JP2005048339A - Method and apparatus for producing polylactic acid filament nonwoven fabric - Google Patents

Method and apparatus for producing polylactic acid filament nonwoven fabric Download PDF

Info

Publication number
JP2005048339A
JP2005048339A JP2003283251A JP2003283251A JP2005048339A JP 2005048339 A JP2005048339 A JP 2005048339A JP 2003283251 A JP2003283251 A JP 2003283251A JP 2003283251 A JP2003283251 A JP 2003283251A JP 2005048339 A JP2005048339 A JP 2005048339A
Authority
JP
Japan
Prior art keywords
polylactic acid
nonwoven fabric
long
heater
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003283251A
Other languages
Japanese (ja)
Other versions
JP4173072B2 (en
Inventor
Atsushi Matsunaga
篤 松永
Ryuhei Taniyama
竜平 谷山
Koichi Nagaoka
孝一 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP2003283251A priority Critical patent/JP4173072B2/en
Publication of JP2005048339A publication Critical patent/JP2005048339A/en
Application granted granted Critical
Publication of JP4173072B2 publication Critical patent/JP4173072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain polylactic acid filament nonwoven fabric that has excellent heat shrinkage because the heat shrinkage of constituent filaments is extremely reduced by further refining the conventional technology and shows excellent fabric quality by reducing the defects. <P>SOLUTION: When polylactic acid polymer is melt-extruded into filaments and the filaments are piled up to produce filament nonwoven fabric according to the spun bonding process, a non-contact type heater 4 is arranged directly under the spinneret 2 to heat the extruded filament yarn 3, then the extruded yarn 3 is drawn with a drawing machine 7 at a speed of 6,000 to 8,000 m/min. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はポリ乳酸系長繊維不織布の製造方法および製造装置に関する。   The present invention relates to a production method and a production apparatus for a polylactic acid-based long fiber nonwoven fabric.

従来より、長繊維不織布としては、スパンボンド法にて製造され、熱圧着してなるものが一般的によく知られている。すなわち、熱可塑性重合体を加熱溶融して紡糸口金から吐出させ、得られた紡出糸条を公知の横型吹付や環状吹付などの冷却装置を用いて冷却し、その後、エアーサッカーなどの牽引装置を用いて所望の単糸繊度が得られるよう牽引・細化し、さらに公知の開繊器具にて開繊させながらスクリーン上にウエブを堆積させる。そしてこのウエブを、エンボス装置に通して部分熱圧着処理を施すことで、長繊維不織布が得られる。   Conventionally, as a long-fiber nonwoven fabric, what is manufactured by the spunbond method and thermocompression bonded is generally well known. That is, a thermoplastic polymer is heated and melted and discharged from a spinneret, and the obtained spun yarn is cooled using a cooling device such as a known horizontal spray or annular spray, and then a pulling device such as an air soccer Is pulled and thinned to obtain a desired single yarn fineness, and the web is deposited on the screen while being opened with a known opening device. The web is subjected to a partial thermocompression treatment through an embossing device to obtain a long fiber nonwoven fabric.

近年、生分解性を有する長繊維不織布が開発されており、中でも、ポリ乳酸系重合体からなる長繊維不織布は、生分解性を有するだけでなく、その融点が比較的高いことから、実用性が高く、様々な用途に好適に使用できることが期待されている。   In recent years, biodegradable long-fiber non-woven fabrics have been developed. Among them, long-fiber non-woven fabrics made of polylactic acid polymers are not only biodegradable but also have a relatively high melting point, so that they are practical. Therefore, it is expected to be suitable for various uses.

ポリ乳酸系長繊維不織布の製造方法としては、特許文献1に記載されたものがある。この特許文献1には、ASTM−D−1238に準じて温度210℃で測定したメルトフローレートが10〜100g/10分であるところの、ポリ(D−乳酸)と、ポリ(L−乳酸)と、D−乳酸とL−乳酸との共重合体と、D−乳酸とヒドロキシカルボン酸との共重合体と、L−乳酸とヒドロキシカルボン酸との共重合体と、D−乳酸とL−乳酸とヒドロキシカルボン酸との共重合体との群から選ばれる融点が100℃以上の重合体、あるいはこれら融点が100℃以上の重合体のブレンド体を、これら重合体あるいはブレンド体の融点をTm℃としたときに、(Tm+20)℃〜(Tm+80)℃の温度で溶融して口金から吐出させ、この吐出糸条を吸引装置にて3000〜6500m/分の引取速度で牽引細化させた後に、移動式捕集面上に開繊させながら堆積させてウエブを形成し、このウエブを熱処理することで、所望のポリ乳酸系長繊維不織布が得られることが記載されている。   As a method for producing a polylactic acid-based long fiber nonwoven fabric, there is one described in Patent Document 1. In this Patent Document 1, poly (D-lactic acid) and poly (L-lactic acid) having a melt flow rate measured at 210 ° C. according to ASTM-D-1238 at 10 to 100 g / 10 min. A copolymer of D-lactic acid and L-lactic acid, a copolymer of D-lactic acid and hydroxycarboxylic acid, a copolymer of L-lactic acid and hydroxycarboxylic acid, D-lactic acid and L- A polymer selected from the group consisting of lactic acid and a copolymer of hydroxycarboxylic acid having a melting point of 100 ° C. or higher, or a blend of polymers having a melting point of 100 ° C. or higher, and the melting point of these polymers or blends being Tm After being melted at a temperature of (Tm + 20) ° C. to (Tm + 80) ° C. and discharged from the die, the discharged yarn was pulled and thinned at a take-up speed of 3000 to 6500 m / min with a suction device. Mobile capture Depositing while opening on the surface to form a web, by heat treatment of the web, it is described that desired polylactic acid filament nonwoven fabric can be obtained.

この特許文献1の製造方法によって得られた不織布は、熱水収縮率が15%以下であるという特長を有する。
特開2000-273750号公報
The nonwoven fabric obtained by the manufacturing method of Patent Document 1 has a feature that the hot water shrinkage is 15% or less.
JP 2000-273750 A

本発明は、特許文献1に記載の従来の技術をさらに改良して、より一層熱収縮特性に優れたポリ乳酸系長繊維を構成繊維とする不織布を得ようとするものであり、構成繊維の熱収縮がきわめて少なく、しかも地合の良い(欠点の少ない)ポリ乳酸系長繊維不織布を得ることを課題とするものである。   The present invention is intended to further improve the conventional technique described in Patent Document 1, and to obtain a nonwoven fabric comprising polylactic acid-based long fibers having further excellent heat shrinkage characteristics as constituent fibers. An object of the present invention is to obtain a polylactic acid-based long-fiber non-woven fabric that has very little heat shrinkage and is well formed (with few defects).

上記課題を解決するために本発明のポリ乳酸系長繊維不織布の製造方法は、ポリ乳酸系重合体をスパンボンド法により溶融紡出した繊維を堆積して長繊維不織布を製造するに際し、紡糸口金直下に非接触型加熱器を配設して紡出糸条を加熱し、次いで前記紡出糸条を6000m/分〜8000m/分で牽引するものである。   In order to solve the above-described problems, the method for producing a polylactic acid-based long fiber nonwoven fabric according to the present invention comprises a spinneret for producing a long-fiber nonwoven fabric by depositing fibers obtained by melt spinning a polylactic acid polymer by a spunbond method. A non-contact type heater is disposed immediately below to heat the spun yarn, and then the spun yarn is pulled at 6000 m / min to 8000 m / min.

このようにすると、紡出糸条をその固化点前で紡糸口金直下の非接触型加熱器に通すことにより、紡糸口金から牽引装置までの間では重合体の結晶化を抑え、かつ牽引装置に導入した後に一気に牽引・延伸することから、牽引装置への導入時は結晶化が進んでおらず、このために紡糸応力が低下し、吸引・牽引効果が向上する。したがって、高速牽引が可能となり、6000m/分〜8000m/分で牽引することで紡出糸条の細化変形が滑らかに進行し、従来の製法に比べて紡出繊維の複屈折すなわち配向度が上がり、それにより繊維の熱収縮率が低減する。   In this way, by passing the spun yarn through a non-contact type heater immediately below the spinneret before the solidification point, crystallization of the polymer is suppressed between the spinneret and the pulling device, and the pulling device is used. Since it is pulled and stretched at once after being introduced, crystallization is not progressed when it is introduced into the traction device, which reduces the spinning stress and improves the suction and traction effect. Therefore, high-speed pulling becomes possible, and by pulling at 6000 m / min to 8000 m / min, the thinning deformation of the spun yarn proceeds smoothly, and the birefringence of the spun fiber, that is, the degree of orientation, compared to the conventional manufacturing method. Rise, thereby reducing the thermal shrinkage of the fiber.

本発明によると、上記製造方法において、紡出糸条の加熱条件として、ポリ乳酸系重合体の融点Tm(℃)に対する非接触型加熱器の加熱温度T1(℃)と、紡出糸条の加熱器内滞留時間t(秒)とが、それぞれ下記式(1)および(2)を満足する条件を用いることが好適である。   According to the present invention, in the production method described above, the heating conditions for the spun yarn include the heating temperature T1 (° C.) of the non-contact type heater with respect to the melting point Tm (° C.) of the polylactic acid polymer, It is preferable to use conditions where the residence time in the heater t (seconds) satisfies the following expressions (1) and (2).

Tm−70≦T1(℃)≦Tm+100 ・・・・(1)
0.07≦t(秒)≦1.80・・・(2)
Tm−70 ≦ T1 (° C.) ≦ Tm + 100 (1)
0.07 ≦ t (seconds) ≦ 1.80 (2)

本発明によると、上記製造方法において、ポリ乳酸系重合体の、ASTM-D-1238に準じて温度210℃で測定したメルトフローレートが、20〜80g/10分であることが好適である。   According to the present invention, in the above production method, it is preferable that the melt flow rate of the polylactic acid polymer measured at a temperature of 210 ° C. according to ASTM-D-1238 is 20 to 80 g / 10 minutes.

本発明の、ポリ乳酸系重合体をスパンボンド法により溶融紡出した繊維を堆積して長繊維不織布を製造するための装置は、紡糸口金直下に紡出糸条を加熱するための非接触型加熱器を設け、この非接触型加熱器よりも下方に、加熱された糸条を6000m/分〜8000m/分で牽引する牽引装置を設けたものである。   An apparatus for producing a long-fiber nonwoven fabric by depositing fibers obtained by melt spinning a polylactic acid polymer by a spunbond method according to the present invention is a non-contact type for heating a spun yarn directly under a spinneret. A heater is provided, and a pulling device that pulls the heated yarn at 6000 m / min to 8000 m / min is provided below the non-contact type heater.

上記の製造方法または製造装置によって製造された本発明のポリ乳酸系長繊維不織布において、この不織布を構成する長繊維が単相断面であるとともに、前記長繊維は熱水収縮率が15%以下であることを特徴とするものである。   In the polylactic acid-based long fiber nonwoven fabric of the present invention produced by the above production method or production device, the long fibers constituting the nonwoven fabric have a single-phase cross section, and the long fibers have a hot water shrinkage of 15% or less. It is characterized by being.

また上記の製造方法または製造装置によって製造された本発明のポリ乳酸系長繊維不織布において、この不織布を構成する長繊維は、融点差を有する複数種類のポリ乳酸系重合体が複合断面を形成したものであるとともに、熱水収縮率が20%以下であることを特徴とするものである。   Moreover, in the polylactic acid-based long fiber nonwoven fabric of the present invention manufactured by the above-described manufacturing method or manufacturing apparatus, a plurality of types of polylactic acid-based polymers having a melting point difference form a composite cross section of the long fibers constituting the nonwoven fabric. And the hot water shrinkage rate is 20% or less.

本発明のポリ乳酸系長繊維不織布の製造方法によると、紡糸口金直下に非接触型加熱器を配設し、かつ6000〜8000m/分で牽引するため、牽引装置に導入するまでの糸条を構成する重合体の結晶化を抑制でき、しかも牽引装置への導入後は高速で一気に結晶化させることができ、これによりウエブを構成する繊維の熱収縮を低くすることができるため、熱安定性に優れた長繊維不織布を得ることができる。また、得られた不織布はこのような熱特性を有する繊維により構成されるため、熱圧着工程において収縮が小さく、このため皺などによる欠点の少ないポリ乳酸系長繊維不織布を得ることができる。   According to the method for producing a polylactic acid-based long-fiber nonwoven fabric of the present invention, a non-contact type heater is disposed directly below the spinneret and is pulled at 6000 to 8000 m / min. It is possible to suppress crystallization of the constituting polymer, and after introduction into the traction device, it is possible to crystallize at a high speed at a stretch, which can reduce the thermal shrinkage of the fibers constituting the web, so that the thermal stability Can be obtained. Moreover, since the obtained nonwoven fabric is comprised with the fiber which has such a thermal characteristic, a shrinkage | contraction is small in a thermocompression bonding process, Therefore The polylactic acid-type long fiber nonwoven fabric with few faults by a wrinkle etc. can be obtained.

図1は、本発明にもとづくポリ乳酸系長繊維不織布の製造装置の概略構成を示す。ここで、1は紡糸ヘッドであり、紡糸口金2を有している。紡糸口金2は、糸条3を下向きに紡出可能である。紡糸ヘッド1よりも下側には、非接触型加熱器4が、紡糸ヘッド1との間に実質的な隙間を有さない状態で、紡出糸条3を囲むように設けられている。Lは、紡出糸条3の走行方向に沿った非接触型加熱器4の加熱部分の長さである。非接触型加熱器4としては、電熱ヒーター、鋳入りヒーター、過熱蒸気ヒーター、赤外線ヒーター、レーザー光線等の手段を採用し得る。なかでも、熱効率と取り扱いの容易性の点から、電熱ヒーターや過熱蒸気ヒーターや赤外線ヒーターを採用するのが好ましい。   FIG. 1 shows a schematic configuration of an apparatus for producing a polylactic acid-based long fiber nonwoven fabric according to the present invention. Here, 1 is a spinning head and has a spinneret 2. The spinneret 2 can spin the yarn 3 downward. Below the spinning head 1, a non-contact type heater 4 is provided so as to surround the spun yarn 3 with no substantial gap between the spinning head 1. L is the length of the heating portion of the non-contact heater 4 along the traveling direction of the spun yarn 3. As the non-contact type heater 4, means such as an electric heater, a cast-in heater, a superheated steam heater, an infrared heater, and a laser beam can be adopted. Among them, it is preferable to employ an electric heater, a superheated steam heater or an infrared heater from the viewpoint of thermal efficiency and ease of handling.

非接触型加熱器4よりも下側の位置には、冷却装置5が設けられている。この冷却装置5は、紡出糸条3に対し冷却空気6を吹付けるものであるが、たとえば横型吹付構造や環状吹付構造を呈するように構成されている。冷却装置5から下向きに距離をおいた位置には、エアーサッカーなどの牽引装置7が設けられている。8は牽引用の空気である。   A cooling device 5 is provided at a position below the non-contact type heater 4. Although this cooling device 5 sprays the cooling air 6 with respect to the spinning yarn 3, it is comprised, for example so that a horizontal type spray structure and an annular spray structure may be exhibited. A traction device 7 such as an air soccer is provided at a position spaced downward from the cooling device 5. Reference numeral 8 denotes traction air.

次に、このような装置を用いたポリ乳酸系長繊維不織布の製造方法について説明する。
製造原料となるポリ乳酸系重合体としては、D-乳酸と、L-乳酸と、D-乳酸とL-乳酸の共重合体と、D-乳酸とヒドロキシカルボン酸との共重合体と、L-乳酸とヒドロキシカルボン酸との共重合体と、D-乳酸とL-乳酸とヒドロキシカルボン酸との共重合体とから選ばれるいずれかの重合体あるいはブレンド体が挙げられる。
Next, the manufacturing method of the polylactic acid type | system | group continuous nonwoven fabric using such an apparatus is demonstrated.
The polylactic acid polymer used as a raw material for production includes D-lactic acid, L-lactic acid, a copolymer of D-lactic acid and L-lactic acid, a copolymer of D-lactic acid and hydroxycarboxylic acid, and L Examples thereof include any polymer or blend selected from a copolymer of -lactic acid and hydroxycarboxylic acid, and a copolymer of D-lactic acid, L-lactic acid and hydroxycarboxylic acid.

本発明においては、上記ポリ乳酸重合体であって、融点が150℃以上の重合体あるいは融点が150℃以上の重合体同士のブレンド体を用いるのが好適である。150℃未満であると、重合体が非晶性となるために製糸時の冷却性が低下するとともに、得られた不織布の構成繊維の融点が150℃未満となって、その不織布の耐熱性および機械的特性が損なわれるために、その使用用途が制限されることとなる。   In the present invention, it is preferable to use a polylactic acid polymer having a melting point of 150 ° C. or higher or a blend of polymers having a melting point of 150 ° C. or higher. When the temperature is lower than 150 ° C., the polymer becomes amorphous, so that the cooling property at the time of spinning is lowered, and the melting point of the constituent fiber of the obtained nonwoven fabric is less than 150 ° C., and the heat resistance of the nonwoven fabric and Since the mechanical properties are impaired, the intended use is limited.

ポリ乳酸のホモポリマーであるポリ(L−乳酸)やポリ(D−乳酸)の融点は約180℃である。ポリ乳酸系重合体として前記共重合体を用いる場合には、共重合体の融点が150℃以上となるようにモノマー成分の共重合量比を決定することが重要となる。このためには、L−乳酸とD−乳酸との共重合体においては、L−乳酸とD−乳酸との共重合量比が、モル比で、L−乳酸とD−乳酸との一方が0%を超え5%以下、他方が100%未満かつ95%以上であることが必要である。本発明のポリ乳酸系長繊維不織布を構成する長繊維が単相断面である場合の重合体、もしくは、融点差を有する複数種類の重合体からなる複合断面である場合の高融点重合体は、L−乳酸とD−乳酸との共重合量比が、モル比で、L−乳酸とD−乳酸との一方が0%を超え2%以下、他方が100%未満かつ98%以上であることが好ましい。共重合比が低い方のL−乳酸あるいはD−乳酸のモル比が2%を超えた場合は、ポリ乳酸系重合体自身の結晶性が悪くなり、牽引・細化工程が同時に行われるスパンボンド法においては、本発明にもとづき紡糸口金2の直下に非接触型加熱器4を設けて一気に牽引・細化しても、紡出糸条3の複屈折すなわち配向度は上がらない。したがって、この場合は、本発明が目的とする熱収縮特性がより優れるものを得にくく、長繊維不織布を構成する繊維の熱水収縮率が15%を超えるため、熱圧着工程において熱収縮が発生する恐れがある。このため、L−乳酸とD−乳酸との共重合量比が、モル比で、L−乳酸とD−乳酸との一方が0%を超え1.5%以下、他方が100%未満かつ98.5%以上であることがより好ましい。   The melting point of poly (L-lactic acid) and poly (D-lactic acid), which are homopolymers of polylactic acid, is about 180 ° C. When the copolymer is used as the polylactic acid polymer, it is important to determine the copolymerization ratio of the monomer components so that the melting point of the copolymer is 150 ° C. or higher. For this purpose, in the copolymer of L-lactic acid and D-lactic acid, the copolymerization amount ratio of L-lactic acid and D-lactic acid is a molar ratio, and one of L-lactic acid and D-lactic acid is It is necessary to be more than 0% and 5% or less, and the other is less than 100% and 95% or more. A polymer in the case where the long fibers constituting the polylactic acid-based long fiber nonwoven fabric of the present invention have a single-phase cross section, or a high melting point polymer in the case of a composite cross section composed of a plurality of types of polymers having a melting point difference, The copolymerization amount ratio of L-lactic acid and D-lactic acid is a molar ratio, and one of L-lactic acid and D-lactic acid is more than 0% and 2% or less, and the other is less than 100% and 98% or more. Is preferred. When the molar ratio of L-lactic acid or D-lactic acid having a lower copolymerization ratio exceeds 2%, the crystallinity of the polylactic acid polymer itself deteriorates, and the spunbond is performed simultaneously with the traction and thinning process. According to the method, even if a non-contact type heater 4 is provided immediately below the spinneret 2 in accordance with the present invention and pulled and thinned at once, the birefringence, that is, the degree of orientation of the spun yarn 3 does not increase. Therefore, in this case, it is difficult to obtain a heat shrinkage characteristic that is the object of the present invention, and the thermal water shrinkage of the fibers constituting the long-fiber nonwoven fabric exceeds 15%, so that heat shrinkage occurs in the thermocompression bonding process. There is a fear. For this reason, the copolymerization amount ratio of L-lactic acid and D-lactic acid is a molar ratio, and one of L-lactic acid and D-lactic acid exceeds 0% and is 1.5% or less, and the other is less than 100% and 98 More preferably, it is 5% or more.

本発明におけるポリ乳酸系重合体としては、上記ポリ乳酸系重合体と生分解性脂肪族−芳香族共重合ポリエステルとのブレンド体を用いてもよい。このようなブレンド体を用いると、室温で硬くて脆いという性質を有するポリ乳酸に柔軟性と耐衝撃性とを付与するなどの効果を得ることができる。生分解性脂肪族−芳香族共重合ポリエステルとしては、脂肪族ジオールと芳香族ジカルボン酸および脂肪族ジカルボン酸を縮重合して得られるものを使用できる。脂肪族ジオールとしては、エチレングリコール、プロピレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノールなどが挙げられる。芳香族ジカルボン酸としては、コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカン酸などが挙げられる。これらを1種類以上選択して重縮合することにより、目的とする生分解性脂肪族−芳香族共重合ポリエステルが得られる。なお、必要に応じて多官能のイソシアネート化合物により架橋することもできる。   As the polylactic acid polymer in the present invention, a blend of the polylactic acid polymer and a biodegradable aliphatic-aromatic copolymer polyester may be used. When such a blend is used, effects such as imparting flexibility and impact resistance to polylactic acid having properties of being hard and brittle at room temperature can be obtained. As the biodegradable aliphatic-aromatic copolymer polyester, those obtained by condensation polymerization of an aliphatic diol, an aromatic dicarboxylic acid and an aliphatic dicarboxylic acid can be used. Examples of the aliphatic diol include ethylene glycol, propylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol and the like. Examples of the aromatic dicarboxylic acid include succinic acid, adipic acid, suberic acid, sebacic acid, dodecanoic acid and the like. By selecting and polycondensing one or more of these, the desired biodegradable aliphatic-aromatic copolymer polyester can be obtained. In addition, it can also bridge | crosslink with a polyfunctional isocyanate compound as needed.

本発明に用いるポリ乳酸系重合体の溶融粘度は、ASTM-1238(E)に記載の方法に準じて温度210℃で測定したメルトフローレイト(以下、「MFR」と略称する)が20〜80g/10分であることが好ましい。なかでも、ポリ乳酸系長繊維不織布を構成する長繊維が単相断面である場合は、MFRが30〜80g/10分であることが好ましい。さらには、35〜75g/10分の範囲であることがより好ましい。MFRが20g/10分よりも低いと、ポリマー粘度が高いため、紡糸応力が大きくなり、牽引による細化ができにくく、曳糸性が低下するため好ましくない。また、熱圧着工程においてポリマーの粘度が高いため、熱圧着が十分ではなく、得られた不織布は層間剥離の生じるものとなり、好ましくない。一方、MFRが80g/分を超えると、溶融粘度が低すぎるために曳糸性に劣るとともに、得られた繊維の機械的特性に劣り繊維斑が大きくなり安定した操業が困難となる。   The melt viscosity of the polylactic acid polymer used in the present invention is 20 to 80 g of melt flow rate (hereinafter abbreviated as “MFR”) measured at a temperature of 210 ° C. according to the method described in ASTM-1238 (E). / 10 minutes is preferable. Especially, when the long fiber which comprises a polylactic acid-type long fiber nonwoven fabric is a single phase cross section, it is preferable that MFR is 30-80 g / 10min. Furthermore, it is more preferable that it is the range of 35-75 g / 10min. If the MFR is lower than 20 g / 10 min, the polymer viscosity is high, so that the spinning stress increases, it is difficult to make the material thin by pulling, and the spinnability is lowered. Moreover, since the viscosity of the polymer is high in the thermocompression bonding step, the thermocompression bonding is not sufficient, and the obtained nonwoven fabric is not preferable because delamination occurs. On the other hand, if the MFR exceeds 80 g / min, the melt viscosity is too low, so that the spinnability is inferior, the mechanical properties of the obtained fiber are inferior, the fiber spots become large, and stable operation becomes difficult.

また、本発明の不織布を構成する長繊維が複合断面である場合は、断面形状に合わせてMFRを適宜選択することができる。たとえば芯鞘複合断面の場合は、芯成分のMFRは20〜70g/10分の範囲が好ましく、また鞘成分のMFRは芯成分のMFRより10g/10分以上高いことが好ましい。   Moreover, when the long fiber which comprises the nonwoven fabric of this invention is a composite cross section, MFR can be suitably selected according to cross-sectional shape. For example, in the case of a core-sheath composite cross section, the MFR of the core component is preferably in the range of 20 to 70 g / 10 minutes, and the MFR of the sheath component is preferably higher than the MFR of the core component by 10 g / 10 minutes or more.

多葉複合断面の場合は、芯成分のMFRは30〜80g/10の範囲が好ましく、葉成分は芯成分のMFRに比べてMFRの値が低くかつ両者の差が10g/10分以上であることが好ましい。   In the case of a multileaf composite cross section, the core component MFR is preferably in the range of 30 to 80 g / 10. The leaf component has a lower MFR value than the core component MFR, and the difference between the two is 10 g / 10 min or more. It is preferable.

本発明において適用される重合体には、各々必要に応じて、たとえば、艶消し剤、顔料、結晶核剤などの各種添加剤を本発明の効果を損なわない範囲で添加しても良い。とりわけ、タルク、酸化チタン、炭酸カルシウム、炭酸マグネシウムなどの結晶核剤を添加すると、紡出・冷却工程での糸条間の融着(ブロッキング)を効果的に防止することができ、このためには、0.1〜3重量%の範囲で用いると有用である。   If necessary, for example, various additives such as a matting agent, a pigment, and a crystal nucleating agent may be added to the polymer applied in the present invention as long as the effects of the present invention are not impaired. In particular, the addition of crystal nucleating agents such as talc, titanium oxide, calcium carbonate, and magnesium carbonate can effectively prevent fusing (blocking) between yarns in the spinning and cooling process. Is useful when used in the range of 0.1 to 3% by weight.

不織布の製造に際しては、上記のように、図1に示す紡糸口金2の下に非接触型加熱器4を配設し、特定のMFRの重合体を選定し、紡出糸条3をその固化点前で非接触型加熱器4に通すことにより結晶化を抑え、その後に冷却装置5で冷却したうえでエアーサッカーなどの牽引装置7により牽引・延伸する。これにより、従来のように室温の雰囲気中に糸条を紡出するものに比べて結晶化が進んでいないため、紡糸応力が低下し、牽引装置7による吸引・牽引効果が向上する。したがって、高速牽引が可能となり、紡出糸条3の細化変形が滑らかに進行し、紡出繊維の複屈折すなわち配向度は従来の製造法より上がり、繊維の熱収縮率が低減する。   When manufacturing the nonwoven fabric, as described above, the non-contact type heater 4 is disposed under the spinneret 2 shown in FIG. 1, a specific MFR polymer is selected, and the spun yarn 3 is solidified. Crystallization is suppressed by passing through the non-contact type heater 4 before the point, and after cooling with the cooling device 5, the traction device 7 such as an air soccer is pulled and stretched. Thereby, since crystallization is not progressing compared with what spins a thread | yarn in the atmosphere of room temperature conventionally, a spinning stress falls and the attraction | suction and the traction effect by the traction apparatus 7 improve. Accordingly, high-speed pulling becomes possible, the thinning deformation of the spun yarn 3 proceeds smoothly, the birefringence of the spun fiber, that is, the degree of orientation, is higher than that of the conventional manufacturing method, and the heat shrinkage rate of the fiber is reduced.

ここで肝要なことは、紡糸ヘッド(口金2を取り付けるロック)1と加熱器4との間に実質的な隙間を生じないことである。もし隙間が生じたら、その部位より空気を吸い込み加熱器4内が乱流となるため、高速牽引ができないばかりか、得られる糸の均斉度が劣ることになる。   What is important here is that there is no substantial gap between the spinning head (lock to which the base 2 is attached) 1 and the heater 4. If there is a gap, air is sucked in from that portion and the inside of the heater 4 becomes turbulent, so that not only high-speed traction is possible, but also the degree of uniformity of the obtained yarn is poor.

本発明では、非接触型加熱器4の加熱温度T1(℃)、すなわち非接触型加熱器4における糸条3の走行部の温度は、紡糸口金2からの吐出量にかかわらず、糸条3を構成するポリ乳酸系重合体の融点Tm(℃)に対して式(1)を満足することが好ましい。   In the present invention, the heating temperature T 1 (° C.) of the non-contact type heater 4, that is, the temperature of the running portion of the yarn 3 in the non-contact type heater 4 is the yarn 3 regardless of the discharge amount from the spinneret 2. It is preferable that the formula (1) is satisfied with respect to the melting point Tm (° C.) of the polylactic acid polymer constituting

Tm−70≦T1(℃)≦Tm+100 ・・・・(1)
この場合のポリ乳酸系重合体の融点Tm(℃)は、単相の繊維形態の場合はその重合体の融点、複合の繊維形態の場合は、その複合形態を構成する重合体の内最も融点の低い重合体の融点を、それぞれTm(℃)とする。非接触型加熱器4の加熱温度T1(℃)は、この加熱器4の設定温度としてコントロールされる。
Tm−70 ≦ T1 (° C.) ≦ Tm + 100 (1)
The melting point Tm (° C.) of the polylactic acid polymer in this case is the melting point of the polymer in the case of a single-phase fiber form, and the highest melting point of the polymers constituting the composite form in the case of a composite fiber form. The melting point of the low polymer is Tm (° C.). The heating temperature T1 (° C.) of the non-contact type heater 4 is controlled as a set temperature of the heater 4.

この加熱温度T1(℃)が[Tm−70](℃)未満であると、加熱器4内での結晶化抑制が不十分となり、このため得られた繊維の熱収縮は大きく、不織布化のための熱圧接工程での繊維ウエブの熱収縮の問題が生じやすくなる。一方、この加熱温度T1(℃)が[Tm+100](℃)を超えると、加熱器4による熱量供給が多過ぎるため、紡出糸条3の冷却性が劣ることになり好ましくない。   If the heating temperature T1 (° C.) is less than [Tm-70] (° C.), the crystallization suppression in the heater 4 becomes insufficient, and the thermal shrinkage of the obtained fiber is large, and the non-woven fabric is formed. Therefore, the problem of heat shrinkage of the fiber web in the hot pressing process tends to occur. On the other hand, when the heating temperature T1 (° C.) exceeds [Tm + 100] (° C.), the amount of heat supplied by the heater 4 is too much, and the cooling property of the spun yarn 3 is deteriorated.

本発明では、後述のように牽引装置7での牽引細化速度を6000〜8000m/分としたうえで、紡出糸条3の加熱器4内での滞留時間t(秒)が式(2)を満足することが好ましい。   In the present invention, as described later, the pulling speed in the pulling device 7 is set to 6000 to 8000 m / min, and the residence time t (second) in the heater 4 of the spun yarn 3 is expressed by the formula (2 ) Is preferably satisfied.

0.07≦t(秒)≦1.80・・・(2)
この滞留時間tが0.07秒未満であると、紡出糸条3に対する加熱効率が低下するため、紡糸口金2から牽引装置7までの間において重合体の結晶化を抑える効果が不充分となり、牽引装置7へ導入した後の紡出糸条3の配向・結晶化を促進する効果が低下しやすく、好ましくない。一方、この滞留時間tが1.80秒を超えると、この領域では加熱による紡出糸条3の物性変化は既に飽和に達しており、紡出糸条3に対して不必要な過剰熱量を供給するのみであって不経済となるばかりか、糸揺れを誘発する。したがって、本発明においてはこの滞留時間tが0.15〜1.80秒であることがさらに好ましい。
0.07 ≦ t (seconds) ≦ 1.80 (2)
If the residence time t is less than 0.07 seconds, the heating efficiency with respect to the spun yarn 3 is lowered, so that the effect of suppressing the crystallization of the polymer between the spinneret 2 and the traction device 7 becomes insufficient. The effect of promoting the orientation and crystallization of the spun yarn 3 after being introduced into the pulling device 7 tends to decrease, which is not preferable. On the other hand, if the residence time t exceeds 1.80 seconds, the change in physical properties of the spun yarn 3 due to heating has already reached saturation in this region, and an unnecessary excess amount of heat is applied to the spun yarn 3. Not only is it supplied, it becomes uneconomical, but it also induces thread wobble. Therefore, in the present invention, the residence time t is more preferably 0.15 to 1.80 seconds.

紡出糸条3の走行方向に沿った加熱器4の長さ、すなわち加熱器4における糸条3を実際に加熱している部分の長さは、50〜300mmであることが、上述の加熱温度、滞留時間の範囲内での繊維の延伸を十分に行う上で好ましい。   The length of the heater 4 along the traveling direction of the spun yarn 3, that is, the length of the portion of the heater 4 that is actually heating the yarn 3 is 50 to 300 mm. It is preferable for sufficiently stretching the fiber within the range of temperature and residence time.

本発明における高速での牽引速度は、6000〜8000m/分の範囲とする。牽引速度が6000m/分未満であると、得られた繊維の熱収縮特性としての熱水収縮率が、繊維断面が単相の場合は15%を超え、また繊維断面が複合の場合は20%を超えるため、熱圧接等の工程においてウエブを構成する繊維の収縮が大きくなって、熱圧接工程後のシートの外観を損なうような欠点となりやすい。一方、8000m/分を超えると、糸切れが生じやすくなって、操業性が悪くなりやすい傾向となる。   The high speed traction speed in the present invention is in the range of 6000 to 8000 m / min. When the pulling speed is less than 6000 m / min, the hydrothermal shrinkage rate as a heat shrinkage characteristic of the obtained fiber exceeds 15% when the fiber cross section is a single phase, and 20% when the fiber cross section is composite. Therefore, the shrinkage of the fibers constituting the web is increased in a process such as hot pressing, which tends to be a defect that impairs the appearance of the sheet after the hot pressing process. On the other hand, when it exceeds 8000 m / min, yarn breakage tends to occur, and the operability tends to deteriorate.

牽引を行った後は、繊維を堆積して長繊維不織布とする。不織布化の手段として、例えば繊維が堆積してなるウエブに熱圧着装置にて部分的に熱圧着を施す。ウエブの部分的な熱圧着とは、エンボス加工によって点状圧着区域を形成するものをいい、具体的には、エンボスロールと表面が平滑な金属ロールとの間にウエブを通して長繊維間に点状熱圧着区域を形成することをいう。圧着温度は、繊維を構成する重合体の融点(Tm)未満かつ[Tm−35]℃以上の温度を適用するのが好ましい。   After towing, the fibers are deposited to form a long fiber nonwoven fabric. As a means for forming a nonwoven fabric, for example, a thermocompression bonding is performed partially on a web on which fibers are deposited by a thermocompression bonding apparatus. Partial thermocompression bonding of the web refers to the formation of a point-bonded area by embossing. Specifically, a point-like shape is formed between long fibers through the web between an embossing roll and a metal roll with a smooth surface. The formation of a thermocompression bonding area. As the crimping temperature, it is preferable to apply a temperature lower than the melting point (Tm) of the polymer constituting the fiber and not lower than [Tm-35] ° C.

また、部分的な熱圧着の条件として、ウエブにおける特定の部分領域である個々の熱圧着領域が0.2〜15mm2の面積を有し、その領域が丸型、楕円型、菱型、三角型、T字型、井型等の任意の形状であり、かつその領域の分布密度すなわち圧着点密度が4〜100点/cm2であることが好ましい。また、ウエブの全表面積に対する全熱圧着領域の比、すなわち圧着面積率は、3〜50%であることが好ましい。 In addition, as a partial thermocompression bonding condition, each thermocompression bonding area, which is a specific partial area of the web, has an area of 0.2 to 15 mm 2 , and the area is round, oval, rhombus, triangular. The shape is preferably an arbitrary shape such as a mold, T-shape, or well, and the distribution density of the region, that is, the pressure-bonding point density is preferably 4 to 100 points / cm 2 . Further, the ratio of the total thermocompression bonding area to the total surface area of the web, that is, the compression bonding area ratio is preferably 3 to 50%.

上記のように作成された本発明のポリ乳酸系長繊維不織布を構成する長繊維の単糸繊度は、とくに限定されず、1〜8デシテックス程度とする。
また、得られた不織布は、この不織布を構成する長繊維が単相断面である場合は、熱水収縮率が15%以下であることが好ましい。さらに、同長繊維が本来収縮を起こしやすい複合断面である場合は、熱水収縮率が20%以下であることが好ましい。熱水収縮率がこれらの値の範囲内であると、熱圧接等の工程においてウエブを構成する繊維の収縮が大きくならないため、熱圧接工程後のシートの外観を損なうような欠点が発生しにくくなる。
The single yarn fineness of the long fibers constituting the polylactic acid-based long fiber nonwoven fabric of the present invention prepared as described above is not particularly limited, and is about 1 to 8 dtex.
Moreover, when the long fiber which comprises this nonwoven fabric is a single phase cross section, it is preferable that the obtained nonwoven fabric has a hot-water shrinkage rate of 15% or less. Furthermore, when the same long fiber has a composite cross section that tends to shrink by itself, the hot water shrinkage rate is preferably 20% or less. When the hot water shrinkage rate is within the range of these values, the shrinkage of the fibers constituting the web does not increase in the process such as hot press bonding, so that the defects that impair the appearance of the sheet after the hot press process are less likely to occur. Become.

以下、実施例により本発明を具体的に説明する。なお、本発明はこれらの実施例のみに限定されるものではない。下記の実施例および比較例において、各物性値は以下により求めた。   Hereinafter, the present invention will be described specifically by way of examples. In addition, this invention is not limited only to these Examples. In the following Examples and Comparative Examples, each physical property value was determined as follows.

(1)MFR(g/10分);ASTM−D−1238に記載の方法に準じて温度210℃、荷重20.2N(2.16kgf)で測定した。 (1) MFR (g / 10 min): Measured according to the method described in ASTM-D-1238 at a temperature of 210 ° C. and a load of 20.2 N (2.16 kgf).

(2)重合体の融点Tm(℃);パーキンエルマ社製示差走査型熱量計DSC−7型を用い、試料質量を5mg、昇温速度を10℃/分として測定して得られた融解吸熱曲線の吸熱ピークの極値を与える温度を融点Tm(℃)とした。 (2) Melting point Tm (° C.) of polymer: melting endotherm obtained by using a differential scanning calorimeter DSC-7 manufactured by Perkin Elma Co., Ltd. and measuring a sample mass of 5 mg and a heating rate of 10 ° C./min. The temperature giving the extreme value of the endothermic peak of the curve was defined as the melting point Tm (° C.).

(3)繊度(デシテックス 以下、「dtex」と略記する);ウエブ状態における繊維径を50本光学顕微鏡にて測定し、密度補正して求めた平均値を繊度とした。 (3) Fineness (Decitex, hereinafter abbreviated as “dtex”): The fiber diameter in a web state was measured with 50 optical microscopes, and the average value obtained by density correction was defined as the fineness.

(4)糸切れ性;紡出糸条をエアーサッカーにて牽引して次の三段階にて評価した。
○:糸切れ0回/(紡糸錘1錘あたり・1時間)
△:糸切れ3回未満/(紡糸錘1錘あたり・1時間)
×:糸切れ3回以上/(紡糸錘1錘あたり・1時間)
(4) Yarn breakage: The spun yarn was pulled by air soccer and evaluated in the following three stages.
○: Thread breakage 0 times / (per spindle weight / hour)
Δ: Less than 3 yarn breaks / (per spindle of spindle / hour)
X: Thread breakage 3 times or more / (per spindle weight / hour)

(5)繊維の熱水収縮率(%);JIS L1013熱水収縮率『フィラメント収縮率(B法)』に準じて、下記により求めた。すなわち、ウエブ中から牽引細化された繊維を取り出し、その繊維にJIS L1013に記載の初荷重をかけ、その状態の繊維の長さ方向に200mmの間隔をはかって2点をうち、初荷重を解いて85℃の熱水中に15分間浸漬させ、取り出して風乾後再び初荷重をかけ、2点間の長さ(Amm)をはかり、次式により熱水収縮率(%)を算出した。試験回数は5回とし、その平均値を熱水収縮率として評価した。 (5) Hot water shrinkage rate (%) of fiber: It was determined according to JIS L1013 hot water shrinkage rate “filament shrinkage rate (Method B)” as follows. That is, the fiber that has been pulled and thinned is taken out from the web, the initial load described in JIS L1013 is applied to the fiber, and the initial load is calculated by measuring the distance of 200 mm in the length direction of the fiber. It was unwound and immersed in hot water at 85 ° C. for 15 minutes, taken out, air-dried and then subjected to the initial load again, the length (Amm) between the two points was measured, and the hot water shrinkage (%) was calculated by the following formula. The number of tests was five, and the average value was evaluated as the hot water shrinkage.

熱水収縮率(%)={(200−A)/200}×100・・・(3)     Hot water shrinkage (%) = {(200−A) / 200} × 100 (3)

(6)複屈折率:ベレックコンペンセーターを備えた偏光顕微鏡を用い、浸液としてトリクレジルホスフェートを使って測定した。 (6) Birefringence: measured using a polarizing microscope equipped with a Belek compensator and using tricresyl phosphate as the immersion liquid.

(7)不織布の外観:1000m巻ロールとされたシートの検反を実施し、ウエブの収縮によって発生する欠点の数を次のように評価した。 (7) Appearance of non-woven fabric: Sheet inspection of a 1000 m roll was carried out, and the number of defects caused by web shrinkage was evaluated as follows.

○:欠点10個未満/1ロールあたり
×:欠点10個以上/1ロールあたり
(実施例1)
○: Less than 10 defects / per roll ×: 10 defects / per roll (Example 1)

ポリ乳酸系重合体として、融点Tmが168℃、MFRが60g/10分であり、L−乳酸/D−乳酸=98.7/1.3モル%のL−乳酸/D−乳酸共重合体を用い、この重合体に添加剤としてタルクを0.5質量%配合した。この混合物を図1に示す丸型孔径0.3mmφの紡糸口金2より、紡糸温度210℃、単孔吐出量1.67g/分で溶融紡糸した。紡糸口金2直下には電熱ヒーターにて構成された筒状の非接触型加熱器4を設け、紡糸口金2より紡出された糸条3を、有効加熱長さ50mm、加熱温度T1が150℃([Tm−18]℃)の筒状加熱器4の内部に通過させた。加熱器4の内部での糸条3の滞留時間tは0.16秒であった。   L-lactic acid / D-lactic acid copolymer having a melting point Tm of 168 ° C., MFR of 60 g / 10 min, and L-lactic acid / D-lactic acid = 98.7 / 1.3 mol% as a polylactic acid polymer And 0.5% by mass of talc was added as an additive to this polymer. This mixture was melt-spun from a spinneret 2 having a round hole diameter of 0.3 mmφ shown in FIG. 1 at a spinning temperature of 210 ° C. and a single hole discharge rate of 1.67 g / min. A cylindrical non-contact type heater 4 composed of an electric heater is provided immediately below the spinneret 2, and the yarn 3 spun from the spinneret 2 has an effective heating length of 50 mm and a heating temperature T1 of 150 ° C. ([Tm-18] ° C.) was passed through the inside of the cylindrical heater 4. The residence time t of the yarn 3 inside the heater 4 was 0.16 seconds.

さらに冷却装置5にて20℃の冷却空気6を吹き付けた後、牽引装置7としてのエアーサッカーにて7000m/分で引き取り、これを開繊して、移動するコンベアの補集面上に堆積してウエブを形成した。次いでエンボスローラーからなる部分熱圧着装置に通し、ロール温度130℃、圧着面積率14.9%、圧着点密度21.9個/cm、線圧60kg/cmの条件にて部分的に熱圧着し、2.4dtexの長繊維からなる目付50g/m2の長繊維不織布を得た。得られたウエブの熱水収縮率、糸切れ性(操業性)、不織布外観などの測定結果を表1に示す。 Further, after cooling air 6 at 20 ° C. is blown by the cooling device 5, it is taken up at 7000 m / min by an air soccer as the traction device 7, opened, and deposited on the collecting surface of the moving conveyor. A web was formed. Next, it is passed through a partial thermocompression bonding machine composed of embossed rollers, and partially thermocompression bonded under the conditions of a roll temperature of 130 ° C., a crimping area ratio of 14.9%, a crimping point density of 21.9 pieces / cm 2 , and a linear pressure of 60 kg / cm. Thus, a long fiber nonwoven fabric having a basis weight of 50 g / m 2 made of 2.4 dtex long fibers was obtained. Table 1 shows the measurement results such as hot water shrinkage, yarn breakage (operability), and nonwoven fabric appearance of the obtained web.

Figure 2005048339
(実施例2)
Figure 2005048339
(Example 2)

筒状加熱器4の長さを150mm、紡糸速度を7500m/分とした。この場合に、加熱器4の内部での糸条3の滞留時間tは0.48秒であった。そして、それ以外は実施例1と同様にして、2.2dtexの長繊維からなる長繊維不織布を得た。この実施例2の詳細を表1に示す。
(実施例3)
The length of the cylindrical heater 4 was 150 mm, and the spinning speed was 7500 m / min. In this case, the residence time t of the yarn 3 inside the heater 4 was 0.48 seconds. And otherwise, it carried out similarly to Example 1, and obtained the long fiber nonwoven fabric which consists of a 2.2 dtex long fiber. Details of Example 2 are shown in Table 1.
(Example 3)

筒状加熱器4の長さを300mm、紡糸速度を8000m/分とした。この場合に、加熱器4の内部での糸条3の滞留時間tは0.95秒であった。そして、それ以外は実施例1と同様にして、2.1dtexの長繊維からなる長繊維不織布を得た。この実施例3の詳細を表1に示す。
(実施例4)
The length of the cylindrical heater 4 was 300 mm, and the spinning speed was 8000 m / min. In this case, the residence time t of the yarn 3 inside the heater 4 was 0.95 seconds. And otherwise, it carried out similarly to Example 1, and obtained the long fiber nonwoven fabric which consists of a 2.1 dtex long fiber. Details of Example 3 are shown in Table 1.
(Example 4)

加熱温度T1を120℃([Tm−48]℃)、牽引速度を7000m/分とした。この場合に、加熱器4の内部での糸条3の滞留時間tは0.48秒であった。そして、それ以外は実施例2と同様にして2.4dtexの長繊維からなる長繊維不織布を得た。この実施例4の詳細を表1に示す。
(実施例5)
The heating temperature T1 was 120 ° C. ([Tm−48] ° C.), and the traction speed was 7000 m / min. In this case, the residence time t of the yarn 3 inside the heater 4 was 0.48 seconds. And otherwise, it carried out similarly to Example 2, and obtained the long-fiber nonwoven fabric which consists of a 2.4-dtex long fiber. Details of Example 4 are shown in Table 1.
(Example 5)

筒状加熱器4の長さを150mm、加熱温度T1を200℃([Tm+32]℃)、牽引速度を7500m/分とした。この場合に、加熱器4の内部での糸条3の滞留時間tは0.48秒であった。そして、それ以外は実施例1と同様にして2.2dtexの長繊維からなる長繊維不織布を得た。この実施例5の詳細を表1に示す。
(実施例6)
The length of the cylindrical heater 4 was 150 mm, the heating temperature T1 was 200 ° C. ([Tm + 32] ° C.), and the traction speed was 7500 m / min. In this case, the residence time t of the yarn 3 inside the heater 4 was 0.48 seconds. And otherwise, it carried out similarly to Example 1, and obtained the long-fiber nonwoven fabric which consists of a 2.2-dtex long fiber. Details of Example 5 are shown in Table 1.
(Example 6)

図1において、丸型孔径0.6mmφの紡糸口金2を使用し、単孔吐出量を4.00g/分とした。また、筒状加熱器4の長さを300mm、牽引速度を6000m/分とした。この場合に、加熱器4の内部での糸条3の滞留時間tは1.59秒であった。そして、それ以外は実施例1と同様にして6.6dtexの長繊維からなる長繊維不織布を得た。この実施例6の詳細を表1に示す。
(実施例7)
In FIG. 1, a spinneret 2 with a round hole diameter of 0.6 mmφ was used, and the single hole discharge rate was 4.00 g / min. Moreover, the length of the cylindrical heater 4 was 300 mm, and the traction speed was 6000 m / min. In this case, the residence time t of the yarn 3 inside the heater 4 was 1.59 seconds. Other than that, a long-fiber nonwoven fabric composed of 6.6 dtex long fibers was obtained in the same manner as in Example 1. Details of Example 6 are shown in Table 1.
(Example 7)

MFRを50g/10分、牽引速度を7000m/分とした。この場合に、加熱器4の内部での糸条3の滞留時間tは0.48秒であった。そして、それ以外は実施例2と同様にして2.4dtexの長繊維からなる長繊維不織布を得た。この実施例7の詳細を表2に示す。   The MFR was 50 g / 10 min and the traction speed was 7000 m / min. In this case, the residence time t of the yarn 3 inside the heater 4 was 0.48 seconds. And otherwise, it carried out similarly to Example 2, and obtained the long-fiber nonwoven fabric which consists of a 2.4-dtex long fiber. Details of Example 7 are shown in Table 2.

Figure 2005048339
(実施例8)
Figure 2005048339
(Example 8)

MFRを80g/10分、牽引速度を7000m/分とした。この場合に、加熱器4の内部での糸条3の滞留時間tは0.48秒であった。そして、それ以外は実施例2と同様にして2.4dtexの長繊維からなる長繊維不織布を得た。この実施例8の詳細を表2に示す。
(実施例9)
The MFR was 80 g / 10 min and the traction speed was 7000 m / min. In this case, the residence time t of the yarn 3 inside the heater 4 was 0.48 seconds. And otherwise, it carried out similarly to Example 2, and obtained the long-fiber nonwoven fabric which consists of a 2.4-dtex long fiber. The details of Example 8 are shown in Table 2.
Example 9

MFRを30g/10分、紡糸口金2の丸型孔径を0.4mmφ、牽引速度を6000m/分とした。また、加熱器4の内部での糸条3の滞留時間tは0.85秒であった。そして、それ以外は実施例2と同様にして2.7dtexの長繊維からなる長繊維不織布を得た。この実施例9の詳細を表2に示す。
(実施例10)
The MFR was 30 g / 10 min, the round hole diameter of the spinneret 2 was 0.4 mmφ, and the traction speed was 6000 m / min. The residence time t of the yarn 3 inside the heater 4 was 0.85 seconds. Other than that, a long-fiber nonwoven fabric composed of 2.7 dtex long fibers was obtained in the same manner as in Example 2. Details of Example 9 are shown in Table 2.
(Example 10)

繊維断面を扁平断面にした。また筒条加熱器4の長さを150mm、牽引速度を7000m/分とした。この場合に、加熱器4の内部での糸条3の滞留時間tは1.14秒であった。そして、それ以外は実施例2と同様にして2.7dtexの長繊維からなる長繊維不織布を得た。この実施例10の詳細を表2に示す。
(実施例11)
The fiber cross section was flattened. The length of the tube heater 4 was 150 mm, and the traction speed was 7000 m / min. In this case, the residence time t of the yarn 3 inside the heater 4 was 1.14 seconds. Other than that, a long-fiber nonwoven fabric composed of 2.7 dtex long fibers was obtained in the same manner as in Example 2. Details of Example 10 are shown in Table 2.
(Example 11)

芯成分として、融点Tmが168℃、MFRが30g/10分であり、L−乳酸/D−乳酸=98.7/1.3モル%のL−乳酸/D−乳酸共重合体を用意した。一方、鞘成分として、融点Tmが155℃、MFRが60g/10分であり、L−乳酸/D−乳酸=95.5/4.5モル%のL−乳酸/D−乳酸共重合体を用意した。   As a core component, an L-lactic acid / D-lactic acid copolymer having a melting point Tm of 168 ° C., an MFR of 30 g / 10 min, and L-lactic acid / D-lactic acid = 98.7 / 1.3 mol% was prepared. . On the other hand, as a sheath component, an L-lactic acid / D-lactic acid copolymer having a melting point Tm of 155 ° C., an MFR of 60 g / 10 min, and L-lactic acid / D-lactic acid = 95.5 / 4.5 mol%. Prepared.

前記2種類のポリマーを、芯/鞘=1/1(質量比)となるように個別に計量した後、個別のエクストルーダー型押し出し機を用いて紡糸温度210℃で溶融し、孔径0.4mmφの紡糸口金2を用いて芯鞘型の繊維断面となるように単孔吐出量1.38g/分で溶融紡糸した。図1の紡糸口金2の直下には、有効加熱長さ50mm、加熱温度150℃の、筒状加熱器4を設けた。そして、紡糸口金2より紡出された糸条3を加熱器4内に0.34秒間滞留させ、さらに冷却装置5にて20℃の冷却空気6を吹き付けた後、牽引装置7としてのエアーサッカーにて6000m/分で引き取り、これを開繊して移動するコンベアの補集面上に堆積してウエブを形成した。次いで、エンボスローラーからなる部分熱圧着装置に通し、ロール温度130℃、圧着面積率14.9%、圧着点密度21.9個/cm、線圧60kg/cmの条件にて部分的に熱圧着し、2.3dtexの長繊維からなる目付50g/m2の長繊維不織布を得た。得られたウエブの熱収縮率、糸切れ性(操業性)、不織布外観などの測定結果を表2に示す。
(実施例12)
The two kinds of polymers were individually weighed so that the core / sheath = 1/1 (mass ratio), and then melted at a spinning temperature of 210 ° C. using an individual extruder type extruder, and the pore diameter was 0.4 mmφ. The spinneret 2 was melt-spun at a single-hole discharge rate of 1.38 g / min so as to have a core-sheath fiber cross section. A cylindrical heater 4 having an effective heating length of 50 mm and a heating temperature of 150 ° C. is provided immediately below the spinneret 2 in FIG. Then, the yarn 3 spun from the spinneret 2 is retained in the heater 4 for 0.34 seconds, and further the cooling air 5 is blown by the cooling device 5, and then the air soccer as the traction device 7. Was taken up at 6000 m / min, and was opened and deposited on the collecting surface of the moving conveyor to form a web. Next, it was passed through a partial thermocompression bonding device comprising an embossed roller, and partially heated under the conditions of a roll temperature of 130 ° C., a crimping area ratio of 14.9%, a crimping point density of 21.9 pieces / cm 2 , and a linear pressure of 60 kg / cm. Crimping was performed to obtain a long-fiber non-woven fabric having a basis weight of 50 g / m 2 made of 2.3 dtex long fibers. Table 2 shows the measurement results of the obtained web, such as the thermal shrinkage rate, thread breakage (operability), and nonwoven fabric appearance.
(Example 12)

融点Tmが168℃、MFRが50g/分であるL−乳酸/D−乳酸=98.7/1.3モル%のL−乳酸/D−乳酸共重合体(以下、「P1」と略記する)を用意した。一方、融点Tmが155℃、MFRが60g/分であるL−乳酸/D−乳酸=95.5/4.5モル%のL−乳酸/D−乳酸共重合体(以下、「P2」と略記する)と融点が110℃、MFRが50g/分であるポリブチレンアジペートテレフタレート共重合体(イーストマンケミカル社製 商品名:イースターバイオGP;以下、「P3」と略記する)とを、P2/P3=90/10(質量比)となるようにブレンドしてなるブレンド体(以下、「P4」と略記する)を用意した。   L-lactic acid / D-lactic acid = 98.7 / 1.3 mol% L-lactic acid / D-lactic acid copolymer (hereinafter abbreviated as “P1”) having a melting point Tm of 168 ° C. and an MFR of 50 g / min. ) Was prepared. On the other hand, L-lactic acid / D-lactic acid = 95.5 / 4.5 mol% L-lactic acid / D-lactic acid copolymer (hereinafter referred to as “P2”) having a melting point Tm of 155 ° C. and MFR of 60 g / min. And a polybutylene adipate terephthalate copolymer having a melting point of 110 ° C. and an MFR of 50 g / min (trade name: Easter Bio GP; hereinafter abbreviated as “P3”) manufactured by Eastman Chemical Co., Ltd. A blend (hereinafter abbreviated as “P4”) prepared by blending so that P3 = 90/10 (mass ratio) was prepared.

P1とP4の2種類のポリマーを、P1を芯成分、P4を鞘成分とし、芯/鞘=1/1(質量比)となるように個別に計量した後、個別のエクストルーダー型押し出し機を用いて、紡糸温度210℃で溶融し、孔径0.4mmφの紡糸口金2(図1)を用いて、芯鞘型の繊維断面となるように、単孔吐出量1.38g/分で溶融紡糸した。紡糸口金2の直下には有効加熱長さが50mm、加熱温度T1が150℃の筒状の加熱器4を設け、紡糸口金2より紡出された糸条3を1.02秒間滞留させた。さらに冷却装置5において糸条3に20℃の冷却空気6を吹き付けた後、牽引装置7としてのエアーサッカーにて6000m/分で引き取り、これを開繊して移動するコンベアの補集面上に堆積してウエブを形成した。次いでエンボスローラーからなる部分熱圧着装置に通し、ロール温度130℃、圧着面積率14.9%、圧着点密度21.9個/cm、線圧60kg/cmの条件にて部分的に熱圧着し、2.3dtexの長繊維からなる目付50g/m2の長繊維不織布を得た。得られたウエブの熱収縮率、糸切れ性(操業性)、不織布外観などの測定結果を表2に示す。
(比較例1)
Two polymers P1 and P4 were weighed separately so that P1 was a core component, P4 was a sheath component, and core / sheath = 1/1 (mass ratio), and then an individual extruder extruder was used. Used, melted at a spinning temperature of 210 ° C., and melt-spun at a single-hole discharge rate of 1.38 g / min using a spinneret 2 (FIG. 1) having a hole diameter of 0.4 mmφ so as to have a core-sheath fiber cross section. did. A cylindrical heater 4 having an effective heating length of 50 mm and a heating temperature T1 of 150 ° C. was provided immediately below the spinneret 2, and the yarn 3 spun from the spinneret 2 was retained for 1.02 seconds. Further, after cooling air 6 at 20 ° C. is blown onto the yarn 3 in the cooling device 5, the air soccer as the traction device 7 is taken up at 6000 m / min, and is opened on the collecting surface of the moving conveyor. Deposited to form a web. Next, it is passed through a partial thermocompression bonding machine composed of embossed rollers, and partially thermocompression bonded under the conditions of a roll temperature of 130 ° C., a crimping area ratio of 14.9%, a crimping point density of 21.9 pieces / cm 2 , and a linear pressure of 60 kg / cm. Thus, a non-woven fabric having a basis weight of 50 g / m 2 made of a long fiber of 2.3 dtex was obtained. Table 2 shows the measurement results of the obtained web, such as the thermal shrinkage rate, thread breakage (operability), and nonwoven fabric appearance.
(Comparative Example 1)

紡糸口金直下に加熱器を設けないで操業したところ、牽引速度をあげることができず、5000m/分とした。そして、それ以外は実施例1と同様にして、長繊維不織布を得た。得られたウエブの熱収縮率、糸切れ性(操業性)、不織布外観などの測定結果を表2に示す。   When operated without a heater just below the spinneret, the traction speed could not be increased and the speed was set at 5000 m / min. And otherwise, it carried out similarly to Example 1, and obtained the long-fiber nonwoven fabric. Table 2 shows the measurement results of the obtained web, such as the thermal shrinkage rate, thread breakage (operability), and nonwoven fabric appearance.

実施例1〜12の不織布は、いずれも、図1に示すように紡糸口金2の直下に設けられた加熱器4によって加熱処理された紡出糸条3によって形成されたものであったため、表1〜表2に示すように熱水収縮率を低く抑えることが可能であった。特に、実施例1〜3に示すように加熱器4の内部での糸条3の滞留時間を長くするほど、牽引装置7に導入するまでの糸条3を構成する重合体の結晶化の抑制効果をあげることができたため、牽引装置7における高速牽引時の配向、結晶化を向上でき、熱水収縮率を低く抑えることが可能であった。また、実施例4〜5に示すように、加熱器4における加熱温度T1を高くするほど、牽引装置4に導入するまでの糸条3を構成する重合体の結晶化を抑制することができたため、高速牽引時の配向結晶化を向上でき、熱水収縮率を低く抑えることが可能であった。   Since the nonwoven fabrics of Examples 1 to 12 were all formed by the spun yarn 3 heat-treated by the heater 4 provided immediately below the spinneret 2 as shown in FIG. As shown in Tables 1 and 2, it was possible to keep the hot water shrinkage low. In particular, as shown in Examples 1 to 3, the longer the residence time of the yarn 3 in the heater 4 is, the more the crystallization of the polymer constituting the yarn 3 is reduced until it is introduced into the traction device 7. Since the effect could be achieved, the orientation and crystallization at the time of high-speed traction in the traction device 7 could be improved, and the hot water shrinkage rate could be kept low. Further, as shown in Examples 4 to 5, the higher the heating temperature T1 in the heater 4, the more the crystallization of the polymer constituting the yarn 3 until the introduction into the traction device 4 could be suppressed. The orientation crystallization during high-speed traction can be improved, and the hot water shrinkage rate can be kept low.

これに対し、比較例1の不織布は、加熱器4を設けないで、紡出糸条を加熱することなしに、ただちに冷却装置により冷却したため、牽引装置7に導入するまでに糸条を構成する重合体の結晶化が進み、したがって熱水収縮率は15%以上となった。   On the other hand, the nonwoven fabric of Comparative Example 1 was not provided with the heater 4 and was immediately cooled by the cooling device without heating the spun yarn, and thus constituted the yarn before being introduced into the traction device 7. The crystallization of the polymer progressed, and thus the hot water shrinkage ratio was 15% or more.

本発明の実施の形態のポリ乳酸系長繊維不織布の製造装置の概略構成を示す図である。It is a figure which shows schematic structure of the manufacturing apparatus of the polylactic acid-type long fiber nonwoven fabric of embodiment of this invention.

符号の説明Explanation of symbols

2 紡糸口金
3 紡出糸条
4 非接触型加熱器
7 牽引装置
L 加熱部分の長さ
2 Spinneret 3 Spinning yarn 4 Non-contact heater 7 Pulling device L Length of heated part

Claims (6)

ポリ乳酸系重合体からなる長繊維にて構成された不織布の製造方法であって、前記ポリ乳酸系重合体をスパンボンド法により溶融紡出した繊維を堆積して長繊維不織布を製造するに際し、紡糸口金直下に非接触型加熱器を配設して紡出糸条を加熱し、次いで前記紡出糸条を6000m/分〜8000m/分で牽引することを特徴とするポリ乳酸系長繊維不織布の製造方法。 A method for producing a non-woven fabric composed of long fibers made of a polylactic acid-based polymer, in producing a long-fiber non-woven fabric by depositing fibers obtained by melt spinning the polylactic acid-based polymer by a spunbond method, A non-contact type heater disposed immediately below the spinneret to heat the spun yarn, and then tow the spun yarn at 6000 m / min to 8000 m / min. Manufacturing method. 紡出糸条の加熱条件として、ポリ乳酸系重合体の融点Tm(℃)に対する非接触型加熱器の加熱温度T1(℃)と、紡出糸条の加熱器内滞留時間t(秒)とが、それぞれ下記式(1)および(2)を満足する条件を用いることを特徴とする請求項1記載のポリ乳酸系長繊維不織布の製造方法。
Tm−70≦T1(℃)≦Tm+100 ・・・・(1)
0.07≦t(秒)≦1.80・・・(2)
As heating conditions for the spun yarn, the heating temperature T1 (° C.) of the non-contact type heater with respect to the melting point Tm (° C.) of the polylactic acid polymer, and the residence time t (second) of the spun yarn in the heater Using the conditions which satisfy | fill following formula (1) and (2), respectively, The manufacturing method of the polylactic acid-type long fiber nonwoven fabric of Claim 1 characterized by the above-mentioned.
Tm−70 ≦ T1 (° C.) ≦ Tm + 100 (1)
0.07 ≦ t (seconds) ≦ 1.80 (2)
ポリ乳酸系重合体の、ASTM-D-1238に準じて温度210℃で測定したメルトフローレートが、20〜80g/10分であることを特徴とする請求項1または2記載のポリ乳酸系長繊維不織布の製造方法。 The polylactic acid-based length according to claim 1 or 2, wherein the polylactic acid-based polymer has a melt flow rate measured at 210 ° C in accordance with ASTM-D-1238 at 20 to 80 g / 10 minutes. A method for producing a fiber nonwoven fabric. ポリ乳酸系重合体をスパンボンド法により溶融紡出した繊維を堆積して長繊維不織布を製造するための装置であって、紡糸口金直下に紡出糸条を加熱するための非接触型加熱器を設け、この非接触型加熱器よりも下方に、加熱された糸条を6000m/分〜8000m/分で牽引する牽引装置を設けたことを特徴とするポリ乳酸系長繊維不織布の製造装置。 A non-contact type heater for heating a spun yarn directly under a spinneret for producing a long-fiber nonwoven fabric by depositing fibers obtained by melt-spinning a polylactic acid polymer by a spunbond method And a pulling device for pulling the heated yarn at a speed of 6000 m / min to 8000 m / min is provided below the non-contact type heater. 請求項1から3までのいずれか1項記載の製造方法または請求項4記載の製造装置によって製造された長繊維不織布であって、この不織布を構成する長繊維は、単相断面であるとともに、熱水収縮率が15%以下であることを特徴とするポリ乳酸系長繊維不織布。 A long fiber nonwoven fabric produced by the production method according to any one of claims 1 to 3 or the production apparatus according to claim 4, wherein the long fibers constituting the nonwoven fabric have a single-phase cross section, A polylactic acid-based long fiber nonwoven fabric having a hot water shrinkage of 15% or less. 請求項1から3までのいずれか1項記載の製造方法または請求項4記載の製造装置によって製造された長繊維不織布であって、この不織布を構成する長繊維は、融点差を有する複数種類のポリ乳酸系重合体が複合断面を形成したものであるとともに、熱水収縮率が20%以下であることを特徴とするポリ乳酸系長繊維不織布。 A long-fiber non-woven fabric manufactured by the manufacturing method according to any one of claims 1 to 3 or the manufacturing apparatus according to claim 4, wherein the long fibers constituting the non-woven fabric are a plurality of types having a melting point difference. A polylactic acid-based long-fiber nonwoven fabric characterized in that a polylactic acid-based polymer forms a composite cross section and has a hot water shrinkage rate of 20% or less.
JP2003283251A 2003-07-31 2003-07-31 Method and apparatus for producing polylactic acid-based long fiber nonwoven fabric Expired - Fee Related JP4173072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003283251A JP4173072B2 (en) 2003-07-31 2003-07-31 Method and apparatus for producing polylactic acid-based long fiber nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003283251A JP4173072B2 (en) 2003-07-31 2003-07-31 Method and apparatus for producing polylactic acid-based long fiber nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2005048339A true JP2005048339A (en) 2005-02-24
JP4173072B2 JP4173072B2 (en) 2008-10-29

Family

ID=34268189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003283251A Expired - Fee Related JP4173072B2 (en) 2003-07-31 2003-07-31 Method and apparatus for producing polylactic acid-based long fiber nonwoven fabric

Country Status (1)

Country Link
JP (1) JP4173072B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046397A1 (en) * 2005-10-19 2007-04-26 Toray Industries, Inc. Crimped yarn, method for manufacture thereof, and fiber structure
JP2007197886A (en) * 2005-12-26 2007-08-09 Toray Ind Inc Crimped yarn, method for producing the same and fibrous structural material
JP2013151769A (en) * 2012-01-26 2013-08-08 Unitika Ltd Polylactic acid-based filament nonwoven fabric
CN113201805A (en) * 2021-03-30 2021-08-03 新疆蓝山屯河化工股份有限公司 Preparation method of PBAT fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007046397A1 (en) * 2005-10-19 2007-04-26 Toray Industries, Inc. Crimped yarn, method for manufacture thereof, and fiber structure
JP2007197886A (en) * 2005-12-26 2007-08-09 Toray Ind Inc Crimped yarn, method for producing the same and fibrous structural material
JP2013151769A (en) * 2012-01-26 2013-08-08 Unitika Ltd Polylactic acid-based filament nonwoven fabric
CN113201805A (en) * 2021-03-30 2021-08-03 新疆蓝山屯河化工股份有限公司 Preparation method of PBAT fiber
CN113201805B (en) * 2021-03-30 2022-07-15 新疆蓝山屯河科技股份有限公司 Preparation method of PBAT fiber

Also Published As

Publication number Publication date
JP4173072B2 (en) 2008-10-29

Similar Documents

Publication Publication Date Title
US7622188B2 (en) Islands-in-sea type composite fiber and process for producing the same
EP0977912B1 (en) Degradable polymer fibers; preparation; product; and methods of use
WO2000078839A1 (en) Polylactic acid resin, textile products obtained therefrom, and processes for producing textile products
US20090243141A1 (en) Manufacturing method of polyester fiber for airlaid nonwoven fabrics
JP2009150022A (en) Sheath-core conjugate fiber and fiber fabric thereof
JP4173072B2 (en) Method and apparatus for producing polylactic acid-based long fiber nonwoven fabric
JP4517481B2 (en) Polyester undrawn yarn excellent in handleability and method for producing the same
JP4009370B2 (en) Production method of polyester fiber
JP2003286640A (en) Short fiber nonwoven fabric
JP4049940B2 (en) Heat-sealable composite fiber and method for producing the same
JPS5837408B2 (en) Manufacturing method of polyester ultrafine fiber
JPH07138863A (en) Polyester ultrafine fiber nonwoven web and its production
JP4352843B2 (en) Polylactic acid fiber and method for producing the same
JP4140996B2 (en) Polyester long fiber nonwoven fabric and method for producing the same
JP5661400B2 (en) Archipelago-exposed composite fiber, fiber structure obtained from the fiber, and wiping tape comprising the fiber structure
JP2005105434A (en) Polyester-based filament nonwoven fabric
JP4725200B2 (en) Split type composite fiber excellent in uniform dyeability and method for producing the same
JP2003041432A (en) Polyester ultrafine fiber
JP2020147862A (en) Method for producing high hollow polyester fiber
JP2003119626A (en) Divided-type polyester conjugate fiber
JPH06212550A (en) Ultra-fine polypropylene fiber nonwoven web and its production
JP2007297727A (en) Method of producing fiber for airlaid nonwoven fabric
JP2002161436A (en) Polytrimethylene terephthalate fiber dyeable with cationic dye
JPH11217731A (en) Thermoadhesive conjugate fiber and its production
JP3657398B2 (en) Manufacturing method of composite fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080812

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110822

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120822

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130822

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees