JP4791173B2 - Split composite short fiber and short fiber nonwoven fabric - Google Patents
Split composite short fiber and short fiber nonwoven fabric Download PDFInfo
- Publication number
- JP4791173B2 JP4791173B2 JP2005369920A JP2005369920A JP4791173B2 JP 4791173 B2 JP4791173 B2 JP 4791173B2 JP 2005369920 A JP2005369920 A JP 2005369920A JP 2005369920 A JP2005369920 A JP 2005369920A JP 4791173 B2 JP4791173 B2 JP 4791173B2
- Authority
- JP
- Japan
- Prior art keywords
- fiber
- nonwoven fabric
- short fiber
- fibers
- composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Nonwoven Fabrics (AREA)
- Multicomponent Fibers (AREA)
Description
本発明は、ポリアミド系重合体とポリオレフィン系重合体の2成分からなる分割型の複合繊維であって、分割後はポリアミド短繊維とポリオレフィン短繊維となるものであって、両成分の分割率が高く、分割性に優れており、エアレイド法による乾式不織布に用いられる分割型複合短繊維に関するものである。 The present invention is a split type composite fiber composed of two components of a polyamide polymer and a polyolefin polymer, and after splitting, becomes a polyamide short fiber and a polyolefin short fiber, and the split ratio of both components is high, has excellent split resistance, Ru der relates splittable composite short fibers used in the dry nonwoven fabric according to air-laid process.
衛生材料分野をはじめとして、様々な分野において、ポリエステル、ポリアミド、ポリオレフィン等の熱可塑性樹脂からなる短繊維を用い、均一に分散させて、バインダー樹脂による接着や熱風による接着、熱ロールによる圧着、高圧水流や金属針による交絡等により得られる乾式不織布や湿式不織布が使用されている。 In various fields including the sanitary materials field, short fibers made of thermoplastic resin such as polyester, polyamide, polyolefin, etc. are used and dispersed uniformly. Adhesion with binder resin, adhesion with hot air, pressure bonding with hot roll, high pressure Dry nonwoven fabrics and wet nonwoven fabrics obtained by water flow or entanglement with metal needles are used.
中でも、ソフトな風合い、低通気度、ドレープ性、ワイピング性等に優れた不織布への要望が高く、このような不織布とするには、極細繊維からなる不織布とすることが提案されている。例えば特許文献1には、ウェブ状に堆積させた分割型複合繊維に高圧液体流を噴射することによって、繊維を分割させて極細繊維からなる不織布とすることが提案されている。 Among them, there is a high demand for nonwoven fabrics that are excellent in soft texture, low air permeability, drapeability, wiping properties, etc., and in order to make such nonwoven fabrics, it has been proposed to use nonwoven fabrics made of ultrafine fibers. For example, Patent Document 1 proposes that a high-pressure liquid flow is jetted onto divided composite fibers deposited in a web shape to divide the fibers into a nonwoven fabric made of ultrafine fibers.
また、特許文献2や特許文献3には、複合繊維からなる不織布を得た後に、複合繊維の一方の成分を溶剤で溶かすことによって、得られた極細繊維からなる不織布が提案されている。 Patent Document 2 and Patent Document 3 propose a nonwoven fabric made of ultrafine fibers obtained by obtaining a nonwoven fabric made of composite fibers and then dissolving one component of the composite fibers with a solvent.
しかしながら、いずれの不織布も複合繊維を分割もしくは溶出させる際の処理速度が遅く、また処理方法が複雑でコストが高くなるという欠点があり、また複合繊維が十分に分割もしくは溶出しないために、得られる不織布の品位も十分満足できるものではなかった。 However, any nonwoven fabric has the disadvantages that the processing speed when dividing or eluting the composite fiber is slow, the processing method is complicated and expensive, and the composite fiber is not sufficiently divided or eluted. The quality of the nonwoven fabric was not satisfactory.
また、短繊維を用いて乾式不織布を得る方法としてエアレイド法がある。エアレイド法では、繊維を解繊して空気の流れにのせて搬送し、金網又は細孔を有するスクリーンを通過させた後、ワイヤーメッシュ上に落下堆積させる方法を採用するが、短繊維の解繊、搬送、分散、積層工程において、繊維−繊維間及び繊維−金属間の摩擦が大きく、静電気が発生しやすく、このため繊維塊が生成されるという問題が生じやすい。 Moreover, there exists an airlaid method as a method of obtaining a dry nonwoven fabric using a short fiber. The airlaid method employs a method in which fibers are defibrated and transported in a flow of air, passed through a screen having a wire mesh or pores, and then dropped and deposited on a wire mesh. In the conveying, dispersing, and laminating processes, the friction between the fibers and the fibers and the fibers and the metal is large, and static electricity is likely to be generated.
繊維塊が生じると、各工程での通過性が悪化し、操業性が低下することはもちろん、得られる不織布においても堆積した繊維が不均一となり、斑の生じた不織布となり製品品位が著しく低下する。 When a fiber lump is formed, the passability in each process deteriorates and the operability is deteriorated. In addition, even in the obtained non-woven fabric, the accumulated fibers become non-uniform, resulting in a non-uniform non-woven fabric, and the product quality is remarkably lowered. .
今日では製品の高級化及び高機能化等の差別化のために、機能性を有する熱可塑性樹脂が多く用いられ、中には低温加工を必要とするもの、高粘着性を有する熱可塑性樹脂等が用いられ、従来の繊維に比べてさらに繊維−繊維間の摩擦及び繊維−金属間の摩擦が大きくなる繊維が使用されている。また、製造加工効率を向上させるために加工速度の高速化が図られている。これらの要因により、エアレイド法による製造工程における静電気の発生量は多くなり、繊維塊の発生も多くなっている。 Today, many functional thermoplastic resins are used to differentiate products such as higher grades and higher functionality, including those that require low-temperature processing, thermoplastic resins with high tackiness, etc. Are used, and fibers having higher fiber-fiber friction and fiber-metal friction than conventional fibers are used. Further, in order to improve manufacturing processing efficiency, the processing speed is increased. Due to these factors, the amount of static electricity generated in the manufacturing process by the airlaid method is increased, and the generation of fiber mass is also increased.
このようなエアレイド法によって得られる不織布においても、極細繊維で構成され、十分な品位を有する不織布が求められている。しかしながら、静電気の発生により繊維塊が生成されると、分割型複合繊維の分割率が低下するため、極細繊維で構成され、斑のない品位の高い不織布を得ることが困難であるという問題があった。
本発明は、上記のような問題点を解決し、特に静電気の発生により繊維塊が発生しやすい乾式不織布の製造においても、空気攪拌による分割率が高く、極細繊維に容易に分割することによって、極細繊維からなり、未分割部が少なく均一性に優れ、ソフトな風合いを有し、かつ低通気度の不織布を得ることができる分割型複合短繊維及びこの分割型複合短繊維から分割された極細繊維を含有してなる短繊維不織布を提供することを技術的な課題とするものである。 The present invention solves the above-mentioned problems, and particularly in the production of dry nonwoven fabrics where fiber lumps are likely to occur due to the generation of static electricity, the split rate by air agitation is high, and by dividing easily into ultrafine fibers, A split type composite short fiber that is made of ultra fine fibers, has few undivided parts, is excellent in uniformity, has a soft texture, and can obtain a low air permeability nonwoven fabric, and an ultra fine split from this split type composite short fiber It is a technical problem to provide a short fiber nonwoven fabric containing fibers.
本発明者らは、上記課題を解決すべく鋭意検討の結果、本発明に到達したものである。 The present inventors have reached the present invention as a result of intensive studies to solve the above problems.
すなわち、本発明は、次の(ア)〜(ウ)を要旨とするものである。
(ア)ポリアミド系重合体Aとポリオレフィン系重合体Bの2成分からなる分割型複合繊維であって、該繊維はエアレイド法で乾式不織布を得るためのものであり、繊維の長手方向に対して垂直に切断した断面において、ポリオレフィン系重合体の周囲に接してポリアミド系重合体が複数個配列された形状を呈しており(ただし、複合繊維の断面形状が円形断面のものを除く。)、空気攪拌分割率が65%以上であり、繊維長が1.0〜30mm、単糸繊度が0.5〜20dtexであり、該繊維は、捲縮が付与されており、単糸の捲縮形態が捲縮部の最大山部において、山部の頂点と隣接する谷部の底点2点を結んだ三角形の高さ(H)と底辺(L)の比(H/L)が下記(1)式を満足することを特徴とする分割型複合短繊維。
(1)式:0.01T+0.10≦H/L≦0.02T+0.25
Tは単糸繊度のデシテックス(dtex)数
(イ)前記(ア)の分割型複合短繊維を用いて、エアレイド法によりウェブを作成して不織布を得ることを特徴とする短繊維不織布の製造方法。
(ウ)前記(イ)の短繊維不織布の製造方法により得られた短繊維不織布。
(イ)ポリアミド系重合体からなる繊維長が1.0〜30mm、単糸繊度が0.05〜5dtexであるポリアミド短繊維を30質量%以上含有してなることを特徴とする短繊維不織布。
That is, the gist of the present invention is the following (a) to (c) .
(A) A split type composite fiber composed of two components of a polyamide-based polymer A and a polyolefin-based polymer B, the fiber for obtaining a dry nonwoven fabric by the airlaid method, and with respect to the longitudinal direction of the fiber In the cross section cut perpendicularly, it has a shape in which a plurality of polyamide polymers are arranged in contact with the periphery of the polyolefin polymer (except that the cross-sectional shape of the composite fiber is a circular cross section) , and air . and a stirring split ratio is 65% or more, the fiber length is 1.0~30Mm, single yarn fineness of Ri 0.5~20dtex der, the fibers, crimping has been granted, crimp form of single yarn crimp portion The ratio of the height (H) to the base (L) (H / L) of the triangle connecting the peak of the peak and the bottom of the valley adjacent to the peak satisfies the following formula (1) A split-type composite short fiber characterized by:
(1) Formula: 0.01T + 0.10 ≦ H / L ≦ 0.02T + 0.25
T is the number of decitex (dtex) of single yarn fineness
(A) A method for producing a short fiber nonwoven fabric, wherein a web is prepared by the airlaid method using the split type composite short fibers of (a) to obtain a nonwoven fabric.
(C) A short fiber nonwoven fabric obtained by the method for producing a short fiber nonwoven fabric of (a).
(A) A short fiber nonwoven fabric comprising 30% by mass or more of polyamide short fibers having a fiber length of 1.0 to 30 mm and a single yarn fineness of 0.05 to 5 dtex made of a polyamide-based polymer.
本発明の分割型複合短繊維は、空気攪拌による分割率が高く、ポリアミド短繊維とポリオレフィン短繊維の極細繊維に容易に分割するので、特に静電気の発生により繊維塊が発生しやすい乾式不織布の製造においても好適に使用することができる。そして、未分割部が少なく均一性に優れ、ソフトな風合いを有し、かつ通気度の低い、極細繊維からなる不織布を得ることが可能となる。 The split type composite short fiber of the present invention has a high split ratio by air agitation, and is easily split into ultrafine fibers of polyamide short fibers and polyolefin short fibers. Can also be suitably used. And it becomes possible to obtain the nonwoven fabric which consists of an ultrafine fiber with few undivided parts, excellent uniformity, a soft texture, and low air permeability.
また、本発明の短繊維不織布は、本発明の分割型複合短繊維から分割されたポリアミド短繊維の極細繊維を含有してなるものであるため、均一性とソフトな風合い、低通気度を有する不織布であり、様々な用途に使用することが可能となる。 Moreover, since the short fiber nonwoven fabric of the present invention contains the ultrafine fibers of polyamide short fibers divided from the split composite short fibers of the present invention, it has uniformity, soft texture and low air permeability. It is a nonwoven fabric and can be used for various purposes.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明の分割型複合短繊維(以下、複合短繊維と略する)は、ポリアミド系重合体(重合体Aとする)とポリオレフィン系重合体(重合体Bとする)の2成分からなり、繊維の長手方向に対して垂直に切断した断面において、重合体Bの周囲に接して重合体Aが複数個配列された形状を呈している(ただし、複合繊維の断面形状が円形断面のものを除く。)。 The split type composite short fiber (hereinafter abbreviated as composite short fiber) of the present invention comprises two components, a polyamide polymer (referred to as polymer A) and a polyolefin polymer (referred to as polymer B), and is a fiber. In the cross section cut perpendicularly to the longitudinal direction, the polymer B has a shape in which a plurality of polymers A are arranged in contact with the periphery of the polymer B (except that the cross-sectional shape of the composite fiber is a circular cross section) .)
つまり、図1〜3に示すように、重合体Bを主として、重合体Aがその周囲に複数個配列されたものであり、図1に示すものは、重合体Bを中心として重合体Aがその周囲に接して4個配列されているものである。図2に示すものは、重合体Bを中心として重合体Aがその周囲に接して8個配列されているものであり、図3に示すものは、重合体Bを中心として重合体Aがその周囲に接して12個配列されているものである。 That is, as shown in FIGS. 1 to 3, a polymer B is mainly arranged around the polymer B, and the polymer A shown in FIG. Four are arranged in contact with the periphery. The one shown in FIG. 2 is one in which eight polymers A are arranged in contact with the periphery around the polymer B, and the one shown in FIG. 3 is the polymer A around the polymer B. Twelve are arranged in contact with the periphery.
重合体Bの周囲に配される重合体Aの個数は、2〜20個が好ましく、中でも3〜8個が好ましい。重合体A、Bの形状は特に限定されるものではなく、丸や楕円形状のもののみならず、三角や四角等の多角形のものであってもよい。これらの形状は、分割後に得られる繊維の形状や繊度、紡糸時の操業性を考慮して適宜選択すればよい。 The number of the polymers A arranged around the polymer B is preferably 2 to 20, and more preferably 3 to 8. The shapes of the polymers A and B are not particularly limited, and may be not only round or elliptical shapes but also polygonal shapes such as triangles and squares. These shapes may be appropriately selected in consideration of the shape and fineness of the fiber obtained after the division and the operability during spinning.
さらには、重合体Aと重合体Bの複合割合は、得ようとする不織布等の製品の用途を考慮して適宜調整すればよいが、重合体Aの割合が50質量%以上であることが好ましく、中でも75質量%以上であることが好ましい。 Furthermore, the composite ratio of the polymer A and the polymer B may be appropriately adjusted in consideration of the use of a product such as a nonwoven fabric to be obtained, but the ratio of the polymer A may be 50% by mass or more. Among these, 75% by mass or more is preferable.
次に、本発明の複合短繊維は、繊維長が1.0〜30mmであり、さらに好ましい繊維長は、2〜25mm、より好ましくは5〜15mmである。また、単糸繊度は0.5〜20dtexであり、好ましくは1.0〜15dtexである。なお、繊維長はJIS L1015 8.4.1(平均繊維長)A法に基づき測定したものであり、単糸繊度はJIS L1015 8.5.1(正量繊度)B法(簡便法)に基づき測定したものである。 Next, the composite short fiber of the present invention has a fiber length of 1.0 to 30 mm, and a more preferable fiber length is 2 to 25 mm, more preferably 5 to 15 mm. The single yarn fineness is 0.5 to 20 dtex, preferably 1.0 to 15 dtex. The fiber length was measured based on JIS L1015 8.4.1 (average fiber length) A method, and the single yarn fineness was measured according to JIS L1015 8.5.1 (positive fineness) B method (simple method). It is measured based on.
繊維長が1.0mm未満であると、繊維の切断時に発生する熱で繊維同士の融着が起きやすくなる。一方、30mmを超えると、空気攪拌時に繊維同士の絡みによる繊維塊が生じて、繊維の分割率が低下する。 When the fiber length is less than 1.0 mm, the fibers tend to be fused by heat generated when the fibers are cut. On the other hand, if it exceeds 30 mm, a fiber lump due to entanglement of fibers occurs during air agitation, and the fiber division rate decreases.
単糸繊度が0.5dtex未満であると、製糸時の操業性、生産性の面から好ましくない。一方、20dtexを超えると、分割後の繊維の繊度が十分に細くならず、極細繊維を得ることが困難となる。 If the single yarn fineness is less than 0.5 dtex, it is not preferable from the standpoints of operability and productivity during yarn production. On the other hand, if it exceeds 20 dtex, the fineness of the fibers after the division is not sufficiently reduced, and it becomes difficult to obtain ultrafine fibers.
さらに、本発明の複合短繊維は、空気攪拌分割率が65%以上である。空気攪拌分割率とは、空気中で攪拌した際に複合繊維が重合体Aからなるポリアミド短繊維と重合体Bからなるポリオレフィン短繊維に分割する割合を示すものである。つまり、本発明における空気攪拌分割率とは、以下のようにして測定、算出するものである。 Furthermore, the composite short fiber of the present invention has an air stirring division ratio of 65% or more. The air agitation division ratio indicates a ratio at which the composite fiber is divided into a polyamide short fiber made of the polymer A and a polyolefin short fiber made of the polymer B when stirred in the air. That is, the air stirring division ratio in the present invention is measured and calculated as follows.
本発明の複合短繊維を図7に示すような簡易空気流撹拌試験機を用い、100gの複合短繊維をサンプル送り込み用ブロア3から空気流にて撹拌タンク1に投入し、撹拌用ブロア2から20m/秒の空気流を吹き込み、攪拌タンク1内で1分間撹拌する。攪拌後の短繊維をサンプリング口4より取り出し、任意の10ケ所を選び、繊維断面の拡大写真を撮影する。撮影した10枚の写真中において複合繊維から分割された重合体A(ポリアミド短繊維)の数を数え、分割前の重合体Aの配列数より下記式にて算出する。
空気攪拌分割率(%)=(分割された重合体Aの数/分割前の重合体Aの配列数)×100
例:図5の模式図において、分割された重合体Aの数=9、分割前の重合体Aの配列数=12、分割率(%)=(9/12)×100=75
The composite short fiber of the present invention was introduced into the stirring tank 1 by the air flow from the sample feeding blower 3 to the stirring tank 1 using a simple air flow stirring tester as shown in FIG. An air flow of 20 m / sec is blown and stirred in the stirring tank 1 for 1 minute. The short fibers after stirring are taken out from the sampling port 4, and arbitrary 10 positions are selected, and an enlarged photograph of the fiber cross section is taken. The number of the polymer A (polyamide short fiber) divided from the composite fiber is counted in the 10 photographs taken, and the following formula is calculated from the number of arrays of the polymer A before the division.
Air stirring division ratio (%) = (number of divided polymers A / number of arrangements of polymers A before division) × 100
Example: In the schematic diagram of FIG. 5, the number of divided polymers A = 9, the number of arrays of the polymer A before dividing = 12, the dividing ratio (%) = (9/12) × 100 = 75
空気攪拌分割率が65%以上であることによって、空気攪拌により、ポリアミド短繊維とポリオレフィン短繊維の極細繊維に容易に分割するので、エアレイド法による乾式不織布を製造する場合はもちろんのこと、湿式不織布を製造する場合においても、未分割部の少ない、均一性に優れ、通気度の低い、ソフトな風合いの不織布を得ることが可能となる。空気攪拌分割率が65%未満であると、上記のような効果を奏することが困難となる。空気攪拌分割率は中でも70%以上、さらには75%以上であることが好ましい。 When the air stirring division ratio is 65% or more, it is easily divided into ultrafine fibers of polyamide short fibers and polyolefin short fibers by air stirring. Even in the case of producing a non-divided portion, excellent uniformity, low air permeability, and soft texture nonwoven fabric can be obtained. If the air agitation division ratio is less than 65%, it is difficult to achieve the above effects. The air stirring division ratio is preferably 70% or more, and more preferably 75% or more.
なお、図4に示すような、重合体A、Bを放射状に配列した複合短繊維の場合、空気攪拌による分割が難しくなり、空気攪拌分割率が低くなり、65%以上とすることができない。 In addition, in the case of the composite short fiber in which the polymers A and B are arranged radially as shown in FIG. 4, division by air stirring becomes difficult, and the air stirring division ratio becomes low and cannot be made 65% or more.
さらに、本発明の複合短繊維は、捲縮が付与されているものであり、中でも単糸の捲縮形態が捲縮部の最大山部において、山部の頂点と隣接する谷部の底点2点を結んだ三角形の高さ(H)と底辺(L)の比(H/L)が下記(1)式を満足する。
(1)式:0.01T+0.10≦H/L≦0.02T+0.25
Tは単糸繊度のデシテックス(dtex)数
このような形状とすることにより、静電気の発生が少なくなり、短繊維同士が集合して繊維塊を生じることが格段に減少されるため、空気攪拌分割率も高いものとなる。
Furthermore, the composite short fiber of the present invention has been crimped , and in particular, at the maximum peak portion of the crimped portion, the bottom point of the valley portion adjacent to the apex of the peak portion is the crimped form of the single yarn. The ratio (H / L) of the height (H) and base (L) of the triangle connecting the two points satisfies the following formula (1) .
(1) Formula: 0.01T + 0.10 ≦ H / L ≦ 0.02T + 0.25
T is the number of detexes (dtex) of single yarn fineness. By using such a shape, static electricity generation is reduced, and short fibers gather together to form a fiber mass. The rate will also be high.
つまり、上記のような捲縮形態を満足する場合は、空気攪拌分割率を70%以上とすることができ、エアレイド法で乾式不織布を得る場合に特に好適である。さらには、後述するように、本発明の複合短繊維の捲縮形態が(1)〜(3)式を全て満足する場合は、空気攪拌分割率を75%以上とすることができる。 That is, when the above crimped form is satisfied, the air stirring division ratio can be set to 70% or more, which is particularly suitable when a dry nonwoven fabric is obtained by the airlaid method. Furthermore, as will be described later, when the crimped form of the composite short fiber of the present invention satisfies all the expressions (1) to (3), the air stirring division ratio can be 75% or more.
乾式不織布を得る場合、特にエアレイド法で製造する場合には、静電気の発生が多くなる。このエアレイド法に用いられる装置としては、例えば特開平5−9813号公報に開示されているような、複数の回転シリンダーをハウジング内に収納し、これらシリンダーを高速回転させることによってシリンダーの周縁に積極的に空気流を発生させ、この空気流によって繊維成分を所定方向に吹き飛ばし得る装置が挙げられる。そして、このエアレイド法によるウエブ形成(短繊維の解繊、搬送、分散、積層工程の全て)においては、空気流を積極的に発生させているために、繊維同士が摩擦され、また繊維と装置(金属製部材)との摩擦によっても静電気の発生が多くなる。 When a dry nonwoven fabric is obtained, particularly when it is produced by the airlaid method, static electricity is generated more. As an apparatus used for this airlaid method, for example, as disclosed in Japanese Patent Laid-Open No. 5-9813, a plurality of rotating cylinders are housed in a housing, and these cylinders are rotated at a high speed to positively move to the periphery of the cylinder. An apparatus that can generate an air flow and blow the fiber component in a predetermined direction by the air flow can be mentioned. In the web formation by the airlaid method (short fiber defibration, transport, dispersion, and lamination processes), the air flow is actively generated, so that the fibers are rubbed with each other. The generation of static electricity also increases due to friction with the (metal member).
本発明の複合短繊維は、捲縮を有する繊維の形状を特定のものとすることで、ウェブ形成の各工程(解繊、搬送、分散、積層工程)において、繊維同士、繊維と金属間での摩擦による静電気を発生しにくく、かつ発生した静電気をためにくいものとなり、短繊維同士が集合して繊維塊を生じることが格段に減少される。 The composite short fiber of the present invention has a specific shape of the fiber having crimps, so that in each step of web formation (defibration, conveyance, dispersion, lamination step), between fibers, between fibers and metal It is difficult to generate static electricity due to friction, and it is difficult to accumulate the generated static electricity, so that short fibers gather to form a fiber lump.
上記のような静電気の問題を考慮する場合、捲縮数が多く、捲縮が大きく又は強く付与されているほど形状的に電気をためやすいものとなる。つまり、繊維に捲縮が付与されていると、3次元的な立体形状を呈するため、その立体的な空間部分が多くなるほど静電気がたまりやすくなる。一方、捲縮がないフラットな状態となるほど、平面的な形状となり、静電気をためにくくなるが、繊維同士、あるいは繊維と金属との接触点(面)が増え、摩擦による静電気の発生が多くなる。 When considering the problem of static electricity as described above, the more the number of crimps and the larger or stronger the crimps are applied, the easier it is to store electricity in terms of shape. That is, if the fiber is crimped, it exhibits a three-dimensional solid shape, so that static electricity tends to accumulate as the three-dimensional space portion increases. On the other hand, as the flat state without crimping becomes flat, it becomes more flat and less likely to accumulate static electricity. However, the number of contact points (surfaces) between fibers or between fibers and metal increases, and the generation of static electricity due to friction increases. .
嵩高性を考慮する場合、捲縮がないフラットな状態とするほど得られる不織布の嵩高性は低下する。一方、捲縮が付与されているほど、得られる不織布の嵩高性は向上するが、繊維の嵩高性も高くなるため、ウエブ形成の工程中において、繊維同士が絡み合い、繊維塊を生じやすくなり、均一性に劣った不織布となりやすい。 When considering the bulkiness, the bulkiness of the nonwoven fabric obtained decreases as the flat state without crimping decreases. On the other hand, the more the crimp is applied, the higher the bulkiness of the resulting nonwoven fabric, but the higher the bulkiness of the fibers. It tends to be a nonwoven fabric with poor uniformity.
また、静電気や繊維の絡み合いの問題、得られる不織布の風合い(嵩高性や柔軟性)は、単糸繊度によっても影響を受けるものである。つまり、静電気の問題においては、繊維同士あるいは繊維と金属との接触により静電気は発生するものなので、接触点や接触面の大きさを左右する単糸繊度の要因は大きいものとなる。また、捲縮により3次元的な立体形状を形成するので、単糸繊度はその空間部分の大きさを左右する要因となり、静電気をためる程度や繊維の絡みあいの程度を左右する要因となる。 Moreover, the problem of static electricity and fiber entanglement, and the texture (bulkness and flexibility) of the resulting nonwoven fabric are also affected by the single yarn fineness. That is, in the problem of static electricity, static electricity is generated by contact between fibers or between a fiber and a metal, and thus the single yarn fineness factor that determines the size of the contact point and the contact surface is large. In addition, since a three-dimensional solid shape is formed by crimping, the single yarn fineness is a factor that determines the size of the space portion, and is a factor that determines the degree of static electricity and the degree of fiber entanglement.
そこで、本発明者等は、これらの要因を考えあわせて検討し、分割型複合短繊維の形状を、単糸繊度を考慮した特定の捲縮が付与された立体形状とすることにより、特に上記の効果(静電気、繊維絡みの防止と不織布風合いの向上)が向上され、さらに、分割型複合短繊維が空気攪拌で容易に分割され、前記した空気攪拌分割率もさらに高くなることを見出した。 Therefore, the present inventors have considered these factors in consideration, and by making the shape of the split-type composite short fibers into a three-dimensional shape to which a specific crimp considering the single yarn fineness is given, (The prevention of static electricity and fiber entanglement and the improvement of the nonwoven fabric texture) were further improved, and further, the split-type composite short fibers were easily divided by air agitation, and the above-mentioned air agitation division ratio was further increased.
まず、本発明の繊維は、図6に示すように、単糸の捲縮形態において、捲縮部の最大山部における山部の頂点Pと、隣接する谷部の底点Q、Rの2点を結んで三角形とし、この三角形の高さ(H)と底辺(L)の比(H/L)が下記(1)式を満足するものである。
ここで、最大山部とは、本発明の繊維の繊維長において複数の山部がある場合、山部の高さ(H)が最大のものをいう。
(1)式:0.01T+0.10≦H/L≦0.02T+0.25
First, as shown in FIG. 6, the fiber of the present invention is a single yarn crimped form in which the peak apex P of the peak portion at the maximum peak portion of the crimped portion and the bottom points Q and R of the adjacent valley portions are two. The points are connected to form a triangle, and the ratio (H / L) of the height (H) to the base (L) of the triangle satisfies the following formula (1).
Here, when there are a plurality of peak portions in the fiber length of the fiber of the present invention, the maximum peak portion means the one having the maximum peak height (H).
(1) Formula: 0.01T + 0.10 ≦ H / L ≦ 0.02T + 0.25
捲縮の度合いを表すためには、一般的に捲縮率が用いられるが、捲縮率の測定方法は、荷重をかけたときと無荷重状態での長さの差から求めるものである。しかし、本発明においては、後述する捲縮率を規定した(3)式を満足していたとしても、繊維中の一部の捲縮部に立体形状の空間部分が大きくなるような、捲縮が大きくかかった部分があると、静電気をためやすく、繊維同士の絡み合いが生じやすくなる。そこで(1)式に規定するように、捲縮形態として最大山部における形態を特定のものとすることで、捲縮による空間部分の大きさを特定のものとし、これにより静電気や繊維の絡みによる繊維塊の発生を防ぐことが可能となる。 In order to express the degree of crimp, the crimp rate is generally used, but the method for measuring the crimp rate is obtained from the difference in length between when a load is applied and when there is no load. However, in the present invention, even if the expression (3) that defines the crimping rate described later is satisfied, the crimping is such that the space part of the three-dimensional shape becomes large in some crimped parts in the fiber. If there is a part where the area is large, it is easy to accumulate static electricity, and the fibers tend to be entangled. Therefore, as specified in Equation (1), by specifying the shape at the maximum peak as a crimped shape, the size of the space portion due to crimping is specified, so that static electricity and fiber entanglement It is possible to prevent the generation of fiber lumps due to.
H/Lが大きすぎると、繊維の立体形状において、空間部分が大きくなり、静電気をためやすく、繊維の絡みが生じやすくなる。一方、H/Lが小さすぎると、繊維の形態がフラットに近いものとなり、繊維同士、あるいは繊維と金属との接触点(面)が多くなるため静電気が発生しやすく、繊維塊が生成し、空気攪拌分割率も低下する。このため、空気攪拌等の分割処理を行っても未分割部が多くなり、得られる不織布は均一性に乏しいものとなりやすい。 When H / L is too large, the space portion becomes large in the three-dimensional shape of the fiber, and static electricity is easily accumulated, and the fiber becomes entangled easily. On the other hand, if the H / L is too small, the shape of the fiber becomes nearly flat, and the contact points (surfaces) between the fibers or between the fibers and the metal increase, so static electricity is likely to be generated, and a fiber lump is generated. The air stirring division ratio also decreases. For this reason, even if division processing such as air stirring is performed, the number of undivided portions increases, and the resulting nonwoven fabric tends to be poor in uniformity.
なお、H/Lの測定は次のとおりである。まず、短繊維1gを採取し、ここから任意に20本の単繊維を取り出す。そして、取り出した単繊維について拡大写真(約10倍)を撮り、その写真から上記したように、最大山部における、山部の頂点Pと隣接する谷部の底点Q、Rの2点を結んで三角形とし、三角形の高さ(H)と底辺(L)の長さを測定し、その比(H/L)を算出するものである。このようにして20本分の単繊維の測定を行い、その平均値をとる。 In addition, the measurement of H / L is as follows. First, 1 g of short fibers are collected, and 20 single fibers are arbitrarily extracted therefrom. Then, an enlarged photograph (about 10 times) is taken with respect to the taken out single fiber, and as described above from the photograph, two points of the bottom points Q and R of the valley part adjacent to the peak part P at the peak part are adjacent to the maximum peak part. A triangle is formed, and the height (H) and the base (L) of the triangle are measured, and the ratio (H / L) is calculated. In this way, 20 single fibers are measured and the average value is taken.
次に、本発明の複合短繊維は、(2)式:0.1T+3.8≦捲縮数≦0.3T+7.3 〔Tは単糸繊度のデシテックス(dtex)数〕を満足することが好ましい。この捲縮数とは、JIS L1015 8.12.1(けん縮数)に基づき測定、算出したものである。なお、捲縮数の測定において繊維長が短い場合は、捲縮付与後、カット前の繊維において測定し、繊維長25mmあたりの個数に換算する。 Next, the composite short fiber of the present invention preferably satisfies the formula (2): 0.1T + 3.8 ≦ crimped number ≦ 0.3T + 7.3 [T is the number of dtex of the single yarn fineness]. The crimp number is measured and calculated based on JIS L1015 8.12.1 (crimp number). In addition, when the fiber length is short in the measurement of the number of crimps, it is measured on the fiber before cutting after the crimping and is converted into the number per 25 mm fiber length.
捲縮数が(2)式より高くなると、3次元的な立体形状による空間部分となる捲縮部が多くなり、空気流での短繊維の送り込み、分散、解繊工程等において繊維間で発生した静電気をためやすくなり、また、繊維同士が絡みやすくなるため玉状の繊維塊が生成し、空気攪拌分割率が低下して好ましくない。一方、(2)式より低くなると、捲縮部が少なくなることから繊維の形態がフラットに近くなり、繊維同士あるいは繊維と金属との接触点(面)が多くなるため静電気の発生が生じやすく、玉状の繊維塊が生成し、空気攪拌分割率が低下して好ましくない。このため、空気攪拌等による分割処理を行っても未分割部が多くなり、得られる不織布は均一性に乏しいものとなる。 If the number of crimps is higher than that in equation (2), the number of crimped parts that become a space part due to a three-dimensional solid shape will increase, and will be generated between fibers in the short fiber feeding, dispersion, and defibrating process by airflow This is not preferable because static electricity is easily accumulated and fibers are easily entangled with each other. On the other hand, when the value is lower than the expression (2), the crimped portion is reduced, so that the shape of the fiber is almost flat, and the number of contact points (surfaces) between the fibers or between the fiber and the metal increases, so that static electricity is easily generated. A ball-shaped fiber lump is formed, and the air stirring division ratio is lowered, which is not preferable. For this reason, even if it performs the division | segmentation process by air stirring etc., an undivided part increases and the nonwoven fabric obtained becomes a thing with poor uniformity.
さらに、本発明の複合短繊維は、(3)式:0.8T+0.3≦捲縮率≦1.0T+4.9〔Tは単糸繊度のデシテックス(dtex)数〕を満足することが好ましい。この捲縮率とは、JIS L1015 8.12.2(けん縮率及び残留けん縮率)に基づき測定、算出したものである。なお、捲縮率の測定において繊維長が短くて測定が困難となる場合は、捲縮付与後、カット前の繊維において測定し、繊維長25mmあたりの個数に換算する。 Furthermore, it is preferable that the composite short fiber of the present invention satisfies the following formula (3): 0.8T + 0.3 ≦ crimp rate ≦ 1.0T + 4.9 [T is the decitex (dtex) number of single yarn fineness]. The crimp rate is measured and calculated based on JIS L1015 8.12.2 (crimp rate and residual crimp rate). In addition, when the fiber length is short in the measurement of the crimp rate, it is difficult to measure, and after the crimp is applied, the fiber is measured before being cut and converted to the number per 25 mm fiber length.
捲縮率が(3)式より高くなると、3次元的な立体形状による空間部分が多く又は大きくなり、空気流での短繊維の送り込み、分散、解繊工程等において繊維間で発生した静電気をためやすくなり、また、繊維同士が交絡しやすくなるため、玉状の繊維塊が生成し、空気攪拌分割率が低下して好ましくない。一方、(3)式より低くなると、繊維の形態がフラットに近いものとなり、繊維同士、あるいは繊維と金属との接触点(面)が多くなるため静電気の発生が生じやすく、玉状の繊維塊が生成し、空気攪拌分割率が低下して好ましくない。このため、空気攪拌等による分割処理を行っても未分割部が多くなり、得られる不織布は均一性に乏しいものとなる。 When the crimping rate is higher than that of Equation (3), the space portion due to the three-dimensional solid shape increases or becomes large, and static electricity generated between the fibers in the process of feeding, dispersing, and defibrating short fibers in the air flow. Therefore, the fibers are easily entangled with each other, so that a ball-like fiber lump is generated and the air stirring division ratio is lowered, which is not preferable. On the other hand, when the value is lower than the expression (3), the shape of the fiber becomes almost flat, and the number of contact points (surfaces) between the fibers or between the fiber and the metal increases. This is not preferable because the air stirring division ratio is reduced. For this reason, even if it performs the division | segmentation process by air stirring etc., an undivided part increases and the nonwoven fabric obtained becomes a thing with poor uniformity.
次に、本発明の複合短繊維を構成するポリアミド系重合体としては、繊維を安定して製糸するために、また、後述するように、分割後のポリアミド繊維を主体繊維として使用することを考慮すると、融点を200℃以上とすることが好ましく、中でも融点200〜280℃であることが好ましい。 Next, as the polyamide polymer constituting the composite short fiber of the present invention, in order to stably produce the fiber, and as described later, it is considered that the divided polyamide fiber is used as the main fiber. Then, it is preferable that melting | fusing point shall be 200 degreeC or more, and it is preferable that it is 200-280 degreeC above all.
ポリアミド系重合体としては、具体的には、脂肪族ポリアミド、芳香族ポリアミド等が挙げられ、中でもナイロン6、ナイロン66が好ましい。必要に応じて他のポリアミドが共重合された共重合ポリアミドとしてもよく、また2種類以上のポリアミドを混合して用いてもよい。 Specific examples of the polyamide polymer include aliphatic polyamide and aromatic polyamide, and nylon 6 and nylon 66 are particularly preferable. If necessary, it may be a copolymerized polyamide obtained by copolymerizing another polyamide, or a mixture of two or more polyamides may be used.
また、本発明の複合短繊維を構成するポリオレフィン系重合体としては、炭素数2〜18の脂肪族α−モノオレフィンが挙げられ、中でもポリエチレン、ポリプロピレンが好ましい。必要に応じて他のオレフィンが共重合された共重合オレフィンとしてもよく、また、2種類以上のポリオレフィンを混合して用いてもよい。 In addition, examples of the polyolefin polymer constituting the composite short fiber of the present invention include aliphatic α-monoolefins having 2 to 18 carbon atoms, among which polyethylene and polypropylene are preferable. If necessary, it may be a copolymerized olefin in which other olefins are copolymerized, or two or more kinds of polyolefins may be mixed and used.
さらに、本発明の複合短繊維中には、その効果を損なわない範囲で、酸化チタン等の艶消剤、ヒンダートフェノール系化合物等の酸化防止剤、紫外線吸収剤、光安定剤、顔料、難燃剤、抗菌剤、導電性付与剤、親水剤、吸水剤等が配合されていてもよい。 Further, in the composite short fiber of the present invention, a matting agent such as titanium oxide, an antioxidant such as a hindered phenol compound, an ultraviolet absorber, a light stabilizer, a pigment, a difficult dye, and the like, as long as the effect is not impaired. A flame retardant, an antibacterial agent, a conductivity imparting agent, a hydrophilic agent, a water absorbing agent and the like may be blended.
そして、本発明の複合短繊維は、乾式不織布用途において、エアレイド法により製造する際に用いる。エアレイド法によると、繊維の生産機内へ搬送する際(予備解繊や風送)や解繊する際に繊維が容易にポリアミド短繊維とポリオレフィン短繊維に分割し、繊維を分割させる工程や設備を別途設ける必要がなくコスト的に有利である。 The composite short fiber of the present invention, the dry nonwoven fabric applications, used for producing the d Areido method. According to the airlaid method, when the fiber is transported into the production machine (preliminary defibration or air feed) or defibrated, the fiber is easily divided into polyamide short fibers and polyolefin short fibers, and a process and equipment for dividing the fibers are provided. There is no need to provide it separately, which is advantageous in terms of cost.
また、本発明の複合短繊維は、不織布とする際には他の繊維とともに用いても、本発明の複合短繊維のみを用いてもよい。中でも本発明の複合短繊維の組成を考慮すると、本発明の複合短繊維のみを用いて不織布を得ることが好ましい。つまり、分割後のポリアミド短繊維を主体繊維、ポリオレフィン短繊維をバインダー繊維とし、熱処理を施してポリオレフィン短繊維(バインダー繊維)部分を溶融させて不織布を得ることが好ましい。 In addition, the composite short fiber of the present invention may be used together with other fibers when making a nonwoven fabric, or only the composite short fiber of the present invention may be used. Among these, considering the composition of the composite short fiber of the present invention, it is preferable to obtain a nonwoven fabric using only the composite short fiber of the present invention. That is, it is preferable to use a polyamide short fiber after splitting as a main fiber and a polyolefin short fiber as a binder fiber, and heat-treat to melt the polyolefin short fiber (binder fiber) portion to obtain a nonwoven fabric.
上記のように本発明の短繊維のみを用いて不織布とする場合は、熱風による熱処理のみでバインダー繊維(ポリオレフィン短繊維)を容易に溶融させ、主体繊維(ポリアミド短繊維)を接着させることができるので、一般的に行われているバインダー樹脂による接着あるいは熱ロールによる圧着工程を省略することができ、コスト的に有利である。 As described above, when the nonwoven fabric is formed using only the short fiber of the present invention, the binder fiber (polyolefin short fiber) can be easily melted and the main fiber (polyamide short fiber) can be bonded only by heat treatment with hot air. Therefore, it is possible to omit a generally performed bonding with a binder resin or a pressure bonding step with a hot roll, which is advantageous in terms of cost.
次に、本発明の短繊維不織布について説明する。本発明の短繊維不織布は、前記複合短繊維を用いてエアレイド法によりウェブを作成して不織布を得るものであり、ポリアミド系重合体からなる繊維長が1.0〜30mm、単糸繊度が0.05〜5dtexであるポリアミド短繊維を30質量%以上含有してなるものである。 Next, the short fiber nonwoven fabric of the present invention will be described. The short fiber nonwoven fabric of the present invention is a nonwoven fabric obtained by creating a web by the airlaid method using the composite short fibers, the fiber length of the polyamide-based polymer is 1.0-30 mm, the single yarn fineness is 0.05-5 dtex It contains 30% by mass or more of polyamide short fibers.
本発明の短繊維不織布は、上記した本発明の複合短繊維のみを用いて不織布とすることが好ましく、ポリアミド短繊維を主体繊維、ポリオレフィン短繊維をバインダー繊維として、バインダー繊維を溶融させて、主体繊維を接着したものが好ましい。 The short fiber nonwoven fabric of the present invention is preferably a nonwoven fabric using only the above-described composite short fiber of the present invention. The polyamide short fiber is a main fiber and the polyolefin short fiber is a binder fiber. What adhered the fiber is preferable.
そして、ポリアミド短繊維は、単糸の形状が本発明の複合短繊維と同様のものであり、本発明の複合短繊維における(1)式(本発明の短繊維不織布における(4)式)の形状を満足することが好ましく、さらには、本発明の複合短繊維における(2)、(3)式の捲縮数と捲縮率を満足することが好ましい。 The polyamide short fiber has the same single yarn shape as the composite short fiber of the present invention, and is represented by the formula (1) in the composite short fiber of the present invention (the formula (4) in the short fiber nonwoven fabric of the present invention). It is preferable to satisfy the shape, and it is further preferable to satisfy the number of crimps and the crimp rate of the expressions (2) and (3) in the composite short fiber of the present invention.
不織布中のポリアミド短繊維は、30質量%以上、中でも40質量%以上であることが好ましい。30質量%未満であると、得られる不織布は、極細繊維(ポリアミド繊維)の割合が少なくなることから、均一性に劣り、低通気度、ソフト性にも劣るものとなる。また、機械的特性に乏しいものとなりやすい。 The polyamide short fibers in the nonwoven fabric are preferably 30% by mass or more, and more preferably 40% by mass or more. When the content is less than 30% by mass, the resulting nonwoven fabric has a low proportion of ultrafine fibers (polyamide fibers), and therefore is inferior in uniformity, inferior in low air permeability and softness. Also, it tends to have poor mechanical properties.
本発明の短繊維不織布において、不織布中のポリアミド短繊維の質量が30質量%以上であれば、本発明の複合短繊維とともに他の短繊維を用いてもよく、この場合、他の短繊維は主体繊維、バインダー繊維のいずれに用いてもよい。得られる不織布の均一性、柔軟性等を考慮すると、他の短繊維は、単糸の形状が本発明の短繊維と同様のものであり、本発明における(1)〜(3)式の形状、捲縮数、捲縮率を満足するものが好ましい。 In the short fiber nonwoven fabric of the present invention, as long as the mass of polyamide short fibers in the nonwoven fabric is 30% by mass or more, other short fibers may be used together with the composite short fiber of the present invention. You may use for any of a main fiber and a binder fiber. In consideration of the uniformity, flexibility, etc. of the resulting nonwoven fabric, the other short fibers have the same single yarn shape as the short fibers of the present invention, and the shapes of the formulas (1) to (3) in the present invention Those satisfying the number of crimps and the crimp rate are preferred.
次に、本発明の複合短繊維の製造方法について、一例を用いて説明する。
ポリアミド系重合体とポリオレフィン系重合体とを、通常用いられる複合紡糸装置を用いて、ポリオレフィン系重合体の周囲に接してポリアミド系重合体が複数個配列された形状となるように穿孔した紡糸孔から複合紡糸する。
Next, the manufacturing method of the composite short fiber of this invention is demonstrated using an example.
A spinning hole in which a polyamide polymer and a polyolefin polymer are perforated so as to be in a shape in which a plurality of polyamide polymers are arranged in contact with the periphery of the polyolefin polymer using a commonly used composite spinning device Spin the composite.
そして、紡糸した糸条を延伸することなく、一旦巻き取る。得られた未延伸糸を集束して1〜100ktex程度のトウとし、延伸倍率2〜6倍、温度20〜90℃程度で熱延伸を施す。そして、押し込み式クリンパーで捲縮を付与した後、必要に応じて仕上げ油剤を付与し、所望の繊維長にカットして本発明の繊維を得る。 Then, the spun yarn is wound once without stretching. The obtained undrawn yarn is converged to form a tow of about 1 to 100 ktex, and hot drawn at a draw ratio of 2 to 6 times and a temperature of about 20 to 90 ° C. And after crimping with an indentation type crimper, a finishing oil agent is provided as needed, and it cuts into desired fiber length, and obtains the fiber of this invention.
本発明で規定する捲縮形態を満足するものとするには、延伸条件(倍率、温度)及び押込み式クリンパー等の捲縮付与装置での捲縮付与条件(ニップ圧力、スタフィング圧力)を調整することにより行う。 In order to satisfy the crimping form defined in the present invention, the stretching conditions (magnification, temperature) and the crimping conditions (nip pressure, stuffing pressure) in a crimping apparatus such as a push-in crimper are adjusted. By doing.
次に、本発明の短繊維不織布の製造方法について、一例を用いて説明する。
予備開繊として、図7に示すような簡易空気流撹拌試験機を用い、本発明の複合短繊維をサンプル送り込み用ブロア3から空気流にて撹拌タンク1に投入し、撹拌用ブロア2から20m/秒の空気流を吹き込み、攪拌タンク1内で1分間撹拌する。続いて、図8に示す簡易エアレイド試験機を用い、試料投入ブロア13より、予備開繊した本発明の繊維を投入し、解繊翼回転モータ15により解繊翼回転用スプロケット16を介して回転する、それぞれ5枚1組の第1解繊翼11と第2解繊翼12で解繊し、飛散落下させる。これにより、本発明の複合短繊維はポリアミド短繊維とポリオレフィン短繊維に分割される。そして、落下する両短繊維を下部にあるサクションボックス14で吸引しつつ、矢印方向に移動する集綿コンベア17の上に堆積させウエブを作成する。続いて、下流にある熱処理機18にて熱処理(熱処理温度:ポリオレフィン短繊維の融点+10℃程度)を施し、ポリオレフィン短繊維をバインダー繊維として溶融させ、ポリアミド短繊維からなる乾式不織布を得る。不織布の目付調整は、集綿コンベア17の移動速度を変化させることで行う。
Next, the manufacturing method of the short fiber nonwoven fabric of this invention is demonstrated using an example.
As a preliminary opening, a simple air flow agitation tester as shown in FIG. 7 is used, and the composite short fiber of the present invention is introduced into the agitation tank 1 from the sample feeding blower 3 by an air flow, and 20 m from the agitation blower 2 The air flow of / sec is blown and stirred in the stirring tank 1 for 1 minute. Subsequently, using the simple airlaid tester shown in FIG. 8, the pre-opened fiber of the present invention is fed from the sample loading blower 13 and is rotated by the defibrating blade rotating motor 15 via the defibrating blade rotating sprocket 16. The set of the first defibrating blade 11 and the second defibrating blade 12 is defibrated and scattered and dropped. Thereby, the composite short fiber of this invention is divided | segmented into a polyamide short fiber and a polyolefin short fiber. Then, while dropping both short fibers with the suction box 14 at the bottom, they are deposited on the cotton collecting conveyor 17 moving in the direction of the arrow to create a web. Subsequently, heat treatment (heat treatment temperature: melting point of polyolefin short fibers + about 10 ° C.) is performed by a heat treatment machine 18 located downstream, and the polyolefin short fibers are melted as binder fibers to obtain a dry nonwoven fabric made of polyamide short fibers. The basis weight adjustment of the nonwoven fabric is performed by changing the moving speed of the cotton collection conveyor 17.
次に、本発明を実施例によって具体的に説明する。なお、実施例における各特性値の測定方法は以下の通りである。
(1)融点
示差走査型熱量計(パーキンエルマー社製DSC7)を用い、昇温速度20℃/分で測定した融解吸収曲線の極値を与える温度を融点とした。
(2)相対粘度
96%硫酸を溶媒として、濃度1g/dl、温度25℃で測定した。
(3)メルトインデックス(MI)
ASTM D 1238で測定した。
(4)繊度、繊維長、捲縮部のH/L、捲縮数、捲縮率
前記の方法で測定、算出した。
(5)空気攪拌分割率
前記の方法で測定、算出した。
(6)繊維塊の生成
得られた複合短繊維を上記空気攪拌分割率と同様の条件、方法で空気攪拌する。攪拌後の短繊維を取り出す際に短繊維を0.1g採取し、黒色紙の上に広げ、繊維塊の有無を目視にて評価した。
○:繊維塊が発生していない
△:繊維塊が少量発生している
×:繊維塊が大量発生している
(7)不織布の均一性、通気度、柔軟性
−均一性−
得られた乾式不織布の均一性の状態を目視にて観察し、以下のように3段階評価とした。
○:十分に解繊されて均一である
△:部分的に未解繊な部分がある
×:解繊が不十分で不均一である
−通気度−
得られた乾式不織布を、織物通気度試験機(大栄科学精器製作所製AP−360型)を用いて通気度を測定し、5点の平均値により以下のように3段階評価とした。
分割前の繊度が2.2dtexの場合
○:通気度が20.0cc/cm2/sec未満である。
△:通気度が20.0cc/cm2/sec以上、30.0cc/cm2/sec未満である。
×:通気度が30.0cc/cm2/sec以上である。
分割前の繊度が17.0dtexの場合
○:通気度が30.0cc/cm2/sec未満である。
△:通気度が30.0cc/cm2/sec以上、40.0cc/cm2/sec未満である。
×:通気度が40.0cc/cm2/sec以上である。
−柔軟性−
得られた湿式不織布を20cm×20cmに切り出してサンプルとし、パネラーによる感触で柔軟性を以下のように3段階評価とした。
○:良好
△:やや不良
×:不良
Next, the present invention will be specifically described with reference to examples. In addition, the measuring method of each characteristic value in an Example is as follows.
(1) Melting point The temperature which gives the extreme value of the melting absorption curve measured with a differential scanning calorimeter (DSC7 manufactured by Perkin Elmer Co., Ltd.) at a temperature rising rate of 20 ° C./min was defined as the melting point.
(2) Relative viscosity Measured at a concentration of 1 g / dl and a temperature of 25 ° C. using 96% sulfuric acid as a solvent.
(3) Melt index (MI)
Measured with ASTM D 1238.
(4) Fineness, fiber length, H / L of crimped portion, number of crimps, crimp rate Measured and calculated by the above method.
(5) Air stirring division ratio Measured and calculated by the above method.
(6) Formation of fiber lump The obtained composite short fiber is air-stirred under the same conditions and method as the air-stirring division ratio. When taking out the short fibers after stirring, 0.1 g of the short fibers were collected and spread on black paper, and the presence or absence of a fiber lump was visually evaluated.
○: No fiber lump is generated Δ: A small amount of fiber lump is generated x: A large amount of fiber lump is generated (7) Uniformity, air permeability and flexibility of the nonwoven fabric
The uniformity state of the obtained dry nonwoven fabric was observed visually, and was evaluated in three stages as follows.
○: Fully defibrated and uniform △: Partially undefibrated part ×: Insufficient defibration and non-uniformity-Air permeability-
The obtained dry nonwoven fabric was measured for air permeability using a fabric air permeability tester (AP-360 type, manufactured by Daiei Kagaku Seisaku Seisakusho), and was evaluated according to an average of 5 points as follows.
When fineness before division is 2.2 dtex ○: Air permeability is less than 20.0 cc / cm 2 / sec.
Δ: The air permeability is 20.0 cc / cm 2 / sec or more and less than 30.0 cc / cm 2 / sec.
X: Air permeability is 30.0 cc / cm 2 / sec or more.
When the fineness before division is 17.0 dtex ○: The air permeability is less than 30.0 cc / cm 2 / sec.
Δ: The air permeability is 30.0 cc / cm 2 / sec or more and less than 40.0 cc / cm 2 / sec.
X: The air permeability is 40.0 cc / cm 2 / sec or more.
-Flexibility-
The obtained wet nonwoven fabric was cut out into 20 cm × 20 cm to make a sample, and the softness was evaluated by a three-step evaluation as follows according to the touch of the panel.
○: Good △: Somewhat bad ×: Bad
実施例1
融点が216℃、相対粘度2.53のナイロン6を重合体Aとし、融点132℃、メルトインデックス(MI)値が20g/分のポリエチレンを重合体Bとし、これらを通常の複合溶融紡糸装置を用い、紡糸温度270℃、吐出量616g/min(ナイロン462g/min、ポリエチレン154g/min)、紡糸速度800m/minの条件で溶融紡糸を行った。このとき、図1に示すような断面形状の繊維となるように複合紡糸を行い(紡糸孔数1014個の紡糸口金を使用)、未延伸糸を得た。得られた未延伸糸を11.5ktexのトウに集束した後、延伸倍率3.45倍、延伸温度50℃で延伸を行った。続いて押し込み式クリンパーで捲縮付与条件をニップ圧0.43MPa、スタフィング圧0.15MPaとして、捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする油剤を付着量0.2質量%となるように付与した後、切断して単糸繊度2.2dtex、繊維長5mmの複合短繊維を得た。
図7に示す簡易空気流撹拌試験機を用い、得られた複合短繊維のみをサンプル送り込み用ブロア3から空気流にて撹拌タンク1に投入し、撹拌用ブロア2から20m/秒の空気流を吹き込み、攪拌タンク1内で1分間撹拌(予備開繊)した。
次に、図8に示す簡易エアレイド試験機を用い、以下のようにして目付100g/m2の乾式不織布を得た。まず、試料投入ブロア13より予備開繊した複合短繊維を投入し、解繊翼回転モータ15により解繊翼回転用スプロケット16を介して回転する、それぞれ5枚1組の第1解繊翼11と第2解繊翼12で解繊し、飛散落下させた。これにより、複合短繊維はポリアミド短繊維とポリオレフィン短繊維に分割された。そして、落下する短繊維を、下部にあるサクションボックス14で吸引しつつ、矢印方向に移動する集綿コンベア17の上に堆積させウェブを作成する。続いて、下流にある熱処理機18にて熱処理(熱処理温度:140℃)を施し、ポリオレフィン短繊維をバインダー繊維として溶融させて、ポリアミド短繊維を主体繊維とする乾式不織布を得た。このとき、不織布の目付調整は、集綿コンベア17の移動速度を変化させることで行った。
Example 1
Nylon 6 having a melting point of 216 ° C. and a relative viscosity of 2.53 is used as polymer A, and polyethylene having a melting point of 132 ° C. and a melt index (MI) value of 20 g / min is used as polymer B. Used, melt spinning was performed under the conditions of a spinning temperature of 270 ° C., a discharge rate of 616 g / min (nylon 462 g / min, polyethylene 154 g / min) and a spinning speed of 800 m / min. At this time, composite spinning was performed so as to obtain a fiber having a cross-sectional shape as shown in FIG. 1 (using a spinneret having 1014 spinning holes) to obtain an undrawn yarn. The resulting undrawn yarn was focused on a 11.5 ktex tow and then drawn at a draw ratio of 3.45 times and a draw temperature of 50 ° C. Subsequently, crimping was applied by a push-in type crimper with a nip pressure of 0.43 MPa and a stuffing pressure of 0.15 MPa. Then, after applying an oil agent mainly composed of polyoxyethylene alkyl ether as a finishing oil so as to have an adhesion amount of 0.2% by mass, it is cut into a composite short fiber having a single yarn fineness of 2.2 dtex and a fiber length of 5 mm. Obtained.
Using the simple air flow agitation tester shown in FIG. 7, only the obtained composite short fiber is introduced into the agitation tank 1 by the air flow from the sample feeding blower 3, and an air flow of 20 m / sec is applied from the agitation blower 2. The mixture was blown and stirred in the stirring tank 1 for 1 minute (preliminary opening).
Next, using a simple airlaid tester shown in FIG. 8, a dry nonwoven fabric having a basis weight of 100 g / m 2 was obtained as follows. First, pre-opened composite short fibers are loaded from the sample loading blower 13 and rotated by the defibrating blade rotating motor 15 via the defibrating blade rotating sprocket 16, each having a set of five first defibrating blades 11 and second defibrating blades 12. Defibrated and scattered and dropped. Thereby, the composite short fiber was divided into a polyamide short fiber and a polyolefin short fiber. Then, the falling short fibers are sucked by the suction box 14 at the lower part and are deposited on the cotton collecting conveyor 17 that moves in the direction of the arrow to create a web. Subsequently, heat treatment (heat treatment temperature: 140 ° C.) was performed by a heat treatment machine 18 on the downstream side, and the polyolefin short fibers were melted as binder fibers to obtain a dry nonwoven fabric mainly composed of polyamide short fibers. At this time, the basis weight adjustment of the nonwoven fabric was performed by changing the moving speed of the cotton collecting conveyor 17.
実施例2、比較例1
繊維の断面形状が表1に示すように図2、図4の形状となるように、それぞれ紡糸口金を変更した以外は、実施例1と同様に行って複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例1と同様にして乾式不織布を得た。
Example 2 and Comparative Example 1
As shown in Table 1, composite short fibers were obtained in the same manner as in Example 1 except that the spinneret was changed so that the cross-sectional shape of the fibers was as shown in FIGS.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 1.
実施例3〜14
押し込み式クリンパーで捲縮を付与する条件(ニップ圧、スタフィング圧)を表1に示すように種々変更し、表1に示す捲縮形態、捲縮数、捲縮率のものとした以外は、実施例1と同様に行って複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例1と同様にして乾式不織布を得た。
Examples 3-14
Various changes were made to the conditions (nip pressure, stuffing pressure) for applying crimp with the indentation type crimper as shown in Table 1, and the crimping form, number of crimps, and crimp rate shown in Table 1 were used. A composite short fiber was obtained in the same manner as in Example 1.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 1.
実施例15
融点が216℃、相対粘度2.53のナイロン6を重合体Aとし、融点163℃、メルトインデックス(MI)値が28g/分のポリプロピレンを重合体Bとし、これらを通常の複合溶融紡糸装置を用い、紡糸温度270℃、吐出量645g/min(ナイロン484g/min、ポリプロピレン161g/min)、紡糸速度800m/minの条件で溶融紡糸を行った。このとき、図1に示すような断面形状の繊維となるように複合紡糸を行い(紡糸孔数1014個の紡糸口金を使用)、未延伸糸を得た。得られた未延伸糸を11.8ktexのトウに集束した後、延伸倍率3.61倍、延伸温度50℃で延伸を行った。続いて押し込み式クリンパーで捲縮付与条件をニップ圧0.45MPa、スタフィング圧0.15MPaとして、捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする油剤を付着量が0.2質量%となるように付与した後、切断して単糸繊度2.2dtex、繊維長5mmの複合短繊維を得た。
次に、得られた複合短繊維を用い、熱処理機18による熱処理温度を170℃とした以外は実施例1と同様にして乾式不織布を得た。
Example 15
Nylon 6 having a melting point of 216 ° C. and a relative viscosity of 2.53 is used as the polymer A, and a polypropylene having a melting point of 163 ° C. and a melt index (MI) value of 28 g / min is used as the polymer B. Used, melt spinning was performed under the conditions of a spinning temperature of 270 ° C., a discharge rate of 645 g / min (nylon 484 g / min, polypropylene 161 g / min) and a spinning speed of 800 m / min. At this time, composite spinning was performed so as to obtain a fiber having a cross-sectional shape as shown in FIG. 1 (using a spinneret having 1014 spinning holes) to obtain an undrawn yarn. The resulting undrawn yarn was focused on a 11.8 ktex tow and then drawn at a draw ratio of 3.61 times and a draw temperature of 50 ° C. Subsequently, crimping was applied using a push-in type crimper with the nip pressure of 0.45 MPa and the stuffing pressure of 0.15 MPa. Thereafter, an oil agent containing polyoxyethylene alkyl ether as a main component as a finishing oil agent was applied so that the amount of adhesion was 0.2% by mass, and then cut to form a composite short fiber having a single yarn fineness of 2.2 dtex and a fiber length of 5 mm. Got.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 1 except that the heat treatment temperature by the heat treatment machine 18 was set to 170 ° C.
比較例2
繊維の断面形状が表1に示すように図4の形状となるように、紡糸口金を変更した以外は、実施例15と同様に行って複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例15と同様にして乾式不織布を得た。
Comparative Example 2
A composite short fiber was obtained in the same manner as in Example 15 except that the spinneret was changed so that the cross-sectional shape of the fiber became the shape shown in FIG.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 15.
実施例16
融点が257℃、相対粘度2.50のナイロン66を重合体Aとし、融点132℃、メルトインデックス(MI)値が20g/分のポリエチレンを重合体Bとし、これらを通常の複合溶融紡糸装置を用い、紡糸温度285℃、吐出量652g/min(ナイロン489g/min、ポリエチレン163g/min)、紡糸速度800m/minの条件で溶融紡糸を行った。このとき、図1に示すような断面形状の繊維となるように複合紡糸を行い(紡糸孔数1014個の紡糸口金を使用)、未延伸糸を得た。得られた未延伸糸を12.0ktexのトウに集束した後、延伸倍率3.65倍、延伸温度50℃で延伸を行った。続いて、押し込み式クリンパーで捲縮付与条件をニップ圧0.43MPa、スタフィング圧0.16MPaとして、捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする油剤を付着量が0.2質量%となるように付与した後、切断して単糸繊度2.2dtex、繊維長5mmの複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例1と同様にして乾式不織布を得た。
Example 16
Nylon 66 having a melting point of 257 ° C. and a relative viscosity of 2.50 is used as the polymer A, and a polyethylene having a melting point of 132 ° C. and a melt index (MI) value of 20 g / min is used as the polymer B. Used, melt spinning was carried out under the conditions of a spinning temperature of 285 ° C., a discharge rate of 652 g / min (nylon 489 g / min, polyethylene 163 g / min) and a spinning speed of 800 m / min. At this time, composite spinning was performed so as to obtain a fiber having a cross-sectional shape as shown in FIG. 1 (using a spinneret having 1014 spinning holes) to obtain an undrawn yarn. The resulting undrawn yarn was focused on a 12.0 ktex tow and then drawn at a draw ratio of 3.65 times and a draw temperature of 50 ° C. Subsequently, crimping was applied using a push-in crimper with a crimping condition of nip pressure 0.43 MPa and stuffing pressure 0.16 MPa. Thereafter, an oil agent containing polyoxyethylene alkyl ether as a main component as a finishing oil agent was applied so that the amount of adhesion was 0.2% by mass, and then cut to form a composite short fiber having a single yarn fineness of 2.2 dtex and a fiber length of 5 mm. Got.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 1.
比較例3
繊維の断面形状が表1に示すように図4の形状となるように、紡糸口金を変更した以外は、実施例16と同様に行って複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例16と同様にして乾式不織布を得た。
Comparative Example 3
Composite short fibers were obtained in the same manner as in Example 16 except that the spinneret was changed so that the cross-sectional shape of the fibers became the shape shown in FIG. 4 as shown in Table 1.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 16.
実施例17
融点が257℃、相対粘度2.50のナイロン66を重合体Aとし、融点163℃、メルトインデックス(MI)値が28g/分のポリプロピレンを重合体Bとし、これらを通常の複合溶融紡糸装置を用い、紡糸温度285℃、吐出量688g/min(ナイロン516g/min、ポリプロプレン172g/min)、紡糸速度800m/minの条件で溶融紡糸を行った。このとき、図1に示すような断面形状の繊維となるように複合紡糸を行い(紡糸孔数1014個の紡糸口金を使用)、未延伸糸を得た。得られた未延伸糸を12.5ktexのトウに集束した後、延伸倍率3.86倍、延伸温度50℃で延伸を行った。続いて、押し込み式クリンパーで捲縮付与条件をニップ圧0.43MPa、スタフィング圧0.16MPaとして、捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする油剤を付着量が0.2質量%となるように付与した後、切断して単糸繊度2.2dtex、繊維長5mmの複合短繊維を得た。
次に、得られた複合短繊維を用い、熱処理機18による熱処理温度を170℃とした以外は実施例1と同様にして乾式不織布を得た。
Example 17
Nylon 66 having a melting point of 257 ° C. and a relative viscosity of 2.50 is used as the polymer A, and a polypropylene having a melting point of 163 ° C. and a melt index (MI) value of 28 g / min is used as the polymer B. Used, melt spinning was carried out under the conditions of a spinning temperature of 285 ° C., a discharge rate of 688 g / min (nylon 516 g / min, polypropylene 172 g / min) and a spinning speed of 800 m / min. At this time, composite spinning was performed so as to obtain a fiber having a cross-sectional shape as shown in FIG. 1 (using a spinneret having 1014 spinning holes) to obtain an undrawn yarn. The resulting undrawn yarn was focused on a 12.5 ktex tow and then drawn at a draw ratio of 3.86 times and a draw temperature of 50 ° C. Subsequently, crimping was applied using a push-in crimper with a crimping condition of nip pressure 0.43 MPa and stuffing pressure 0.16 MPa. Thereafter, an oil agent containing polyoxyethylene alkyl ether as a main component as a finishing oil agent was applied so that the amount of adhesion was 0.2% by mass, and then cut to form a composite short fiber having a single yarn fineness of 2.2 dtex and a fiber length of 5 mm. Got.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 1 except that the heat treatment temperature by the heat treatment machine 18 was set to 170 ° C.
比較例4
繊維の断面形状が表1に示すように図4の形状となるように、紡糸口金を変更した以外は、実施例17と同様に行って複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例17と同様にして乾式不織布を得た。
Comparative Example 4
A composite short fiber was obtained in the same manner as in Example 17 except that the spinneret was changed so that the cross-sectional shape of the fiber became the shape shown in FIG.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 17.
実施例18
融点が216℃、相対粘度2.53のナイロン6を重合体Aとし、融点132℃、メルトインデックス(MI)値が20g/分のポリエチレンを重合体Bとし、これらを通常の複合溶融紡糸装置を用い、紡糸温度270℃、吐出量424g/min(ナイロン318g/min、ポリエチレン106g/min)、紡糸速度700m/minの条件で溶融紡糸を行った。このとき、図1に示すような断面形状の繊維となるように複合紡糸を行い(紡糸孔数90個の紡糸口金を使用)、未延伸糸を得た。得られた未延伸糸を12.4ktexのトウに集束した後、延伸倍率3.95倍、延伸温度55℃で延伸を行った。続いて、押し込み式クリンパーで捲縮付与条件をニップ圧0.55MPa、スタフィング圧0.24MPaとして、捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする油剤を付着量が0.2質量%となるように付与した後、切断して単糸繊度17.0dtex、繊維長5mmの複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例1と同様にして乾式不織布を得た。
Example 18
Nylon 6 having a melting point of 216 ° C. and a relative viscosity of 2.53 is used as polymer A, and polyethylene having a melting point of 132 ° C. and a melt index (MI) value of 20 g / min is used as polymer B. Used, melt spinning was performed under the conditions of a spinning temperature of 270 ° C., a discharge rate of 424 g / min (nylon 318 g / min, polyethylene 106 g / min), and a spinning speed of 700 m / min. At this time, composite spinning was performed so as to obtain a fiber having a cross-sectional shape as shown in FIG. 1 (using a spinneret having 90 spinning holes) to obtain an undrawn yarn. The resulting undrawn yarn was focused on a 12.4 ktex tow and then drawn at a draw ratio of 3.95 times and a draw temperature of 55 ° C. Subsequently, crimping was applied using a push-in crimper, with the crimping conditions set to a nip pressure of 0.55 MPa and a stuffing pressure of 0.24 MPa. Thereafter, an oil agent mainly composed of polyoxyethylene alkyl ether as a finishing oil agent was applied so that the adhesion amount was 0.2% by mass, and then cut to be a composite short fiber having a single yarn fineness of 17.0 dtex and a fiber length of 5 mm. Got.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 1.
実施例19、比較例5
繊維の断面形状が表1に示すように図2、図4の形状となるように、それぞれ紡糸口金を変更した以外は、実施例18と同様に行って複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例18と同様にして乾式不織布を得た。
Example 19, Comparative Example 5
As shown in Table 1, composite short fibers were obtained in the same manner as in Example 18 except that the spinneret was changed so that the cross-sectional shape of the fibers was as shown in FIGS.
Next, a dry nonwoven fabric was obtained in the same manner as in Example 18 using the obtained composite short fiber.
実施例20〜31
押し込み式クリンパーで捲縮を付与する条件(ニップ圧、スタフィング圧)を表1に示すように種々変更し、表1に示す捲縮形態、捲縮数、捲縮率のものとした以外は、実施例18と同様に行って複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例18と同様にして乾式不織布を得た。
Examples 20-31
Various changes were made to the conditions (nip pressure, stuffing pressure) for applying crimp with the indentation type crimper as shown in Table 1, and the crimping form, number of crimps, and crimp rate shown in Table 1 were used. A composite short fiber was obtained in the same manner as in Example 18.
Next, a dry nonwoven fabric was obtained in the same manner as in Example 18 using the obtained composite short fiber.
実施例32
融点が216℃、相対粘度2.52のナイロン6を重合体Aとし、融点163℃、メルトインデックス(MI)値が28g/分のポリプロピレンを重合体Bとし、これらを通常の複合溶融紡糸装置を用い、紡糸温度270℃、吐出量440g/min(ナイロン330g/min、ポリプロピレン110g/min)、紡糸速度700m/minの条件で溶融紡糸を行った。このとき、図1に示すような断面形状の繊維となるように複合紡糸を行い(紡糸孔数90個の紡糸口金を使用)、未延伸糸を得た。得られた未延伸糸を11.8ktexのトウに集束した後、延伸倍率4.10倍、延伸温度55℃で延伸を行った。続いて、押し込み式クリンパーで捲縮付与条件をニップ圧0.56MPa、スタフィング圧0.24MPaとして、捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする油剤を付着量が0.2質量%となるように付与した後、切断して単糸繊度17.0dtex、繊維長5mmの複合短繊維を得た。
次に、得られた複合短繊維を用い、熱処理機18による熱処理温度を170℃とした以外は実施例18と同様にして乾式不織布を得た。
Example 32
Nylon 6 having a melting point of 216 ° C. and a relative viscosity of 2.52 is used as polymer A, and polypropylene having a melting point of 163 ° C. and a melt index (MI) value of 28 g / min is used as polymer B. The melt spinning was performed under the conditions of a spinning temperature of 270 ° C., a discharge rate of 440 g / min (nylon 330 g / min, polypropylene 110 g / min), and a spinning speed of 700 m / min. At this time, composite spinning was performed so as to obtain a fiber having a cross-sectional shape as shown in FIG. 1 (using a spinneret having 90 spinning holes) to obtain an undrawn yarn. The resulting undrawn yarn was focused on a 11.8 ktex tow and then drawn at a draw ratio of 4.10 times and a draw temperature of 55 ° C. Subsequently, crimping was applied using a push-in crimper with the crimping conditions set to a nip pressure of 0.56 MPa and a stuffing pressure of 0.24 MPa. Thereafter, an oil agent mainly composed of polyoxyethylene alkyl ether as a finishing oil agent was applied so that the adhesion amount was 0.2% by mass, and then cut to be a composite short fiber having a single yarn fineness of 17.0 dtex and a fiber length of 5 mm. Got.
Next, a dry nonwoven fabric was obtained in the same manner as in Example 18 except that the obtained composite short fiber was used and the heat treatment temperature by the heat treatment machine 18 was set to 170 ° C.
比較例6
繊維の断面形状が表1に示すように図4の形状となるように、紡糸口金を変更した以外は、実施例32と同様に行って複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例32と同様にして乾式不織布を得た。
Comparative Example 6
A composite short fiber was obtained in the same manner as in Example 32 except that the spinneret was changed so that the cross-sectional shape of the fiber became the shape shown in FIG.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 32.
実施例33
融点が257℃、相対粘度2.50のナイロン66を重合体Aとし、融点132℃、メルトインデックス(MI)値が20g/分のポリエチレンを重合体Bとし、これらを通常の複合溶融紡糸装置を用い、紡糸温度285℃、吐出量448g/min(ナイロン336g/min、ポリエチレン112g/min)、紡糸速度700m/minの条件で溶融紡糸を行った。このとき、このとき、図1に示すような断面形状の繊維となるように複合紡糸を行い(紡糸孔数1014個の紡糸口金を使用)、未延伸糸を得た。得られた未延伸糸を12.4ktexのトウに集束した後、延伸倍率4.18倍、延伸温度55℃で延伸を行った。続いて、押し込み式クリンパーで捲縮付与条件をニップ圧0.55MPa、スタフィング圧0.24MPaとして、捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする油剤を付着量が0.2質量%となるように付与した後、切断して単糸繊度17.0dtex、繊維長5mmの複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例18と同様にして乾式不織布を得た。
Example 33
Nylon 66 having a melting point of 257 ° C. and a relative viscosity of 2.50 is used as the polymer A, and a polyethylene having a melting point of 132 ° C. and a melt index (MI) value of 20 g / min is used as the polymer B. Used, melt spinning was carried out under the conditions of a spinning temperature of 285 ° C., a discharge rate of 448 g / min (nylon 336 g / min, polyethylene 112 g / min) and a spinning speed of 700 m / min. At this time, composite spinning was performed so as to obtain a fiber having a cross-sectional shape as shown in FIG. 1 (using a spinneret having 1014 spinning holes) to obtain an undrawn yarn. The resulting undrawn yarn was focused on a 12.4 ktex tow and then drawn at a draw ratio of 4.18 times and a draw temperature of 55 ° C. Subsequently, crimping was applied using a push-in crimper, with the crimping conditions set to a nip pressure of 0.55 MPa and a stuffing pressure of 0.24 MPa. Thereafter, an oil agent mainly composed of polyoxyethylene alkyl ether as a finishing oil agent was applied so that the adhesion amount was 0.2% by mass, and then cut to be a composite short fiber having a single yarn fineness of 17.0 dtex and a fiber length of 5 mm. Got.
Next, a dry nonwoven fabric was obtained in the same manner as in Example 18 using the obtained composite short fiber.
比較例7
繊維の断面形状が表1に示すように図4の形状となるように、紡糸口金を変更した以外は、実施例33と同様に行って複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例33と同様にして乾式不織布を得た。
Comparative Example 7
A composite short fiber was obtained in the same manner as in Example 33 except that the spinneret was changed so that the cross-sectional shape of the fiber became the shape shown in FIG.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 33.
実施例34
融点が257℃、相対粘度2.50のナイロン66を重合体Aとし、融点163℃、メルトインデックス(MI)値が28g/分のポリプロピレンを重合体Bとし、これらを通常の複合溶融紡糸装置を用い、紡糸温度285℃、吐出量460g/min(ナイロン345g/min、ポリプロプレン115g/min)、紡糸速度700m/minの条件で溶融紡糸を行った。このとき、図1に示すような断面形状の繊維となるように複合紡糸を行い(紡糸孔数1014個の紡糸口金を使用)、未延伸糸を得た、得られた未延伸糸を11.8ktexのトウに集束した後、延伸倍率4.30倍、延伸温度55℃で延伸を行った。続いて押し込み式クリンパーで捲縮付与条件をニップ圧0.56MPa、スタフィング圧0.25MPaとして、捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする油剤を付着量が0.2質量%となるように付与した後、切断して単糸繊度17.0dtex、繊維長5mmの複合短繊維を得た。
次に、得られた複合短繊維を用い、熱処理機18による熱処理温度を170℃とした以外は実施例18と同様にして乾式不織布を得た。
Example 34
Nylon 66 having a melting point of 257 ° C. and a relative viscosity of 2.50 is used as the polymer A, and a polypropylene having a melting point of 163 ° C. and a melt index (MI) value of 28 g / min is used as the polymer B. Used, melt spinning was carried out under the conditions of a spinning temperature of 285 ° C., a discharge rate of 460 g / min (nylon 345 g / min, polypropylene 115 g / min) and a spinning speed of 700 m / min. At this time, composite spinning was performed so as to obtain a fiber having a cross-sectional shape as shown in FIG. 1 (using a spinneret having a number of spinning holes of 1014), and an undrawn yarn was obtained. After focusing on an 8 ktex tow, stretching was performed at a stretching ratio of 4.30 times and a stretching temperature of 55 ° C. Subsequently, crimping was performed with a push-in crimper, with the crimping conditions set to a nip pressure of 0.56 MPa and a stuffing pressure of 0.25 MPa. Thereafter, an oil agent mainly composed of polyoxyethylene alkyl ether as a finishing oil agent was applied so that the adhesion amount was 0.2% by mass, and then cut to be a composite short fiber having a single yarn fineness of 17.0 dtex and a fiber length of 5 mm. Got.
Next, a dry nonwoven fabric was obtained in the same manner as in Example 18 except that the obtained composite short fiber was used and the heat treatment temperature by the heat treatment machine 18 was set to 170 ° C.
比較例8
繊維の断面形状が表1に示すように図4の形状となるように、紡糸口金を変更した以外は、実施例34と同様に行って複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例34と同様にして乾式不織布を得た。
Comparative Example 8
A composite short fiber was obtained in the same manner as in Example 34 except that the spinneret was changed so that the cross-sectional shape of the fiber became the shape shown in FIG.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 34.
実施例35〜36、比較例9〜10
切断時の繊維長を変更し、表1に示す繊維長とした以外は、実施例1と同様に行って複合短繊維を得、さらに実施例1と同様にして乾式不織布を得た。
Examples 35-36, Comparative Examples 9-10
A composite short fiber was obtained in the same manner as in Example 1 except that the fiber length at the time of cutting was changed to the fiber length shown in Table 1, and a dry nonwoven fabric was obtained in the same manner as in Example 1.
比較例11
融点が216℃、相対粘度2.53のナイロン6を重合体Aとし、融点132℃、メルトインデックス(MI)値が20g/分のポリエチレンを重合体Bとし、これらを通常の複合溶融紡糸装置を用い、紡糸温度280℃、吐出量252g/min(ナイロン189g/min、ポリエチレン63g/min)、紡糸速度1200m/minの条件で溶融紡糸を行った。このとき、図1に示すような断面形状の繊維となるように複合紡糸を行い(紡糸孔数2000個の紡糸口金を使用)、未延伸糸を得た。得られた未延伸糸を11.8ktexのトウに集束した後、延伸倍率2.63倍、延伸温度50℃で延伸を行った。続いて押し込み式クリンパーで捲縮付与条件をニップ圧0.33MPa、スタフィング圧0.11MPaとして、捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする油剤を付着量0.2質量%となるように付与した後、切断して単糸繊度0.4dtex、繊維長5mmの複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例1と同様にして乾式不織布を得た。
Comparative Example 11
Nylon 6 having a melting point of 216 ° C. and a relative viscosity of 2.53 is used as polymer A, and polyethylene having a melting point of 132 ° C. and a melt index (MI) value of 20 g / min is used as polymer B. Used, melt spinning was performed under the conditions of a spinning temperature of 280 ° C., a discharge rate of 252 g / min (nylon 189 g / min, polyethylene 63 g / min) and a spinning speed of 1200 m / min. At this time, composite spinning was performed so as to obtain a fiber having a cross-sectional shape as shown in FIG. 1 (using a spinneret having 2000 spinning holes) to obtain an undrawn yarn. The resulting undrawn yarn was focused on a 11.8 ktex tow and then drawn at a draw ratio of 2.63 times and a draw temperature of 50 ° C. Subsequently, crimping was performed with a push-in type crimper with the nip pressure of 0.33 MPa and the stuffing pressure of 0.11 MPa. Then, after applying an oil agent mainly composed of polyoxyethylene alkyl ether as a finishing oil so as to have an adhesion amount of 0.2% by mass, the composite short fiber having a single yarn fineness of 0.4 dtex and a fiber length of 5 mm is cut. Obtained.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 1.
比較例12
融点が216℃、相対粘度2.53のナイロン6を重合体Aとし、融点132℃、メルトインデックス(MI)値が20g/分のポリエチレンを重合体Bとし、これらを通常の複合溶融紡糸装置を用い、紡糸温度270℃、吐出量520g/min(ナイロン390g/min、ポリエチレン130g/min)、紡糸速度600m/minの条件で溶融紡糸を行った。このとき、図1に示すような断面形状の繊維となるように複合紡糸を行い(紡糸孔数90個の紡糸口金を使用)、未延伸糸を得た。得られた未延伸糸を12.4ktexのトウに集束した後、延伸倍率4.38倍、延伸温度55℃で延伸を行った。続いて、押し込み式クリンパーで捲縮付与条件をニップ圧0.60MPa、スタフィング圧0.30MPaとして、捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする油剤を付着量が0.2質量%となるように付与した後、切断して単糸繊度22.0dtex、繊維長5mmの複合短繊維を得た。
次に、得られた複合短繊維を用い、実施例1と同様にして乾式不織布を得た。
Comparative Example 12
Nylon 6 having a melting point of 216 ° C. and a relative viscosity of 2.53 is used as polymer A, and polyethylene having a melting point of 132 ° C. and a melt index (MI) value of 20 g / min is used as polymer B. The melt spinning was performed under the conditions of a spinning temperature of 270 ° C., a discharge rate of 520 g / min (nylon 390 g / min, polyethylene 130 g / min), and a spinning speed of 600 m / min. At this time, composite spinning was performed so as to obtain a fiber having a cross-sectional shape as shown in FIG. 1 (using a spinneret having 90 spinning holes) to obtain an undrawn yarn. The resulting undrawn yarn was focused on a 12.4 ktex tow and then drawn at a draw ratio of 4.38 times and a draw temperature of 55 ° C. Subsequently, the crimping condition was applied by a push-in type crimper with the nip pressure of 0.60 MPa and the stuffing pressure of 0.30 MPa. Thereafter, an oil agent containing polyoxyethylene alkyl ether as a main component as a finishing oil agent was applied so that the adhesion amount was 0.2% by mass, and then cut into a composite short fiber having a single yarn fineness of 22.0 dtex and a fiber length of 5 mm. Got.
Next, using the obtained composite short fiber, a dry nonwoven fabric was obtained in the same manner as in Example 1.
参考例1
融点が216℃、相対粘度2.52のナイロン6を、通常の溶融紡糸装置を用い、紡糸温度270℃、吐出量404g/min、紡糸速度1000m/minの条件で溶融紡糸を行った。このとき、丸型断面形状となるように、紡糸孔数518個の紡糸口金を使用し、未延伸糸を得た。得られた未延伸糸を12.3ktexのトウに集束した後、延伸倍率3.55倍、延伸温度50℃で延伸を行った。続いて、押し込み式クリンパーで捲縮付与条件をニップ圧0.43MPa、スタフィング圧0.15MPaとして捲縮を付与した。その後、仕上げ油剤としてポリオキシエチレンアルキルエーテルを主成分とする油剤を0.2質量%の付着量となるように付与した後、切断して単糸繊度2.2dtex、繊維長5mmの短繊維を得た。
Reference example 1
Nylon 6 having a melting point of 216 ° C. and a relative viscosity of 2.52 was melt-spun using a normal melt spinning apparatus at a spinning temperature of 270 ° C., a discharge rate of 404 g / min, and a spinning speed of 1000 m / min. At this time, an undrawn yarn was obtained by using a spinneret having 518 spinning holes so as to have a round cross-sectional shape. The resulting undrawn yarn was focused on a 12.3 ktex tow and then drawn at a draw ratio of 3.55 and a draw temperature of 50 ° C. Subsequently, crimping was performed with a push-in type crimper with the nip pressure of 0.43 MPa and the stuffing pressure of 0.15 MPa. Thereafter, an oil agent mainly composed of polyoxyethylene alkyl ether as a finishing oil agent was applied so as to have an adhesion amount of 0.2% by mass, and then cut into short fibers having a single yarn fineness of 2.2 dtex and a fiber length of 5 mm. Obtained.
実施例1〜36、比較例1〜12で得られた複合短繊維の測定値及び評価結果を表1に示す。また、これらの複合短繊維を用いた乾式不織布の均一性、通気度、柔軟性の評価結果を表1に示す。 Table 1 shows measured values and evaluation results of the composite short fibers obtained in Examples 1 to 36 and Comparative Examples 1 to 12. Table 1 shows the evaluation results of the uniformity, air permeability, and flexibility of the dry nonwoven fabric using these composite short fibers.
表1から明らかなように、実施例1〜36の複合短繊維は、空気攪拌分割率が65%以上であり、中でも、実施例1〜8、15〜25、32〜36は、(1)〜(3)式を満足するものであったため、特に空気攪拌分割率が高く、75%以上であり、容易に極細繊維に分割するものであった。このため、得られた不織布は均一性、通気度、柔軟性ともに優れていた。 As is apparent from Table 1, the composite short fibers of Examples 1 to 36 have an air agitation division ratio of 65% or more, among which Examples 1 to 8, 15 to 25, and 32 to 36 are (1) Since the expression (3) was satisfied, the air stirring division ratio was particularly high, 75% or more, and it was easily divided into ultrafine fibers. For this reason, the obtained nonwoven fabric was excellent in uniformity, air permeability, and flexibility.
一方、比較例1〜8の複合短繊維は、繊維の長手方向に対して垂直に切断した断面において、ポリマーA、Bが放射状に配列されたものであったため、空気攪拌分割率が低いものであった。このため、これらの短繊維から得られた不織布は通気度が高く、柔軟性も乏しいものであった。 On the other hand, in the composite short fibers of Comparative Examples 1 to 8, in the cross section cut perpendicular to the longitudinal direction of the fibers, since the polymers A and B were arranged radially, the air stirring division ratio was low. there were. For this reason, the nonwoven fabric obtained from these short fibers has high air permeability and poor flexibility.
また、比較例9の複合短繊維は、繊維長が短すぎたため、繊維切断時の摩擦熱で繊維の密着が発生し、予備開繊でほとんど開繊せず、不織布を得ることができなかった。比較例10の複合短繊維は、繊維長が長すぎたため、静電気をためやすく、また、繊維の絡みも生じ、玉状の繊維塊が生成し、空気攪拌分割率が低いものであった。このため、得られた乾式不織布は、均一性に劣り、通気度が高く、柔軟性に乏しいものであった。比較例11の複合短繊維は、単糸繊度が小さすぎたため、紡糸時に切れ糸が発生し紡糸の操業性が悪かった。また、切れ糸による繊維の密着が発生し、空気攪拌分割率が低いものであった。このため、得られた乾式不織布は均一性に劣り、通気度が高く、柔軟性に乏しいものであった。比較例12の複合短繊維は、単糸繊度が太すぎたため、分割後の繊維の繊度が十分に小さくならず、極細繊維を得ることができなかったため、得られた乾式不織布は通気度が高く、柔軟性に乏しいものであった。 In addition, the composite short fiber of Comparative Example 9 was too short in fiber length, so that the fibers were adhered due to frictional heat at the time of fiber cutting, hardly opened by preliminary opening, and a nonwoven fabric could not be obtained. . Since the composite short fiber of Comparative Example 10 was too long, it was easy to accumulate static electricity, and entanglement of the fiber was generated, forming a ball-like fiber lump, and the air stirring division ratio was low. For this reason, the obtained dry nonwoven fabric was inferior in uniformity, high air permeability, and poor flexibility. The composite short fiber of Comparative Example 11 had a single yarn fineness that was too small, so that a cut yarn was generated during spinning and the spinning operability was poor. Further, the fibers were closely adhered by the cut yarn, and the air stirring division ratio was low. For this reason, the obtained dry nonwoven fabric was inferior in uniformity, high air permeability, and poor in flexibility. Since the composite short fiber of Comparative Example 12 had a single yarn fineness that was too large, the fineness of the fiber after splitting was not sufficiently reduced, and ultrafine fibers could not be obtained. The resulting dry nonwoven fabric had high air permeability. It was inflexible.
実施例37〜39、比較例13
実施例1の分割型複合短繊維と、他の繊維として上記に示す参考例1の短繊維を用い、これらの質量比(実施例1の分割型複合短繊維/参考例1の短繊維)を表2に示すように種々変更し、両繊維を図7に示す簡易空気流撹拌試験機に投入し、実施例1と同様にして乾式不織布を得た。このとき、不織布を構成する主体繊維は、重合体Aからなる短繊維(ポリアミド短繊維)と参考例1の短繊維であった。
Examples 37 to 39, Comparative Example 13
Using the split composite short fiber of Example 1 and the short fiber of Reference Example 1 shown above as the other fiber, the mass ratio (split composite short fiber of Example 1 / short fiber of Reference Example 1) Various changes were made as shown in Table 2, and both fibers were put into a simple air flow agitation tester shown in FIG. 7 to obtain a dry nonwoven fabric in the same manner as in Example 1. At this time, the main fibers constituting the nonwoven fabric were the short fibers made of the polymer A (polyamide short fibers) and the short fibers of Reference Example 1.
実施例40〜42、比較例14
実施例18の分割型複合短繊維と他の繊維として上記に示す参考例1の短繊維を用い、これらの質量比(実施例18の分割型複合短繊維/参考例1の短繊維)を表2に示すように種々変更し、両繊維を図7に示す簡易空気流撹拌試験機に投入し、実施例18と同様にして乾式不織布を得た。このとき、不織布を構成する主体繊維は、重合体Aからなる短繊維(ポリアミド短繊維)と参考例1の短繊維であった。
Examples 40 to 42, Comparative Example 14
Using the split composite short fiber of Example 18 and the short fiber of Reference Example 1 shown above as the other fiber, the mass ratio (split composite short fiber of Example 18 / short fiber of Reference Example 1) is shown. Various changes were made as shown in Fig. 2, and both fibers were put into a simple air flow agitating tester shown in Fig. 7 to obtain a dry nonwoven fabric in the same manner as in Example 18. At this time, the main fibers constituting the nonwoven fabric were the short fibers made of the polymer A (polyamide short fibers) and the short fibers of Reference Example 1.
実施例37〜42、比較例13〜14で得られた乾式不織布の均一性、通気度、柔軟性の評価結果を表2に示す。 Table 2 shows the evaluation results of the uniformity, air permeability, and flexibility of the dry nonwoven fabrics obtained in Examples 37 to 42 and Comparative Examples 13 to 14.
表2から明らかなように、実施例37〜42の短繊維不織布(乾式不織布)は、本発明の複合短繊維から分割したポリアミド短繊維を30質量%以上含有してなるものであったため、均一性、通気度、柔軟性に優れたものであった。 As is clear from Table 2, the short fiber nonwoven fabrics (dry nonwoven fabrics) of Examples 37 to 42 contain 30% by mass or more of polyamide short fibers divided from the composite short fibers of the present invention, and are uniform. It was excellent in properties, air permeability, and flexibility.
一方、比較例13〜14の短繊維不織布は、本発明の複合短繊維から分割したポリアミド短繊維を30質量%以上含有していなかったため、通気度が高く、柔軟性にも乏しいものであった。 On the other hand, since the short fiber nonwoven fabrics of Comparative Examples 13 to 14 did not contain 30% by mass or more of the polyamide short fibers divided from the composite short fibers of the present invention, the air permeability was high and the flexibility was poor. .
Claims (6)
(1)式:0.01T+0.10≦H/L≦0.02T+0.25
Tは単糸繊度のデシテックス(dtex)数 A split type composite fiber consisting of two components, a polyamide polymer A and a polyolefin polymer B, which is used to obtain a dry nonwoven fabric by the airlaid method and cut perpendicular to the longitudinal direction of the fiber In the cross section, it has a shape in which a plurality of polyamide polymers are arranged in contact with the periphery of the polyolefin polymer (except that the cross-sectional shape of the composite fiber is a circular cross section) , and the air stirring division rate is a but 65% or more, the fiber length is 1.0~30Mm, single yarn fineness of Ri 0.5~20dtex der, the fibers, crimping has been granted, the maximum peak of the crimp form of single yarn crimp portion The ratio (H / L) of the height (H) and base (L) of the triangle connecting the top of the peak and the bottom of the valley adjacent to the peak satisfies the following formula (1) Characteristic split composite short fiber.
(1) Formula: 0.01T + 0.10 ≦ H / L ≦ 0.02T + 0.25
T is the number of decitex (dtex) of single yarn fineness
(2)式:0.1T+3.8≦捲縮数≦0.3T+7.3
(3)式:0.8T+0.3≦捲縮率≦1.0T+4.9
ただし、捲縮数は繊維長25mm当たりの数、Tは単糸繊度のデシテックス(dtex)数 The split-type composite short fiber according to claim 1 , wherein the number of crimps and the crimp rate satisfy the following expressions (2) and (3) simultaneously.
(2) Formula: 0.1T + 3.8 ≦ crimp number ≦ 0.3T + 7.3
(3) Formula: 0.8T + 0.3 ≦ crimp rate ≦ 1.0T + 4.9
However, the number of crimps is the number per 25 mm of fiber length, and T is the number of decitex (dtex) of single yarn fineness.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005369920A JP4791173B2 (en) | 2005-12-22 | 2005-12-22 | Split composite short fiber and short fiber nonwoven fabric |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005369920A JP4791173B2 (en) | 2005-12-22 | 2005-12-22 | Split composite short fiber and short fiber nonwoven fabric |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007169834A JP2007169834A (en) | 2007-07-05 |
JP4791173B2 true JP4791173B2 (en) | 2011-10-12 |
Family
ID=38296757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005369920A Active JP4791173B2 (en) | 2005-12-22 | 2005-12-22 | Split composite short fiber and short fiber nonwoven fabric |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4791173B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62268861A (en) * | 1986-05-19 | 1987-11-21 | 三菱レイヨン株式会社 | Production of nonwoven fabric |
JP4357255B2 (en) * | 2003-10-08 | 2009-11-04 | 日本エステル株式会社 | Short fiber for nonwoven fabric and short fiber nonwoven fabric |
-
2005
- 2005-12-22 JP JP2005369920A patent/JP4791173B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007169834A (en) | 2007-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4831971B2 (en) | Short fiber for nonwoven fabric and short fiber nonwoven fabric | |
CN101671918B (en) | Process for producing full nylon leather base fabric | |
CN106133216A (en) | Polyester binder fiber | |
JP4485860B2 (en) | Short fiber for nonwoven fabric and short fiber nonwoven fabric | |
JP4357255B2 (en) | Short fiber for nonwoven fabric and short fiber nonwoven fabric | |
KR101387000B1 (en) | Splittable conjugate fiber including polyacetal, and fibrous form and product each obtained from the same | |
JP6206040B2 (en) | Polyphenylene sulfide fiber for nonwoven fabric | |
JP4791173B2 (en) | Split composite short fiber and short fiber nonwoven fabric | |
JP4791212B2 (en) | Split composite short fiber and short fiber nonwoven fabric | |
JP4455180B2 (en) | Short fiber for nonwoven fabric and short fiber nonwoven fabric | |
JP4787621B2 (en) | Split composite short fiber and short fiber nonwoven fabric | |
JP4351100B2 (en) | Short fiber for nonwoven fabric and short fiber nonwoven fabric | |
JP4791156B2 (en) | Split composite short fiber and short fiber nonwoven fabric | |
JP4783176B2 (en) | Split composite short fiber and short fiber nonwoven fabric | |
JP4783175B2 (en) | Split composite short fiber and short fiber nonwoven fabric | |
JP4704216B2 (en) | Split composite short fiber and short fiber nonwoven fabric | |
JP7427882B2 (en) | Nonwoven fabric using eccentric core-sheath composite short fibers | |
JP4537701B2 (en) | Short fiber for nonwoven fabric and short fiber nonwoven fabric | |
JP2013122102A (en) | Wet nonwoven fabric | |
JP4633452B2 (en) | Short fiber for nonwoven fabric and short fiber nonwoven fabric | |
JP4455181B2 (en) | Short fiber for nonwoven fabric and short fiber nonwoven fabric | |
JP4783162B2 (en) | Split composite short fiber and short fiber nonwoven fabric | |
JP2013122094A (en) | Polyester fiber for papermaking and method for producing the same | |
JP2020051013A (en) | Composite fibers with latent crimp property | |
JP2003268630A (en) | Sheath-core type conjugate staple fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081210 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20101215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110322 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110705 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110721 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140729 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 4791173 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |