し込み式クリンパーで捲縮を付与する条件(ニップ圧、スタフィング圧)を表1に示すように種々変更し、表1に示す捲縮形態、捲縮数、捲縮率のものとした以外は、実施例16と同様に行って複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例16と同様にして乾式不織布を得た。
Examples 18-29
Various changes were made to the conditions (nip pressure, stuffing pressure) for applying crimp with the indentation type crimper as shown in Table 1, and the crimping form, number of crimps, and crimp rate shown in Table 1 were used. A composite short fiber was obtained in the same manner as in Example 16.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 16.

実施例30
実施例1と同様のPETを重合体Aとし、実施例15と同様のナイロン66を重合体Bとし、これらを通常の複合溶融紡糸装置を用い、紡糸温度290℃、吐出量464g/min(PET348g/min、ナイロン116g/min)、紡糸速度900m/minの条件で溶融紡糸を行った。このとき、単糸の断面形状が図1に示すような形状となるように複合紡糸を行い(紡糸孔数90個の紡糸口金を使用)、未延伸糸を得た。得られた未延伸糸を12.3ktexのトウに集束した後、延伸倍率3.37、延伸温度75℃で延伸を行った。続いて、押し込み式クリンパーで捲縮付与条件をニップ圧0.52MPa、スタフィング圧0.20MPaとして、捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする通常用いられる紡績用油剤を付着量が0.2質量%となるように付与した後、切断して単糸繊度17.0dtex、繊維長5mmの複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例1と同様にして乾式不織布を得た。
Example 30
The same PET as in Example 1 is used as the polymer A, and the same nylon 66 as in Example 15 is used as the polymer B. These are used in an ordinary composite melt spinning apparatus, and the spinning temperature is 290 ° C., the discharge rate is 464 g / min (PET 348 g). / Min, nylon 116 g / min), and melt spinning was performed under the conditions of a spinning speed of 900 m / min. At this time, composite spinning was performed so that the cross-sectional shape of the single yarn was as shown in FIG. 1 (using a spinneret with 90 spinning holes) to obtain an undrawn yarn. The resulting undrawn yarn was focused on a 12.3 ktex tow and then drawn at a draw ratio of 3.37 and a draw temperature of 75 ° C. Subsequently, crimping was applied using a push-in crimper with crimping conditions of 0.52 MPa for nip pressure and 0.20 MPa for stuffing pressure. Thereafter, a commonly used spinning oil mainly composed of polyoxyethylene alkyl ether as a finishing oil was applied so that the adhesion amount was 0.2% by mass, and then cut to obtain a single yarn fineness of 17.0 dtex, a fiber length. A 5 mm composite short fiber was obtained.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 1.

比較例4
単糸の断面形状が図4の形状となるように、紡糸口金を変更した以外は、実施例30と同様に行って複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例30と同様にして乾式不織布を得た。
Comparative Example 4
A composite short fiber was obtained in the same manner as in Example 30 except that the spinneret was changed so that the cross-sectional shape of the single yarn became the shape shown in FIG.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 30.

実施例31〜32、比較例5〜6
切断時の繊維長を変更し、表1に示す繊維長とした以外は、実施例1と同様に行って複合短繊維を得、さらに実施例1と同様にして乾式不織布を得た。
Examples 31-32, Comparative Examples 5-6
A composite short fiber was obtained in the same manner as in Example 1 except that the fiber length at the time of cutting was changed to the fiber length shown in Table 1, and a dry nonwoven fabric was obtained in the same manner as in Example 1.

比較例7
実施例1と同様のPETを重合体Aとし、実施例1と同様のナイロン6を重合体Bとし、これらを通常の複合溶融紡糸装置を用い、紡糸温度280℃、吐出量244g/min(PET183g/min、ナイロン61g/min)、紡糸速度1200m/minの条件で溶融紡糸を行った。このとき、単糸の断面形状が図1に示すような形状となるように複合紡糸を行い(紡糸孔数2000個の紡糸口金を使用)、未延伸糸を得た。得られた未延伸糸を12.2ktexのトウに集束した後、延伸倍率2.54倍、延伸温度70℃で延伸を行った。続いて押し込み式クリンパーで捲縮付与条件をニップ圧0.30MPa、スタフィング圧0.10MPaとして、捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする油剤を付着量0.2質量%となるように付与した後、切断して単糸繊度0.4dtex、繊維長5mmの複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例1と同様にして乾式不織布を得た。
Comparative Example 7
The same PET as in Example 1 was used as the polymer A, and the same nylon 6 as that used in the example 1 was used as the polymer B. These were used in a normal composite melt spinning apparatus, with a spinning temperature of 280 ° C. and a discharge rate of 244 g / min (PET 183 g). / Min, nylon 61 g / min), and melt spinning was performed under conditions of a spinning speed of 1200 m / min. At this time, composite spinning was performed so that the cross-sectional shape of the single yarn was as shown in FIG. 1 (using a spinneret with 2000 spinning holes), and an undrawn yarn was obtained. The resulting undrawn yarn was focused on a 12.2 ktex tow and then drawn at a draw ratio of 2.54 times and a draw temperature of 70 ° C. Subsequently, crimping was applied by a push-in type crimper with a nip pressure of 0.30 MPa and a stuffing pressure of 0.10 MPa. Then, after applying an oil agent mainly composed of polyoxyethylene alkyl ether as a finishing oil so as to have an adhesion amount of 0.2% by mass, the composite short fiber having a single yarn fineness of 0.4 dtex and a fiber length of 5 mm is cut. Obtained.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 1.

比較例8
実施例1と同様のPETを重合体Aとし、実施例1と同様のナイロン6を重合体Bとし、これらを通常の複合溶融紡糸装置を用い、紡糸温度280℃、吐出量508g/min(PET381g/min、ナイロン127g/min)、紡糸速度600m/minの条件で溶融紡糸を行った。このとき、単糸の断面形状が図1に示すような形状となるように複合紡糸を行い(紡糸孔数90個の紡糸口金を使用)、未延伸糸を得た。得られた未延伸糸を12.4ktexのトウに集束した後、延伸倍率4.28倍、延伸温度75℃で延伸を行った。続いて、押し込み式クリンパーで捲縮付与条件をニップ圧0.66MPa、スタフィング圧0.27MPaとして、捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする油剤を付着量が0.2質量%となるように付与した後、切断して単糸繊度22dtex、繊維長5mmの複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例1と同様にして乾式不織布を得た。
Comparative Example 8
The same PET as in Example 1 is used as the polymer A, and the same nylon 6 as in Example 1 is used as the polymer B. These are used in a normal composite melt spinning apparatus, and the spinning temperature is 280 ° C., the discharge amount is 508 g / min (PET 381 g). / Min, nylon 127 g / min), and melt spinning was performed under conditions of a spinning speed of 600 m / min. At this time, composite spinning was performed so that the cross-sectional shape of the single yarn was as shown in FIG. 1 (using a spinneret with 90 spinning holes) to obtain an undrawn yarn. The resulting undrawn yarn was focused on a 12.4 ktex tow and then drawn at a draw ratio of 4.28 times and a draw temperature of 75 ° C. Subsequently, crimping was applied using a push-in crimper with a crimping application condition of a nip pressure of 0.66 MPa and a stuffing pressure of 0.27 MPa. Thereafter, an oil agent mainly composed of polyoxyethylene alkyl ether as a finishing oil agent is applied so that the adhesion amount is 0.2% by mass, and then cut to obtain a composite short fiber having a single yarn fineness of 22 dtex and a fiber length of 5 mm. It was.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 1.

実施例1〜32、比較例1〜8、参考例1で得られた複合短繊維の測定値及び評価結果を表1に示す。また、これらの複合短繊維を用いた乾式不織布の均一性、通気度、柔軟性の評価結果を表1に示す。   Table 1 shows measured values and evaluation results of the composite short fibers obtained in Examples 1 to 32, Comparative Examples 1 to 8, and Reference Example 1. Table 1 shows the evaluation results of the uniformity, air permeability, and flexibility of the dry nonwoven fabric using these composite short fibers.

表1から明らかなように、実施例1〜32の複合短繊維は、繊維の長手方向に対して垂直に切断した単糸の断面形状において、重合体Bの周囲に接して重合体Aが複数個配列された形状を呈しており、空気攪拌分割率が65%以上と良好であった。中でも実施例1〜8、15〜23、30〜32の複合短繊維は、捲縮形態(H/L、捲縮数、捲縮率)が(1)〜(3)式を満足するものであったため、静電気の発生や静電気をためることがなく、繊維塊の発生がないものであった。そして、特に空気攪拌分割率が高く、75%以上であり、容易に極細繊維に分割するものであった。このため、これらの短繊維を含有する乾式不織布は均一性、通気性(低い)、柔軟性に優れたものであった。   As is clear from Table 1, the composite short fibers of Examples 1 to 32 have a plurality of polymers A in contact with the periphery of the polymer B in the cross-sectional shape of the single yarn cut perpendicular to the longitudinal direction of the fibers. Individually arranged shapes were exhibited, and the air stirring division ratio was as good as 65% or more. Among these, the composite short fibers of Examples 1 to 8, 15 to 23, and 30 to 32 satisfy the formulas (1) to (3) in the crimped form (H / L, number of crimps, crimp ratio). Therefore, there was no generation of static electricity, no static electricity, and no fiber lump. And especially the air stirring division | segmentation rate was high and it was 75% or more, and it divided | segmented into an ultrafine fiber easily. For this reason, the dry nonwoven fabric containing these short fibers was excellent in uniformity, air permeability (low), and flexibility.

一方、比較例1〜4の複合短繊維は、繊維の長手方向に対して垂直に切断した単糸の断面形状において、重合体A、Bが放射状に配列されたものであったため、空気攪拌分割率が低いものであった。このため、これらの短繊維から得られた不織布は通気度が高く、柔軟性も乏しいものであった。   On the other hand, since the composite short fibers of Comparative Examples 1 to 4 were those in which the polymers A and B were arranged radially in the cross-sectional shape of a single yarn cut perpendicularly to the longitudinal direction of the fibers, The rate was low. For this reason, the nonwoven fabric obtained from these short fibers has high air permeability and poor flexibility.

また、比較例5の複合短繊維は、繊維長が短すぎたため、繊維切断時の摩擦熱で繊維の密着が発生し、予備開繊でほとんど開繊せず、不織布を得ることができなかった。比較例6の複合短繊維は、繊維長が長すぎたため、静電気をためやすく、また、繊維の絡みも生じ、玉状の繊維塊が生成し、空気攪拌分割率が低いものであった。このため、得られた乾式不織布は、均一性に劣り、通気度が高く、柔軟性に乏しいものであった。比較例7の複合短繊維は、単糸繊度が小さすぎたため、紡糸時に切れ糸が発生し紡糸の操業性が悪かった。また、切れ糸による繊維の密着が発生し、空気攪拌分割率が低いものであった。このため、得られた乾式不織布は、均一性に劣り、通気度が高く、柔軟性に乏しいものであった。比較例8の複合短繊維は、単糸繊度が太すぎたため、得られた乾式不織布は通気度が高く、柔軟性に乏しいものであった。   Further, the composite short fiber of Comparative Example 5 was too short in fiber length, so that the fibers were adhered due to frictional heat at the time of fiber cutting, hardly opened by preliminary opening, and a nonwoven fabric could not be obtained. . Since the composite short fiber of Comparative Example 6 was too long, it was easy to accumulate static electricity, entangled fibers, formed a ball-shaped fiber lump, and had a low air stirring division rate. For this reason, the obtained dry nonwoven fabric was inferior in uniformity, high air permeability, and poor flexibility. The composite short fiber of Comparative Example 7 had a single yarn fineness that was too small, so that a cut yarn was generated during spinning and the spinning operability was poor. Further, the fibers were closely adhered by the cut yarn, and the air stirring division ratio was low. For this reason, the obtained dry nonwoven fabric was inferior in uniformity, high air permeability, and poor flexibility. Since the composite short fiber of Comparative Example 8 had a single yarn fineness that was too thick, the obtained dry nonwoven fabric had high air permeability and poor flexibility.

実施例33〜35、比較例9
実施例1の分割型複合短繊維を主体繊維、参考例1の短繊維をバインダー繊維とし、これらの質量比(実施例1の分割型複合短繊維/参考例1の短繊維)を表2に示すように種々変更し、両繊維を図7に示す簡易空気流撹拌試験機に投入し、実施例1と同様にして乾式不織布を得た。
Examples 33 to 35, Comparative Example 9
The split composite short fiber of Example 1 is the main fiber, the short fiber of Reference Example 1 is the binder fiber, and the mass ratio (split composite short fiber of Example 1 / short fiber of Reference Example 1) is shown in Table 2. Various changes were made as shown, and both fibers were put into a simple air flow agitation tester shown in FIG. 7 to obtain a dry nonwoven fabric in the same manner as in Example 1.

実施例36〜38、比較例10
実施例16の分割型複合短繊維を主体繊維、参考例1の短繊維をバインダー繊維とし、これらの質量比(実施例16の分割型複合短繊維/参考例1の短繊維)を表2に示すように種々変更し、両繊維を図7に示す簡易空気流撹拌試験機に投入し、実施例1と同様にして乾式不織布を得た。
Examples 36 to 38, Comparative Example 10
Table 2 shows split-type composite short fibers of Example 16 as main fibers, short fibers of Reference Example 1 as binder fibers, and their mass ratios (split-type composite short fibers of Example 16 / short fibers of Reference Example 1) are shown in Table 2. Various changes were made as shown, and both fibers were put into a simple air flow agitation tester shown in FIG. 7 to obtain a dry nonwoven fabric in the same manner as in Example 1.

実施例33〜38、比較例9〜10で得られた乾式不織布の均一性、通気度、柔軟性の評価結果を表2に示す。   Table 2 shows the evaluation results of the uniformity, air permeability, and flexibility of the dry nonwoven fabrics obtained in Examples 33 to 38 and Comparative Examples 9 to 10.

表2から明らかなように、実施例33〜38の短繊維不織布(乾式不織布)は、本発明の複合短繊維を40質量%以上含有してなるものであったため、均一性、通気度、柔軟性に優れたものであった。   As is apparent from Table 2, the short fiber nonwoven fabrics (dry nonwoven fabrics) of Examples 33 to 38 contained 40% by mass or more of the composite short fibers of the present invention. It was excellent in properties.

一方、比較例9〜10の短繊維不織布は、本発明の複合短繊維を40質量%以上含有していなかったため、通気度が高く、柔軟性にも乏しいものであった。   On the other hand, since the short fiber nonwoven fabrics of Comparative Examples 9 to 10 did not contain 40% by mass or more of the composite short fiber of the present invention, the air permeability was high and the flexibility was poor.

本発明の分割型複合短繊維の繊維の長手方向に対して垂直に切断した単糸の断面形状の一実施態様を示す横断面図である。It is a cross-sectional view showing one embodiment of the cross-sectional shape of a single yarn cut perpendicularly to the longitudinal direction of the fiber of the split composite short fiber of the present invention. 本発明の分割型複合短繊維の繊維の長手方向に対して垂直に切断した単糸の断面形状の他の実施態様を示す横断面図である。It is a cross-sectional view which shows the other embodiment of the cross-sectional shape of the single yarn cut | disconnected perpendicularly | vertically with respect to the longitudinal direction of the fiber of the split type | mold composite short fiber of this invention. 本発明の分割型複合短繊維の繊維の長手方向に対して垂直に切断した単糸の断面形状の他の実施態様を示す横断面図である。It is a cross-sectional view which shows the other embodiment of the cross-sectional shape of the single yarn cut | disconnected perpendicularly | vertically with respect to the longitudinal direction of the fiber of the split type | mold composite short fiber of this invention. 繊維の長手方向に対して垂直に切断した単糸の断面形状が2種類の重合体が放射状に配列された形状である分割型複合短繊維の一実施態様を示す横断面図である。It is a cross-sectional view showing one embodiment of a split type composite short fiber in which the cross-sectional shape of a single yarn cut perpendicularly to the longitudinal direction of the fiber is a shape in which two types of polymers are arranged radially. 図1の分割型複合短繊維が分割した状態を示す模式図である。It is a schematic diagram which shows the state which the division | segmentation type | mold composite staple fiber of FIG. 1 divided | segmented. 本発明の分割型複合短繊維の単糸の捲縮形態を示す拡大説明図である。It is an expansion explanatory view showing the crimp form of the single yarn of the split type composite short fiber of the present invention. 本発明の空気攪拌分割率を測定、算出する際、予備開繊を行う際に使用する簡易空気流撹拌試験機を示す説明図である。It is explanatory drawing which shows the simple airflow stirring tester used when performing preliminary opening when measuring and calculating the air stirring division ratio of this invention. 本発明の短繊維不織布のうち、エアレイド法による乾式不織布を製造する際に用いる簡易エアレイド試験機の一例を示す説明図である。It is explanatory drawing which shows an example of the simple airlaid tester used when manufacturing the dry type nonwoven fabric by the airlaid method among the short fiber nonwoven fabrics of this invention.

Claims (5)

ポリエステル系重合体Aとポリアミド系重合体Bの2成分からなる分割型複合繊維であって、該繊維はエアレイド法で乾式不織布を得るためのものであり、繊維の長手方向に対して垂直に切断した単糸の断面形状において、ポリアミド系重合体Bの周囲に接してポリエステル系重合体Aが複数個配列された形状を呈しており(ただし、複合繊維の断面形状が円形断面のものを除く。)、空気攪拌分割率が65%以上であり、繊維長が1.0〜30mm、単糸繊度が0.5〜20dtexであり、該繊維は、捲縮が付与されており、単糸の捲縮形態が捲縮部の最大山部において、山部の頂点と隣接する谷部の底点2点を結んだ三角形の高さ(H)と底辺(L)の比(H/L)が下記(1)式を満足することを特徴とする分割型複合短繊維。
(1)式:0.01T+0.10≦H/L≦0.02T+0.25
Tは単糸繊度のデシテックス(dtex)数
A split type composite fiber consisting of two components, a polyester polymer A and a polyamide polymer B, which is used to obtain a dry nonwoven fabric by the airlaid method and cut perpendicular to the longitudinal direction of the fiber In the cross-sectional shape of the single yarn, a shape in which a plurality of polyester polymers A are arranged in contact with the periphery of the polyamide-based polymer B is shown (however, the cross-sectional shape of the composite fiber is not circular. ), and the air agitation split ratio is 65% or more, the fiber length is 1.0~30Mm, single yarn fineness of Ri 0.5~20dtex der, the fibers, crimping has been granted, crimp form of single yarn At the maximum peak of the crimped part, the ratio (H / L) of the height (H) to the base (L) of the triangle connecting the top of the peak and the bottom of the adjacent valley is (1) A split type composite staple fiber characterized by satisfying the formula .
(1) Formula: 0.01T + 0.10 ≦ H / L ≦ 0.02T + 0.25
T is the number of decitex (dtex) of single yarn fineness
捲縮数と捲縮率が下記(2)及び(3)式を同時に満足する請求項1記載の分割型複合短繊維。
(2)式:0.1T+3.8≦捲縮数≦0.3T+7.3
(3)式:0.8T+0.3≦捲縮率≦1.0T+4.9
ただし、捲縮数は繊維長25mm当たりの数、Tは単糸繊度のデシテックス(dtex)数
Claim 1 Symbol placement of splittable composite short fiber crimps and crimp ratio satisfies the following (2) and (3) at the same time.
(2) Formula: 0.1T + 3.8 ≦ crimp number ≦ 0.3T + 7.3
(3) Formula: 0.8T + 0.3 ≦ crimp rate ≦ 1.0T + 4.9
However, the number of crimps is the number per 25 mm of fiber length, and T is the number of decitex (dtex) of single yarn fineness.
請求項1または2記載の分割型複合短繊維を用いて、エアレイド法によりウェブを作成して不織布を得ることを特徴とする短繊維不織布の製造方法。A method for producing a short fiber nonwoven fabric, comprising using the split composite short fibers according to claim 1 or 2 to produce a web by an airlaid method to obtain a nonwoven fabric. エアレイド法によりウェブを作成するにあたり、エアレイド法における空気流によって分割型複合繊維を分割させることを特徴とする請求項3記載の短繊維不織布の製造方法。4. The method for producing a short fiber nonwoven fabric according to claim 3, wherein when the web is formed by the air laid method, the split type composite fiber is divided by an air flow in the air laid method. 請求項3または4記載の短繊維不織布の製造方法により得られた短繊維不織布。The short fiber nonwoven fabric obtained by the manufacturing method of the short fiber nonwoven fabric of Claim 3 or 4.
JP2006050361A 2006-02-27 2006-02-27 Split composite short fiber and short fiber nonwoven fabric Active JP4783175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006050361A JP4783175B2 (en) 2006-02-27 2006-02-27 Split composite short fiber and short fiber nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006050361A JP4783175B2 (en) 2006-02-27 2006-02-27 Split composite short fiber and short fiber nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2007224472A JP2007224472A (en) 2007-09-06
JP4783175B2 true JP4783175B2 (en) 2011-09-28

Family

ID=38546534

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006050361A Active JP4783175B2 (en) 2006-02-27 2006-02-27 Split composite short fiber and short fiber nonwoven fabric

Country Status (1)

Country Link
JP (1) JP4783175B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62268861A (en) * 1986-05-19 1987-11-21 三菱レイヨン株式会社 Production of nonwoven fabric
JP2904423B2 (en) * 1991-02-20 1999-06-14 株式会社 クラレ Curtain place
JP4357255B2 (en) * 2003-10-08 2009-11-04 日本エステル株式会社 Short fiber for nonwoven fabric and short fiber nonwoven fabric

Also Published As

Publication number Publication date
JP2007224472A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
JP4831971B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
CN102713034B (en) Island-in-sea type composite fiber, superfine fibre and composite spinning jete
TWI633216B (en) Composite spinning nozzle, composite fiber, and manufacturing method of composite fiber
JP4485860B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP4357255B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP4791212B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP4783175B2 (en) Split composite short fiber and short fiber nonwoven fabric
JPH09273096A (en) Polyester-based wet nonwoven fabric
JP4783176B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP4351100B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP4791156B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP4787621B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP4791173B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP4455180B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP2013122102A (en) Wet nonwoven fabric
JP4704216B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP4783162B2 (en) Split composite short fiber and short fiber nonwoven fabric
JP4537701B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP4633452B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP5248832B2 (en) Polycarbonate split type composite fiber, fiber assembly and non-woven fabric using the same
WO2001038619A1 (en) Sliver comprising extra fine fibers
JP7427882B2 (en) Nonwoven fabric using eccentric core-sheath composite short fibers
JP4455181B2 (en) Short fiber for nonwoven fabric and short fiber nonwoven fabric
JP5689626B2 (en) Wet short fiber nonwoven fabric
JP2013122094A (en) Polyester fiber for papermaking and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4783175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150