JP4049940B2 - Heat-sealable composite fiber and method for producing the same - Google Patents

Heat-sealable composite fiber and method for producing the same Download PDF

Info

Publication number
JP4049940B2
JP4049940B2 JP11738399A JP11738399A JP4049940B2 JP 4049940 B2 JP4049940 B2 JP 4049940B2 JP 11738399 A JP11738399 A JP 11738399A JP 11738399 A JP11738399 A JP 11738399A JP 4049940 B2 JP4049940 B2 JP 4049940B2
Authority
JP
Japan
Prior art keywords
component
fiber
heat
polymer
composite fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11738399A
Other languages
Japanese (ja)
Other versions
JP2000303264A (en
Inventor
謙一 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP11738399A priority Critical patent/JP4049940B2/en
Publication of JP2000303264A publication Critical patent/JP2000303264A/en
Application granted granted Critical
Publication of JP4049940B2 publication Critical patent/JP4049940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱融着性複合繊維に関するものである。また詳しくは従来の非晶性ポリエステル系の熱融着性複合繊維より繊維化工程性が良好であり、かつ従来より強度が高く、熱収縮率が低いことにより、該繊維の加工工程での取扱性及び得られた繊維製品の寸法安定性、強度が優れたものとなるポリエステル系熱融着性複合繊維、及び該繊維を高速かつ安定して得ることができる方法に関するものである。
【0002】
【従来の技術】
2成分複合繊維において、1成分が低融点ポリマーである熱融着性繊維としては、例えばポリエチレンを接着成分とするポリエチレン−ポリプロピレン複合繊維、共重合ナイロンを接着成分とするポリプロピレンとの複合繊維、エチレン-ビニルアルコール共重合体を接着成分とするポリエチレンテレフタレートとの複合繊維、非晶性ポリエステルを接着成分とするポリエチレンテレフタレートとの複合繊維等多々ある。特にポリエステル系の熱融着性繊維は熱接着されるベースとなる繊維がポリエステル系である場合には最も適しており、ポリエステル繊維への用途が拡大にするに伴って、需要は拡大されている。また、このポリエステル系熱融着複合繊維はその主用途が不織布、詰め綿、綿状成形物等のランダムな繊維集合体の形状固定にあるため、短繊維がほとんどであるが、近年では織物、編物の交差点を固定するものとして長繊維も発明されている。
【0003】
これらポリエステル系熱融着複合繊維の接着成分としては、テレフタル酸、イソフタル酸、エチレングリコールまたはブチレングリコールを主成分とする共重合ポリエステル(非晶性)が多く提案されているが、いずれの場合もその共重合ポリエステルの二次転移点温度は約60〜70℃と低く、従来の紡糸後に延伸を実施する手法においては延伸温度をあまり高くすることができない。例えば芯成分としてポリエチレンテレフタレートを用い、鞘成分として上記の非晶性ポリエステルを用いた芯鞘複合繊維を得る場合、延伸温度をこの非晶性ポリエステルの二次転移点温度より高く設定すると、繊維間での膠着が生じ、短繊維ではカットやカード工程等の後工程性が著しく悪化するとともに、分散状態が不良となり得られる製品品位が低いものとなってしまい、長繊維の場合ではモノフィラメント状となり取扱性の悪いものとなるため、延伸温度は非晶性ポリマーの二次転移温度より低くせざるを得ない。そのため芯成分であるポリエチレンテレフタレートが十分配向結晶化させるだけの熱処理が施されず、延伸歪が繊維内に内在し、その結果、繊維の沸水及び乾熱収縮率が大きくなり、繊維製品の熱的寸法安定性に欠けたものとなると共に、強度も4g/d未満の低いものとなる。
【0004】
この問題に対して、特開平6-184824号公報には非晶性ポリエステルの二次転移点温度を上げるために、共重合成分として2,2-ビス(4-ヒドロキシフェニル)スルホンのアルキレンオキサイド付加物を用いる提案がなされている。この方法において二次転移点温度は上昇し延伸温度は上げられるが、それでも最高100℃であり、延伸後得られる繊維の強度は4g/d未満であり、繊維製品の強度に劣り、本発明でいうところの熱収縮率よりは大きくなって寸法安定性に問題がある。
【0005】
また、特開昭62-184119号公報には熱融着性複合繊維を5000m/分以上の紡糸速度で得、延伸熱処理を行わない方法が提案されているが、この方法においても得られる繊維の強度は4g/d未満であり、繊維製品の強度に劣るものである。
【0006】
【発明が解決しようとする課題】
本発明の目的は、上記のごとき問題点を解決するものである。つまり、熱融着性複合繊維に関して、従来の非晶性ポリエステル系の熱融着性複合繊維より繊維化工程性が良好であり、かつ従来より強度が高く、熱収縮率が低いことにより、該繊維の加工工程での取扱性が優れ、得られた繊維製品の寸法安定性、強度が優れたものとなるポリエステル系熱融着性複合繊維を高速かつ安定して得ることにある。
【0007】
【課題を解決するための手段】
本発明は、A成分とB成分とからなる複合繊維であって、A成分が二次転移点温度(Tg)が下記式(1)を満足する結晶性融解熱が実質的に0cal/gである非晶性ポリマーであり、B成分が融点150℃以上の結晶性熱可塑性ポリマーであり、かつA成分対B成分の複合比率が30:70〜70:30でA成分が繊維表面の少なくとも40%を形成し、さらに繊維物性が下記式(2)、(3)、(4)を満足する熱融着性複合繊維である。
式(1): Tg ≧ 70℃
式(2): DT ≧ 4.2g/d
式(3): W ≦ 6%
式(4): D ≦ 8%
ここで、 DT:強度(g/d)
W :沸水収縮率(%)
D :乾熱収縮率(%)
また本発明は、二次転移点温度(Tg)が下記式(5)を満足し、結晶性熱融解熱が実質的に0cal/gである非晶性ポリマー(A成分)と、融点150℃以上の結晶性熱可塑性ポリマー(B成分)とを、A成分対B成分の複合比率が30:70〜70:30でA成分が繊維表面の少なくとも40%を形成するように複合溶融紡出し、該紡出後A成分及びB成分のガラス転移点温度以下に冷却し、該冷却したマルチフィラメントを集束することなく引続き雰囲気温度150℃以上に加熱した加熱体域を非接触状態で通過させ、その後3000m/分以上の速度で引き取ることを特徴とする熱融着性複合繊維の製造方法である。
式(5): Tg ≧ 70 ℃
【0008】
以下、本発明について詳細に説明する。
本発明におけるA成分を構成するポリマーは二次転移点温度が70℃以上であることが必要である。二次転移点温度が70℃未満である場合、ポリマー製造後の乾燥温度をかかる温度以上の温度で実施するとポリマー間に膠着が生じ、トラブル発生の要因となるため、かかる温度未満の温度で長時間かけて真空乾燥しているのが実情であり、コスト的にも生産効率的にも好ましくない。更に、かかる温度未満の非晶性ポリマーを用いた場合、本発明での製糸工程でも単繊維間の膠着が起こり易く好ましくない。
【0009】
また、本発明におけるA成分ポリマーは結晶融解熱(△H)が実質的に0cal/gである非晶性ポリマーであることが必要である。△Hが測定できるポリマーになってくると接着繊維としての品質が低下し、特に剥離強度の低下が著しくなってくる。
【0010】
本発明での△Hとは、溶融ポリマーから微細な繊維状または薄膜フィルム小片として取りだして冷却し、3日以上室温で放置した試料を示差走査熱量計(DSC)にかけ、窒素中、10℃/分の速度で昇温し、結晶領域の融解時の吸熱ピークの面積より求める値であるが、本発明のA成分ポリマーは非晶性であるため、結晶領域の融解に基づく吸熱ピークは発生してこない。従って△Hは実質的に0cal/gである。吸熱ピークが非常にブロードになり明確に吸熱ピークを判断できない場合は、実質的に吸熱ピークが無く、△Hは0cal/gと判断してさしつかえない。
【0011】
上記のようなA成分ポリマーとしては、イソフタル酸をテレフタル酸に対して20〜60モル%共重合させたポリエチレンテレフタレートなどが挙げられる。ポリエチレンテレフタレートをベースとした共重合ポリエステルでA成分ポリマーとする場合、共重合成分としては上記条件を満たすものであれば特に限定はされず、芳香族ジカルボン酸、脂肪族ジカルボン酸またはこれらのエステル類やジオール化合物を共重合することで目的とする物に合った共重合成分、共重合比率とすれば良い。
【0012】
また、A成分を構成する原料ポリマーの固有粘度〔η〕は0.5〜0.9が好ましく、0.6〜0.85がより好ましい。
【0013】
さらにA成分には必要に応じて所定量の添加剤、蛍光増白剤、安定剤あるいは紫外線吸収剤などを含有していてもよい。
【0014】
B成分としては融点150℃以上の結晶性熱可塑性ポリマーを用いることである。
本発明でいう融点150℃以上のB成分ポリマーとしては、融点150℃以上の繊維成型性良好なポリマーであればどれでもよく、ポリエステル、ポリアミド、ポリプロピレンなどが用いられる。好ましくはエチレンテレフタレートまたはブチレンテレフタレートを主構成単位とするポリエステルか、ナイロン12またはナイロン6またはナイロン6,6を主成分とするポリアミドである。
【0015】
ポリエステルとしては、例えばテレフタル酸、イソフタル酸、ナフタレン−2,6−ジカルボン酸、フタル酸、α,β−(4−カルボキシフェノキシ)エタン、4,4−ジカルボキシジフェニル、5−ナトリウムスルホイソフタル酸などの芳香族ジカルボン酸もしくはアジピン酸、セバシン酸などの脂肪族ジカルボン酸またはこれらのエステル類と、エチレングリコール、ジエチレングリコール、1,4ブタンジオール、1,6ヘキサンジオール、ネオペンチルグリコール、シクロヘキサン1,4ジメタノール、ポリエチレングリコール、ポリテトレエチレングリコールなどのジオール化合物から合成される繊維形成性ポリエステルであり、構成単位の80モル%以上が、特には90モル%以上がエチレンテレフタレート単位もしくはブチレンテレフテレート単位であるポリエステルが好ましい。
【0016】
またポリエステル中には少量の添加剤、蛍光増白剤、安定剤あるいは紫外線吸収剤などを含有していてもよい。
【0017】
その固有粘度[η]は強度4.0g/d以上とするためには0.5以上が好ましい。上限は特に限定しないが繊維化工程性を考慮すると1.0程度が好ましい。
【0018】
また、ポリアミドとしては、ナイロン6、ナイロン6,6、ナイロン12を主成分とするポリアミドであり、少量の第3成分を含有するポリアミドでもよい。これらに少量の添加剤、蛍光増白剤、安定剤等を含有していても良い。その相対粘度はポリエステル系と同様な理由により2.0〜2.8程度が好ましい。
【0019】
また、A成分ポリマーとB成分ポリマーの複合比率はA:B=30:70〜70:30(重量比)である必要がある。A成分の比率が30%未満になると良好な熱融着性が得られにくくなり、A成分の比率が70%を超えると強度が低くなるとともに、やや曳糸性に劣るA成分が多くなり過ぎ紡糸工程性が不良となりやすい。特にはA:B=40:60〜60:40であることが好ましい。
【0020】
本発明における複合繊維の複合形状は熱融着性を考慮して、A成分が繊維表面の40%以上であるようなものが好ましく、50%以上であることがより好ましい。単繊維の断面形状は円に限定されるものではなく、楕円、Y型、T型、X型、△型、多角形等の異型断面、中空断面も採用できる。図1(a)〜(k)に、本発明熱融着複合繊維での形態を示す一例断面図を示す。
【0021】
上述のA成分とB成分からなる複合繊維は強度4g/d以上、かつ低熱収縮率、すなわち沸水収縮率が6%以下、200℃における乾熱収縮率が8%以下であることが必須である。
【0022】
これらの強度、収縮率が本発明の範囲を満足していない場合は、長繊維として使用する場合においては製編織工程、製編織後の精練、プレセットなどの熱工程性が悪く、また得られる編織物の寸法安定性等の品位の悪い物となる。短繊維として使用する場合においても得られた繊維製品の強度、寸法安定性等の品位が悪い物となってしまう。
【0023】
本発明による熱融着性複合繊維は前記の点を含め次のような製造技術を全て満足することによってはじめて達成可能となる。即ち、ポリマーとしては、B成分としてポリエステルを用いるときは固有粘度[η]を0.5〜1.0、ナイロンを用いるときには相対粘度を2.0〜3.0とする。またA成分としては二次転移点温度が70℃以上、結晶性融解熱が実質的に0cal/gである非晶性ポリマーとする。紡糸方法としては、上記ポリマーの組み合わせの複合繊維を溶融紡出した後、A及びB成分のガラス転移点温度以下に冷却し、該冷却したマルチフィラメントを集束することなく引続き雰囲気温度150℃以上に加熱した加熱体域を非接触状態で通過させ、その後3000m/分以上の速度で引き取ることである。以上のような製造技術により、上述してきたような本発明の目的とする物性(強度、熱収縮率)のものとなるとともに、目的物性を得る工程での単繊維間の膠着が無い熱融着性繊維を得ることが可能となった。
【0024】
本発明の複合繊維の製造方法について詳細に説明する。ここまで説明したA成分ポリマーとB成分ポリマーをそれぞれ個別の押出機で溶融押し出しし、各々紡糸ヘッドへ導入し、目的とする個々の複合形態を形成させる紡糸口金を経由して溶融紡出する。この場合の溶融紡出温度、溶融紡出速度などは特に制限されず、ポリエステル繊維を製造するのに通常用いられているのと同様の条件下で行うことができるが、溶融紡出温度については複合繊維を構成する2成分の融点の高い方の融点に対して20〜40℃高い温度(例えばB成分ポリマーがポリエチレンテレフタレートの場合は一般に約280〜300℃)にし、かつ溶融紡出速度(溶融紡出量)を約20〜50g/紡糸孔1mm2・分程度とすると、品質の良好な複合繊維を良好な紡糸工程で得ることができるので好ましい。
【0025】
また、紡糸口金における紡糸孔の大きさや数、紡糸孔の形状なども特に制限されず、目的とする複合繊維の単繊維度、総合デニール数、断面形状などに応じて調節することができる。一般に、紡糸孔(単孔)の大きさを約0.018〜0.07mm2程度にしておくのが望ましい。紡糸口金の孔周囲にノズル汚れが堆積して糸切れが発生する場合は、ノズル孔出口がテーパー状に広がった形状にしたり、口金下雰囲気をスチームシールして酸素を遮断する手法が好ましい。
【0026】
上記によって溶融紡出した複合繊維を複合2成分のガラス転移点の低い方のポリマーA成分のそのガラス転移点以下の温度、好ましくはガラス転移点温度よりも10℃以上低い温度に冷却する。この場合の冷却方法や冷却装置としては、紡出した複合繊維をそのガラス転移点温度以下に冷却できる方法や装置であればいずれでもよく、特に制限されないが、紡糸口金の下に冷却風吹き付け筒などの冷却風吹き付け装置を設けておいて、紡出されてきた複合繊維に冷却風を吹き付けてガラス転移点温度以下に冷却するようにするのが好ましい。その際に冷却風の吹き付け角度などの冷却条件も特に制限されず、口金から紡出されてきた複合繊維を揺れなどを生じないようにしながら速やかにかつ均一にガラス転移点温度以下にまで冷却できる条件であればいずれでもよい。
【0027】
そのうちでも、一般に冷却風の温度を約20〜30℃、冷却風の湿度を20〜60%、冷却風の吹き付け速度0.4〜1.0m/秒程度として、紡出繊維に対する冷却風の吹き付け方向を紡出方向に対して垂直にして、紡出した複合繊維の冷却を行うのが、高品質の複合繊維を円滑に得ることができるので好ましい。また、冷却風吹き付け筒を用いて前記の条件下で冷却を行う場合は、紡糸口金の直下にやや間隔をあけて、または間隔をあけないで、長さ約800〜1600mm冷却風吹き付け等を設置するのが好ましい。
【0028】
次に、ガラス転移点温度以下にまで冷却した複合繊維を引き続いてそのまま直接加熱帯域に導入して延伸する。加熱帯域の温度はB成分ポリマーの種類などに応じて異なり得るが、一般には用いる複合2成分ポリマーのガラス転移点温度の高い方のそれよりも40℃以上高い温度としておくと、均質な複合繊維が得られることになる。本発明の沸水収縮率、乾熱収縮率の範囲を満足するためには、さらに加熱帯域を高温とすることが肝要であり、例えばA成分ポリマーとしてイソフタル酸40モル%共重合したポリエチレンテレフタレート、B成分としてポリエチレンテレフタレートを用いた複合繊維の場合は加熱帯域の温度を約160℃以上とするのが好ましい。加熱帯域の上限温度は、加熱帯域内で繊維間の融着や糸切れ、単糸切れなどが生じないような温度であればよい。
【0029】
本製造方法においては、紡出されたマルチフィラメントを集束せず、紡糸から少なくとも延伸、熱セットまでを直結非接触状態で処理することが肝要であり、この非接触状態での処理により、フィラメントA成分の△Hが0cal/gでも融着、膠着を起こすことなく均一な熱融着性複合繊維が安定して得られるものである。
【0030】
加熱帯の種類や構造は、加熱帯域内を走行する複合繊維を加熱帯域内の加熱手段などに接触せず加熱することができ、しかも加熱帯域内を走行する糸条とそれを包囲する空気との間に抵抗を生じさせて糸条張力を増大させて、繊維に延伸を生じさせることのできる構造であればより好ましい。そのうちでも、加熱帯域としては、筒状の加熱帯域が好ましく用いられ、特に管壁自体がヒーターとなっている内径20〜50mm程度のパイプヒーターなどが好ましい。
【0031】
加熱帯域の紡糸口金からの設置位置、加熱帯域の長さなどは、複合繊維の種類、複合2成分ポリマーの紡出量、複合繊維の冷却温度、複合繊維の走行速度、加熱帯域の温度、加熱帯域の内径などに応じて調節できるが、一般に紡糸口金直下から加熱帯域の入り口までの距離を0.5〜3.0m程度とし、そして加熱帯域の長さを1.0〜2.0m程度としておくと、加熱帯域内で複合繊維を加熱して均一に円滑に延伸することができるので望ましい。
【0032】
加熱帯域で延伸された複合繊維に対して、必要に応じて油剤を付与してから、高速で引き取る。その際、A成分が非晶性ポリマーであるので単繊維間で融着を起こし易い場合があるので、状況に応じて加熱帯域通過後の油剤付与する間で冷却風を吹き付ける等の糸条の冷却処理を施すことが好ましい。
【0033】
本発明では、上記した一連の工程からなる延伸した複合繊維の製造工程を複合繊維の引き取り速度を3000m/分以上にして行うことが必要であり、引き取り速度が3500m/分以上であることが好ましい。複合繊維の引き取り速度が3000m/分未満であると、加熱帯域において複合繊維の延伸が十分に行われなくなり、得られる複合繊維の機械的強度が低下し、しかも上記した一連の工程からなる本発明の方法が円滑に行われず、特に加熱帯域における糸条の張力変動、過加熱などが生じて、均一な延伸が行われにくくなる。
【0034】
本発明では、最終的に得られる複合繊維の単繊維繊度や総デニール数などは特に制限されず、複合繊維の用途などに応じて適宜調節することができるが、本発明の方法は特に単繊維繊度が0.5〜6デニール、総デニール数が30〜300デニールの複合繊維(マルチフィラメント糸)を製造するのに適している。短繊維として用いる場合は、これらの糸を紡糸工程で合糸、もしくは紡糸後に合糸し、捲縮、カット等の処理を施せば良い。
【0035】
【実施例】
次に実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。なお、実施例における各測定値は以下の方法により測定されたものである。
【0036】
<ポリマー溶液粘度>
ポリエステルはフェノールとテトラクロロエタンの等量混合溶媒を用い30℃恒温槽中でウベローデ型粘度計を用いて測定し、ポリアミドはオルソクロルフェノールを用いて30℃下で測定した。
【0037】
<ポリマー熱特性>
ディファレンシャル・スキャニング・カロリメーター(Differential Scanning Calorimeter;メトラーTA3000、パーキンエルマー社製)を使用し、試料10mg、昇温及び降温速度10℃/分の条件で、窒素置換を行いながら測定し、同じ試料でこの操作を2回繰り返して2回目の値を実測値とした。
【0038】
<強度、伸度>
JIS L 1013に準じて測定した。
【0039】
<沸水収縮率>
初荷重1mg/デニール下で試料に50cm間隔の印をつけ、ついで試料を98℃の熱水中に5mg/デニールの荷重下30分放置し、その後取り出して、1mg/デニールの荷重下で印の間隔Lcmを測定し、次式により算出した。
沸水収縮率(%)=[(50−L)/50]×100
【0040】
<乾熱収縮率>
初荷重1mg/デニール下で試料に50cm間隔の印をつけ、ついで試料を200℃に昇温された乾熱雰囲気中に5mg/デニールの荷重下10分放置し、その後取り出して、1mg/デニールの荷重下で印の間隔L’cmを測定し、次式により算出した。
乾熱収縮率(%)=[(50−L’)/50]×100
【0041】
[実施例1]
A成分としては固有粘度[η]0.60のイソフル酸45モル%、ジエチレングリコール10モル%を共重合したポリエチレンテレフタレート、B成分としては固有粘度[η]0.80のポリエチレンテレフタレートを用い、A成分ポリマーとB成分ポリマーとを押出機により別々に溶融押し出しし、その後それぞれ別々のギアポンプにて計量し、複合比率50:50で図1(a)の如くA成分ポリマーを鞘、B成分ポリマーを芯とする芯鞘型断面で複合形状を形成させ、計量部分の口径が0.20mm、24ホールの丸孔ノズルから、紡糸温度290℃で溶融紡出した。紡糸口金直下に長さ1.0mの横吹き付け型の冷却風吹き付け装置を設置しておき、口金から紡出した複合繊維を直ちにその冷却風吹き付け装置に導入して、温度25℃、湿度65RH%に調整した冷却風を0.5m/秒の速度で紡出繊維に吹き付けて、繊維を50℃以下(冷却風吹き付け装置出口での繊維温度:40℃)にまで冷却した。50℃以下に冷却した複合繊維を、紡糸口金直下から1100mmの位置に設置した長さ1.0m、内径30mm、内壁温度180℃のパイプヒーターに導入してパイプヒーター内で延伸した後、パイプヒーターから出てきた繊維に、温度15℃、湿度65RH%に調節した冷却風を5m/秒の速度で吹き付けた後、オイリングローラー方式で油剤を付与し、引き続いて一対(2個)の引き取りローラーを介して4000m/分の引き取り速度で巻き取って、50デニール/24フィラメントの複合繊維を製造した。製糸工程性、フィラメント間の膠着、得られたコンジュゲート繊維の強度、沸水収縮率、乾熱収縮率を表1に示している。
得られた複合繊維を、ポリエチレンテレフタレート繊維75デニール/24フィラメントと混合率10%で交織及び交編し、通常の方法でプリセット、精錬を行い、190℃で熱接着処理を行った。
交編織時のコンジュゲート繊維の糸切れ等の加工性、並びに織編物製品の品位を表1に示している。
製糸工程性、加工工程性、製品品位とも良好であった。
【0042】
[実施例2〜8]
A成分ポリマーの共重合成分種類、含有量、B成分ポリマーの種類、A成分とB成分の複合比、断面形状を表1に示すような条件に変える以外は実施例1と同様にして複合繊維を得、織編物を作製、製品を仕上げた。
製糸工程性、加工工程性、製品品位とも良好であった。
【0043】
[比較例1]
A成分ポリマーの共重合成分種類、含有量、Tgを表1に示すような条件に変える以外は実施例1と同様にして複合繊維の製造を試みたが、製糸工程中で単糸同士の膠着が起こり、断糸が多発し製糸工程性が不良であった。
【0044】
[比較例2]
A成分ポリマーの共重合成分種類、含有量、Tg、ΔHを表1に示すような条件に変える以外は実施例1と同様にして複合繊維を製造し、交織編物を製造した。製糸工程性、加工工程性は良好であったが、接着力が弱く、目ずれを起こし、製品品位が不良であった。
【0045】
[比較例3]
A成分とB成分の複合比を表1に示すような条件に変える以外は実施例1と同様にて複合繊維の製造を試みたが、断糸が多発し工程性が不良であった。また得られた繊維を用いて実施例1と同様に交織製品の製造を試みたが、交織時の糸切れが多発し不良であった。
【0046】
[比較例4]
A成分とB成分の複合比率を表1に示すような条件に変える以外は実施例1と同様にして複合繊維を製造し、交織編物を製造した。製糸工程性、加工工程性は良好であったが、接着力が弱く、目ずれを起こし、製品品位が不良であった。
【0047】
[比較例5]
紡糸工程においてパイプヒーターを用いず、巻き取り速度1000m/minで巻き取った複合繊維を、70℃に加熱したローラーで予熱した後、3.2倍に延伸しながら120℃に加熱したプレートで熱セットを行って複合繊維を製造する以外は実施例1と同様にして複合繊維の製造を試みた。しかしながら、延伸熱セット工程で単糸同士の膠着が起こり、モノフィラメント状態となり、取り扱い性が著しく悪いものとなった。また、乾熱収縮率が高いため、ポリエチレンテレフタレート繊維と収縮差が生じ、目ずれ、シボが発生し製品品位が著しく不良であった。
【0048】
[比較例6]
紡糸速度を表1に示すような条件に変える以外は実施例1と同様にして複合繊維を得ようと試みたが断糸が多発し著しく工程性不良であった。また得られた複合繊維は強度が低いため加工工程での糸切れが発生し、沸水収縮率、乾熱収縮率が高いためにポリエチレンテレフタレート繊維と加工工程において収縮差が生じ、目ずれ、シボが発生し製品品位が不良であった。
【0049】
[比較例7]
パイプヒーター温度を140℃とする以外は実施例1と同様にして複合繊維を製造し、交織編物を得た。沸水収縮率、乾熱収縮率が高いため、加工工程での収縮斑が発生し易く、また交織編相手のポリエチレンテレフタレート繊維との収縮差により目ずれ、シボが発生し製品品位の低いものとなった。
【0050】
【表1】

Figure 0004049940
【0051】
【発明の効果】
以上説明したように、本発明の熱融着性複合繊維は、繊維化工程性が極めて良好であり、かつ強度が高く、熱収縮率が低いことにより、該繊維の加工工程での取扱い性及び得られた繊維製品の寸法安定性、強度が優れたものとなるものである。また本発明の熱融着性複合繊維の製法は、該繊維を高速かつ安定して製造することができる。
【図面の簡単な説明】
【図1】(a)〜(k)は、本発明熱融着性複合繊維の複合形態の一例を示す断面図である。
【符号の説明】
(イ) Tg≧70℃以上で結晶性融解熱が実質上0cal/gの非晶性ポリマー
(ロ) 融点150℃以上の結晶性熱可塑性ポリマー[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat-fusible conjugate fiber. More specifically, the fiber processing process is better than the conventional amorphous polyester-based heat-fusible conjugate fiber, and the strength is higher and the heat shrinkage rate is lower than the conventional process. The present invention relates to a polyester-based heat-fusible composite fiber having excellent properties, dimensional stability and strength of the obtained fiber product, and a method capable of stably obtaining the fiber at high speed.
[0002]
[Prior art]
In the two-component composite fiber, as the heat-fusible fiber in which one component is a low-melting polymer, for example, a polyethylene-polypropylene composite fiber having polyethylene as an adhesive component, a composite fiber with polypropylene having a copolymer nylon as an adhesive component, ethylene There are many composite fibers such as a composite fiber with polyethylene terephthalate having a vinyl alcohol copolymer as an adhesive component, and a composite fiber with polyethylene terephthalate having an amorphous polyester as an adhesive component. In particular, polyester-based heat-fusible fibers are most suitable when the base fiber to be heat-bonded is polyester-based, and demand is expanding as the use of polyester fibers expands. . In addition, the polyester-based heat-fusible composite fiber is mainly used for fixing the shape of random fiber aggregates such as nonwoven fabrics, stuffed cotton, and cotton-like molded products. Long fibers have also been invented for fixing the intersection of knitted fabrics.
[0003]
As an adhesive component of these polyester-based heat-fusible composite fibers, many copolyesters (non-crystalline) based on terephthalic acid, isophthalic acid, ethylene glycol or butylene glycol have been proposed. The secondary transition temperature of the copolyester is as low as about 60 to 70 ° C., and the stretching temperature cannot be so high in the conventional technique of stretching after spinning. For example, when obtaining a core-sheath composite fiber using polyethylene terephthalate as the core component and the above-described amorphous polyester as the sheath component, if the stretching temperature is set higher than the secondary transition temperature of the amorphous polyester, In the case of short fibers, the post-process properties such as cutting and carding process are remarkably deteriorated, and the product quality that can be caused by the poor dispersion state is low. Therefore, the stretching temperature must be lower than the secondary transition temperature of the amorphous polymer. Therefore, the core component, polyethylene terephthalate, is not subjected to heat treatment enough to crystallize the orientation, and stretching strain is inherent in the fiber. As a result, the boiling water and dry heat shrinkage of the fiber increase, and the thermal properties of the fiber product In addition to lack of dimensional stability, the strength is also low, less than 4 g / d.
[0004]
In response to this problem, JP-A-6-184824 discloses the addition of alkylene oxide of 2,2-bis (4-hydroxyphenyl) sulfone as a copolymer component in order to increase the secondary transition temperature of the amorphous polyester. Proposals using objects have been made. In this method, the secondary transition temperature is raised and the drawing temperature is raised, but it is still 100 ° C. at the maximum, and the strength of the fiber obtained after drawing is less than 4 g / d, which is inferior to the strength of the fiber product. This is larger than the heat shrinkage rate, and there is a problem in dimensional stability.
[0005]
Japanese Patent Application Laid-Open No. Sho 62-184119 proposes a method in which a heat-fusible conjugate fiber is obtained at a spinning speed of 5000 m / min or more and no drawing heat treatment is carried out. The strength is less than 4 g / d, which is inferior to the strength of the fiber product.
[0006]
[Problems to be solved by the invention]
The object of the present invention is to solve the above problems. That is, with respect to the heat-fusible conjugate fiber, the fiber forming processability is better than the conventional amorphous polyester-based heat-fusible conjugate fiber, and the strength is higher than the conventional one, and the heat shrinkage rate is low. An object of the present invention is to obtain a polyester-based heat-fusible conjugate fiber that is excellent in handleability in a fiber processing step and has excellent dimensional stability and strength of the obtained fiber product at high speed and stably.
[0007]
[Means for Solving the Problems]
The present invention is a composite fiber comprising an A component and a B component, and the A component has a second-order transition temperature (Tg) satisfying the following formula (1), and the heat of crystalline fusion is substantially 0 cal / g. A non-crystalline polymer, a B component is a crystalline thermoplastic polymer having a melting point of 150 ° C. or higher, and a composite ratio of A component to B component is 30:70 to 70:30, and A component is at least 40 on the fiber surface. %, And the fiber properties satisfy the following formulas (2), (3), and (4).
Formula (1): Tg> = 70 degreeC
Formula (2): DT ≧ 4 . 2 g / d
Formula (3): W ≦ 6%
Formula (4): D <= 8%
Where DT: Strength (g / d)
W: Boiling water shrinkage (%)
D: Dry heat shrinkage (%)
The present invention also provides an amorphous polymer (component A) having a secondary transition temperature (Tg) satisfying the following formula (5) and a crystalline heat of fusion of substantially 0 cal / g, a melting point of 150 ° C. Compound melt spinning the above crystalline thermoplastic polymer (component B) such that the composite ratio of component A to component B is 30:70 to 70:30 and component A forms at least 40% of the fiber surface, After the spinning, it is cooled below the glass transition temperature of the A component and the B component, and the cooled multifilament is continuously passed through the heated body area heated to an atmospheric temperature of 150 ° C. or more without focusing, and thereafter It is a method for producing a heat-fusible conjugate fiber, which is drawn at a speed of 3000 m / min or more.
Formula (5): Tg ≧ 70 ° C.
[0008]
Hereinafter, the present invention will be described in detail.
The polymer constituting the component A in the present invention needs to have a secondary transition temperature of 70 ° C. or higher. When the secondary transition temperature is less than 70 ° C., if the drying temperature after polymer production is carried out at a temperature higher than this temperature, it will cause sticking between the polymers and cause troubles. Actually, vacuum drying over time is not preferable in terms of cost and production efficiency. Furthermore, when an amorphous polymer having a temperature lower than the above temperature is used, it is not preferable that the single fibers are easily stuck even in the spinning process of the present invention.
[0009]
In addition, the component A polymer in the present invention needs to be an amorphous polymer having a heat of crystal melting (ΔH) of substantially 0 cal / g. When the polymer becomes capable of measuring ΔH, the quality as an adhesive fiber is lowered, and the peel strength is particularly lowered.
[0010]
ΔH in the present invention refers to a sample taken out from a molten polymer as a fine fibrous or thin film piece, cooled, and allowed to stand at room temperature for 3 days or more, and subjected to a differential scanning calorimeter (DSC) in nitrogen at 10 ° C. / The temperature is obtained at a rate of minutes, and the value is obtained from the area of the endothermic peak when the crystalline region is melted. However, since the component A polymer of the present invention is amorphous, an endothermic peak based on melting of the crystalline region occurs. It does n’t come. Therefore, ΔH is substantially 0 cal / g. If the endothermic peak is so broad that the endothermic peak cannot be clearly determined, there is substantially no endothermic peak, and ΔH can be determined to be 0 cal / g.
[0011]
Examples of the component A polymer include polyethylene terephthalate obtained by copolymerizing isophthalic acid with 20 to 60 mol% with respect to terephthalic acid. When the copolymer polyester based on polyethylene terephthalate is used as the component A polymer, the copolymer component is not particularly limited as long as the above conditions are satisfied. Aromatic dicarboxylic acid, aliphatic dicarboxylic acid or esters thereof Or a diol compound may be copolymerized with a copolymerization component and a copolymerization ratio suitable for the target product.
[0012]
In addition, the raw material polymer constituting the component A Inherent The viscosity [η] is preferably 0.5 to 0.9, more preferably 0.6 to 0.85.
[0013]
Furthermore, the A component may contain a predetermined amount of an additive, a fluorescent brightening agent, a stabilizer, an ultraviolet absorber, or the like as necessary.
[0014]
The B component is a crystalline thermoplastic polymer having a melting point of 150 ° C. or higher.
In the present invention, the B component polymer having a melting point of 150 ° C. or higher may be any polymer having a melting point of 150 ° C. or higher and good fiber moldability, and polyester, polyamide, polypropylene and the like are used. Polyester having ethylene terephthalate or butylene terephthalate as a main structural unit, or polyamide having nylon 12 or nylon 6 or nylon 6,6 as a main component is preferable.
[0015]
Examples of the polyester include terephthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, phthalic acid, α, β- (4-carboxyphenoxy) ethane, 4,4-dicarboxydiphenyl, 5-sodium sulfoisophthalic acid, and the like. Aromatic dicarboxylic acids or aliphatic dicarboxylic acids such as adipic acid and sebacic acid or esters thereof, ethylene glycol, diethylene glycol, 1,4 butanediol, 1,6 hexanediol, neopentyl glycol, cyclohexane 1,4 di It is a fiber-forming polyester synthesized from a diol compound such as methanol, polyethylene glycol, or polytetreethylene glycol, and 80 mol% or more, particularly 90 mol% or more of the structural units are ethylene terephthalate units or butylene. Polyesters that are terephthalate units are preferred.
[0016]
The polyester may contain a small amount of an additive, a fluorescent brightener, a stabilizer or an ultraviolet absorber.
[0017]
That Inherent The viscosity [η] is preferably 0.5 or more in order to obtain a strength of 4.0 g / d or more. The upper limit is not particularly limited, but about 1.0 is preferable in consideration of the fiberizing process property.
[0018]
The polyamide is a polyamide mainly composed of nylon 6, nylon 6, 6, or nylon 12, and may be a polyamide containing a small amount of the third component. These may contain a small amount of additives, fluorescent brighteners, stabilizers and the like. The relative viscosity is preferably about 2.0 to 2.8 for the same reason as the polyester type.
[0019]
Moreover, the composite ratio of A component polymer and B component polymer needs to be A: B = 30: 70-70: 30 (weight ratio). When the ratio of the A component is less than 30%, it becomes difficult to obtain good heat-fusibility, and when the ratio of the A component exceeds 70%, the strength is lowered and the A component slightly inferior to the spinnability is excessively increased. Spinning processability tends to be poor. In particular, A: B = 40: 60 to 60:40 is preferable.
[0020]
The composite shape of the composite fiber in the present invention is preferably such that the component A is 40% or more of the fiber surface, and more preferably 50% or more in consideration of heat-fusibility. The cross-sectional shape of the single fiber is not limited to a circle, and an elliptical, Y-type, T-type, X-type, Δ-type, polygonal, or other irregular cross-section or hollow cross-section can also be used. FIG. 1A to FIG. 1K are cross-sectional views showing examples of the form of the heat-sealed conjugate fiber of the present invention.
[0021]
The above-mentioned composite fiber composed of the A component and the B component must have a strength of 4 g / d or more, a low heat shrinkage rate, that is, a boiling water shrinkage rate of 6% or less, and a dry heat shrinkage rate at 200 ° C. of 8% or less. .
[0022]
When these strengths and shrinkage ratios do not satisfy the scope of the present invention, when used as long fibers, thermal process properties such as knitting process, scouring after knitting process, and presetting are poor and can be obtained. It becomes a thing with bad quality, such as dimensional stability of a knitted fabric. Even when used as a short fiber, the obtained fiber product has poor quality such as strength and dimensional stability.
[0023]
The heat-fusible conjugate fiber according to the present invention can be achieved only by satisfying all the following manufacturing techniques including the above points. That is, as a polymer, when using polyester as the B component Inherent The viscosity [η] is 0.5 to 1.0, and when nylon is used, the relative viscosity is 2.0 to 3.0. The component A is an amorphous polymer having a secondary transition temperature of 70 ° C. or higher and a crystalline heat of fusion of substantially 0 cal / g. As a spinning method, a composite fiber of the above polymer combination is melt-spun and then cooled to a temperature below the glass transition temperature of the A and B components, and the cooled multifilament is continued to an ambient temperature of 150 ° C. or more without focusing. Passing the heated heated body area in a non-contact state, and then taking it up at a speed of 3000 m / min or more. With the above manufacturing technology, the above-mentioned physical properties (strength, heat shrinkage) of the present invention as described above are obtained, and thermal fusion without agglutination between single fibers in the process of obtaining the desired physical properties It became possible to obtain a conductive fiber.
[0024]
The manufacturing method of the composite fiber of this invention is demonstrated in detail. The A-component polymer and B-component polymer described so far are melt-extruded by individual extruders, introduced into a spinning head, and melt-spun through a spinneret that forms each desired composite form. In this case, the melt spinning temperature, the melt spinning speed, etc. are not particularly limited and can be performed under the same conditions as those usually used for producing polyester fibers. The temperature is 20 to 40 ° C higher than the higher melting point of the two components constituting the composite fiber (for example, generally about 280 to 300 ° C when the B component polymer is polyethylene terephthalate), and the melt spinning speed (melting) Spinning amount) is about 20-50g / spinning hole 1mm 2 -About a minute is preferable because a good quality composite fiber can be obtained by a good spinning process.
[0025]
Further, the size and number of spinning holes in the spinneret, the shape of the spinning hole, and the like are not particularly limited, and can be adjusted according to the single fiber degree, the total denier number, the cross-sectional shape, and the like of the target composite fiber. Generally, the size of the spinning hole (single hole) is about 0.018 to 0.07 mm. 2 It is desirable to keep the degree. When nozzle dirt accumulates around the hole of the spinneret and thread breakage occurs, a method of blocking the oxygen by forming the nozzle hole outlet in a tapered shape or steam-sealing the atmosphere under the nozzle is preferable.
[0026]
The composite fiber melt-spun by the above is cooled to a temperature not higher than the glass transition point of the polymer A component having a lower glass transition point of the composite two components, preferably to a temperature lower by 10 ° C. or more than the glass transition temperature. The cooling method or cooling device in this case may be any method or device that can cool the spun composite fiber to its glass transition temperature or lower, and is not particularly limited. It is preferable to provide a cooling air blowing device such as the above, and to cool the glass fiber below the glass transition temperature by blowing cooling air to the spun composite fiber. At that time, the cooling conditions such as the blowing angle of the cooling air are not particularly limited, and the composite fiber spun from the die can be quickly and uniformly cooled to the glass transition point temperature or less without causing shaking. Any condition is acceptable.
[0027]
Among them, in general, the temperature of the cooling air is about 20 to 30 ° C., the humidity of the cooling air is 20 to 60%, and the cooling air blowing speed is about 0.4 to 1.0 m / sec. It is preferable to cool the spun conjugate fiber with the direction perpendicular to the spinning direction because a high-quality conjugate fiber can be obtained smoothly. In addition, when cooling is performed under the above-described conditions using a cooling air blowing cylinder, a cooling air blowing of about 800 to 1600 mm in length, etc., is installed with or without a slight gap immediately below the spinneret. It is preferable to do this.
[0028]
Next, the composite fiber cooled to below the glass transition temperature is subsequently introduced directly into the heating zone and drawn. Although the temperature of the heating zone may vary depending on the type of the B component polymer, etc., in general, if the temperature is higher by 40 ° C. than the higher one of the glass transition temperature of the composite bicomponent polymer used, a homogeneous composite fiber Will be obtained. In order to satisfy the ranges of the boiling water shrinkage and the dry heat shrinkage of the present invention, it is important to further increase the heating zone. For example, polyethylene terephthalate copolymerized with 40 mol% of isophthalic acid as the A component polymer, B In the case of a composite fiber using polyethylene terephthalate as a component, the temperature of the heating zone is preferably about 160 ° C. or higher. The upper limit temperature of the heating zone may be a temperature at which fusion between fibers, yarn breakage, single yarn breakage or the like does not occur in the heating zone.
[0029]
In this production method, it is important that the spun multifilaments are not converged, but processed from spinning to at least stretching and heat setting in a directly connected non-contact state. By this non-contact state treatment, the filament A Even when ΔH of the component is 0 cal / g, uniform heat-fusible conjugate fibers can be stably obtained without causing fusing and sticking.
[0030]
The type and structure of the heating zone can heat the composite fiber running in the heating zone without contacting the heating means in the heating zone, and the yarn running in the heating zone and the air surrounding it. It is more preferable if it has a structure capable of causing the fiber to be stretched by generating a resistance between them to increase the yarn tension. Among them, as the heating zone, a cylindrical heating zone is preferably used, and a pipe heater having an inner diameter of about 20 to 50 mm in which the tube wall itself is a heater is particularly preferable.
[0031]
The installation position of the heating zone from the spinneret, the length of the heating zone, etc. are the type of composite fiber, the amount of composite bicomponent polymer spun, the cooling temperature of the composite fiber, the traveling speed of the composite fiber, the temperature of the heating zone, the heating Although it can be adjusted according to the inner diameter of the zone, the distance from the bottom of the spinneret to the entrance of the heating zone is generally about 0.5 to 3.0 m, and the length of the heating zone is about 1.0 to 2.0 m. It is desirable that the composite fiber can be heated and uniformly stretched smoothly in the heating zone.
[0032]
An oil agent is applied to the composite fiber stretched in the heating zone as necessary, and then pulled at a high speed. At that time, since the A component is an amorphous polymer, it may be easy to cause fusion between single fibers. Therefore, depending on the situation, the yarn may be blown with cooling air while the oil is applied after passing through the heating zone. It is preferable to perform a cooling process.
[0033]
In the present invention, it is necessary to carry out the process of producing a stretched conjugate fiber comprising the above-described series of steps at a take-up speed of the conjugate fiber of 3000 m / min or more, and the take-up speed is preferably 3500 m / min or more. . When the take-up speed of the composite fiber is less than 3000 m / min, the composite fiber is not sufficiently stretched in the heating zone, the mechanical strength of the resulting composite fiber is lowered, and the present invention comprises the above-described series of steps. This method is not performed smoothly, and in particular, the yarn tension fluctuation in the heating zone, overheating, etc. occur, and uniform stretching is difficult to perform.
[0034]
In the present invention, the single fiber fineness and total denier number of the finally obtained composite fiber are not particularly limited, and can be appropriately adjusted according to the use of the composite fiber. It is suitable for producing a composite fiber (multifilament yarn) having a fineness of 0.5 to 6 denier and a total denier of 30 to 300 denier. When used as a short fiber, these yarns may be combined in the spinning process, or combined after spinning, and subjected to treatments such as crimping and cutting.
[0035]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further more concretely, this invention is not limited to a following example at all. In addition, each measured value in an Example is measured with the following method.
[0036]
<Polymer solution viscosity>
Polyester was measured using an Ubbelohde viscometer in a 30 ° C. constant temperature bath using an equal amount mixed solvent of phenol and tetrachloroethane, and polyamide was measured at 30 ° C. using orthochlorophenol.
[0037]
<Polymer thermal properties>
Using a differential scanning calorimeter (Differential Scanning Calorimeter; METTLER TA3000, manufactured by PerkinElmer), measurement was performed while replacing nitrogen with a sample of 10 mg and a temperature increase / decrease rate of 10 ° C./min. This operation was repeated twice, and the second value was used as an actual measurement value.
[0038]
<Strength and elongation>
It measured according to JIS L1013.
[0039]
<Boiling water shrinkage>
The sample is marked at 50 cm intervals under an initial load of 1 mg / denier, then the sample is left in 98 ° C. hot water for 30 minutes under a load of 5 mg / denier, then removed and marked under a load of 1 mg / denier. The distance Lcm was measured and calculated by the following formula.
Boiling water shrinkage (%) = [(50−L) / 50] × 100
[0040]
<Dry heat shrinkage>
The sample is marked at 50 cm intervals under an initial load of 1 mg / denier, then the sample is left in a dry heat atmosphere heated to 200 ° C. for 10 minutes under a load of 5 mg / denier and then removed to obtain a 1 mg / denier The distance L′ cm between the marks was measured under load and calculated according to the following formula.
Dry heat shrinkage (%) = [(50−L ′) / 50] × 100
[0041]
[Example 1]
As component A, polyethylene terephthalate copolymerized with 45 mol% of isofluric acid having an intrinsic viscosity [η] 0.60 and 10 mol% of diethylene glycol was used, and as component B, polyethylene terephthalate having an intrinsic viscosity [η] of 0.80 was used. The polymer and the B component polymer are melted and extruded separately by an extruder, and each is then weighed by a separate gear pump, and the A component polymer is sheathed and the B component polymer is cored as shown in FIG. A composite shape was formed with a core-sheath type cross-section, and melt spinning was performed at a spinning temperature of 290 ° C. from a round hole nozzle with a metered portion diameter of 0.20 mm and 24 holes. A horizontal blowing type cooling air spraying device having a length of 1.0 m is installed directly under the spinneret, and the composite fiber spun from the base is immediately introduced into the cooling air spraying device, at a temperature of 25 ° C. and a humidity of 65 RH%. The cooling air adjusted to was blown onto the spun fiber at a speed of 0.5 m / sec, and the fiber was cooled to 50 ° C. or lower (fiber temperature at the outlet of the cooling air blowing device: 40 ° C.). The composite fiber cooled to 50 ° C. or lower is introduced into a pipe heater having a length of 1.0 m, an inner diameter of 30 mm, and an inner wall temperature of 180 ° C. installed at a position of 1100 mm from directly below the spinneret, and is drawn in the pipe heater. After blowing cooling air adjusted to a temperature of 15 ° C. and a humidity of 65 RH% at a speed of 5 m / second, the oil agent is applied by the oiling roller method, and then a pair of (two) take-up rollers are applied. Were wound up at a take-up speed of 4000 m / min to produce a 50 denier / 24 filament composite fiber. Table 1 shows the spinning process properties, adhesion between filaments, strength of the resulting conjugate fiber, boiling water shrinkage, and dry heat shrinkage.
The obtained composite fiber was woven and knitted with a polyethylene terephthalate fiber 75 denier / 24 filament at a mixing rate of 10%, preset and refined by a usual method, and heat-bonded at 190 ° C.
Table 1 shows the processability such as yarn breakage of the conjugate fiber during cross knitting, and the quality of the woven / knitted product.
The yarn-making processability, processing processability, and product quality were also good.
[0042]
[Examples 2 to 8]
A composite fiber in the same manner as in Example 1 except that the copolymer component type and content of the A component polymer, the type of the B component polymer, the composite ratio of the A component and the B component, and the cross-sectional shape are changed to the conditions shown in Table 1. We made a knitted and knitted fabric and finished the product.
The yarn-making processability, processing processability, and product quality were also good.
[0043]
[Comparative Example 1]
The production of the composite fiber was tried in the same manner as in Example 1 except that the type, content, and Tg of the copolymer component of the A component polymer were changed to the conditions shown in Table 1, but the single yarns were stuck together during the yarn making process. As a result, yarn breakage occurred frequently, and the yarn-making process was poor.
[0044]
[Comparative Example 2]
A composite fiber was produced in the same manner as in Example 1 except that the copolymer component type, content, Tg, and ΔH of the component A polymer were changed to the conditions shown in Table 1, and a woven fabric was produced. Although the yarn-making processability and processing processability were good, the adhesive strength was weak, causing misalignment, and the product quality was poor.
[0045]
[Comparative Example 3]
Production of a composite fiber was attempted in the same manner as in Example 1 except that the composite ratio of the A component and the B component was changed to the conditions shown in Table 1. However, many yarn breaks occurred and the processability was poor. Further, using the obtained fiber, an attempt was made to produce a woven product in the same manner as in Example 1. However, the yarn was frequently broken during the woven and was defective.
[0046]
[Comparative Example 4]
A composite fiber was produced in the same manner as in Example 1 except that the composite ratio of the A component and the B component was changed to the conditions shown in Table 1, and a union knitted fabric was produced. Although the yarn-making processability and processing processability were good, the adhesive strength was weak, causing misalignment, and the product quality was poor.
[0047]
[Comparative Example 5]
In the spinning process, the composite fiber wound up at a winding speed of 1000 m / min without using a pipe heater is preheated with a roller heated to 70 ° C., and then heated on a plate heated to 120 ° C. while stretching 3.2 times. The production of the conjugate fiber was tried in the same manner as in Example 1 except that the conjugate fiber was produced by setting. However, sticking of single yarns occurred in the drawing heat setting process, resulting in a monofilament state, and the handleability was extremely poor. Moreover, since the dry heat shrinkage rate was high, a shrinkage difference was produced with polyethylene terephthalate fibers, misalignment and wrinkles were generated, and the product quality was extremely poor.
[0048]
[Comparative Example 6]
An attempt was made to obtain a composite fiber in the same manner as in Example 1 except that the spinning speed was changed to the conditions shown in Table 1. However, many yarn breaks occurred and the processability was extremely poor. In addition, the resulting composite fiber is low in strength, resulting in yarn breakage in the processing step, and since the boiling water shrinkage rate and dry heat shrinkage rate are high, there is a difference in shrinkage between the polyethylene terephthalate fiber and the processing step, resulting in misalignment and wrinkles. The product quality was poor.
[0049]
[Comparative Example 7]
A conjugate fiber was produced in the same manner as in Example 1 except that the pipe heater temperature was set to 140 ° C. to obtain a knit fabric. Due to high boiling water shrinkage and dry heat shrinkage, shrinkage spots are likely to occur in the processing process, and due to the difference in shrinkage from the polyethylene terephthalate fiber of the union weaving partner, misalignment and wrinkles occur, resulting in low product quality. It was.
[0050]
[Table 1]
Figure 0004049940
[0051]
【The invention's effect】
As described above, the heat-fusible conjugate fiber of the present invention has extremely good fiberizing process properties, high strength, and low heat shrinkage rate, so that the handleability in the processing process of the fibers and The obtained fiber product has excellent dimensional stability and strength. In addition, the method for producing the heat-fusible conjugate fiber of the present invention can produce the fiber at high speed and stably.
[Brief description of the drawings]
1A to 1K are cross-sectional views showing an example of a composite form of the heat-fusible conjugate fiber of the present invention.
[Explanation of symbols]
(A) An amorphous polymer having a Tg ≧ 70 ° C. or higher and a heat of crystalline melting of substantially 0 cal / g
(B) Crystalline thermoplastic polymer having a melting point of 150 ° C. or higher

Claims (3)

A成分とB成分とからなる複合繊維であって、A成分が二次転移点温度(Tg)が下記式(1)を満足し結晶性融解熱が実質的に0cal/gである非晶性ポリマーであり、B成分が融点150℃以上の結晶性熱可塑性ポリマーであり、かつA成分対B成分の複合比率が30:70〜70:30でA成分が繊維表面の少なくとも40%を形成し、さらに繊維物性が下記式(2)、(3)、(4)を満足する熱融着性複合繊維。
式(1): Tg ≧ 70℃
式(2): DT ≧ 4.2g/d
式(3): W ≦ 6%
式(4): D ≦ 8%
ここで、 DT:強度(g/d)
W :沸水収縮率(%)
D :乾熱収縮率(%)
A composite fiber comprising an A component and a B component, wherein the A component satisfies the following formula (1) with a second-order transition temperature (Tg), and the heat of crystalline melting is substantially 0 cal / g. A polymer, a B component is a crystalline thermoplastic polymer having a melting point of 150 ° C. or higher, and a composite ratio of A component to B component is 30:70 to 70:30, and A component forms at least 40% of the fiber surface. Furthermore, the heat-fusible conjugate fiber whose fiber properties satisfy the following formulas (2), (3), and (4).
Formula (1): Tg> = 70 degreeC
Formula (2): DT ≧ 4 . 2 g / d
Formula (3): W ≦ 6%
Formula (4): D <= 8%
Where DT: Strength (g / d)
W: Boiling water shrinkage (%)
D: Dry heat shrinkage (%)
A成分対B成分の複合比率が50:50〜70:30であり、強度が4.3g/d以上であることを特徴とする請求項1に記載の熱融着性複合繊維。2. The heat-fusible conjugate fiber according to claim 1, wherein the composite ratio of the A component to the B component is 50:50 to 70:30 and the strength is 4.3 g / d or more. 上記B成分が、固有粘度0.80〜1.0のポリエステルからなることを特徴とする請求項1または2に記載の熱融着性複合繊維。The heat-fusible conjugate fiber according to claim 1 or 2, wherein the component B is made of polyester having an intrinsic viscosity of 0.80 to 1.0.
JP11738399A 1999-04-26 1999-04-26 Heat-sealable composite fiber and method for producing the same Expired - Fee Related JP4049940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11738399A JP4049940B2 (en) 1999-04-26 1999-04-26 Heat-sealable composite fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11738399A JP4049940B2 (en) 1999-04-26 1999-04-26 Heat-sealable composite fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000303264A JP2000303264A (en) 2000-10-31
JP4049940B2 true JP4049940B2 (en) 2008-02-20

Family

ID=14710302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11738399A Expired - Fee Related JP4049940B2 (en) 1999-04-26 1999-04-26 Heat-sealable composite fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP4049940B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0127327D0 (en) * 2001-11-14 2002-01-02 Univ Leeds Centrifugal spinning process
EP2604730A4 (en) 2010-07-29 2014-02-26 Kuraray Co Amorphous heat fusion fiber, fiber structure body, and heat-resistant molded article
CN110923847A (en) * 2019-11-06 2020-03-27 芦山华美包纱有限公司 High-elasticity hot-melt composite special-shaped fiber and preparation process thereof
CN113186610B (en) * 2020-03-07 2023-08-15 东部湾(扬州)生物新材料有限公司 Preparation method of ES (ES) fiber for sanitary material and ES fiber

Also Published As

Publication number Publication date
JP2000303264A (en) 2000-10-31

Similar Documents

Publication Publication Date Title
JP5247860B2 (en) High speed spinning method of bicomponent fiber
RU2440447C2 (en) Thermoadhesive double-component fibre and method of its production
US20200040484A1 (en) Thermally adhesive sheath-core conjugate fiber and tricot fabric
US20090243141A1 (en) Manufacturing method of polyester fiber for airlaid nonwoven fabrics
US20030096114A1 (en) Method of fabricating a non-hollow fiber having a regular polygonal cross-section
JP4049940B2 (en) Heat-sealable composite fiber and method for producing the same
JP3583248B2 (en) Splittable conjugate fiber comprising polyester and polyamide and method for producing the same
JPH09137317A (en) Melt-spinning apparatus for ultrafine multifilament yarn, spinning therefor and production of the same yarn
JP3888164B2 (en) Polyester monofilament and method for producing the same
JP4173072B2 (en) Method and apparatus for producing polylactic acid-based long fiber nonwoven fabric
JPH0931749A (en) Production of polyester fiber
JP2989365B2 (en) Core-sheath type polyester composite fiber
JPS63526B2 (en)
JPH07138863A (en) Polyester ultrafine fiber nonwoven web and its production
JPS62206008A (en) Crimped, porous hollow fiber and production thereof
JP7332307B2 (en) Method for producing highly hollow polyester fiber
US20230139097A1 (en) Spunbonded nonwoven fabric and tile carpet using the same
JP5661400B2 (en) Archipelago-exposed composite fiber, fiber structure obtained from the fiber, and wiping tape comprising the fiber structure
JP2842243B2 (en) Melt spinning equipment
JP2003227037A (en) Polyester conjugated hollow fiber for stretchable woven fabric and knitted fabric
JPH11217731A (en) Thermoadhesive conjugate fiber and its production
JP3574543B2 (en) Method for producing polyester thick yarn
JP2023140088A (en) Spun-bonded nonwoven fabric
JPH0250208B2 (en)
JP5644587B2 (en) Nanofiber mixed yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051003

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071128

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees