JPH11107048A - Sheath-core type polyester textile excellent in dyeability and ultraviolet screening effects and production of the same - Google Patents

Sheath-core type polyester textile excellent in dyeability and ultraviolet screening effects and production of the same

Info

Publication number
JPH11107048A
JPH11107048A JP26622997A JP26622997A JPH11107048A JP H11107048 A JPH11107048 A JP H11107048A JP 26622997 A JP26622997 A JP 26622997A JP 26622997 A JP26622997 A JP 26622997A JP H11107048 A JPH11107048 A JP H11107048A
Authority
JP
Japan
Prior art keywords
polyester
sheath
core
spinning
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26622997A
Other languages
Japanese (ja)
Inventor
Tadayoshi Koizumi
忠由 古泉
Kenichi Yoshioka
謙一 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP26622997A priority Critical patent/JPH11107048A/en
Publication of JPH11107048A publication Critical patent/JPH11107048A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain the subject textile manifesting improved thread breakage caused from uneven stretching, looping, piling, etc., excellent in dyeability, ultraviolet screening effects, hand and drape useful for sporting clothes, etc., by spinning a specific polyester, etc., from a spinning nozzle forming a sheath-core cross section under a specific condition. SOLUTION: A polyester comprising 1 to 20 wt.% of a polyester containing inorganic particles such as titanium oxide, zinc oxide, etc., having average particle size of 0.1 to 5 μm and having ultraviolet screening effects as the core component and a polyester as the sheath component, is spun from a spinning nozzle forming a sheath-core cross section textile under the spinning condition satisfying formulae I to III in the same time where Q; discharging rate of single nozzle (g/minute), L; area of a single nozzle (mm<2> ), M; Q/L, G; inlet diameter of heating zone (mm), V; spinning rate (m/minute), D; denier of a single yarn after drawing, N; number of filaments at drawing speed >=4000 m/minutes, once cooled below glass transition point and, heat drawing to obtain the objective sheath-core type polyester textile having elongation of <=50%, degree of shrinkage in boiling water of <=6.5%, and U% of <=0.65.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は紫外線遮蔽性に優
れ、糸質にも優れたポリエステル繊維とその製造方法に
関するもので、例えばブラウス、サマースーツ、スポー
ツ衣料、カーテン、日傘、帆布、自動車カバー等の衣
料、産業資材に好適に使用される繊維に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyester fiber having excellent ultraviolet shielding properties and excellent thread quality and a method for producing the same, such as blouses, summer suits, sports clothing, curtains, parasols, canvas, automobile covers, and the like. And a fiber suitably used for clothing and industrial materials.

【0002】[0002]

【従来の技術】従来、波長380nm以下の光をほぼ完
全に吸収し実質的に紫外線を遮蔽する樹脂組成物が知ら
れており、フィルムやボトル等に成形されて、写真等の
退色防止や食品、薬品、液晶等の変質防止あるいは窓ガ
ラス等に使用されている。紫外線を吸収したり遮蔽する
能力を付与する添加剤としては、従来、有機系の紫外線
吸収剤、有機染顔料、さらには酸化亜鉛、二酸化チタ
ン、タルク、カオリン、炭酸ソーダ等の無機粒子が知ら
れている。
2. Description of the Related Art Conventionally, there has been known a resin composition which absorbs light having a wavelength of 380 nm or less almost completely and substantially shields ultraviolet rays. It is used for preventing deterioration of chemicals, liquid crystals, etc., or for window glass. Conventionally, additives that impart the ability to absorb or block ultraviolet rays include organic ultraviolet absorbers, organic dyes and pigments, and inorganic particles such as zinc oxide, titanium dioxide, talc, kaolin, and sodium carbonate. ing.

【0003】[0003]

【発明が解決しようとする課題】従来の有機系の紫外線
吸収剤の中には優れた紫外線吸収能を有し、融点が高い
ものがあるので、高融点の熱可塑性樹脂へ溶融混練し成
形に供することが可能であるが、全般的に可視光線を良
く吸収するため、混練樹脂に着色が目立ち、これらを用
いるのは高濃度着色が許される場合に限られ、白度の要
求される樹脂成形物には好適でないとか、その物または
分解生成物が皮膚障害をもたらす危険性があるので注意
を要するという欠点があった。この点は、白色系の無機
微粒子を用いることによって解決可能であるが、従来の
方法では、粒子の凝集等が原因で製糸化の際の紡糸調子
が悪かったり、凝集は問題ない場合でも粒子が繊維内に
入っているために糸物性がものたりないものとなってい
た。特に紫外線カット効果を向上させるために無機粒子
量を増加すると繊維化工程性が悪くなるばかりでなく物
性低下が著しかったり風合、染色が満足されず用途が極
めて限定された。
Some of the conventional organic ultraviolet absorbers have excellent ultraviolet absorbing ability and a high melting point, so they are melted and kneaded into a high melting point thermoplastic resin for molding. Although it is possible to provide it, the kneading resin is conspicuously colored because it generally absorbs visible light well, and these are used only when high-concentration coloring is allowed, and resin molding that requires whiteness is used. It has the drawback that it is not suitable for an object or that attention is required because the object or decomposition products may cause skin damage. This point can be solved by using white inorganic fine particles.However, in the conventional method, even when the spinning condition at the time of spinning is poor due to the aggregation of the particles or the aggregation is not a problem, the particles are not removed. Since the fibers were contained in the fibers, the yarn had no physical properties. In particular, when the amount of inorganic particles is increased in order to improve the ultraviolet ray cutting effect, not only the fiberization processability is deteriorated, but also the physical properties are remarkably reduced, the feeling and dyeing are not satisfied, and the use is extremely limited.

【0004】[0004]

【課題を解決するための手段】本発明者らは、上記問題
点を解決するため鋭意検討した結果、ポリエステル中に
含有させる微粒子の種類と添加量を限定し、繊維断面を
芯鞘構造とし、さらに紡糸方法として特定の方法を採用
することにより優れた染色性と紫外線遮蔽機能と力学特
性及び染色性、風合をも兼ね備えたポリエステル繊維を
見出せることが分かった。
Means for Solving the Problems As a result of intensive studies to solve the above problems, the present inventors have limited the type and amount of fine particles to be contained in the polyester, and made the fiber cross section a core-sheath structure. Furthermore, it was found that by adopting a specific method as a spinning method, a polyester fiber having excellent dyeing properties, ultraviolet shielding function, mechanical properties, dyeing properties, and feeling was also obtained.

【0005】すなわち、本発明は、平均粒子径が0.1
〜5μmの無機微粒子を1〜20wt%含有するポリエ
ステルを芯成分とし、ポリエステルを鞘成分とする芯鞘
型ポリエステル繊維であって、伸度が50%以下、沸水収
縮率が6.5%以下、U%が0.65以下である染色性及び紫
外線遮蔽性に優れた芯鞘型ポリエステル繊維であり、ま
た、平均粒子径が0.1〜5μmの紫外線遮蔽効果を有
する無機微粒子を1〜20wt%含有するポリエステル
を芯成分とし、ポリエステルを鞘成分として、芯鞘断面
を形成する紡糸口金から溶融紡出し、紡出糸条を一旦ガ
ラス転移点以下の温度に冷却し、次いで加熱帯域を走行
させて延伸熱処理した后、油剤を付与し4000m/分
以上の引取速度で巻取るに際し、紡糸条件として口金単
孔吐出量をQ(g/min)、口金単孔面積をL(mm
2)としたときQ/LをMとし加熱帯域の入口径をG
(mm)、紡速V(m/分)、延伸后の単糸デニールを
D、フィラメント数Nとしたとき下記式(1)〜(3)
を同時に満たす条件にて紡糸する染色性及び紫外線遮蔽
性に優れた芯鞘型ポリエステル繊維の製造方法である。 30≦M+5D≦80 ‥‥‥(1) −10≦G−0.2N≦5 ‥‥‥(2) −65≦M−0.02V≦−35 ‥‥‥(3)
That is, according to the present invention, the average particle diameter is 0.1%.
A core-sheath type polyester fiber having a core component of polyester containing 1 to 20 wt% of inorganic fine particles of 1 to 5 μm and having a sheath component of polyester, having an elongation of 50% or less, a boiling water shrinkage of 6.5% or less, and a U% Is a core-sheath type polyester fiber having excellent dyeing properties and ultraviolet shielding properties, which is 0.65 or less, and a polyester containing 1 to 20 wt% of inorganic fine particles having an average particle diameter of 0.1 to 5 μm and having an ultraviolet shielding effect. As a core component, using polyester as a sheath component, melt-spinning is performed from a spinneret forming a core-sheath cross section, the spun yarn is once cooled to a temperature below the glass transition temperature, and then is run in a heating zone and subjected to drawing heat treatment. When applying an oil agent and winding at a take-up speed of 4000 m / min or more, the spinning conditions were as follows: spinneret single-hole discharge amount Q (g / min), spinneret single-hole area L (mm)
2 ) When Q / L is M, the inlet diameter of the heating zone is G
(Mm), the spinning speed V (m / min), the denier of the single yarn after stretching is D, and the number of filaments is N, the following formulas (1) to (3)
This is a method for producing a core-sheath type polyester fiber which is excellent in dyeing property and ultraviolet ray shielding property to be spun under a condition satisfying simultaneously. 30 ≦ M + 5D ≦ 80 (1) −10 ≦ G−0.2N ≦ 5 (2) −65 ≦ M−0.02V ≦ −35 (3)

【0006】[0006]

【発明の実施の形態】本発明の芯鞘型ポリエステル繊維
は、芯成分のポリエステル中に平均粒子径が0.1〜5
μmの紫外線遮蔽効果を有する無機微粒子を1〜20w
t%含有している必要がある。含有量が1wt%未満で
あると十分な紫外線遮蔽効果が得られず20wt%を越
えると紡糸時の粘度低下が著しくなり、芯鞘粘度バラン
スが悪化するため紡糸調子が不調となる。また紡糸調子
が不調とならない場合でも芯鞘の断面形成が悪くなる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The core-sheath type polyester fiber of the present invention has an average particle diameter of 0.1 to 5 in the core polyester.
1 to 20 w of inorganic fine particles having an ultraviolet shielding effect of μm
t%. If the content is less than 1% by weight, a sufficient ultraviolet shielding effect cannot be obtained, and if it exceeds 20% by weight, the viscosity during spinning is remarkably reduced, and the core-sheath viscosity balance is deteriorated, resulting in poor spinning condition. Further, even when the spinning condition does not become abnormal, the cross-sectional formation of the core-sheath becomes poor.

【0007】芯側ポリエステルに含有する無機微粒子の
平均粒子径は0.1〜5μmが良い。更に好ましくは
0.3〜1μmである。粒子径が0.1μm未満である
とポリエステル重合の段階で熱凝集を発生しやすく、紡
糸工程でフィルター詰りを起こしやすい。一方5μmを
越えるとやはりフィルター詰りを生じ紡糸調子不調とな
る。
The average particle diameter of the inorganic fine particles contained in the core-side polyester is preferably 0.1 to 5 μm. More preferably, it is 0.3 to 1 μm. If the particle size is less than 0.1 μm, thermal aggregation is likely to occur at the stage of polyester polymerization, and filter clogging is likely to occur in the spinning process. On the other hand, if it exceeds 5 μm, the filter will be clogged and the spinning condition will be poor.

【0008】更に、本発明は断面が芯鞘であることが重
要である。芯側ポリエステルに無機微粒子を添加するこ
とにより繊維化の際、ガイド接触等で毛羽断糸が生じに
くく、また鞘ポリマーにより繊維物性が保持される。
[0008] Furthermore, in the present invention, it is important that the cross section is a core sheath. By adding inorganic fine particles to the core-side polyester, during fiberization, fluff breakage hardly occurs due to contact with a guide or the like, and the fiber properties are maintained by the sheath polymer.

【0009】本発明で使用する無機微粒子としては、酸
化チタン、酸化亜鉛、酸化アルミニウムおよび酸化セリ
ウム等紫外線遮蔽性能を有する物質が挙げられこれらの
内1種類でもよいし2種類以上併用しても良い。これら
のうち、特に酸化チタンおよび/または酸化亜鉛が好ま
しく使用される。
Examples of the inorganic fine particles used in the present invention include substances having an ultraviolet shielding property such as titanium oxide, zinc oxide, aluminum oxide and cerium oxide. One of these substances may be used alone, or two or more of them may be used in combination. . Of these, titanium oxide and / or zinc oxide are particularly preferably used.

【0010】無機微粒子の添加方法としては、特に限定
されるものではなく、ポリエステル重合の仕込みから紡
糸直前までの任意の段階で添加されていれば良い。ただ
し、本発明において酸化亜鉛を含むスラリーを使用する
場合についてはその添加時期は紡糸直前でなければなら
ず、例えば、ポリエステル重合の仕込時や反応途中に添
加すると酸化亜鉛粒子の凝集が激しく起こり好ましくな
い。そして本発明における「紡糸直前」とは、実質的な
重合完了后から紡糸ノズルよりポリマーが吐出されるま
での間の任意の段階と解されるべきである。
The method of adding the inorganic fine particles is not particularly limited, and it is sufficient that the inorganic fine particles are added at an arbitrary stage from preparation of polyester polymerization to immediately before spinning. However, in the case of using a slurry containing zinc oxide in the present invention, the addition time must be immediately before spinning.For example, when added during the preparation of polyester polymerization or during the reaction, aggregation of zinc oxide particles occurs violently, which is preferable. Absent. The term “immediately before spinning” in the present invention should be understood as an arbitrary stage from after the completion of substantial polymerization to when the polymer is discharged from the spinning nozzle.

【0011】本発明における芯成分及び鞘成分を形成す
るポリエステルとしては、ポリエチレンテレフタレー
ト、ポリブチレンテレフタレート等のポリエステルや、
テレフタル酸、イソフタル酸、ナフタリン2,6ジカル
ボン酸、フタール酸、α,β−(4−カルボキシフェノ
キシ)エタン、4,4′−ジカルボキシジフェニル5−
ナトリウムスルホイソフタル酸などの芳香族ジカルボン
酸、もしくはアジピン酸、セバチン酸などの脂肪族ジカ
ルボン酸またはこれらのエステル形成性誘導体と、エチ
レングリコール、ジエチレングリコール、1,4ブタン
ジオール、ネオペンチルグリコール、シクロヘキサンジ
メタノール、ポリエチレングリコール、ポリテトラメチ
レングリコールなどのジオール化合物とから合成される
繊維形成性ポリエステルであり、その構成単位の80モ
ル%以上が、特には90モル%以上がポリエチレンテレ
フタレート単位またはポリブチレンテレフタレート単位
であるポリエステルが好ましく、尚且つ、融点が200
℃以上であることが望ましい。融点が低くなると耐熱性
不十分のため衣料用の繊維として用途が限定されるため
好ましくない。また、ポリエステル中には少量の添加
剤、例えば酸化防止剤、難燃剤、抗菌剤、消臭剤、蛍光
増白剤、安定剤等を含んでいても差し支えない。
As the polyester forming the core component and the sheath component in the present invention, polyesters such as polyethylene terephthalate and polybutylene terephthalate,
Terephthalic acid, isophthalic acid, naphthalene 2,6-dicarboxylic acid, phthalic acid, α, β- (4-carboxyphenoxy) ethane, 4,4′-dicarboxydiphenyl 5-
Aromatic dicarboxylic acids such as sodium sulfoisophthalic acid, or aliphatic dicarboxylic acids such as adipic acid and sebacic acid or ester-forming derivatives thereof, and ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol, cyclohexanedimethanol , A fiber-forming polyester synthesized from a diol compound such as polyethylene glycol or polytetramethylene glycol, wherein at least 80 mol% of its constituent units are polyethylene terephthalate units or polybutylene terephthalate units. Certain polyesters are preferred and have a melting point of 200
It is desirable that the temperature is not less than ° C. If the melting point is low, the heat resistance is insufficient and the use as a fiber for clothing is limited, which is not preferable. Further, the polyester may contain a small amount of additives such as an antioxidant, a flame retardant, an antibacterial agent, a deodorant, a fluorescent brightener, a stabilizer and the like.

【0012】次に本発明の製造方法について述べる。本
発明においては、繊維の芯部を構成するポリエステルと
して上記した特定粒子径の無機微粒子を1〜20wt%含
有するものを用い、鞘成分としてはポリエステルを用い
て、通常の芯鞘断面を形成する紡糸口金から溶融紡出
し、紡出糸条を一旦ガラス転移点以下の温度に冷却し、
次いでチューブ型加熱装置内を走行させて延伸熱処理し
た后、油剤を付与し4000m/分以上の引取速度で巻
取るものである。鞘成分ポリマーについては先に述べた
ポリエステルであればいずれでもよく、レギュラーポリ
エステルでも第3成分添加ポリエステルあるいは共重合
ポリエステル等いずれでも良い。
Next, the manufacturing method of the present invention will be described. In the present invention, a polyester containing 1 to 20% by weight of the inorganic fine particles having the above-mentioned specific particle diameter is used as the polyester constituting the core of the fiber, and a polyester is used as the sheath component to form a normal core-sheath cross section. Melt spinning from a spinneret, the spun yarn is once cooled to a temperature below the glass transition point,
Next, after running in a tube-type heating device and performing a stretching heat treatment, an oil agent is applied and wound at a take-up speed of 4000 m / min or more. The sheath component polymer may be any polyester as described above, and may be a regular polyester, a third component-added polyester or a copolymerized polyester.

【0013】この場合の溶融紡出温度、溶融紡出速度な
どは特に制限されず、ポリエステル繊維を製造するのに
通常用いられていると同様の条件下で行うことができる
が、溶融紡出温度を(ポリエステルの融点+20℃)〜
(ポリエステルの融点+40℃)の範囲の温度(例えば
ポリエチレンテレフタレートの場合は約280〜300
℃)にし、かつ溶融紡出速度(溶融紡出量)を約20〜
50g/紡糸孔1mm2・分程度とすると、品質の良好
なポリエステル繊維を良好な紡糸工程性で得ることがで
きるので好ましい。
The melt spinning temperature and melt spinning speed in this case are not particularly limited, and the melt spinning can be performed under the same conditions as those usually used for producing polyester fibers. (The melting point of polyester + 20 ° C.)
(For example, about 280 to 300 in the case of polyethylene terephthalate).
° C) and the melt spinning speed (melt spinning amount) is about 20 to
It is preferable to set the amount to about 50 g / spinning hole 1 mm 2 · minute because a good quality polyester fiber can be obtained with good spinning processability.

【0014】また、紡糸口金における紡糸孔の大きさや
数、紡糸孔の形状なども特に制限されず、目的とするポ
リエステル繊維の単繊維繊度、総合デニール数、断面形
状などに応じて調節することができる。紡糸孔(単孔)
の大きさは、約0.018〜0.07mm2程度にして
おくのが望ましい。
The size and number of the spinning holes and the shape of the spinning holes in the spinneret are not particularly limited, and can be adjusted according to the single fiber fineness of the target polyester fiber, the total denier number, the cross-sectional shape and the like. it can. Spinning hole (single hole)
Is desirably about 0.018 to 0.07 mm 2 .

【0015】そして、上記によって溶融紡出したポリエ
ステル繊維を、一旦そのガラス転移点以下の温度、好ま
しくはガラス転移温度よりも10℃以上低い温度に冷却
する。この場合の冷却方法や冷却装置としては、紡出し
たポリエステル繊維をそのガラス転移温度以下に冷却で
きる方法や装置であればいずれでもよく特に制限されな
いが、紡糸口金の下に冷却風吹き付け筒などの冷却風吹
き付け装置を設けておいて、紡出されてきたポリエステ
ル繊維に冷却風を吹き付けてガラス転移温度以下に冷却
するようにするのが好ましい。
Then, the polyester fiber melt-spun as described above is once cooled to a temperature lower than its glass transition point, preferably 10 ° C. or lower than the glass transition temperature. The cooling method and the cooling device in this case are not particularly limited as long as the method and the device can cool the spun polyester fiber to the glass transition temperature or lower, but are not particularly limited. It is preferable that a cooling air blowing device is provided, and cooling air is blown onto the spun polyester fiber to cool the polyester fiber to a temperature lower than the glass transition temperature.

【0016】その際に冷却風の温度や湿度、冷却風の吹
き付け速度、紡出繊維に対する冷却風の吹き付け角度な
どの冷却条件も特に制限されず、口金から紡出されてき
たポリエステル繊維を繊維の揺れなどを生じないように
しながら速やかに且つ均一にガラス転移温度以下にまで
冷却できる条件であればいずれでもよい。そのうちで
も、冷却風の温度を約20〜30℃、冷却風の湿度を2
0〜60%、冷却風の吹き付け速度を0.4〜1.0m
/秒程度として、紡出繊維に対する冷却風の吹き付け方
向を紡出方向に対して垂直にして紡出したポリエステル
繊維の冷却を行うのが、高品質のポリエステル繊維を円
滑に得ることができるので好ましい。
At this time, the cooling conditions such as the temperature and humidity of the cooling air, the blowing speed of the cooling air, and the angle at which the cooling air is blown onto the spun fibers are not particularly limited, and the polyester fibers spun from the die are converted into fibers. Any condition may be used as long as the condition allows rapid and uniform cooling to the glass transition temperature or lower while preventing shaking or the like. Among them, the temperature of the cooling air is about 20-30 ° C and the humidity of the cooling air is 2
0-60%, the blowing speed of cooling air is 0.4-1.0m
It is preferable to perform cooling of the spun polyester fiber with the blowing direction of the cooling air to the spun fiber being perpendicular to the spinning direction at about / sec, since a high-quality polyester fiber can be smoothly obtained. .

【0017】また、冷却風吹き付け筒を用いて前記の条
件下で冷却を行う場合は、紡糸口金の直下にやや間隔を
あけてまたは間隔をあけないで、長さが約80〜120
cm程度の冷却風吹き付け筒を配置するのが好ましい。
When cooling is performed under the above-mentioned conditions using a cooling air blowing cylinder, the length is about 80 to 120 with a slight or no interval directly below the spinneret.
It is preferable to arrange a cooling air blowing cylinder of about cm.

【0018】次に、ガラス転移温度以下にまで冷却した
ポリエステル繊維を引き続いてそのまま直接加熱帯域に
導入して延伸する。加熱帯域の温度はポリエステルの種
類などに応じて異なり得るが、ポリエステルのガラス転
移温度よりも40℃以上高い温度としておくと、得られ
るポリエステル繊維の物性を実用上満足のゆくものとす
ることができるので好ましく、例えばポリエチレンテレ
フタレート繊維の場合は加熱帯域の温度を約100℃以
上とするのが好ましい。
Next, the polyester fiber cooled to the glass transition temperature or lower is subsequently directly introduced into the heating zone and drawn. The temperature of the heating zone may vary depending on the type of the polyester, etc., but if the temperature is set at 40 ° C. or higher than the glass transition temperature of the polyester, the physical properties of the obtained polyester fiber can be made practically satisfactory. For example, in the case of polyethylene terephthalate fiber, the temperature of the heating zone is preferably set to about 100 ° C. or higher.

【0019】加熱帯域の上限温度は、加熱帯域内で繊維
間の融着や糸切れ、単糸切れなどが生じないような温度
であればよい。加熱帯域の種類や構造は、加熱帯域内を
走行するポリエステル繊維を加熱帯域内の加熱手段など
に接触せずに加熱することができ、しかも加熱帯域内を
走行する糸条とそれを包囲する空気との間に抵抗を生じ
させて糸条張力を増大させて、繊維に延伸を生じさせる
ことのできる構造であればいずれでもよい。そのうちで
も、加熱帯域としては、筒状の加熱帯域が好ましく用い
られ、特に管壁自体がヒーターとなっている内径が約2
0〜50mm程度のパイプヒーターなどが好ましい。
The upper limit temperature of the heating zone may be any temperature at which fusion between fibers, breakage of yarn, breakage of single yarn, etc. does not occur in the heating zone. The type and structure of the heating zone are such that the polyester fiber traveling in the heating zone can be heated without contacting the heating means in the heating zone, and the yarn traveling in the heating zone and the air surrounding it can be heated. Any structure can be used as long as the resistance can be generated between them and the yarn tension can be increased, and the fiber can be drawn. Among them, as the heating zone, a tubular heating zone is preferably used, and in particular, the inner diameter where the tube wall itself is a heater is about 2 mm.
A pipe heater of about 0 to 50 mm is preferable.

【0020】加熱帯域の紡糸口金からの設置位置、加熱
帯域の長さなどは、ポリエステル繊維の種類、ポリエス
テルの紡出量、ポリエステル繊維の冷却温度、ポリエス
テル繊維の走行速度、加熱帯域の温度、加熱帯域の内径
などに応じて調節できるが、紡糸口金直下から加熱帯域
の入口までの距離を0.5〜3.0m程度とし、そして
加熱帯域の長さを1.0〜2.0m程度としておくと、
加熱帯域内でポリエステル繊維を加熱して均一に円滑に
延伸することができるので望ましい。そして、加熱帯域
で延伸されたポリエステル繊維に対して、必要に応じて
油剤を付与してから、高速で引き取る。
The installation position of the heating zone from the spinneret, the length of the heating zone, etc. depend on the type of polyester fiber, the amount of polyester spun, the cooling temperature of the polyester fiber, the running speed of the polyester fiber, the temperature of the heating zone, and the heating zone. It can be adjusted according to the inner diameter of the zone, etc., but the distance from immediately below the spinneret to the entrance of the heating zone is about 0.5 to 3.0 m, and the length of the heating zone is about 1.0 to 2.0 m. When,
This is desirable because the polyester fiber can be heated and uniformly drawn in the heating zone. Then, an oil agent is applied to the polyester fiber drawn in the heating zone as needed, and then the polyester fiber is drawn at a high speed.

【0021】本発明では、上記した一連の工程からなる
延伸したポリエステル繊維の製造工程を、ポリエステル
繊維の引取速度を4000m/分以上にして行うことが
必要であり、引取速度が4500m/分以上であるのが
好ましい。ポリエステル繊維の引取速度が4000m/
分未満であると、加熱帯域において繊維の延伸が十分に
行われなくなり、得られるポリエステル繊維の機械的物
性が低下し、しかも上記した一連の工程からなる本発明
の方法が円滑に行われず、特に加熱帯域における糸条の
張力変動、過加熱などが生じて、均一な延伸が行われに
くくなる。
In the present invention, it is necessary to carry out the process for producing a stretched polyester fiber comprising the above-mentioned series of processes at a polyester fiber take-off speed of 4000 m / min or more. Preferably it is. The take-up speed of the polyester fiber is 4000m /
If it is less than minutes, the drawing of the fiber in the heating zone will not be performed sufficiently, the mechanical properties of the obtained polyester fiber will be reduced, and the method of the present invention comprising the above series of steps will not be performed smoothly, especially Fluctuations in the tension in the heating zone, overheating, etc., occur, making it difficult to perform uniform stretching.

【0022】また本発明を実施するにあたっては、紡糸
条件として口金単孔吐出量をQ(g/min)、口金単
孔面積をL(mm2)としたときQ/LをMとし加熱装
置の入口径をG(mm)、紡速V(m/分)、延伸后の
単糸デニールをD、フィラメント数をNとしたとき、次
式(1)〜(3)を同時に満足している必要がある。 30≦M+5D≦80 ‥‥‥(1) −10≦G−0.2N≦5 ‥‥‥(2) −65≦M−0.02V≦−35 ‥‥‥(3)
In practicing the present invention, the spinning conditions are as follows: Q / L is M when the discharge amount of the single-hole die is Q (g / min) and the area of the single-hole die is L (mm 2 ). When the inlet diameter is G (mm), the spinning speed V (m / min), the denier of the single yarn after drawing is D, and the number of filaments is N, the following expressions (1) to (3) must be satisfied at the same time. There is. 30 ≦ M + 5D ≦ 80 (1) −10 ≦ G−0.2N ≦ 5 (2) −65 ≦ M−0.02V ≦ −35 (3)

【0023】(1)式においてM+5Dの値が30未満
であると、ノズル背圧が低く吐出不良から生じる断面不
良あるいは断糸の原因となる。一方M+5Dの値が80
を越えるとノズルの背圧が高すぎるためメルトフラクチ
ャーとなり断面均斉度が悪くなる。より好ましくは45
≦M+5D≦60の範囲である。
If the value of M + 5D in the formula (1) is less than 30, the back pressure of the nozzle is low, which causes a sectional defect or a thread breakage caused by a discharge failure. On the other hand, the value of M + 5D is 80
When the pressure exceeds, the back pressure of the nozzle is too high, resulting in melt fracture and poor uniformity of the cross section. More preferably 45
≦ M + 5D ≦ 60.

【0024】次に(2)式においてG−0.2Nの値が
−10未満であると紡糸時にフィラメント数に対して加
熱帯域の入口径が小さくなりすぎ、ガイド抵抗による単
糸切れが生じやすくなり工程性を悪化させることとな
る。一方G−0.2Nの値が5を越えると加熱帯域の入
口径が大きくなりすぎ、加熱帯域中の温度が冷されるた
め糸条の延伸、熱処理が十分行われず繊維物性として満
足なものが得られない。加熱帯域の出口径に関しては品
質的に出来るだけ小さいことが望ましいが導糸時の糸お
ろし作業性等を考慮するとフィラメント数等銘柄に応じ
て8mm〜15mmが適当である。
Next, if the value of G-0.2N in the expression (2) is less than -10, the diameter of the inlet of the heating zone becomes too small with respect to the number of filaments during spinning, and single yarn breakage due to guide resistance is likely to occur. This deteriorates the processability. On the other hand, if the value of G-0.2N exceeds 5, the inlet diameter of the heating zone becomes too large, and the temperature in the heating zone is cooled, so that the drawing and heat treatment of the yarn are not sufficiently performed and the fiber properties are satisfactory. I can't get it. The exit diameter of the heating zone is desirably as small as possible in terms of quality, but considering the workability of lowering the yarn at the time of yarn introduction and the like, 8 mm to 15 mm is appropriate depending on the brand such as the number of filaments.

【0025】また(3)式のM値と紡速Vに関してはM
−0.02Vの値が−65未満であるとノズル背圧不足
となりM−0.02Vの値が−35を越えるとノズル背
圧が高すぎることとなり、いずれの場合も繊度不足や工
程調子悪化の原因となる。この(1)〜(3)式を満足
することにより糸条の走行速度や走行糸条にかかる張力
変動からくる延伸斑による断糸、ループ、毛羽等が改善
され工程性良く大量生産が出来る。
Further, regarding the M value and the spinning speed V in the equation (3), M
If the value of -0.02V is less than -65, the back pressure of the nozzle becomes insufficient, and if the value of -0.02V exceeds -35, the back pressure of the nozzle becomes too high. Cause. By satisfying the formulas (1) to (3), yarn breakage, loops, fluff, and the like due to unevenness in drawing caused by fluctuations in the running speed of the yarn and the tension applied to the running yarn are improved, and mass production can be performed with good processability.

【0026】本発明で最終的に得られるポリエステル繊
維の単繊維繊度や総デニール数などは特に限定されず、
ポリエステル繊維の用途などに応じて適宜調節すること
が出来るが、本発明の方法は特に単繊維繊度が0.5〜
6デニール、総デニール数が20〜200デニールのポ
リエステル繊維を製造するのに適している。
The single fiber fineness and the total denier of the polyester fiber finally obtained in the present invention are not particularly limited.
Although it can be appropriately adjusted depending on the use of the polyester fiber, etc., the method of the present invention particularly has a single fiber fineness of 0.5 to
It is suitable for producing polyester fibers having a denier of 6 and a total denier of 20 to 200 denier.

【0027】また本発明ではポリエステル繊維の横断面
形状なども特に限定されず、芯鞘形成可能な断面であれ
ば丸、三角等どの様な形でもよく、芯と鞘の外周の形状
は同じでも良く、異なっていても問題ない。目標とする
用途、物性、風合に応じて適宜選択出来る。
In the present invention, the cross-sectional shape of the polyester fiber is not particularly limited, and may be any shape such as a circle or a triangle as long as the core-sheath can be formed, and the outer shape of the core and the sheath may be the same. Good, no problem even if different. It can be appropriately selected according to the intended use, physical properties and feeling.

【0028】上記の方法で得られる本発明の芯鞘型ポリ
エステル繊維は、伸度が50%以下、沸水収縮率が6.5%
以下、U%が0.65以下である染色性及び紫外線遮蔽性に
優れた芯鞘型ポリエステル繊維であり、例えば、芯成分
として酸化チタンを高濃度に添加したポリエステル、鞘
成分としてレギュラーポリエステルを用いた本発明の芯
鞘型ポリエステル繊維は、機能性、力学特性が良好なだ
けでなく分散染料による染色性も、従来の延伸糸に比べ
て極めて濃色に染まり良好である。また芯に酸化チタン
を高濃度に添加したポリエステル、鞘に金属スルホネー
ト基を有するポリエステルを用いた場合は、紫外線遮蔽
効果や力学特性、更には透け防止効果を有するが、その
他カチオン染料による染色性も極めて優秀である。
The core-sheath type polyester fiber of the present invention obtained by the above method has an elongation of 50% or less and a shrinkage of boiling water of 6.5%.
Hereinafter, a core-sheath type polyester fiber having excellent dyeing properties and ultraviolet shielding properties with U% of 0.65 or less, for example, a polyester containing a high concentration of titanium oxide as a core component and a regular polyester as a sheath component. The core-sheath type polyester fiber of the present invention not only has good functionality and mechanical properties, but also has excellent dyeability with a disperse dye, dyeing a much deeper color than conventional drawn yarns. In addition, when polyester having a high concentration of titanium oxide added to the core and polyester having a metal sulfonate group in the sheath are used, it has an ultraviolet shielding effect, a mechanical property, and a further anti-transparent effect, but also has a dyeability with a cationic dye. Very excellent.

【0029】[0029]

【実施例】以下に本発明について実施例などにより具体
的に説明するが、本発明はそれらに何ら限定されるもの
ではない。以下の例において測定法を示す。
EXAMPLES The present invention will be specifically described below with reference to examples and the like, but the present invention is not limited thereto. The following examples illustrate the measurement method.

【0030】〈固有粘度〉フェノール/テトラクロロエ
タンの等重量の混合溶媒にて30℃で測定した。 〈繊維の強度・伸度〉インストロン型の引張り試験機を
用いて得られた荷重−伸長曲線より求めた。 〈沸水収縮率WSr〉JIS−L1013に準じて測定
した。 〈ポリエステル繊維の均一性(ウスター斑:U%)〉ツ
エルベーガー社製ウスター斑試験機を用いて糸を電極間
に一定速度で通し(糸速100m/分,レンジ±12.
5%、チャート速度10cm/分)断面変化に比例する
電気容量の変化を連続測定し、糸の一定長さの平均偏差
係数U%を測定した。 〈製糸化工程評価〉量産工程性良好(〇)、量産として
は今一歩のレベル(△)、量産性なし(×) 〈染色・風合評価〉得られたポリエステル繊維を経糸お
よび緯糸として使い平織物を製織し、通常の減量染色、
仕上加工を施し織物を得た。これについてパネラー評価
を実施し、極めて良好(◎)、良好(○)、今一歩
(△)、不良(×)で示した。 〈紫外線透過率の測定〉紫外線強度積算計のセンサー部
に本発明繊維の編地を覆い、同時にもう1台のセンサー
部には試料をつけずに紫外線を測定し、次式(4)で紫
外線透過率を求めた。この値が小さいほど紫外線遮蔽性
能が優れていると判断される。 紫外線透過率(%)=(U/Uo)×100 ‥‥‥(4) U:試料側紫外線量,Uo:無試料側紫外線量
<Intrinsic Viscosity> The intrinsic viscosity was measured at 30 ° C. with an equal weight of a mixed solvent of phenol and tetrachloroethane. <Strength and elongation of fiber> Determined from a load-elongation curve obtained using an Instron type tensile tester. <Boiling water shrinkage ratio WSr> Measured according to JIS-L1013. <Uniformity of polyester fiber (Worcester spots: U%)> The yarn is passed between the electrodes at a constant speed by using a Worcester spot tester manufactured by Zellberger (yarn speed 100 m / min, range ± 12.
(5%, chart speed 10 cm / min) A change in electric capacity proportional to a change in cross section was continuously measured, and an average deviation coefficient U% of a constant length of the yarn was measured. <Evaluation of yarn production process> Good mass production process (〇), level of mass production just now (産), no mass production (×) <Dyeing / feel evaluation> Use the obtained polyester fiber as warp and weft. Weaving the fabric, normal weight loss dyeing,
Finishing was performed to obtain a woven fabric. This was evaluated by panelists and indicated as extremely good ((), good (○), now one step (△), and poor (×). <Measurement of Ultraviolet Transmittance> The knitted fabric of the fiber of the present invention is covered on the sensor part of the ultraviolet intensity integrator, and at the same time, the ultraviolet light is measured without attaching a sample to the other sensor part. The transmittance was determined. It is determined that the smaller this value, the better the ultraviolet shielding performance. UV transmittance (%) = (U / Uo) × 100 ‥‥‥ (4) U: amount of ultraviolet light on the sample side, Uo: amount of ultraviolet light on the non-sample side

【0031】実施例1 芯成分に平均粒子径0.4μmの酸化チタンを10wt
%添加した極限粘度[η]=0.70のポリエステル
(FD10−PET)、鞘に[η]=0.68のレギュ
ラーセミダルポリエステル(SD−PET)を用い、芯
/鞘吐出比1/1とし、孔数36(孔数0.18mm
φ)の口金で紡糸温度295℃、単孔吐出量1.04g
/minで溶融紡出した。つづいて温度25℃、湿度6
0%の冷却風0.5m/secの速度で紡糸糸条に吹付
け糸条を70℃以下にした后、口金下方1.2mの位置
に設置した長さ1.0m、入口径5mmφ、出口径10
mmφ、内径30mmφ、チューブヒーター(内温18
0℃)に導入してチューブヒーター内で延伸した後、チ
ューブヒーターから出て来た糸条にカラス口ガイドで給
油し2個の引取ローラーを介して4500m/分の速度
で巻取り75d/36fの芯鞘型ポリエステル繊維を得
た。その時の製糸化条件とできた繊維の構造物性及び染
色、風合、UV透過率評価結果を表1及び表2に示し
た。
Example 1 10 wt% of titanium oxide having an average particle diameter of 0.4 μm was used as a core component.
% Of intrinsic viscosity [η] = 0.70 polyester (FD10-PET) and sheath [η] = 0.68 regular semi-dal polyester (SD-PET), with a core / sheath discharge ratio of 1/1 And 36 holes (0.18 mm holes)
φ) Spinneret temperature 295 ° C, single hole discharge amount 1.04g
/ Min. Then temperature 25 ℃, humidity 6
After the temperature of the spun yarn is reduced to 70 ° C. or less at a rate of 0% cooling air of 0.5 m / sec, the spun yarn is placed at a position 1.2 m below the die, having a length of 1.0 m, an inlet diameter of 5 mmφ, and an outlet. Caliber 10
mmφ, inner diameter 30mmφ, tube heater (internal temperature 18
0 ° C.) and stretched in a tube heater. After that, the yarn coming out of the tube heater is lubricated with a crow mouth guide and wound up at a speed of 4500 m / min via two take-up rollers at 75 d / 36 f. Was obtained. Tables 1 and 2 show the spinning conditions at that time and the structural properties of the resulting fibers and the results of the evaluation of dyeing, hand and UV transmittance.

【0032】[0032]

【表1】 [Table 1]

【表2】 [Table 2]

【0033】実施例2 芯成分のポリエステルの酸化チタン添加量を15wt
%、紡速4000m/分としたこと以外は、実施例1と
同様の方法で製糸化した。その時の製糸化条件と繊維評
価結果を表1、2に示した。
Example 2 The amount of titanium oxide added to the core polyester was 15 wt.
%, And the spinning speed was set to 4000 m / min. Tables 1 and 2 show the spinning conditions and fiber evaluation results at that time.

【0034】実施例3 芯成分に平均粒子径0.4μmの酸化チタン10wt%
及び平均粒子径0.6μmの酸化亜鉛5wt%を合わせ
て15wt%添加したポリエステル([η]=0.7
0)を用い、鞘成分にレギュラーブライトポリエステル
(RB−PET[η]=0.68)を用いて芯/鞘吐出
比1/1とし、孔数48(孔径0.15mmφ)の口金
で紡糸温度298℃、単孔吐出量0.69g/minで
溶融紡出した。その后実施例1と同要領で製糸化し40
00m/分の速度で巻取り75d/48fの延伸糸を得
た。その時の製糸化条件と繊維評価結果を表1、2に示
した。
Example 3 10 wt% of titanium oxide having an average particle diameter of 0.4 μm as a core component
And a polyester ([η] = 0.7) added with a total of 15 wt% of zinc oxide having an average particle diameter of 0.6 μm and 5 wt%.
0), the core / sheath discharge ratio was 1/1 using regular bright polyester (RB-PET [η] = 0.68) as the sheath component, and the spinning temperature was determined using a die having 48 holes (pore diameter 0.15 mmφ). Melt spinning was performed at 298 ° C. and a single hole discharge rate of 0.69 g / min. After that, the yarn was made in the same manner as in Example 1 and 40
At a speed of 00 m / min, a drawn yarn of 75d / 48f was obtained. Tables 1 and 2 show the spinning conditions and fiber evaluation results at that time.

【0035】実施例4 芯成分に平均粒子径0.4μmの酸化チタン5wt%及
び平均粒子径0.3μmの酸化アルミニウム5wt%を
合わせて10wt%添加したポリエステル([η]=
0.70)を用い、鞘成分にレギュラーブライトポリエ
ステル(RB−PET[η]=0.68)を用いて芯/
鞘吐出比1/1とし、孔数48(孔数0.15mmφ)
の口金で、紡糸温度295℃、単孔吐出量0.87g/
minで溶融紡出した。その後実施例1と同要領で製糸
化し5000m/分の速度で巻取り75d/48fの延
伸糸を得た。その時の製糸化条件と繊維評価結果を表
1、2に示した。
Example 4 Polyester ([η] = 5%) was added to the core component in an amount of 5 wt% of titanium oxide having an average particle diameter of 0.4 μm and 5 wt% of aluminum oxide having an average particle diameter of 0.3 μm.
0.70), and using a regular bright polyester (RB-PET [η] = 0.68) as a sheath component to form a core /
With a sheath discharge ratio of 1/1, 48 holes (0.15 mmφ)
With a spinning temperature of 295 ° C. and a single hole discharge rate of 0.87 g /
min. Thereafter, the yarn was formed in the same manner as in Example 1 and wound at a speed of 5000 m / min to obtain a drawn yarn of 75d / 48f. Tables 1 and 2 show the spinning conditions and fiber evaluation results at that time.

【0036】実施例5 芯成分に平均粒子径0.4μmの酸化チタン5wt%添
加したポリエステル([η]=0.68)を用い、鞘成
分に金属スルホネート基を有するイソフタル酸共重合ポ
リエステル(SIP2.5モル%共重合PET:[η]
=0.60)を用いて、芯/鞘吐出比2/1とし孔数3
6(孔径0.18mmφ)の口金で紡糸温度298℃、
単孔吐出量0.69g/minで溶融紡出した。その後
実施例1と同要領で製糸化し4500m/分の速度で巻
取り50d/36fの延伸糸を得た。その時の製糸化条
件と繊維評価結果を表1、2に示した。
Example 5 Using a polyester ([η] = 0.68) in which 5 wt% of titanium oxide having an average particle diameter of 0.4 μm was added to a core component, an isophthalic acid copolymer polyester (SIP2) having a metal sulfonate group in a sheath component was used. 0.5 mol% copolymerized PET: [η]
= 0.60), the core / sheath discharge ratio was 2/1, and the number of holes was 3
6 (hole diameter 0.18 mmφ) with a spinning temperature of 298 ° C,
Melt spinning was performed at a single hole discharge rate of 0.69 g / min. Thereafter, the yarn was formed in the same manner as in Example 1 to obtain a drawn yarn of 50d / 36f at a speed of 4500 m / min. Tables 1 and 2 show the spinning conditions and fiber evaluation results at that time.

【0037】実施例6 芯成分に平均粒子径 0.4μmの酸化チタン10wt
%添加したポリエステル([η]=0.68)を用い、
鞘成分に平均粒子径0.6μmの硫酸バリウムを5wt
%添加したSIP2.5モル%共重合ポリエステル
([η]=0.55)を用いて、芯/鞘吐出比1/1と
し、孔数36(孔径0.2mmφ)の口金で紡糸温度2
95℃、単孔吐出量1.04g/minで溶融紡出し
た。その後実施例1と同要領で製糸化し75d/36f
の延伸糸を得た。その時の製糸化条件と繊維評価結果を
表1、2に示した。この製品は特に高発色性に優れてい
た。
Example 6 10 wt% of titanium oxide having an average particle size of 0.4 μm was used as a core component.
% Added polyester ([η] = 0.68)
5 wt% barium sulfate with an average particle diameter of 0.6 μm in the sheath component
% Of added SIP 2.5 mol% copolyester ([η] = 0.55), the core / sheath discharge ratio was 1/1, and the spinning temperature was 2 with a die having 36 holes (pore diameter 0.2 mmφ).
Melt spinning was performed at 95 ° C. and a single hole discharge rate of 1.04 g / min. Then, the yarn is formed in the same manner as in Example 1 and 75d / 36f
Was obtained. Tables 1 and 2 show the spinning conditions and fiber evaluation results at that time. This product was particularly excellent in high color development.

【0038】比較例1 芯成分に平均粒子径0.4μmの酸化チタンを30wt
%添加した[η]=0.70のポリエステル(FD30
−PET)を使用したこと以外は実施例1と同様に製糸
化を試みたが、曳糸性が乏しく満足な工程性が得られな
かった。
Comparative Example 1 Titanium oxide having an average particle diameter of 0.4 μm was added to the core component in an amount of 30 wt.
% Added [η] = 0.70 polyester (FD30
-PET) was used in the same manner as in Example 1, except that spinning properties were poor and satisfactory processability was not obtained.

【0039】比較例2 芯成分に平均粒子径0.4μmの酸化チタン10wt%
及び酸化亜鉛5wt%を合わせて15wt%添加したポ
リエステル([η]=0.70)を用い、鞘成分にレギ
ュラーブライトポリエステル[η]=0.68を用い
て、芯/鞘吐出比1/1とし、孔数48(孔径0.2m
mφ)の口金で紡糸温度298℃、単孔吐出量0.87
g/minで溶融紡出した。その結果、吐出不良による
断面不良が多く工程性も不十分な結果となった。
Comparative Example 2 10 wt% of titanium oxide having an average particle diameter of 0.4 μm as a core component
And a polyester ([η] = 0.70) added with a total of 15 wt% of zinc oxide and 5 wt% of zinc oxide, and a regular bright polyester [η] = 0.68 as a sheath component. And the number of holes is 48 (pore diameter 0.2m
spinning temperature of 298 ° C, single hole discharge rate 0.87
It was melt spun at g / min. As a result, there were many section failures due to ejection failure, and the processability was insufficient.

【0040】比較例3 芯成分に平均粒子径0.4μmの酸化チタン0.5wt
%添加した〔η〕=0.68のポリエステル、鞘成分にレギ
ュラーブライトポリエステル(RB−PET[η]=
0.68)を使用し、芯/鞘吐出比1/1とし、孔数3
6(孔径0.18mmφ)の口金で紡糸温度295℃、
単孔吐出量0.61g/minで溶融紡出した。その後
実施例1と同要領で製糸化し4000m/分の速度で巻
取り50d/36fの延伸糸を得た。その時の製糸化条
件と繊維評価結果を表1、2に示した。
Comparative Example 3 0.5 wt. Of titanium oxide having an average particle diameter of 0.4 μm was used as a core component.
% Added [η] = 0.68 polyester, and a regular bright polyester (RB-PET [η] =
0.68), the core / sheath discharge ratio is 1/1, and the number of holes is 3
6 (hole diameter 0.18mmφ) with a spinning temperature of 295 ° C,
Melt spinning was performed at a single hole discharge rate of 0.61 g / min. Thereafter, the yarn was formed in the same manner as in Example 1 and wound at a speed of 4000 m / min to obtain a drawn yarn of 50d / 36f. Tables 1 and 2 show the spinning conditions and fiber evaluation results at that time.

【0041】比較例4 紡糸速度を3400m/分としたこと以外は実施例1と
同様に製糸化し75d/36fの延伸糸を得た。その時
の製糸化条件、繊維評価結果を表1、2に示した。紡速
が低くなると物性的に不満足なものが得られた。
Comparative Example 4 A yarn was produced in the same manner as in Example 1 except that the spinning speed was changed to 3400 m / min, to obtain a 75d / 36f drawn yarn. Tables 1 and 2 show the spinning conditions and fiber evaluation results at that time. When the spinning speed was low, unsatisfactory physical properties were obtained.

【0042】比較例5 実施例1と同様にして、芯成分にFD10−PET、鞘
成分にSD−PETを使用し、紡速1000m/分で一
旦巻取った后、別工程にて延伸処理を施す従来法により
製糸化し75d/36fの延伸糸を得た。その時の製糸
化条件と繊維評価結果を表1、2に示した。従来法で得
た製品の染色性は、本発明の製糸方法で得た製品の染色
性に比べて淡色であり外観的に物足りないものとなっ
た。
Comparative Example 5 In the same manner as in Example 1, FD10-PET was used for the core component and SD-PET was used for the sheath component, and the film was once wound at a spinning speed of 1000 m / min. The yarn was formed by a conventional method to obtain a drawn yarn of 75d / 36f. Tables 1 and 2 show the spinning conditions and fiber evaluation results at that time. The dyeability of the product obtained by the conventional method was lighter than that of the product obtained by the spinning method of the present invention, and the appearance was unsatisfactory.

【0043】以上実施例1〜6で得られたものは、いず
れも工程調子良好で物性、染色、風合共に満足なもので
あった。特に本発明によれば、実施例以外にも鞘成分ポ
リマーの種類や曳糸性をそこなわない範囲での機能性粒
子の添加等の検討により透け防止、UVカット性、良好
な染色性以外にも新たな機能性、風合を付与することが
出来る。一方、比較例1〜5では、粒子量や製糸化条件
が本発明の範囲から外れ工程性が得られなかったり、工
程性は得られても物性、繊維評価で満足なものはなかっ
た。
The products obtained in Examples 1 to 6 were all good in process condition and satisfactory in physical properties, dyeing and feeling. In particular, according to the present invention, in addition to the examples, by examining the type of sheath component polymer and the addition of functional particles in a range that does not impair spinnability, prevention of sheer, UV cut properties, good dyeability Can also provide new functionality and feel. On the other hand, in Comparative Examples 1 to 5, the particle amount and the spinning conditions were out of the range of the present invention, and no processability was obtained, or even if the processability was obtained, none of the physical properties and fiber evaluation were satisfactory.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平均粒子径が0.1〜5μmの無機微粒
子を1〜20wt%含有するポリエステルを芯成分と
し、ポリエステルを鞘成分とする芯鞘型ポリエステル繊
維であって、伸度が50%以下、沸水収縮率が6.5%以
下、U%が0.65以下である染色性及び紫外線遮蔽性に優
れた芯鞘型ポリエステル繊維。
A core-sheath type polyester fiber comprising a polyester containing 1 to 20 wt% of inorganic fine particles having an average particle diameter of 0.1 to 5 μm as a core component and a polyester as a sheath component, and having an elongation of 50%. A core-sheath type polyester fiber excellent in dyeability and ultraviolet shielding property, having a boiling water shrinkage of 6.5% or less and a U% of 0.65 or less.
【請求項2】 無機微粒子が、酸化チタン、酸化亜鉛、
酸化アルミニウムおよび酸化セリウムからなる群より選
ばれる少なくとも1種の紫外線遮蔽効果を有する無機微
粒子である請求項1記載の芯鞘型ポリエステル繊維。
2. An inorganic fine particle comprising titanium oxide, zinc oxide,
The core-sheath type polyester fiber according to claim 1, which is at least one kind of inorganic fine particles having an ultraviolet shielding effect selected from the group consisting of aluminum oxide and cerium oxide.
【請求項3】 平均粒子径が0.1〜5μmの紫外線遮
蔽効果を有する無機微粒子を1〜20wt%含有するポ
リエステルを芯成分とし、ポリエステルを鞘成分とし
て、芯鞘断面を形成する紡糸口金から溶融紡出し、紡出
糸条を一旦ガラス転移点以下の温度に冷却し、次いで加
熱帯域を走行させて延伸熱処理した后、油剤を付与し4
000m/分以上の引取速度で巻取るに際し、紡糸条件
として口金単孔吐出量をQ(g/min)、口金単孔面
積をL(mm2)としたときQ/LをMとし加熱帯域の
入口径をG(mm)、紡速V(m/分)、延伸后の単糸
デニールをD、フィラメント数Nとしたとき下記式
(1)〜(3)を同時に満たす条件にて紡糸する染色性
及び紫外線遮蔽性に優れた芯鞘型ポリエステル繊維の製
造方法 30≦M+5D≦80 ‥‥‥(1) −10≦G−0.2N≦5 ‥‥‥(2) −65≦M−0.02V≦−35 ‥‥‥(3)
3. A spinneret forming a core-sheath cross section using a polyester containing 1-20 wt% of inorganic fine particles having an average particle diameter of 0.1 to 5 μm and having an ultraviolet shielding effect as a core component and a polyester as a sheath component. After melt spinning, the spun yarn is once cooled to a temperature lower than the glass transition point, and then is stretched and heat-treated by running in a heating zone.
When winding at a take-up speed of 000 m / min or more, the spinning conditions are as follows: Q / L is M when the discharge amount of the single-hole die is Q (g / min) and the area of the single-hole die is L (mm 2 ). When the inlet diameter is G (mm), the spinning speed V (m / min), the denier of the single yarn after drawing is D, and the number of filaments is N, the dyeing is performed under the conditions that simultaneously satisfy the following expressions (1) to (3). Of core-sheath type polyester fiber excellent in water resistance and ultraviolet ray shielding property 30 ≦ M + 5D ≦ 80 {(1) -10 ≦ G−0.2N ≦ 5} (2) −65 ≦ M-0. 02V ≦ -3535 (3)
JP26622997A 1997-09-30 1997-09-30 Sheath-core type polyester textile excellent in dyeability and ultraviolet screening effects and production of the same Pending JPH11107048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26622997A JPH11107048A (en) 1997-09-30 1997-09-30 Sheath-core type polyester textile excellent in dyeability and ultraviolet screening effects and production of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26622997A JPH11107048A (en) 1997-09-30 1997-09-30 Sheath-core type polyester textile excellent in dyeability and ultraviolet screening effects and production of the same

Publications (1)

Publication Number Publication Date
JPH11107048A true JPH11107048A (en) 1999-04-20

Family

ID=17428071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26622997A Pending JPH11107048A (en) 1997-09-30 1997-09-30 Sheath-core type polyester textile excellent in dyeability and ultraviolet screening effects and production of the same

Country Status (1)

Country Link
JP (1) JPH11107048A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092204A (en) * 2005-09-28 2007-04-12 Toray Ind Inc Polyester-based thermally bondable conjugate fiber and method for producing the same
JP2009019306A (en) * 2007-07-12 2009-01-29 Kb Seiren Ltd Shielding fiber and fabric comprising the same
JP2010116660A (en) * 2008-10-17 2010-05-27 Kb Seiren Ltd Sheath-core conjugate fiber
JP2011241530A (en) * 2010-04-21 2011-12-01 Kb Seiren Ltd Sheath-core conjugate fiber

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007092204A (en) * 2005-09-28 2007-04-12 Toray Ind Inc Polyester-based thermally bondable conjugate fiber and method for producing the same
JP4595770B2 (en) * 2005-09-28 2010-12-08 東レ株式会社 Method for producing polyester-based thermobonding composite fiber
JP2009019306A (en) * 2007-07-12 2009-01-29 Kb Seiren Ltd Shielding fiber and fabric comprising the same
JP2010116660A (en) * 2008-10-17 2010-05-27 Kb Seiren Ltd Sheath-core conjugate fiber
JP2011241530A (en) * 2010-04-21 2011-12-01 Kb Seiren Ltd Sheath-core conjugate fiber

Similar Documents

Publication Publication Date Title
JP5813747B2 (en) Cationic dyeable polyester fiber and composite fiber
JP6005070B2 (en) Polyester composite fiber with excellent heat insulation and color development
EP0976854B1 (en) Monofilamentary bicomponent core-sheath fibres
KR100359347B1 (en) Polyester fiber and fabric prepared therefrom
JP5735844B2 (en) Cationic dyeable polyester fibers and fiber aggregates with excellent dyeability
JP5718045B2 (en) Polyester fibers and fiber aggregates with excellent dyeability
JP2019094593A (en) Core-in-sheath type composite fiber
JPH11107048A (en) Sheath-core type polyester textile excellent in dyeability and ultraviolet screening effects and production of the same
JP6129608B2 (en) Polyester core-sheath type composite fiber excellent in permeation resistance and method for producing the same
JP3583248B2 (en) Splittable conjugate fiber comprising polyester and polyamide and method for producing the same
JP2019007096A (en) Polyester composite fiber and fiber aggregate
JP3167677B2 (en) Polyester irregular cross section fiber
JPH08325850A (en) Sheath/core-type conjugate fiber and its production
JPH0931749A (en) Production of polyester fiber
JPH1181048A (en) Conjugate polyester fiber
JPH08260343A (en) Hollow polyester fiber and its production
JP2005273115A (en) Easily dyeable polyester fiber and method for producing the same
JPH10158932A (en) Polyester ultrafine yarn and its production
JPH07238419A (en) Readily dyeable polyester hollow fiber excellent in color development and gloss
JP2002161436A (en) Polytrimethylene terephthalate fiber dyeable with cationic dye
JPH10168654A (en) Polyester fiber for seat belt and seat belt webbing
JPH07268727A (en) Polyester hollow fiber having good color developing property and gloss
JP3657398B2 (en) Manufacturing method of composite fiber
JPH05117916A (en) Titanium oxide-containing fiber having good light resistance and its production
JP2001200438A (en) Polyester mixed fiber yarn

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040913

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20040921

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004