JP3583248B2 - Splittable conjugate fiber comprising polyester and polyamide and method for producing the same - Google Patents
Splittable conjugate fiber comprising polyester and polyamide and method for producing the same Download PDFInfo
- Publication number
- JP3583248B2 JP3583248B2 JP33355296A JP33355296A JP3583248B2 JP 3583248 B2 JP3583248 B2 JP 3583248B2 JP 33355296 A JP33355296 A JP 33355296A JP 33355296 A JP33355296 A JP 33355296A JP 3583248 B2 JP3583248 B2 JP 3583248B2
- Authority
- JP
- Japan
- Prior art keywords
- inorganic fine
- polyester
- conjugate fiber
- fine particles
- fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Multicomponent Fibers (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、易分割性複合繊維及びその製造方法に関する。より詳細には、眼鏡のレンズ、カメラその他の光学的装置、鏡及び窓ガラス、ショウウィンドウ、金属製品、高級な家具、漆器、各種食器、宝飾類など各種製品のワイピングクロスや柔らかい合成紙や極細の高級風合を有する衣料用素材等に好適な分割性良好な複合繊維を断糸や毛羽が生じることなく工程性良好にかつ合理的プロセスで安価に提供するものである。
【0002】
【従来の技術】
清掃用布帛や紙類は、セルロース系繊維などの天然物由来の繊維からなるものが多い。セルロースなどの天然物は、かなり清掃力はあるが、強度、耐久性の点で劣る。例えば、清掃中に布帛から繊維の断片が脱落し、逆に埃を発生する問題点が見られる。一方、合成繊維は、強度、耐久性の点で優れているが、清掃力の点で劣るのが実情であった。
【0003】
近年、合成繊維のフィブリル化技術の進歩により、フィブリル化繊維で構成された布帛も用いられるようになり、一つの技術としてポリエステルとポリアミドからなる分割型複合繊維が提案されているが、布帛とした後のポリエステルとポリアミドの剥離性が十分でないため、目的とするフィブリル化が不十分であったり、また後加工工程でフィブリル化を十分に進めるため、一方の成分が膨潤化する薬剤で処理する手法等が採用されていた。
【0004】
フィブリル化のために布帛を薬剤処理すると、(i) 薬剤が布帛中に残存しやすく、染色する場合に染斑が発生したり、堅牢度が悪化する;(ii)薬剤の排液処理に多大のコストが必要となる;(iii) 薬剤処理により布帛が過大に収縮しすぎ、製品として好ましくない;などの問題点があった。
【0005】
また、ポリエステルとポリアミドからなる分割型複合繊維は、紡糸と延伸が別工程のFOY的紡糸工程性、延伸工程性が悪く毛羽、断糸が発生しやすく、収率が悪く、また、DSY又はSDYの合理化プロセスであるワンステップ紡糸でも同様に毛羽、断糸が発生しやすく、コスト的に高くなるという問題点があった。
【0006】
【発明が解決しようとする課題】
本発明は、上述の問題点に鑑みなされたものであって、その目的は、各種衣料用、非衣料用の布帛に好適な分割型複合繊維を提供するものであり、また、かかる分割型複合繊維を断糸、毛羽が生じることなく、合理的なプロセスで提供するものである。
【0007】
【課題を解決するための手段】
即ち、本発明は、ポリアミド成分と無機微粒子を含有するポリエステル成分とからなり、一方の成分を他方の成分が完全に包囲することなく、両成分が接合された横断面を有する分割型複合繊維であって、該無機微粒子の一次平均粒子径(μm)とポリエステル中の無機微粒子含有量(重量%)が下式(1)〜(3)を満たし、ポリエステルの還元粘度(ηsp/C)が0.65〜0.95であり、ポリアミドの還元粘度(ηsp/C)が 1.60〜1.90であることを特徴とする分割型複合繊維であり、
0.01≦一次平均粒子径(μm)≦5.0 (1)
0.05≦無機微粒子含有量(重量%)≦10.0 (2)
0.01≦X≦3.0 (3)
但し、X=一次平均粒子径(μm)×無機微粒子含有量(重量%)
また、無機微粒子を含有する還元粘度(ηsp/C)0.65〜0.95のポリエステルであって、該無機微粒子の一次平均粒子径(μm)とポリエステル中の該無機微粒子の含有量(重量%)が上記式(1)〜(3)満たすポリエステル成分と、還元粘度(ηsp/C)が 1.6〜 2.2のポリアミド成分を、一方の成分を他方の成分が完全に包囲することなく、両成分が接合された複合形態として紡糸口金から溶融紡出した後、紡出物を一旦ガラス転移点温度以下に冷却し、引き続いて雰囲気温度100℃以上に加熱した加熱帯域を走行させ、3500m/分以上の速度で引き取ることを特徴とする分割型複合繊維の製造方法であり、
さらに、本発明は、上記で得られた複合繊維に化学的及び/又は物理的分割処理を施すことにより得られるポリアミド極細繊維と無機微粒子含有ポリエステル極細繊維との繊維集合体である。なお、ここで言う繊維集合体は、糸条や布帛等の形態を含むものである。さらに、かかる繊維集合体においては、ポリエステルとポリアミドの分割が十分に行われて極細繊維の集合体となっている部分と、分割が不十分で一部しか極細繊維が形成されていない部分とが共存していても差支えない。
【0008】
【発明の実施の形態】
本発明で用いられるポリエステル成分は、溶融紡糸可能なポリエステルであれば特に制限されないが、ポリエチレンテレフタレート、ポリブチレンテレフタレート、或いはエチレンテレフタレート単位および/またはブチレンテレフタレート単位を主たる繰り返し構成単位とし、これに少量の他の共重合単位を含有させたコポリエステルが好ましく、特にポリエチレンテレフタレートであるのがより好ましい。
【0009】
ポリエステルとして、エチレンテレフタレート単位および/またはブチレンテレフタレート単位を主たる繰り返し単位とするコポリエステルを用いる場合は、コポリエステル中における共重合単位の割合が10モル%以下であるのが好ましく、その際の他の共重合単位の例としては、例えば、イソフタル酸、フタル酸、2,6−ナフタリンジカルボン酸、5−アルカリ金属スルホイソフタル酸などの芳香族ジカルボン酸:シュウ酸、アジピン酸、アゼライン酸、セバシン酸などの脂肪族ジカルボン酸;トリメリット酸、ピロメリット酸などの多官能性カルボン酸:またはそれらのエステル形成性成分に由来するカルボン酸単位:ジエチレングリコール、プロピレングリコール、ブタンジオールまたはエチレングリコール、ポリエチレングリコール、グリセリン、ペンタエリスリトールなどから誘導される単位を挙げることができる。そして、コポリエステルは前記した共重合単位の1種または2種以上を含んでいることができる。
【0010】
本発明で用られるポリエステルは、ある一定の条件を満たす無機微粒子を含有することが必要である。すなわち、本発明においてはポリエステル中の無機微粒子の一次平均粒子径(μm)とポリマー中の含有量(重量%)の積(X)が0.01≦X≦3.0を満足することが重要である。
積Xが0.01未満では、複合繊維にループや毛羽、繊度斑などが発生し工程性不良で好ましくないばかりでなく、得られた繊維中に未延伸部が多発し衣料用途には使用困難であるばかりか、本発明の重要な目的であるポリエステルとポリアミドの分割性が悪くなる。
分割性が不良となる理由については、現時点では明確になっていないが、後加工工程でアルカリ水溶液による処理や仮撚加工処理などの分割化促進処理を施した時に、ポリエステルとポリアミドの界面に、無機微粒子を核とする歪発生が不十分で分割性が劣ると考えられる。積Xが3.0を越えると後加工での分割性は良好であるが、繊維化工程中での毛羽、断糸が多発し工程性不良となり好ましくない。
【0011】
無機微粒子の種類は、繊維を形成するポリエステルに対して劣化作用などをもたず、それ自体で安定性に優れる無機微粒子であればいずれも使用できる。本発明で有効に用い得る無機微粒子の代表例としては、シリカ、アルミナ、炭酸カルシウム、酸化チタン、硫酸バリウムなどを挙げることができ、これらの無機微粒子は単独で使用しても、または2種以上を併用してもよい。2種以上を併用して用いる場合は、それぞれの無機微粒子の粒子径(a1 ,a2 ,…an )と含有量(b1 ,b2 ,…bn )の積の和が上記範囲を満たす必要がある。つまり、X=a1 ×b1 +a2 ×b2 +…an ×bn のXが上記範囲を満たす事である。
【0012】
また、無機微粒子の一次平均粒子径は0.01〜5.0μmであることが必要であり、0.03〜3.0μmであることがより好ましい。無機微粒子の一次平均粒子径が0.01μm未満であると、延伸を行うための加熱帯域の温度や糸条の走行速度、走行糸条にかかる張力などに僅かな変動が生じても、複合繊維にループ、毛羽、繊度斑などが発生するようになる。一方、無機微粒子の一次平均粒子径が3.0μmを超えると繊維の延伸性が低下して製糸性が不良になり、複合繊維の製造時に断糸などが発生し易くなる。ここで、無機微粒子の一次平均粒子径は、遠心沈降法を用いて測定したときの値をいう。
【0013】
さらに、本発明において無機微粒子の含有量は、ポリエステルの重量に基づいて、0.05〜10.0重量%であることが必要であり、0.3〜5.0重量%であることがより好ましい。無機微粒子の含有量がポリエステルの重量に基づいて、0.1重量%未満であると延伸を行うための加熱帯域の温度や糸条の走行速度、走行糸条にかかる張力などに僅かな変動を生じても、得られる複合繊維にループや毛羽、繊度斑などが発生するようになり、一方、無機微粒子の含有量が10.0重量%を超えると、繊維の延伸工程で無機微粒子が走行糸条と空気との間の抵抗を過度なものにして、毛羽の発生、断糸の発生などにつながり工程が不安定になる。
【0014】
ポリエステル中への無機微粒子の添加方法は特に制限されず、ポリエステルを溶融紡出する直前までの任意の段階でポリエステル中に無機微粒子が均一に混合されているようにして添加、混合すればよい。例えば、無機微粒子はポリエステルの重縮合時の任意の時点に添加しても、重縮合の完了したポリエステル中にペレットの製造時などに後から添加しても、またはポリエステルを紡糸口金から紡出させる前の段階でポリエステル中に無機微粒子を均一に溶融混合するようにしてもよい。
【0015】
本発明で使用されるポリエステル成分は、上記した無機微粒子の他に、必要に応じて、蛍光増白剤、安定剤、酸化防止剤、紫外線吸収剤、加水分解防止剤、帯電防止剤、難燃剤、着色剤およびその他の添加剤の1種または2種以上を含有してもよい。
【0016】
本発明において重要なもう一つの要件は、ポリエステルが特定の範囲の還元粘度を有することである。粘度測定は、ウベローデ型粘度計を用いて、o−クロルフェノール溶液中、濃度1g/100cc、30℃で測定し、その時の還元粘度(ηsp/C)が0.65〜0.95dl/gであるポリエステルが、紡糸性や得られる複合繊維の分割性の点から好ましい。還元粘度が0.65より低いと繊維化工程中での毛羽、断糸が発生し工程性不良となるのみならず、複合繊維の分割性が悪くなり好ましくない。一方、0.95より高くなると、同様に繊維化工程性が不良でしかも分割性が低下し好ましくない。還元粘度が0.65〜0.95dl/gの範囲が複合繊維の分割性が好適な理由としては、ポリアミド成分との延伸後の分子構造上の歪差が最大であり、かつ紡糸時の曳糸性が良好な粘度であるためと思われる。しかも後述するような高速紡糸による製造方法には、かかる粘度範囲が最良である。
【0017】
本発明の複合繊維を構成するもう一方の複合成分のポリアミド成分としては、例えば、ナイロン4、ナイロン6、ナイロン7、ナイロン11、ナイロン12、ナイロン66、ナイロン6,10、ポリメタキシレンジアジパミド、ポリパラキシレンデカンアミド、ポリビスシクロヘキシルメタンデカンアミド及びそれらを成分とするコポリアミド等が挙げられる。好ましくは、ナイロン6及びナイロン6を主成分とするポリアミドが好適である。
【0018】
本発明において重要なことは、ポリアミドの還元粘度が一定の範囲を満たすことであり、ウベローデ型粘度計を用い、O−クロルフェノール溶液中、濃度1g/100cc、30℃で測定したときの還元粘度ηsp/Cが1.60〜1.90の範囲に入ることが重要である。
かかる還元粘度が1.60未満や1.90を越えると繊維化工程中での毛羽、断糸が発生し、工程性不良になるのみならず、複合繊維の分割性が低下する。前述したように、ポリエステルの好適な粘度範囲とポリアミドの好適な粘度範囲の組合わせにより、高速紡糸性が良く、かつ得られた複合繊維の複合二成分界面の分子構造上の歪差が最大となり、後加工工程での良好な分割性が発現すると考えられる。
【0019】
更にポリエステル中に特定の一次平均粒子径と特定の含有量の無機微粒子が存在することにより、化学的及び物理的処理を施した時の易分割性に好適な相乗効果を及ぼしている。
【0020】
本発明における複合繊維は、ポリアミド成分及び(該ポリアミド成分と親和性の低い)ポリエステル成分が、単一フィラメントの横断面において一方の成分が他方の成分を完全に包囲しない複合形態で、単一フィラメントの長手方向に沿って接合されているものをいい、具体的には図1に示される如きサイドバイサイド型の複合繊維、図2の如きサイドバイサイド繰返し型の複合繊維、図3〜図6の如く放射型の形状を有する成分と該放射部を補完する形状を有する他の成分からなる複合繊維、図7の如く放射型の形状を有する成分と該放射部を補完し且つ中心方向に向いたV字型の凹部のある形状を有する他の成分と該凹部を補完するV字型の形状を有する該放射型形状を有する成分と同じ成分からなる複合繊維及び図8の如く中空部分のあるサイドバイサイド繰返し型複合繊維等を挙げることができる。
【0021】
本発明の複合繊維の大きな特徴は、該複合繊維を構成するポリエステル成分とポリアミド成分とが、アルカリ水溶液による処理、ポリアミド膨潤剤による処理等の化学的処理及び/又は仮撚加工等の物理的な処理を施すことにより容易に分割することである。
【0022】
本発明において、「分割している」とは、例えば、複合繊維が図2の如き横断面を有する場合、各成分の接合部が分割され、A成分の5本のセグメント糸とB成分の6本のセグメント糸からなる11本の細繊維となっている状態をいい、また例えば該複合繊維が図5の如き横断面を有する場合も、同様に分割され、十字形の横断面を有するA成分の1本のセグメント糸と扇形の横断面を有するB成分の4本のセグメント糸からなる5本の細繊維となっている状態をいうのである。更に複合繊維が他の如何なる横断面形状を有する場合であっても、その分割している状態は、以上の記載より容易に推察できるであろう。
【0023】
分割処理後における本発明の複合繊維の分割度は80%以上であることが大きな特徴である。ここで、分割度とは、次の方法によって測定された値をいう。即ち、測定すべき区域にある複合繊維(分割化して繊維束の状態となっているもの、一部分割化していないものを含む)について任意の100本の断面を観察し、実際に分割されて存在する分割後細繊維(N)を計数する。この場合全く分割化していない複合繊維は1本、また一部分割化しているものは半分割化複合繊維とそれから分割されて存在する分割細繊維本数との合計本数とする。次に該100本の複合繊維が完全に分割化したと想定した場合に得られる分割後細繊維(Np)を算出し、N/Np×100の値を分割度とする。
尚、上記分割度は、分割処理条件として、本発明の複合繊維をアルカリ水溶液(濃度4g/リットル)中で、98℃で5〜20分間、浸漬撹拌処理し、乾燥させたものについて求める。
【0024】
次ぎに、本発明の複合繊維の製造方法について説明する。
本発明の複合繊維の製造方法は、まず、ポリエステルとポリアミドをそれぞれ個別の押出機で溶融押出し、各々紡糸ヘッドへ導入し、目的とする個々の複合形状を形成させる紡糸口金を経由して溶融紡出する。この場合の溶融紡出温度、溶融紡出速度などは特に制限されず、ポリエステル繊維を製造するのに通常用いられているのと同様の条件下で行うことができるが、複合2成分のポリマーの融点がポリエステルが高い場合、一般に溶融紡出温度を(ポリエステルの融点+20℃)〜(ポリエステルの融点+40℃)の範囲の温度(例えば用いるポリエステルがポリエチレンテレフタレートの場合は一般に約280〜300℃)にし、かつ溶融紡出速度(溶融紡出量)を約20〜50g/紡糸孔1mm2 ・分程度とすると、品質の良好な複合繊維を良好な紡糸工程性で得ることができるので好ましい。また、紡糸口金における紡糸孔の大きさや数、紡糸孔の形状なども特に制限されず、目的とする複合繊維の単繊維繊度、総合デニール数、断面形状などに応じて調節することができる。一般に、紡糸孔(単孔)の大きさを約0.018〜0.07mm2 程度にしておくのが望ましい。
紡糸口金の孔周囲にノズル汚れが堆積して糸切れが発生する場合は、ノズル孔出口がテーパー状に広がった形状にしたり、口金下雰囲気をスチームシールして酸素を遮断する手法が好ましい。
【0025】
そして、上記によって溶融紡出した複合繊維を、一旦複合2成分ポリマーのうちガラス転移温度の低い方のポリマーのガラス転移温度以下の温度、好ましくはガラス転移温度よりも10℃以上低い温度に冷却する。この場合の冷却方法や冷却装置としては、紡出した複合繊維をそのガラス転移温度以下に冷却できる方法や装置であればいずれでもよく特に制限されないが、紡糸口金の下に冷却風吹き付け筒などの冷却風吹き付け装置を設けておいて、紡出されてきた複合繊維に冷却風を吹き付けてガラス転移温度以下に冷却するようにするのが好ましい。その際に冷却風の温度や湿度、冷却風の吹き付け速度、紡出繊維に対する冷却風の吹き付け角度などの冷却条件も特に制限されず、口金から紡出されてきた複合繊維を繊維の揺れなどを生じないようにしながら速やかに且つ均一にガラス転移温度以下にまで冷却できる条件であればいずれでもよい。そのうちでも、一般に、冷却風の温度を約20〜30℃、冷却風の湿度を20〜60%、冷却風の吹き付け速度を0.4〜1.0m/秒程度として、紡出繊維に対する冷却風の吹き付け方向を紡出方向に対して垂直にして紡出した複合繊維の冷却を行うのが、高品質の複合繊維を円滑に得ることができるので好ましい。また、冷却風吹き付け筒を用いて前記の条件下で冷却を行う場合は、紡糸口金の直下にやや間隔をあけてまたは間隔をあけないで、長さが約80〜160cm程度の冷却風吹き付け筒を配置するのが好ましい。
【0026】
次に、ガラス転移温度以下にまで冷却した複合繊維を引き続いてそのまま直接加熱帯域に導入して延伸する。加熱帯域の温度はポリエステルの種類などに応じて異なり得るが、一般にポリエステル及びポリアミドのガラス転移温度よりも40℃以上高い温度としておくと、得られる複合繊維の物性を実用上満足のゆくものとすることができるので好ましく、例えばポリエチレンテレフタレートとナイロン6の複合繊維の場合は加熱帯域の温度を約100℃以上とするのが好ましい。加熱帯域の上限温度は、加熱帯域内で繊維間の融着や糸切れ、単糸切れなどが生じないような温度であればよい。加熱帯域の種類や構造は、加熱帯域内を走行する複合繊維を加熱帯域内の加熱手段などに接触せずに加熱することができ、しかも加熱帯域内を走行する糸条とそれを包囲する空気との間に抵抗を生じさせて糸条張力を増大させて、繊維に延伸を生じさせることができる構造であればいずれでもよい。そのうちでも、加熱帯域としては、筒状の加熱帯域が好ましく用いられ、特に管壁自体がヒーターとなっている内径が約20〜50mm程度のチューブヒーターなどが好ましい。
加熱帯域の紡糸口金からの設置位置、加熱帯域の長さなどは、複合繊維の種類、複合2成分ポリマーの紡出量、複合繊維の冷却温度、複合繊維の走行速度、加熱帯域の温度、加熱帯域の内径などに応じて調節できるが、一般に紡糸口金直下から加熱帯域の入口までの距離を0.5〜3.0m程度とし、そして加熱帯域の長さを1.0〜2.0m程度としておくと、加熱帯域内で複合繊維を加熱して均一に円滑に延伸することができるので望ましい。
【0027】
そして、加熱帯域で延伸された複合繊維に対して、必要に応じて油剤を付与してから、高速で引き取る。本発明では、上記した一連の工程からなる延伸した複合繊維の製造工程を、複合繊維の引取速度を3500m/分以上にして行うことが必要であり、引取速度が4000m/分以上であるのが好ましい。複合繊維の引取速度が3500m/分未満であると、加熱帯域において繊維の延伸が十分に行われなくなり、得られる複合繊維の機械的物性が低下し、しかも上記した一連の工程からなる本発明の方法が円滑に行われず、特に加熱帯域における糸条の張力変動、過加熱などが生じて、均一な延伸が行われにくくなる。また、本発明の方法を行うに当たっては、複合繊維の{引取速度(m/分)}÷{複合繊維の紡出量(25g/紡出孔1mm2 ・分)}の値が約140〜200の範囲になるようにするのが好ましい。
【0028】
本発明では、最終的に得られる複合繊維の単繊維繊度や総デニール数などは特に制限されず、複合繊維の用途などに応じて適宜調節することができるが、本発明の方法は特に単繊維繊度が0.5〜6デニール、総デニール数が30〜150デニールの複合繊維(マルチフィラメント糸)を製造するのに適している。
【0029】
本発明複合繊維は、各種繊維構造物として用いることが可能である。
本発明にいう繊維構造物とは、分割型複合繊維単独よりなる編織布、不織布は言うに及ばず、分割型複合繊維を一部使用してなる編織布や不織布、例えば通常の天然繊維、化学繊維、合成繊維との交編織布、或いは混紡糸としての編織布、不織布等であっても良いが、編織布或いは不織布に占める分割型複合繊維の場合は、10重量%以上、特に30重量%以上である事が本発明の十分な効果が得られる点で好ましい。また編成、製織或いは不織布となした後に、必要に応じて針布起毛等による起毛を行ったものであっても本発明には何ら差しつかえない。
【0030】
【実施例】
以下に本発明について実施例などにより具体的に説明するが、本発明はそれにより何ら限定されない。以下の例において、無機微粒子の一次平均粒子径、複合繊維の紡糸性、最終的に得られた複合繊維の強度、伸度、均一性(ウスター斑:U%)および毛羽の発生個数は、以下のようにして測定または評価した。
無機微粒子の一次平均粒子径の測定:
遠心粒径測定器(堀場製作所製「CAPA−5000型」)を用いて得られた遠心沈降曲線に基づいて算出した。
複合繊維の紡糸性:
複合繊維を100kg紡糸し、紡糸時の断糸の有無を調べると共に得られた複合繊維における毛羽の発生の有無を目視により観察して、下記に示す評価基準にしたがって評価した。
複合繊維の紡糸性の評価基準
◎:紡糸時に断糸が何ら発生せず、しかも得られた複合繊維には毛羽が全く発生しておらず、紡糸性が極めて良好である。
○:紡糸時に断糸が発生せず、そして得られた複合繊維には毛羽が僅かに発生していたが、紡糸性がほぼ良好である。
△:100kgを紡糸したときに、断糸が3回まで発生し、紡糸性が不良である。
×:100kgを紡糸したときに、断糸が3回よりも多く発生し、紡糸性が極めて不良である。
複合繊維の強度:
インストロン型の引張り試験器を用いて得られた荷重−伸長曲線より複合繊維の強度を求めた。
複合繊維の伸度:
インストロン型の引張り試験器を用いて得られた荷重−伸長曲線より複合繊維の伸度を求めた。
複合繊維の均一性(ウスター斑:U値):
ツエルベーガー社製のウスター斑試験機を用いて、糸を電極間に一定速度で通し(糸速100m/分、レンジ±12.5%、チャート速度10cm/分)、断面変化に比例する電気容量の変化を連続測定し、糸の一定長さの平均偏差係数 「U%」を測定した。
複合繊維における毛羽の発生個数:
サン電子工業社製の毛羽センサーにより107 m以上の糸長中に存在する毛羽を感知し、糸長106 m当たりの毛羽数に換算して表示した。
【0031】
実施例1
一次平均粒子径0.04μmのシリカ1.0重量%含有する還元粘度0.85(オルソクロロフェノール中濃度1g/dl,30℃)のポリエチレンテレフタレート(以下PETと略称する)と、還元粘度1.80(オルソクロロフェノール中濃度1g/dl,30℃)のナイロン6を用い、それぞれを個別に溶融押出し、その後それぞれのポリマー部を図2で示されるようなPETが6層、ナイロン6が5層となる多層型複合形状を形成させる紡糸ヘッドへ供給し、計量部分の径が0.25mmφ、ランド長0.5mmでしかもノズル孔出口がラッパ状に広がり出口径が0.5mmφになっている24ホール丸孔ノズルから、紡糸温度285℃で溶融紡出した(表1参照)。
【0032】
紡糸口金直下に長さ1.0mの横吹き付け型の冷却風吹き付け装置を設置しておき、口金から紡出した複合繊維を直ちにその冷却風吹き付け装置に導入して、温度25℃、湿度65RH%に調整した冷却空気を0.5m/秒の速度で紡出繊維に吹き付けて、繊維を50℃以下(冷却風吹き付け装置の出口での繊維の温度=40℃)にまで冷却した。
【0033】
上記で50℃以下に冷却した複合繊維を、紡糸口金直下から1.6mの位置に設置した長さ1.0m、内径30mmのチューブヒーター(内壁温度180℃)に導入してチューブヒーター内で延伸した後、チューブヒーターから出てきた繊維にガイドオイリング方式で油剤を付与し、引き続いて1対(2個)の引き取りローラを介して4300m/分の引取速度で巻取って、延伸した75デニール24フィラメント複合繊維を製造した(表1参照)。
上記の紡糸・延伸工程を行った際の複合繊維の紡糸性、並びに最終的に得られたポリエステル繊維の強度、伸度、均一性(ウスター斑:U%)および毛羽の発生個数を上記した方法で測定または評価したところ、表2に示すとおりであった。
得られた複合繊維で筒編地を作成し、40g/lの苛性ソーダー液中で98℃下で5%アルカリ水溶液処理をした後、繊維の断面観察をしたところ、分割度95%と良好な分割性を示していた。
【0034】
【表1】
【表2】
【0035】
実施例2〜3
実施例2はPET中シリカ含有量を5.0重量%とし、実施例3はPET中シリカの一次平均粒子径0.3μmのものを用い含有量2.5重量%としたPETとしたこと以外は実施例1と同様に実施した。いずれも繊維化工程性良好でかつ得られた複合繊維の分割性も良好であった。
【0036】
実施例4〜7
実施例4,5はPETの還元粘度をそれぞれ0.75,0.90とし、実施例6,7は、ナイロン6の還元粘度をそれぞれ1.60,1.90としたこと以外は、実施例1と同様に実施した。いずれも繊維化工程性良好でかつ得られた複合繊維の分割性も良好であった。
【0037】
実施例8〜10
実施例8は、複合断面形状を図6の形状とし、実施例9は、複合断面形状を図7の形状としたこと以外は実施例1と同様に実施した。実施例10は、PETとナイロン6の複合比率を3/1としたこと以外は実施例1と同様に実施した。いずれも繊維化工程性良好でかつ得られた複合繊維の分割性も良好であった。
【0038】
実施例11〜14
実施例11,12は、それぞれ巻取速度を3800m/分,4800m/分とし、実施例13,14は、それぞれチューブヒーター雰囲気温度を200℃,160℃としたこと以外は実施例1と同様に実施した。いずれも繊維化工程性良好でかつ得られた複合繊維の糸物性、分割性とも満足のいくものであった。
【0039】
実施例15,16
実施例15は、実施例1で用いたシリカの代わりに、一次平均粒子径の0.4μmの酸化チタンを用い、PET中の酸化チタン含有量を0.5重量%とし、実施例16は、シリカの代わりに一次平均粒子径0.6μmの硫酸バリウムを用い、PETの硫酸バリウム含有量を1.0重量%としたこと以外は、実施例1と同様に実施した。いずれも繊維化工程性良好でかつ得られた複合繊維の糸物性、分割性とも満足のいくものであった。
【0040】
比較例1
無機微粒子を何ら添加していないPETを用いた以外は実施例1と同様にして複合繊維を製造して、その時の紡糸性、並びに最終的に得られた複合繊維の強度、伸度、均一性(ウスター斑:U%)および毛羽の発生個数を上記した方法で測定または評価したところ、下記の表1に示すとおりであった。繊維化工程性不良でかつ得られた複合繊維の分割性も不満足なレベルであった。
【0041】
比較例2〜5
比較例2は、一次平均粒子径0.04μmのシリカを0.1重量%含有したPETを用い、比較例3は、一次平均粒子径0.4重量%のシリカ10重量%含有したPETを用い、比較例4,5は、それぞれ一次平均粒子径0.4μmの酸化チタンを0.02重量%と15重量%含有したPETを用いたこと以外は実施例1と同様に実施した。比較例2と4は、得られた複合繊維の分割性が実施例1と比較して低いレベルであり、不満足なものであった。比較例3,5は、いずれも繊維化工程性不良であった。
【0042】
比較例6〜9
比較例6,7は、それぞれPETの還元粘度が0.6,1.0のものを用い、比較例8,9は、それぞれナイロン6の還元粘度が1.4,2.2のものを用いた以外は実施例1と同様に実施した。いずれも繊維化工程性が不十分であり、しかも得られた複合繊維の分割性も不満足なレベルであった。
【0043】
比較例10〜11
比較例10は、巻取速度を3200m/分とした以外は、実施例1と同様に実施した。繊維化工程性は良好であったが、得られた複合繊維の分割性は不満足なレベルであった。
比較例11は、チューブヒーター雰囲気温度を90℃としたこと以外は実施例1と同様に実施した。繊維化工程性不良で、得られた複合繊維の分割性も不良であった。しかも糸強度も低く、伸度が長いため、後加工工程で扱いにくい問題点も発生した。
【0044】
【発明の効果】
本発明は、毛羽の発生や太さ斑などがなく、しかも強度や伸度などの力学的特性にも優れる高品質のポリエステルとポリアミドによる分割型複合繊維を、断糸が生ずることなく良好な工程性で直接紡糸延伸法によって生産性よく合理的に製造することに関する。しかも得られた分割型複合繊維は、後加工工程での化学的又は物理的処理により容易に分割しうる特徴を有している。
【図面の簡単な説明】
【図1】サイドバイサイド型の複合繊維の横断面図である。
【図2】サイドバイサイド繰返し型の複合繊維の横断面図である。
【図3】放射型の形状を有する成分と該放射部を補完する他の成分からなる複合繊維の横断面図である。
【図4】放射型の形状を有する成分と該放射部を補完する他の成分からなる複合繊維の横断面図である。
【図5】放射型の形状を有する成分と該放射部を補完する他の成分からなる複合繊維の横断面図である。
【図6】放射型の形状を有する成分と該放射部を補完する他の成分からなる複合繊維の横断面図である。
【図7】放射型の形状を有する成分と該放射部を補完し且つ中心方向に向いたV字型の凹部のある形状を有する他の成分と該凹部を補完するV字型の形状を有する該放射型の形状を有する成分と同じ成分からなる複合繊維の横断面図である。
【図8】中空部分のあるサイドバイサイド繰返し型の複合繊維の横断面図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to easily splittable conjugate fibers and a method for producing the same. More specifically, wiping cloths, soft synthetic paper and extra-fine for various products such as eyeglass lenses, cameras and other optical devices, mirrors and window glasses, show windows, metal products, luxury furniture, lacquerware, various dishes, jewelry, etc. The present invention provides a conjugate fiber having good splitting properties suitable for a material for clothing having a high-grade feel, with good processability without the occurrence of thread breakage or fluff and at a reasonable process at low cost.
[0002]
[Prior art]
Many cleaning cloths and papers are made of fibers derived from natural products such as cellulosic fibers. Natural products such as cellulose have considerable cleaning power, but are inferior in strength and durability. For example, there is a problem that fiber fragments drop off from the fabric during cleaning, and conversely dust is generated. On the other hand, synthetic fibers are excellent in strength and durability, but are inferior in cleaning power.
[0003]
In recent years, with the advance of fibrillation technology of synthetic fibers, fabrics composed of fibrillated fibers have also been used, and as one technology, splittable conjugate fibers composed of polyester and polyamide have been proposed. A method in which the desired fibrillation is insufficient because the peelability of the subsequent polyester and polyamide is not sufficient, and in order to promote the fibrillation sufficiently in the post-processing step, a method of treating one component with an agent that swells. Etc. had been adopted.
[0004]
When the fabric is treated with a chemical for fibrillation, (i) the chemical is likely to remain in the fabric, causing spotting when dyeing, or deteriorating the fastness; (Iii) The fabric is excessively shrunk by the chemical treatment, which is not preferable as a product.
[0005]
In addition, the splittable conjugate fiber composed of polyester and polyamide has poor FOY-like spinning processability and spinning processability in which spinning and stretching are separate processes, and fluff and yarn breakage are likely to occur, and the yield is poor. In addition, DSY or SDY In the one-step spinning process, which is a rationalization process of the above, there is also a problem that fluff and breakage are likely to occur and the cost becomes high.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a splittable conjugate fiber suitable for various clothing and non-cloth fabrics. The fiber is provided by a rational process without breaking or fuzzing.
[0007]
[Means for Solving the Problems]
That is, the present invention is a splittable conjugate fiber comprising a polyamide component and a polyester component containing inorganic fine particles, without completely surrounding one component, and having a cross section in which both components are joined. The primary average particle diameter (μm) of the inorganic fine particles and the content (% by weight) of the inorganic fine particles in the polyester satisfy the following formulas (1) to (3), and the reduced viscosity of the polyester (η sp / C) is 0.65 to 0.95, and the reduced viscosity of the polyamide (η sp / C) is 1.60 to 1.90, which is a splittable conjugate fiber,
0.01 ≦ primary average particle diameter (μm) ≦ 5.0 (1)
0.05 ≦ inorganic fine particle content (% by weight) ≦ 10.0 (2)
0.01 ≦ X ≦ 3.0 (3)
Where X = primary average particle diameter (μm) × inorganic fine particle content (% by weight)
In addition, the reduced viscosity (η sp / C) a polyester of 0.65 to 0.95, wherein the primary average particle diameter (μm) of the inorganic fine particles and the content (% by weight) of the inorganic fine particles in the polyester are represented by the above formulas (1) to (3). ) Filling polyester component and reduced viscosity (η sp / C) is melt-spun from a spinneret as a composite form in which both components are joined without completely surrounding one component with the other component without completely surrounding the other component. A method for producing a splittable conjugate fiber, characterized in that the extrudate is once cooled to a temperature equal to or lower than the glass transition temperature, and then is run in a heating zone heated to an ambient temperature of 100 ° C. or higher, and is collected at a speed of 3500 m / min or more. Yes,
Further, the present invention is a fiber aggregate of ultrafine polyamide fibers and ultrafine inorganic particle-containing polyester fibers obtained by subjecting the conjugate fiber obtained above to a chemical and / or physical splitting treatment. In addition, the fiber aggregate referred to here includes a form such as a yarn or a cloth. Furthermore, in such a fiber aggregate, a portion where the polyester and polyamide are sufficiently divided to form an aggregate of ultrafine fibers, and a portion where the division is insufficient and only some of the ultrafine fibers are formed, They can coexist.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The polyester component used in the present invention is not particularly limited as long as it is a melt-spinnable polyester. Copolyesters containing other copolymerized units are preferred, and polyethylene terephthalate is particularly preferred.
[0009]
In the case where a copolyester having an ethylene terephthalate unit and / or a butylene terephthalate unit as a main repeating unit is used as the polyester, the proportion of the copolymerized unit in the copolyester is preferably 10 mol% or less. Examples of the copolymerized unit include, for example, aromatic dicarboxylic acids such as isophthalic acid, phthalic acid, 2,6-naphthalene dicarboxylic acid, and 5-alkali metal sulfoisophthalic acid: oxalic acid, adipic acid, azelaic acid, sebacic acid, and the like. Aliphatic dicarboxylic acids; polyfunctional carboxylic acids such as trimellitic acid and pyromellitic acid: or carboxylic acid units derived from their ester-forming components: diethylene glycol, propylene glycol, butanediol or ethylene glycol, polyethylene glycol Can be exemplified Le, glycerin, units derived from pentaerythritol. The copolyester may contain one or more of the above-mentioned copolymer units.
[0010]
The polyester used in the present invention needs to contain inorganic fine particles satisfying certain conditions. That is, in the present invention, it is important that the product (X) of the primary average particle diameter (μm) of the inorganic fine particles in the polyester and the content (% by weight) in the polymer satisfies 0.01 ≦ X ≦ 3.0. It is.
When the product X is less than 0.01, loops, fluff, unevenness of fineness, etc. are generated in the conjugate fiber, which is not only unfavorable due to poor processability, but also unusable portions frequently occur in the obtained fiber, making it difficult to use for clothing. Not only that, but also an important object of the present invention, the resolvability of polyester and polyamide becomes poor.
Although the reason why the splitting property is poor is not clear at the present time, when a splitting acceleration treatment such as a treatment with an alkaline aqueous solution or a false twisting treatment is performed in a post-processing step, at the interface between the polyester and the polyamide, It is considered that the generation of strain with the inorganic fine particles as nuclei was insufficient and the dividing property was poor. If the product X exceeds 3.0, the splitting property in the post-processing is good, but the fluff and yarn breakage during the fiberizing step frequently occur, and the processability is poor, which is not preferable.
[0011]
As the type of the inorganic fine particles, any inorganic fine particles can be used as long as they do not have a deteriorating effect on the polyester forming the fiber and are themselves excellent in stability. Representative examples of the inorganic fine particles that can be effectively used in the present invention include silica, alumina, calcium carbonate, titanium oxide, barium sulfate, and the like. These inorganic fine particles can be used alone or in combination of two or more. May be used in combination. When two or more kinds are used in combination, the particle diameter (a 1 , A 2 , ... a n ) And content (b 1 , B 2 , ... b n ) Must satisfy the above range. That is, X = a 1 × b 1 + A 2 × b 2 + ... a n × b n X satisfies the above range.
[0012]
Further, the primary average particle diameter of the inorganic fine particles needs to be 0.01 to 5.0 μm, and more preferably 0.03 to 3.0 μm. When the primary average particle diameter of the inorganic fine particles is less than 0.01 μm, even if slight changes occur in the temperature of the heating zone for stretching, the running speed of the yarn, the tension applied to the running yarn, etc., the conjugate fiber Then, loops, fluff, fineness unevenness, etc. are generated. On the other hand, when the primary average particle diameter of the inorganic fine particles exceeds 3.0 μm, the stretchability of the fiber is reduced, and the yarn forming property becomes poor. Here, the primary average particle diameter of the inorganic fine particles refers to a value measured using a centrifugal sedimentation method.
[0013]
Further, in the present invention, the content of the inorganic fine particles needs to be 0.05 to 10.0% by weight based on the weight of the polyester, and more preferably 0.3 to 5.0% by weight. preferable. If the content of the inorganic fine particles is less than 0.1% by weight based on the weight of the polyester, slight fluctuations in the temperature of the heating zone for stretching, the running speed of the yarn, the tension applied to the running yarn, and the like may occur. Even if it occurs, loops, fluff, unevenness of fineness, and the like are generated in the obtained composite fiber. On the other hand, when the content of the inorganic fine particles exceeds 10.0% by weight, the inorganic fine particles may be run during the fiber drawing process. The resistance between the strip and the air is made excessive, leading to generation of fluff, breakage of yarn and the like, and the process becomes unstable.
[0014]
The method of adding the inorganic fine particles to the polyester is not particularly limited, and may be added and mixed so that the inorganic fine particles are uniformly mixed in the polyester at an arbitrary stage immediately before melt-spinning the polyester. For example, the inorganic fine particles may be added at any time during the polycondensation of the polyester, may be added later during the production of pellets, etc. in the completed polyester, or may be spun from the spinneret. In the previous stage, the inorganic fine particles may be uniformly melt-mixed in the polyester.
[0015]
The polyester component used in the present invention, in addition to the inorganic fine particles described above, if necessary, a fluorescent whitening agent, a stabilizer, an antioxidant, an ultraviolet absorber, a hydrolysis inhibitor, an antistatic agent, a flame retardant , A colorant and other additives.
[0016]
Another important requirement in the present invention is that the polyester has a specific range of reduced viscosity. The viscosity was measured in an o-chlorophenol solution at a concentration of 1 g / 100 cc at 30 ° C. using an Ubbelohde viscometer, and the reduced viscosity at that time (η sp / C) is preferably 0.65 to 0.95 dl / g from the viewpoint of spinnability and splitting properties of the obtained conjugate fiber. If the reduced viscosity is lower than 0.65, fluff and yarn breakage occur during the fiberization step, resulting in poor processability, and also poor splitting properties of the conjugate fiber, which is not preferable. On the other hand, if it is higher than 0.95, the fiberization processability is similarly poor, and the division property is undesirably reduced. The reason why the splitting property of the conjugate fiber is preferable when the reduced viscosity is in the range of 0.65 to 0.95 dl / g is that the difference in strain in the molecular structure after stretching with the polyamide component is the largest, and the spinning during spinning is This is probably due to the good viscosity of the yarn. Moreover, such a viscosity range is the best for a production method by high-speed spinning as described later.
[0017]
Examples of the polyamide component of the other composite component constituting the composite fiber of the present invention include, for example, nylon 4, nylon 6, nylon 7, nylon 11, nylon 12, nylon 66, nylon 6,10, and polymeta-xylene diadipamide. , Polyparaxylenedecaneamide, polybiscyclohexylmethanedecaneamide, and copolyamides containing these as components. Preferably, nylon 6 and polyamide containing nylon 6 as a main component are suitable.
[0018]
What is important in the present invention is that the reduced viscosity of the polyamide satisfies a certain range, and the reduced viscosity when measured at a concentration of 1 g / 100 cc and 30 ° C. in an O-chlorophenol solution using an Ubbelohde viscometer. η sp It is important that / C be in the range of 1.60 to 1.90.
If the reduced viscosity is less than 1.60 or more than 1.90, fluff and yarn breakage will occur during the fiberization step, resulting in poor processability and reduced splitting properties of the conjugate fiber. As described above, the combination of the preferred viscosity range of the polyester and the preferred viscosity range of the polyamide provides good high-speed spinnability, and maximizes the difference in strain on the molecular structure of the composite bicomponent interface of the obtained composite fiber. It is considered that good splitting properties are exhibited in the post-processing step.
[0019]
Furthermore, the presence of the inorganic fine particles having a specific primary average particle diameter and a specific content in the polyester exerts a suitable synergistic effect on the ease of separation when subjected to chemical and physical treatments.
[0020]
The conjugate fiber according to the present invention is a conjugate fiber in which a polyamide component and a polyester component (having low affinity for the polyamide component) are in a conjugated form in which one component does not completely surround the other component in the cross section of the single filament. 1 and 2, specifically, a side-by-side type composite fiber as shown in FIG. 1, a side-by-side repetition type composite fiber as shown in FIG. 2, and a radial type as shown in FIGS. A composite fiber comprising a component having the shape of (1) and another component having a shape complementary to the radiating portion, a component having a radiating shape as shown in FIG. 7 and a V-shaped shape complementing the radiating portion and facing the center direction A composite fiber composed of the same component as the component having the radial shape having a V-shaped shape complementary to the other component having the shape having the concave portion and the hollow portion as shown in FIG. That side-by-side repetition type composite fiber or the like can be mentioned.
[0021]
A major feature of the conjugate fiber of the present invention is that the polyester component and the polyamide component constituting the conjugate fiber are subjected to chemical treatment such as treatment with an aqueous alkali solution, treatment with a polyamide swelling agent, and / or physical treatment such as false twisting. That is, the division is easily performed by performing the processing.
[0022]
In the present invention, “split” means that, for example, when the conjugate fiber has a cross section as shown in FIG. 2, the joint portion of each component is split, and the five segment yarns of the A component and the six A state in which there are 11 fine fibers composed of two segment yarns. Also, for example, when the conjugate fiber has a cross section as shown in FIG. 5, the A component is similarly divided and has a cross-shaped cross section. Is a state in which there are five fine fibers composed of one segment yarn and four segment yarns of the B component having a fan-shaped cross section. Further, even if the conjugate fiber has any other cross-sectional shape, the state of splitting can be easily inferred from the above description.
[0023]
It is a great feature that the degree of division of the conjugate fiber of the present invention after the division treatment is 80% or more. Here, the division degree refers to a value measured by the following method. That is, an arbitrary 100 cross sections of the composite fibers (including those that are divided into fiber bundles and those that are not partially divided) in the area to be measured are observed, and the fibers are actually divided and exist. After the division, the fine fibers (N) are counted. In this case, the number of the conjugate fibers which are not divided at all is one, and the one which is partially divided is the total number of the half-divided conjugate fibers and the number of the divided fine fibers divided therefrom. Next, the divided fine fibers (Np) obtained assuming that the 100 composite fibers are completely divided are calculated, and the value of N / Np × 100 is defined as the division degree.
In addition, the said division | segmentation degree is calculated | required about the thing which immersion-stirring-processed the conjugate fiber of this invention in 98 degreeC for 5 to 20 minutes, and dried in the alkaline aqueous solution (concentration 4g / liter) as division processing conditions.
[0024]
Next, the method for producing a conjugate fiber of the present invention will be described.
In the method for producing a conjugate fiber of the present invention, first, a polyester and a polyamide are each melt-extruded by a separate extruder, introduced into each spinning head, and melt-spun via a spinneret for forming a desired individual composite shape. Put out. In this case, the melt spinning temperature, the melt spinning speed and the like are not particularly limited, and the melt spinning can be performed under the same conditions as those usually used for producing a polyester fiber. When the melting point of the polyester is high, the melt spinning temperature is generally set to a temperature in the range of (the melting point of the polyester + 20 ° C.) to (the melting point of the polyester + 40 ° C.) (for example, generally about 280 to 300 ° C. when the polyester used is polyethylene terephthalate). And the melt spinning speed (melt spinning amount) is about 20 to 50 g / spinning hole 1 mm 2 It is preferable that the mixing time be about minutes because a conjugate fiber having good quality can be obtained with good spinning processability. The size and number of the spinning holes in the spinneret, the shape of the spinning holes, and the like are not particularly limited, and can be adjusted according to the single fiber fineness, the total denier number, and the cross-sectional shape of the target conjugate fiber. Generally, the size of the spinning hole (single hole) is about 0.018 to 0.07 mm. 2 It is desirable to keep to about.
In the case where the nozzle dirt accumulates around the hole of the spinneret and the yarn breaks, a method of cutting off the oxygen by forming the nozzle hole outlet in a tapered shape or steam sealing the atmosphere under the spinneret is preferable.
[0025]
Then, the composite fiber melt-spun as described above is once cooled to a temperature lower than the glass transition temperature of the polymer having the lower glass transition temperature of the composite bicomponent polymer, preferably 10 ° C. or lower than the glass transition temperature. . The cooling method and the cooling device in this case are not particularly limited as long as the method and the device can cool the spun conjugate fiber to the glass transition temperature or lower, but there is no particular limitation. It is preferable that a cooling air blowing device is provided, and the spun conjugate fiber is blown with cooling air to cool the composite fiber to a temperature lower than the glass transition temperature. At that time, the cooling conditions such as the temperature and humidity of the cooling air, the blowing speed of the cooling air, and the blowing angle of the cooling air to the spun fibers are not particularly limited. Any condition may be used as long as it can be rapidly and uniformly cooled to the glass transition temperature or lower while preventing the occurrence. Among them, generally, the temperature of the cooling air is about 20 to 30 ° C., the humidity of the cooling air is 20 to 60%, and the blowing speed of the cooling air is about 0.4 to 1.0 m / sec. It is preferable to cool the spun conjugate fiber with the spraying direction perpendicular to the spinning direction since a high-quality conjugate fiber can be obtained smoothly. When cooling is performed under the above-described conditions using a cooling air blowing tube, a cooling air blowing tube having a length of about 80 to 160 cm is provided with or without a slight interval directly below the spinneret. Is preferably arranged.
[0026]
Next, the conjugate fiber cooled to the glass transition temperature or lower is subsequently directly introduced into the heating zone and drawn. The temperature of the heating zone may vary depending on the type of polyester, etc., but generally, if the temperature is set at 40 ° C. or higher than the glass transition temperature of polyester and polyamide, the physical properties of the obtained composite fiber will be practically satisfactory. For example, in the case of a composite fiber of polyethylene terephthalate and nylon 6, the temperature of the heating zone is preferably about 100 ° C. or higher. The upper limit temperature of the heating zone may be any temperature at which fusion between fibers, breakage of yarn, breakage of single yarn, etc. does not occur in the heating zone. The type and structure of the heating zone can heat the conjugate fiber traveling in the heating zone without contacting the heating means in the heating zone, and furthermore, the yarn traveling in the heating zone and the air surrounding it. Any structure can be used as long as it can generate resistance between the fibers and increase the yarn tension to cause the fibers to be drawn. Among them, as the heating zone, a tubular heating zone is preferably used, and particularly a tube heater having an inner diameter of about 20 to 50 mm or the like in which the tube wall itself is a heater is preferable.
The installation position of the heating zone from the spinneret, the length of the heating zone, etc. depend on the type of composite fiber, the amount of composite bicomponent polymer spun, the cooling temperature of the composite fiber, the running speed of the composite fiber, the temperature of the heating zone, and the heating. It can be adjusted according to the inner diameter of the zone, etc. Generally, the distance from directly below the spinneret to the entrance of the heating zone is about 0.5 to 3.0 m, and the length of the heating zone is about 1.0 to 2.0 m. It is desirable that the conjugate fiber be heated in the heating zone to be drawn uniformly and smoothly.
[0027]
Then, an oil agent is applied to the conjugate fiber drawn in the heating zone as needed, and then the conjugate fiber is drawn at a high speed. In the present invention, it is necessary to carry out the process for producing a stretched conjugate fiber comprising the above-described series of steps at a take-up speed of the conjugate fiber of 3500 m / min or more, and the take-up speed is 4000 m / min or more. preferable. When the take-up speed of the conjugate fiber is less than 3500 m / min, the drawing of the fiber in the heating zone is not sufficiently performed, the mechanical properties of the obtained conjugate fiber are reduced, and the present invention comprising the above-described series of steps is performed. The method is not carried out smoothly, and in particular, fluctuations in the tension of the yarn in the heating zone, overheating, etc. occur, making it difficult to perform uniform stretching. In carrying out the method of the present invention, {take-up speed (m / min)} of the conjugate fiber / spinning amount of the conjugate fiber (25 g / spinning hole 1 mm) 2 Min) The value of} is preferably in the range of about 140-200.
[0028]
In the present invention, the single fiber fineness and the total denier number of the finally obtained conjugate fiber are not particularly limited, and can be appropriately adjusted according to the use of the conjugate fiber. It is suitable for producing a composite fiber (multifilament yarn) having a fineness of 0.5 to 6 denier and a total denier of 30 to 150 denier.
[0029]
The composite fiber of the present invention can be used as various fiber structures.
The fiber structure referred to in the present invention is a knitted or woven fabric made of a splittable conjugate fiber alone, a nonwoven fabric, or a woven or nonwoven fabric partially using a splittable conjugate fiber, such as a normal natural fiber or a chemical. It may be a cross-woven fabric with fibers or synthetic fibers, or a woven or non-woven fabric as a blended yarn, but in the case of a splittable conjugate fiber occupying the woven or non-woven fabric, it is 10% by weight or more, particularly 30% by weight. The above is preferable in that the sufficient effects of the present invention can be obtained. In addition, even if knitting, weaving, or non-woven fabric is performed and then raised by needle cloth raising or the like as necessary, the present invention does not matter at all.
[0030]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples and the like, but the present invention is not limited thereto. In the following examples, the primary average particle diameter of the inorganic fine particles, the spinnability of the composite fiber, the strength, elongation, uniformity (Worcester spots: U%) and the number of fluffs of the finally obtained composite fiber are as follows: It was measured or evaluated as follows.
Measurement of primary average particle diameter of inorganic fine particles :
It was calculated based on a centrifugal sedimentation curve obtained using a centrifugal particle size analyzer (“CAPA-5000” manufactured by Horiba, Ltd.).
Spinnability of composite fiber :
100 kg of the conjugate fiber was spun, the presence or absence of breakage during spinning was examined, and the occurrence of fluff in the obtained conjugate fiber was visually observed and evaluated according to the following evaluation criteria.
Evaluation criteria for spinnability of composite fibers
◎: No yarn breakage occurs during spinning, and no fluff is generated in the obtained composite fiber, and spinning properties are extremely good.
:: No yarn breakage occurred during spinning, and the obtained conjugate fiber was slightly fuzzy, but the spinnability was almost good.
Δ: When 100 kg was spun, thread breakage occurred up to three times, resulting in poor spinnability.
X: When 100 kg was spun, thread breakage occurred more than three times, and the spinnability was extremely poor.
Composite fiber strength :
The strength of the composite fiber was determined from a load-elongation curve obtained using an Instron type tensile tester.
Elongation of composite fiber :
The elongation of the composite fiber was determined from the load-elongation curve obtained using an Instron type tensile tester.
Uniformity of composite fiber (Worcester spots: U value) :
Using a Worcester spot tester manufactured by Zellberger, the yarn is passed between the electrodes at a constant speed (yarn speed 100 m / min, range ± 12.5%, chart speed 10 cm / min). The change was measured continuously and the average deviation coefficient "U%" for a certain length of the yarn was measured.
Number of fluffs generated in composite fibers :
10% by fluff sensor manufactured by Sun Electronics 7 m is detected in the yarn length of 10 m or more, and the yarn length of 10 m or more is detected. 6 It was converted to the number of fluff per m and displayed.
[0031]
Example 1
Polyethylene terephthalate (hereinafter abbreviated as PET) having a reduced viscosity of 0.85 (concentration in orthochlorophenol: 1 g / dl, 30 ° C.) containing 1.0% by weight of silica having a primary average particle diameter of 0.04 μm, and a reduced viscosity of 1. Using nylon 6 of 80 (concentration in orthochlorophenol: 1 g / dl, 30 ° C.), each was melt-extruded individually, and then the respective polymer portions were 6 layers of PET and 5 layers of nylon 6 as shown in FIG. The diameter of the measuring portion is 0.25 mmφ, the land length is 0.5 mm, and the nozzle hole outlet is widened like a trumpet and the outlet diameter is 0.5 mmφ. Melt spinning was performed at a spinning temperature of 285 ° C. from a round hole nozzle (see Table 1).
[0032]
A cooling air blowing device of a horizontal spraying type having a length of 1.0 m is installed immediately below the spinneret, and the composite fiber spun from the die is immediately introduced into the cooling air blowing device, and the temperature is 25 ° C. and the humidity is 65 RH%. The spun fibers were blown at a rate of 0.5 m / sec onto the spun fibers to cool the fibers to 50 ° C. or lower (the temperature of the fibers at the outlet of the cooling air blowing device = 40 ° C.).
[0033]
The conjugate fiber cooled to 50 ° C. or less is introduced into a tube heater (inside wall temperature: 180 ° C.) having a length of 1.0 m and an inner diameter of 30 mm and installed at a position of 1.6 m directly below the spinneret and stretched in the tube heater. After that, an oil agent is applied to the fiber coming out of the tube heater by a guide oiling method, and subsequently wound up at a take-up speed of 4300 m / min through a pair of (two) take-up rollers, and stretched to 75 denier 24. Filament composite fibers were produced (see Table 1).
The spinnability of the conjugate fiber when the spinning / drawing step is performed, and the strength, elongation, uniformity (Worcester spots: U%), and the number of fluffs generated of the finally obtained polyester fiber are described above. Table 2 shows the results of measurement or evaluation.
A tubular knitted fabric was prepared from the obtained conjugate fiber, treated with a 5% alkaline aqueous solution in a 40 g / l caustic soda solution at 98 ° C., and the cross section of the fiber was observed. It showed divisibility.
[0034]
[Table 1]
[Table 2]
[0035]
Examples 2-3
In Example 2, the content of silica in PET was 5.0% by weight, and in Example 3, PET having a primary average particle diameter of 0.3 μm in PET was used except that the content was 2.5% by weight. Was carried out in the same manner as in Example 1. In each case, the fiberization processability was good and the splitability of the obtained composite fiber was also good.
[0036]
Examples 4 to 7
In Examples 4 and 5, the reduced viscosities of PET were 0.75 and 0.90, respectively, and Examples 6 and 7 were the same as those of Example 6, except that the reduced viscosities of nylon 6 were 1.60 and 1.90, respectively. Performed in a similar manner to 1. In each case, the fiberization processability was good and the splitability of the obtained composite fiber was also good.
[0037]
Examples 8 to 10
Example 8 was carried out in the same manner as in Example 1 except that the composite cross-sectional shape was the shape shown in FIG. 6, and Example 9 was the same as the composite cross-sectional shape shown in FIG. Example 10 was performed in the same manner as Example 1 except that the composite ratio of PET and nylon 6 was 3/1. In each case, the fiberization processability was good and the splitability of the obtained composite fiber was also good.
[0038]
Examples 11 to 14
In Examples 11 and 12, the winding speed was 3800 m / min and 4800 m / min, respectively, and Examples 13 and 14 were the same as Example 1 except that the tube heater atmosphere temperature was 200 ° C. and 160 ° C., respectively. Carried out. In each case, the fiberization processability was good, and the yarn properties and splitting properties of the obtained conjugate fiber were satisfactory.
[0039]
Examples 15 and 16
Example 15 used titanium oxide having a primary average particle diameter of 0.4 μm instead of silica used in Example 1, set the titanium oxide content in PET to 0.5% by weight, and Example 16 The procedure was performed in the same manner as in Example 1 except that barium sulfate having a primary average particle diameter of 0.6 μm was used instead of silica, and the barium sulfate content of PET was set to 1.0% by weight. In each case, the fiberization processability was good, and the yarn properties and splitting properties of the obtained conjugate fiber were satisfactory.
[0040]
Comparative Example 1
A conjugate fiber was produced in the same manner as in Example 1 except that PET containing no inorganic fine particles was used, and the spinnability at that time and the strength, elongation, and uniformity of the finally obtained conjugate fiber were obtained. (Worcester spots: U%) and the number of fluffs generated were measured or evaluated by the methods described above. The results are shown in Table 1 below. The fiberization process was poor and the resulting composite fiber had an unsatisfactory level of division.
[0041]
Comparative Examples 2 to 5
Comparative Example 2 uses PET containing 0.1% by weight of silica having a primary average particle diameter of 0.04 μm, and Comparative Example 3 uses PET containing 10% by weight of silica having a primary average particle diameter of 0.4% by weight. Comparative Examples 4 and 5 were carried out in the same manner as in Example 1 except that PET containing 0.02% by weight and 15% by weight of titanium oxide having a primary average particle diameter of 0.4 μm was used. Comparative Examples 2 and 4 were unsatisfactory because the splitting properties of the obtained composite fibers were lower than those in Example 1. Comparative Examples 3 and 5 all had poor fiberization processability.
[0042]
Comparative Examples 6 to 9
Comparative Examples 6 and 7 use PET with a reduced viscosity of 0.6 and 1.0, respectively, and Comparative Examples 8 and 9 use nylon 6 with a reduced viscosity of 1.4 and 2.2, respectively. The procedure was carried out in the same manner as in Example 1 except for the above. In all cases, the fiberization processability was insufficient, and the splitability of the obtained composite fiber was also at an unsatisfactory level.
[0043]
Comparative Examples 10 to 11
Comparative Example 10 was carried out in the same manner as in Example 1, except that the winding speed was 3200 m / min. Although the fiberization processability was good, the splitting properties of the obtained composite fiber were at an unsatisfactory level.
Comparative Example 11 was carried out in the same manner as in Example 1 except that the tube heater atmosphere temperature was 90 ° C. The fibrosis process was poor, and the splitting properties of the obtained conjugate fiber were also poor. Moreover, since the yarn strength is low and the elongation is long, there is also a problem that it is difficult to handle in a post-processing step.
[0044]
【The invention's effect】
The present invention provides a high quality polyester and polyamide splittable conjugate fiber which is free of fluff and unevenness in thickness and has excellent mechanical properties such as strength and elongation. The present invention relates to the direct production of a product by direct spin-drawing method. Moreover, the obtained splittable conjugate fiber has a characteristic that it can be easily split by chemical or physical treatment in a post-processing step.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a side-by-side type conjugate fiber.
FIG. 2 is a cross-sectional view of a side-by-side repeating type conjugate fiber.
FIG. 3 is a cross-sectional view of a conjugate fiber composed of a component having a radial shape and another component that complements the radiation portion.
FIG. 4 is a cross-sectional view of a conjugate fiber composed of a component having a radial shape and another component that complements the radiation portion.
FIG. 5 is a cross-sectional view of a conjugate fiber composed of a component having a radial shape and another component that complements the radiation portion.
FIG. 6 is a cross-sectional view of a conjugate fiber composed of a component having a radial shape and another component that complements the radiation portion.
FIG. 7 shows a component having a radial shape and a component having a V-shaped concave portion that complements the radiating portion and has a V-shaped concave portion facing the center and a V-shaped shape that complements the concave portion. It is a cross-sectional view of the composite fiber which consists of the same component as the component having the radial shape.
FIG. 8 is a cross-sectional view of a side-by-side repeating conjugate fiber having a hollow portion.
Claims (4)
0.01≦一次平均粒子径(μm)≦5.0 (1)
0.05≦無機微粒子含有量(重量%)≦10.0 (2)
0.01≦X≦3.0 (3)
但し、X=一次平均粒子径(μm)×無機微粒子含有量(重量%)A splittable conjugate fiber comprising a polyamide component and a polyester component containing inorganic fine particles, wherein one of the components does not completely surround the other component, and has a cross section in which both components are joined, wherein the inorganic fine particles are And the content (% by weight) of the inorganic fine particles in the polyester satisfies the following formulas (1) to (3), and the reduced viscosity (η sp / C) of the polyester is 0.65 to 0.5. 95. A splittable conjugate fiber, wherein the polyamide has a reduced viscosity (η sp / C) of 1.60 to 1.90 .
0.01 ≦ primary average particle diameter (μm) ≦ 5.0 (1)
0.05 ≦ inorganic fine particle content (% by weight) ≦ 10.0 (2)
0.01 ≦ X ≦ 3.0 (3)
Where X = primary average particle diameter (μm) × inorganic fine particle content (% by weight)
0.01≦一次平均粒子径(μm)≦5.0 (1)
0.05≦無機微粒子含有量(重量%)≦10.0 (2)
0.01≦X≦3.0 (3)
但し、X=一次平均粒子径(μm)×無機微粒子含有量(重量%)」A polyester having a reduced viscosity (η sp / C) of 0.65 to 0.95 containing inorganic fine particles, wherein the primary average particle diameter (μm) of the inorganic fine particles and the content (% by weight) of the inorganic fine particles in the polyester ) Satisfies the following formulas (1) to (3), and a polyamide component having a reduced viscosity (η sp / C) of 1.6 to 1.90 , wherein one component completely surrounds the other component. Without melt-spinning from a spinneret as a composite form in which both components were joined, the spun product was once cooled to a temperature below the glass transition temperature, and subsequently run through a heating zone heated to an ambient temperature of 100 ° C or more. 3. A method for producing a splittable conjugate fiber, wherein the fiber is drawn at a speed of 3500 m / min or more.
0.01 ≦ primary average particle diameter (μm) ≦ 5.0 (1)
0.05 ≦ inorganic fine particle content (% by weight) ≦ 10.0 (2)
0.01 ≦ X ≦ 3.0 (3)
X = primary average particle diameter (μm) × content of inorganic fine particles (% by weight) ”
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33355296A JP3583248B2 (en) | 1996-12-13 | 1996-12-13 | Splittable conjugate fiber comprising polyester and polyamide and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33355296A JP3583248B2 (en) | 1996-12-13 | 1996-12-13 | Splittable conjugate fiber comprising polyester and polyamide and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10168663A JPH10168663A (en) | 1998-06-23 |
JP3583248B2 true JP3583248B2 (en) | 2004-11-04 |
Family
ID=18267325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33355296A Expired - Fee Related JP3583248B2 (en) | 1996-12-13 | 1996-12-13 | Splittable conjugate fiber comprising polyester and polyamide and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3583248B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3301706B2 (en) * | 1997-01-17 | 2002-07-15 | 株式会社クラレ | Deodorant composite fiber and method for producing the same |
DE10002778B4 (en) * | 2000-01-22 | 2012-05-24 | Robert Groten | Use of a microfilament nonwoven fabric as a cleaning cloth |
KR100429947B1 (en) * | 2001-07-10 | 2004-05-04 | 주식회사 효성 | Method for manufacturing sectional type bicomponent staple fibers |
JP2008184725A (en) * | 2007-01-31 | 2008-08-14 | Teijin Cordley Ltd | Dope-dyed nonwoven fabric |
JP5661400B2 (en) * | 2010-09-29 | 2015-01-28 | 株式会社クラレ | Archipelago-exposed composite fiber, fiber structure obtained from the fiber, and wiping tape comprising the fiber structure |
KR101663837B1 (en) * | 2010-12-29 | 2016-10-10 | 주식회사 효성 | Polyester/Polyamide Split Type Composite Yarn and A Process for Preparing the Same |
-
1996
- 1996-12-13 JP JP33355296A patent/JP3583248B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10168663A (en) | 1998-06-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101580883B1 (en) | Ultrafine polyamide fiber, and melt-spinning method and device therefor | |
TW567257B (en) | Polytrimethyleneterephthalate modified cross section yarn | |
JP3583248B2 (en) | Splittable conjugate fiber comprising polyester and polyamide and method for producing the same | |
US6572967B1 (en) | Poly(trimethylene terephthalate) multifilament yarn | |
JPH0931749A (en) | Production of polyester fiber | |
JPH08325850A (en) | Sheath/core-type conjugate fiber and its production | |
JPH11131322A (en) | Melt spinning of ultrafine polyester multifilament | |
JP5661400B2 (en) | Archipelago-exposed composite fiber, fiber structure obtained from the fiber, and wiping tape comprising the fiber structure | |
JPH08260343A (en) | Hollow polyester fiber and its production | |
JP3016837B2 (en) | Raw yarns useful for long and short composite yarns | |
JPH1072732A (en) | Production of polyester-based false twisted textured yarn | |
JPH10158932A (en) | Polyester ultrafine yarn and its production | |
JPH11107048A (en) | Sheath-core type polyester textile excellent in dyeability and ultraviolet screening effects and production of the same | |
JP3574543B2 (en) | Method for producing polyester thick yarn | |
JPH08127916A (en) | Polyester crimped yarn for carpet and carpet | |
JPS6122047B2 (en) | ||
JP2820589B2 (en) | Latent bulky mixed yarn | |
JP3657398B2 (en) | Manufacturing method of composite fiber | |
JPH11279839A (en) | Blended yarn capable of being fibrillated | |
JP3453229B2 (en) | Manufacturing method of polyester fiber | |
JP2020147862A (en) | Method for producing high hollow polyester fiber | |
JPH10237715A (en) | Conjugate split filament and aggregate consisting of the same | |
JPH1096117A (en) | Polyester fiber and its production | |
KR950000722B1 (en) | Extractive composite fiber | |
JPH10168687A (en) | Polyester differently shrinkable combined filament yarn and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040518 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040526 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040727 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040728 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080806 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090806 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100806 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110806 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110806 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120806 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120806 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130806 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |