JP3167677B2 - Polyester irregular cross section fiber - Google Patents

Polyester irregular cross section fiber

Info

Publication number
JP3167677B2
JP3167677B2 JP12812798A JP12812798A JP3167677B2 JP 3167677 B2 JP3167677 B2 JP 3167677B2 JP 12812798 A JP12812798 A JP 12812798A JP 12812798 A JP12812798 A JP 12812798A JP 3167677 B2 JP3167677 B2 JP 3167677B2
Authority
JP
Japan
Prior art keywords
fiber
section
cross
diameter
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12812798A
Other languages
Japanese (ja)
Other versions
JPH11302922A (en
Inventor
克宏 藤本
仁一郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=14977072&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3167677(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP12812798A priority Critical patent/JP3167677B2/en
Publication of JPH11302922A publication Critical patent/JPH11302922A/en
Application granted granted Critical
Publication of JP3167677B2 publication Critical patent/JP3167677B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はソフトでストレッチ
性に優れたポリエステル異形断面繊維に関するものであ
り、更に詳しくは高い破断強度、降伏点強度、適度な異
形度を有しているため絹様の光沢を有し、また後加工工
程での切れ、毛羽発生等のトラブルが少なく、また着用
時の毛羽発生や、力のかかった部分の形が残る「型ぬ
け」などが起こりにくく、衣料用素材、特にインナー分
野用素材に適した高品位のポリエステル異形断面繊維に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a modified polyester fiber having a soft and excellent stretchability, and more particularly to a silk-like fiber having a high breaking strength, a yield point strength, and an appropriate irregularity. Material for clothing with high gloss, less trouble such as cutting and fluffing in post-processing process, and less occurrence of fluffing when wearing and remaining "shape" in the part where force was applied. In particular, the present invention relates to a high-grade polyester cross-section fiber suitable for a material for the inner field.

【0002】[0002]

【従来の技術】テレフタル酸またはテレフタル酸ジメチ
ルに代表されるテレフタル酸の低級アルコールエステル
とトリメチレングリコールとを重縮合させて得られるポ
リトリメチレンテレフタレートから得られる繊維は、優
れた弾性回復性、低弾性率(ソフトな風合)、易染性と
いったナイロン繊維に類似した性質と、耐光性、熱セッ
ト性、寸法安定性、低吸湿率、耐黄変性といったポリエ
チレンテレフタレート繊維に類似した性能を併せ持つ画
期的な繊維であり、その特徴を活かしてBCFカーペッ
ト、ブラシ、テニスガット等に応用されている(特開平
9−3724号公報、特開平8−173244号公報、
特開平5−262862号公報等)。
2. Description of the Related Art Fibers obtained from polytrimethylene terephthalate obtained by polycondensing a lower alcohol ester of terephthalic acid represented by terephthalic acid or dimethyl terephthalate with trimethylene glycol have excellent elastic recovery and low elasticity. An image that has properties similar to nylon fibers, such as elastic modulus (soft feel) and easy dyeability, and properties similar to polyethylene terephthalate fibers, such as light resistance, heat setting, dimensional stability, low moisture absorption, and yellowing resistance. Utilizing its features, it is applied to BCF carpets, brushes, tennis gut, etc. (Japanese Patent Application Laid-Open Nos. 9-3724 and 8-173244,
JP-A-5-262882 and the like.

【0003】更に、ポリトリメチレンテレフタレート繊
維を衣料用に展開することも考えられる。婦人用ファン
デーションに代表されるインナー用途分野では、ソフト
な風合でストレッチ性があり、絹のような光沢のある布
帛が望まれる。光沢を出すためには繊維を△断面等の異
形断面にする必要がある。異形断面繊維は丸断面にくら
べ曲げ弾性率が高くなるため従来のポリエチレンテレフ
タレート異形断面繊維を用いた場合、ごわごわした風合
の硬い布帛しか得られない。風合を柔らかくするために
極細糸のように糸径を細くすることもできるが、この場
合繊維の破断強度が低下してしまい、インナー用素材と
しては満足するものが得られない。一方、ナイロン繊維
では風合は柔らかいものの、着用しているうちに、汗等
により黄色く変色してしまったりする。
[0003] It is also conceivable to develop polytrimethylene terephthalate fibers for use in clothing. In the field of inner applications represented by women's foundations, silky and glossy fabrics having a soft feel and a stretch property are desired. In order to achieve gloss, the fiber must have an irregular cross section such as a cross section. Since the modified cross-section fiber has a higher bending elastic modulus than the round cross-section, when a conventional polyethylene terephthalate modified cross-section fiber is used, only a hard fabric having a rough texture can be obtained. In order to soften the feel, the yarn diameter can be reduced as in the case of ultrafine yarn. However, in this case, the breaking strength of the fiber decreases, and a satisfactory material cannot be obtained as an inner material. On the other hand, nylon fibers have a soft texture, but they may turn yellow due to sweat or the like while being worn.

【0004】ポリトリメチレンテレフタレート繊維を用
いた場合は、ソフトな風合、ストレッチ性、寸法安定性
のよさから肌触りの良い衣料とすることができる。ま
た、110℃以下で染色できるため、ウール、絹、ポリ
ウレタン繊維、アセテート繊維のような110℃を越え
る染色温度では熱劣化を受けやすい繊維との混用におい
てもこれらを痛めずに染色が可能であるという優れた加
工特性を有する。しかしながら異形断面繊維の場合、丸
断面に比べ破断強度が低下してしまい、ポリエチレンテ
レフタレート繊維やナイロン繊維に比べて破断強度の低
いポリトリメチレンテレフタレート繊維では低い破断強
度の異形断面繊維しか得ることができず、得られる布帛
の強度は不十分なものとなってしまう。
When the polytrimethylene terephthalate fiber is used, the garment can be made to have a good touch due to its soft feeling, stretchability and dimensional stability. In addition, since dyeing can be performed at 110 ° C. or less, dyeing can be performed without damaging fibers mixed with fibers susceptible to thermal degradation at a dyeing temperature exceeding 110 ° C. such as wool, silk, polyurethane fiber, and acetate fiber. It has excellent processing characteristics. However, in the case of a modified cross-section fiber, the breaking strength is lower than that of a round cross-section, and a polytrimethylene terephthalate fiber having a lower breaking strength than a polyethylene terephthalate fiber or a nylon fiber can obtain only a modified cross-section fiber having a lower breaking strength. However, the strength of the obtained fabric is insufficient.

【0005】また、降伏点強度が低いため、インナーな
どを着用した場合に着用した部分の形が残る「型ぬけ」
などの問題も発生しやすい。更にポリトリメチレンテレ
フタレートポリマーは結晶化速度が速いために冷却むら
等が起きやすく、糸径むらであるU%が大きくなった
り、糸長にむらがでる現象である「たるみ」などが発生
してしまう。このたるみは糸強度を上げようとして高度
に延伸配向させるとより激しくなってしまう。ポリトリ
メチレンテレフタレートポリマーを用いた衣料繊維に関
しては特開昭52−5320号公報に開示されている。
しかし、該公報では非対称冷却することなく得られた未
延伸糸を用いること以外にはポリマーの押出しや冷却に
関しては開示がなく、破断強度や降伏点強度が高く品位
の良好な異形断面繊維を得ることはできない。
[0005] Further, since the yield point strength is low, the shape of the worn portion remains when the inner or the like is worn.
Such problems are also likely to occur. Further, polytrimethylene terephthalate polymer has a high crystallization rate, so that uneven cooling is likely to occur, and the U%, which is the yarn diameter unevenness, becomes large, and the "slack", which is a phenomenon that the yarn length becomes uneven, occurs. I will. This sagging becomes more severe when a high degree of drawing orientation is used to increase the yarn strength. Clothing fibers using a polytrimethylene terephthalate polymer are disclosed in JP-A-52-5320.
However, this publication does not disclose extrusion or cooling of a polymer except for using an undrawn yarn obtained without asymmetric cooling, and obtains a deformed fiber having a high breaking strength and a high yield point strength and a good quality. It is not possible.

【0006】また、特開昭52−8123号公報、特開
昭52−8124号公報、特開昭58−104216号
公報には紡糸の際の押出し温度、ドラフト、未延伸糸の
Δn等が開示されているが、ここでも紡糸に関しての具
体的な内容は記載されていないため、仮にポリエチレン
テレフタレート異形断面糸の条件を応用したとしても満
足できる品位の繊維を得ることはできない。また、丸断
面繊維の破断強度の観点から、インナー用途に必要とさ
れる高い破断強度や降伏点強度のポリトリメチレンテレ
フタレート異形断面繊維を得ることはできない。高強度
のポリトリメチレンテレフタレート繊維としては特開平
9−262046号公報に開示されている。ここでは高
重合度のポリマーを用いて湯浴中と乾熱で2段延伸を行
って太デニールの高強度の繊維を得ている。しかしなが
らこの方法は単糸が10〜100デニールの繊維に関し
ての技術であり、衣料用のように単糸デニールの小さい
繊維にそのまま適用することはできず、品位の良好な衣
料用の異形断面繊維を得ることはできない。
JP-A-52-8123, JP-A-52-8124, and JP-A-58-104216 disclose extrusion temperature, draft, Δn of undrawn yarn, and the like during spinning. However, even here, no specific content regarding spinning is described, so that even if the conditions of the polyethylene terephthalate modified cross-section yarn are applied, a fiber of satisfactory quality cannot be obtained. Further, from the viewpoint of the breaking strength of the round cross-section fiber, it is not possible to obtain a polytrimethylene terephthalate modified cross-section fiber having a high breaking strength and a yield point strength required for inner use. JP-A-9-262046 discloses a high-strength polytrimethylene terephthalate fiber. Here, a high-density fiber having a high denier is obtained by performing two-step stretching in a hot water bath and dry heat using a polymer having a high degree of polymerization. However, this method is a technique relating to a fiber having a single yarn of 10 to 100 denier, and cannot be applied to a fiber having a small single yarn denier as it is for clothing, and a modified cross-section fiber for clothing of good quality is used. You can't get it.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上記従来の
異形断面繊維の欠点を改良し、ソフトでストレッチ性に
優れしかも高い破断強度や降伏点強度、適度な異形度を
有しているため絹様の光沢を有し、また後加工工程での
切れ、毛羽発生等のトラブルが少なく、着用時の毛羽発
生や、力のかかった部分の形が残る「型ぬけ」などが起
こりにくく、衣料用素材、特にインナー分野用素材に適
した高品位のポリエステル異形断面繊維を提供するもの
である。
DISCLOSURE OF THE INVENTION The present invention solves the above-mentioned drawbacks of the conventional modified cross-section fibers, and is soft, has excellent stretchability, and has a high breaking strength, a yield point strength, and an appropriate degree of irregularity. It has a silky luster and has few troubles such as cutting and fluffing in the post-processing process, and it is hard to cause fluffing when wearing and leaving the shape of the part where the force is applied, "mold removal", etc. The present invention provides a high-grade polyester modified cross-section fiber suitable for a material for use in the field of innerwear, particularly a material for the inner field.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記欠点
を解決すべく鋭意検討を重ねた結果、上記従来の課題を
解決できる可能性を見出し、更に検討を重ねた結果本発
明に至った。すなわち本発明の第1は、実質的にポリト
リメチレンテレフタレートから構成される繊維であっ
て、破断強度が4g/d以上、降伏点強度が2.5g/
d以上、破断伸度が15〜50%かつ下記式(1)で表
す繊維の破断伸度むらが1〜1.2であり、下記式
(2)で表す繊維断面の異形度が1.1〜1.8である
ことを特徴とするポリエステル異形断面糸である。 破断伸度むら=単糸の最大破断伸度/単糸の最小破断伸度 ・・・・・式(1) 異形度=(外接円直径)/(内接円直径) ・・・・・式(2) 外接円直径:繊維断面全てを囲む最も小さい円の直径 内接円直径:繊維断面の中に入る最も大きい円の直径
Means for Solving the Problems The present inventors have conducted intensive studies to solve the above-mentioned drawbacks, and as a result, have found the possibility of solving the above-mentioned conventional problems. As a result of further studies, they have reached the present invention. Was. That is, a first aspect of the present invention is a fiber substantially composed of polytrimethylene terephthalate, which has a breaking strength of 4 g / d or more and a yield point strength of 2.5 g / d.
d or more, the elongation at break is 15 to 50%, the unevenness of elongation at break of the fiber represented by the following formula (1) is 1 to 1.2, and the irregularity of the fiber cross section represented by the following formula (2) is 1.1. It is a polyester modified cross-section yarn characterized by having a molecular weight of ~ 1.8. Uneven breaking elongation = maximum breaking elongation of single yarn / minimum breaking elongation of single yarn Formula (1) Deformity = (circumscribed circle diameter) / (inscribed circle diameter) formula (2) Diameter of circumscribed circle: diameter of the smallest circle surrounding the entire fiber cross section Diameter of inscribed circle: diameter of the largest circle entering the fiber cross section

【0009】本発明の第二は、実質的にポリトリメチレ
ンテレフタレートから構成されるポリエステルポリマー
を溶融紡糸するに際し、極限粘度[η]が0.5〜1.
5のポリマーを用い、押出し温度が250〜290℃、
紡口表面温度が235〜275℃の紡糸機より押出し、
偏冷却せずに冷却固化した後、2000〜5000m/
minで巻き取った糸を20〜70℃の延伸温度にて最
高延伸倍率の70〜99%延伸することを特徴とするポ
リエステル異形断面繊維の製造法である。本発明に用い
る実質的にポリトリメチレンテレフタレートから構成さ
れるポリマーとは、酸性分としてテレフタル酸を用い、
グリコール成分としてトリメチレングリコールを80モ
ル%以上含有したポリエステルポリマーからなることが
必要である。
A second aspect of the present invention is that when melt-spinning a polyester polymer substantially composed of polytrimethylene terephthalate, the intrinsic viscosity [η] is 0.5 to 1.
5, the extrusion temperature is 250-290 ° C.,
Extrusion from a spinning machine with a spinneret surface temperature of 235 to 275 ° C,
After cooling and solidifying without partial cooling, 2000-5000 m /
This is a method for producing a polyester irregular cross-section fiber, characterized in that the yarn wound in a minimum is drawn at a drawing temperature of 20 to 70 ° C. at a draw ratio of 70 to 99% of the maximum draw ratio. The polymer substantially composed of polytrimethylene terephthalate used in the present invention, using terephthalic acid as an acidic component,
It is necessary to be composed of a polyester polymer containing trimethylene glycol as a glycol component in an amount of 80 mol% or more.

【0010】本発明において、トリメチレングリコール
としては、1,3−プロパンジオール、1,2−プロパ
ンジオール、1,1−プロパンジオール、2,2−プロ
パンジオール、あるいはこれらの混合物の中から選ばれ
るが、安定性の観点から1,3−プロパンジオールが特
に好ましい。トリメチレングリコールの含有比率は、グ
リコール成分の80モル%以上であることが好ましい。
80モル%未満では、本発明の目的であるストレッチ
性、ソフトさが達成できないだけでなく、易染性などが
低下し、本発明の目的が達成されない。好ましくは90
モル%以上である。また、トリメチレングリコールの比
率を80モル%以上にすることにより、異形断面繊維の
光沢も良好となる。これは屈折率が高くなるからだと思
われる。
In the present invention, the trimethylene glycol is selected from 1,3-propanediol, 1,2-propanediol, 1,1-propanediol, 2,2-propanediol, and a mixture thereof. However, 1,3-propanediol is particularly preferred from the viewpoint of stability. The content of trimethylene glycol is preferably at least 80 mol% of the glycol component.
If the amount is less than 80 mol%, not only the stretchability and softness, which are the objects of the present invention, cannot be achieved, but also the ease of dyeing and the like will be reduced, and the objects of the present invention will not be achieved. Preferably 90
Mol% or more. Further, by setting the ratio of trimethylene glycol to 80 mol% or more, the gloss of the modified cross-section fiber is improved. This is probably because the refractive index increases.

【0011】本発明に用いるポリトリメチレンテレフタ
レートには、必要に応じて本発明の効果を損なわない範
囲で、酸成分としてイソフタル酸、コハク酸、アジピン
酸、2,6ーナフタレンジカルボン酸などや、グリコー
ル成分としてエチレングリコール、1,4ーブタンジオ
ール、1,6−ヘキサンジオール、ポリオキシアルキレ
ングリコールなどのグリコール成分が共重合されていて
も良い。また、必要に応じて各種の添加剤、例えば艶消
し剤、熱安定剤、難燃剤、帯電防止剤、消泡剤などを共
重合または混合しても良い。本発明に用いるポリマー
は、公知のポリエステル重合方法により重合することが
できる。
In the polytrimethylene terephthalate used in the present invention, if necessary, isophthalic acid, succinic acid, adipic acid, 2,6-naphthalenedicarboxylic acid, etc. may be used as long as the effects of the present invention are not impaired. A glycol component such as ethylene glycol, 1,4-butanediol, 1,6-hexanediol, or polyoxyalkylene glycol may be copolymerized as the glycol component. If necessary, various additives such as a matting agent, a heat stabilizer, a flame retardant, an antistatic agent, and an antifoaming agent may be copolymerized or mixed. The polymer used in the present invention can be polymerized by a known polyester polymerization method.

【0012】本発明の目的である婦人用ファンデーショ
ンなどの用途に適した、高い強度で優れた光沢とソフト
な風合の布帛を得るためには、繊維の破断強度、降伏点
強度が高く、所定の破断伸度および破断伸度むら、所定
の異形度を有していることが必要である。繊維の破断強
度は用途より考え4g/d以上が必要であり、好ましく
は4.5g/d以上、更に好ましくは5g/d以上であ
る。破断強度が4g/d未満では得られる布帛は非常に
裂けやすいものとなってしまう。
In order to obtain a high-strength, high-gloss and soft-texture fabric suitable for applications such as women's foundations, which is the object of the present invention, the fiber breaking strength and the yield point strength are high. It is necessary to have a predetermined elongation at break and an elongation at break and unevenness of elongation at break. The breaking strength of the fiber must be 4 g / d or more, preferably 4.5 g / d or more, more preferably 5 g / d or more, depending on the application. If the breaking strength is less than 4 g / d, the obtained fabric will be very easily torn.

【0013】また、本発明の異形断面繊維においては降
伏点強度が高いことも重要である。繊維の降伏点強度は
2.5g/d以上必要であり、好ましくは3g/d以
上、更に好ましくは3.5g/d以上である。繊維の降
伏点強度が2.5g/d未満ではインナーなどの製品を
製造する際や実際に着用した際に、部分的に力が加わる
ことで型がつく、いわゆる「型抜け」と呼ばれる現象が
発生してしまう。なお、降伏点強度とは繊維の引張り試
験を行った際に急激に弾性率の変化する時の強度であ
り、この強度以下の力で繊維を引っ張る限り、繊維はほ
ぼ元の長さに戻る。降伏点強度の詳細な測定方法につい
ては発明の実施態様で述べる。このような繊維の重合度
としては極限粘度[η]が0.5〜1.2であることが
好ましい。0.5未満では十分な強度が得られなくなる
可能性がある。また、1.2以上の繊維を安定して紡糸
することは困難である。
It is also important that the deformed fiber of the present invention has a high yield point strength. The yield point strength of the fiber needs to be 2.5 g / d or more, preferably 3 g / d or more, and more preferably 3.5 g / d or more. When the yield point strength of the fiber is less than 2.5 g / d, when a product such as an inner or the like is actually worn, a phenomenon that a so-called "mold release" occurs due to partial application of a force to form a mold. Will occur. The yield point strength is the strength at which the elastic modulus suddenly changes when a tensile test is performed on the fiber, and the fiber almost returns to its original length as long as the fiber is pulled with a force less than this strength. The detailed method of measuring the yield point strength will be described in the embodiments of the invention. As the degree of polymerization of such a fiber, the intrinsic viscosity [η] is preferably from 0.5 to 1.2. If it is less than 0.5, sufficient strength may not be obtained. Moreover, it is difficult to stably spin fibers of 1.2 or more.

【0014】また、降伏点強度を高めるためには本発明
のポリマーを用いる必要があるとともに、結晶化度を高
め、分子の繊維軸方向の配向度を高めることが好まし
い。結晶化度を高め配向度を高めることにより、変形し
た繊維が元の形に戻る領域である降伏点伸度およびその
時の応力(降伏点応力)を高めることができ、インナー
などを着用した場合に力のかかった部分の型が残る「型
ぬけ」が発生しにくくなる。従って本発明の繊維では結
晶化度の指標となる密度が1.3〜1.45g/cm3
であることが望ましい。密度が高いほど結晶化度は高く
なる。密度が1.3g/cm3 未満では繊維の結晶化度
が低く、変形しやすい繊維しか得られない。本発明のポ
リマーの結晶密度が1.45g/cm3 以下であること
より、繊維の密度は実質上1.45g/cm3 を越える
ことはない。繊維の密度は好ましくは1.35〜1.4
g/cm3 の範囲である。
In order to increase the yield point strength, it is necessary to use the polymer of the present invention, and it is preferable to increase the degree of crystallinity and the degree of orientation of molecules in the fiber axis direction. By increasing the degree of crystallinity and the degree of orientation, it is possible to increase the yield point elongation, which is the area where the deformed fiber returns to the original shape, and the stress at that time (yield point stress). It is less likely that "mold removal" in which the mold of the portion where the force is applied remains. Therefore, in the fiber of the present invention, the density as an index of the crystallinity is 1.3 to 1.45 g / cm 3.
It is desirable that The higher the density, the higher the crystallinity. If the density is less than 1.3 g / cm 3 , the crystallinity of the fiber is low, and only a fiber that is easily deformed can be obtained. Since the crystal density of the polymer of the present invention is 1.45 g / cm 3 or less, the fiber density does not substantially exceed 1.45 g / cm 3 . The density of the fibers is preferably between 1.35 and 1.4.
g / cm 3 .

【0015】繊維の破断伸度は15〜50%であること
が必要であり、好ましくは18〜40%である。破断伸
度が15%未満では毛羽等が多数発生し、安定して製造
できないばかりか、後加工の際に切れやすく、非常に取
り扱い難い繊維となってしまう。伸破断度は高くても良
いが、前記の破断強度、降伏点強度を満足するためには
50%以下にする必要がある。また、下記式(1)で表
す繊維の破断伸度むらが1〜1.2であることが必要で
ある。 破断伸度むら=単糸の最大破断伸度/単糸の最小破断伸度 ・・・・・式(1)
The elongation at break of the fiber needs to be 15 to 50%, preferably 18 to 40%. If the elongation at break is less than 15%, a large number of fluffs and the like are generated, and not only cannot it be manufactured stably, but also it is easy to break during post-processing, resulting in fibers that are very difficult to handle. Although the elongation at break may be high, it is necessary to be 50% or less in order to satisfy the above breaking strength and yield strength. Further, it is necessary that the breaking elongation unevenness of the fiber represented by the following formula (1) is 1 to 1.2. Uneven breaking elongation = maximum breaking elongation of single yarn / minimum breaking elongation of single yarn Equation (1)

【0016】ここで単糸の最大、最小破断伸度とはそれ
ぞれ、繊維の引張り試験を行った際に最も最後に切れる
単糸と最も最初に切れる単糸の伸度を表している。破断
伸度むらが1.2を越えると繊維は伸びやすい単糸を含
んでしまい、これが繊維の製造や後加工の際に伸びてし
まい単糸の長さが異なる現象である、いわゆる「たる
み」が発生してしまう。全ての伸度が同一の時破断伸度
むらは1となり、これ未満の値は存在しない。たるみが
発生しないために破断伸度むらは好ましくは1〜1.1
5である。
Here, the maximum and minimum breaking elongation of the single yarn represent the elongation of the single yarn that is cut last and the single yarn that is cut first when the fiber is subjected to a tensile test, respectively. If the elongation at break exceeds 1.2, the fiber contains a single yarn that is easily stretched, and this is a phenomenon in which the length of the single yarn is different due to stretching during the production or post-processing of the fiber. Will occur. When all elongations are the same, the elongation at break is 1 and there is no value less than this. Unevenness in breaking elongation is preferably 1 to 1.1 to prevent sagging.
5

【0017】本発明に適した光沢の繊維とするための繊
維断面形状としては、丸以外の楕円や三角、四角等の多
角形、星形、L型等のいずれでもかまわないが、光沢、
強度より考えると三角や四角が好ましい。もちろん溶融
ポリマーの繊維なので三角形や四角形の角は鋭角ではな
く丸みを帯びている場合も含む。光沢のある繊維とする
ためには、これらの断面においては下記式(2)で表す
繊維断面の異形度を1.1〜1.8とすることが必要で
ある。 異形度=(外接円直径)/(内接円直径) ・・・・・式(2) 外接円直径:繊維断面全てを囲む最も小さい円の直径 内接円直径:繊維断面の中に入る最も大きい円の直径
The cross-sectional shape of the fiber for producing a glossy fiber suitable for the present invention may be any one of an ellipse other than a circle, a polygon such as a triangle and a square, a star, an L-shape and the like.
Considering the strength, a triangle or a square is preferable. Of course, since it is a fiber of a molten polymer, the corners of a triangle or a square may be round rather than acute. In order to obtain glossy fibers, it is necessary that the irregularity of the fiber cross section represented by the following formula (2) is 1.1 to 1.8 in these cross sections. Degree of irregularity = (circumscribed circle diameter) / (inscribed circle diameter) Equation (2) Diameter of circumscribed circle: diameter of the smallest circle surrounding the entire fiber cross section Inscribed circle diameter: most enclosed in fiber cross section Large circle diameter

【0018】異形度が1.1未満では繊維断面は丸に近
く、本発明の目的の光沢のある繊維とはならない。ま
た、異形度が1.8を越えると単糸内部に配向むら、結
晶化むらができてしまい、安定して紡糸できないばかり
か、繊維の破断強度も大幅に低下してしまう。異形度は
好ましくは1.2〜1.7の範囲であり、より好ましく
は1.3〜1.6の範囲である。
When the degree of irregularity is less than 1.1, the cross section of the fiber is close to a circle, and does not become the glossy fiber of the present invention. On the other hand, when the degree of irregularity exceeds 1.8, uneven orientation and crystallization are formed inside the single yarn, and not only spinning cannot be performed stably, but also the breaking strength of the fiber is greatly reduced. The degree of irregularity is preferably in the range of 1.2 to 1.7, and more preferably in the range of 1.3 to 1.6.

【0019】本発明の異形断面繊維の繊度は単糸繊度が
0.1〜10デニールとすることが好ましい。繊度が
0.1デニール未満の異形断面繊維では本発明の破断強
度、異形度の範囲とすることが困難となる。また、繊度
が10デニールを越えるとたとえ異形度を低くしても曲
げ弾性率が高くなってしまい、この繊維から得られる布
帛はごわごわとなりソフトな風合とすることが困難とな
ってしまう。単糸繊度は好ましくは0.2〜5デニール
の範囲が良く、更に好ましくは0.5〜3デニールの範
囲である。
The fineness of the modified cross-section fiber of the present invention is preferably such that the single yarn fineness is 0.1 to 10 denier. In the case of fibers with a modified cross section having a fineness of less than 0.1 denier, it is difficult to set the breaking strength and the degree of irregularity in the range of the present invention. On the other hand, if the fineness exceeds 10 denier, the flexural modulus increases even if the degree of irregularity is reduced, and the fabric obtained from this fiber becomes stiff and difficult to have a soft feel. The single yarn fineness is preferably in the range of 0.2 to 5 denier, and more preferably in the range of 0.5 to 3 denier.

【0020】本発明の異形断面繊維の単糸数は特に限定
されるものではないが、紡糸機、単糸繊度より考え3〜
2000本、好ましくは5〜500本、更に好ましくは
10〜200本である。単糸数が3本未満ではトータル
繊度が小さくなりすぎ、後加工の際などの取り扱いが非
常に困難となってしまう。一方、単糸数が2000本を
越えると繊維のトータルデニールが大きくなりすぎるた
め、衣料用に適した風合いの繊維とならなくなる。ま
た、紡口が非常に大きくなり、作業性が悪い装置を用い
なければならなくなってしまう。
The number of single yarns of the modified cross-section fiber of the present invention is not particularly limited.
The number is 2,000, preferably 5 to 500, and more preferably 10 to 200. If the number of single yarns is less than 3, the total fineness becomes too small, and handling during post-processing becomes extremely difficult. On the other hand, if the number of single yarns exceeds 2,000, the total denier of the fibers becomes too large, so that the fibers do not have a texture suitable for clothing. In addition, the spinning becomes very large, and it is necessary to use a device with poor workability.

【0021】次に本発明のポリエステル異形断面繊維の
製造法として、好ましい方法を示す。すなわち、本発明
の第二は、実質的にポリトリメチレンテレフタレートか
ら構成されるポリエステルポリマーを溶融紡糸するに際
し、極限粘度[η]が0.5〜1.5のポリマーを用
い、押出し温度が250〜290℃、紡口表面温度が2
35〜275℃の紡糸機より押出し、偏冷却せずに冷却
固化した後、2000〜5000m/minで巻き取っ
た糸を20〜70℃の延伸温度にて最高延伸倍率の70
〜99%延伸することを特徴とするポリエステル異形断
面繊維の製造法である。
Next, a preferable method for producing the polyester cross-section fiber of the present invention will be described. That is, in the second aspect of the present invention, when melt-spinning a polyester polymer substantially composed of polytrimethylene terephthalate, a polymer having an intrinsic viscosity [η] of 0.5 to 1.5 and an extrusion temperature of 250 to 250 are used. ~ 290 ° C, spinning surface temperature is 2
After being extruded from a spinning machine at 35 to 275 ° C. and solidified by cooling without uneven cooling, a yarn wound at 2000 to 5000 m / min was drawn at a stretching temperature of 20 to 70 ° C. and a maximum draw ratio of 70%.
A process for producing a polyester cross-section fiber, characterized in that the fiber is drawn by up to 99%.

【0022】ポリトリメチレンテレフタレート繊維の破
断強度、降伏点強度を上げるためには、高重合度のポリ
マーを用い、できるだけ重合度低下を抑制して紡口より
押出し、高いドラフトをかけることにより分子を配向さ
せた未延伸糸を延伸することが重要である。一方、適度
な異形度をもたせるためには、適度な粘度を有した溶融
ポリマーを比較的低い温度の紡口より押し出すことが重
要である。従って、本発明の製造法において、ポリトリ
メチレンテレフタレートの極限粘度[η]は0.5〜
1.5であることが必要である。極限粘度[η]が1.
5を超えると、いかに紡糸温度を高くしても溶融粘度が
高くなり通常の紡糸機での押出が困難となる。極限粘度
[η]が0.5未満だと異形断面繊維の破断強度など機
械的物性が低下するとともに、型ぬけしやすい繊維しか
得られなくなってしまう。好ましい極限粘度[η]は
0.6〜1.2であり、更に好ましくは0.65〜1.
0である。
In order to increase the breaking strength and the yield point strength of the polytrimethylene terephthalate fiber, a polymer having a high degree of polymerization is used. It is important to stretch the oriented undrawn yarn. On the other hand, in order to have a proper degree of irregularity, it is important to extrude a molten polymer having a proper viscosity from a spinneret having a relatively low temperature. Therefore, in the production method of the present invention, the intrinsic viscosity [η] of polytrimethylene terephthalate is 0.5 to 0.5.
It needs to be 1.5. The intrinsic viscosity [η] is 1.
If it exceeds 5, no matter how high the spinning temperature is, the melt viscosity becomes high and extrusion with a normal spinning machine becomes difficult. When the intrinsic viscosity [η] is less than 0.5, the mechanical properties such as the breaking strength of the fiber having a modified cross section are reduced, and only a fiber which can be easily removed from the mold is obtained. A preferred intrinsic viscosity [η] is 0.6 to 1.2, and more preferably 0.65 to 1.
0.

【0023】溶融紡糸の際の押出し温度は250℃〜2
90℃、好ましくは255℃〜285℃、更に好ましく
は260℃〜280℃である。250℃未満では、溶融
粘度が高くなり、押出が困難となるとともに、得られる
繊維の破断伸度むらやU%が満足できるものでは無くな
ってしまう。また、290℃以上ではポリマーの分解が
激しくなるため重合度が低下し、破断強度、降伏点強度
が低く、しかも着色した繊維しか得られなくなるととも
に、紡口直下でのポリマー粘度が著しく低下するため異
形度の高い繊維を得ることが困難となってしまう。
The extrusion temperature during melt spinning is from 250 ° C. to 2 ° C.
90 ° C, preferably 255 ° C to 285 ° C, more preferably 260 ° C to 280 ° C. If the temperature is less than 250 ° C., the melt viscosity becomes high and extrusion becomes difficult, and the obtained fiber has unsatisfactory non-uniform breaking elongation and U%. Further, at 290 ° C. or higher, the degree of polymerization is reduced due to severe decomposition of the polymer, the breaking strength and the yield point strength are low, and only colored fibers can be obtained, and the polymer viscosity immediately below the spinning nozzle is significantly reduced. It becomes difficult to obtain fibers having a high degree of irregularity.

【0024】本発明では、ポリマーを押出す際の紡口表
面温度を235〜275℃にすることが非常に重要であ
る。紡口表面温度が235℃未満では、完全に溶融した
状態でポリマーが押し出されず、破断伸度むらやU%む
らの大きい繊維となってしまう。一方、275℃以上で
は本発明の異形度を有した繊維を得ることはできない。
紡口表面温度は240〜270℃が好ましく、245〜
265℃が更に好ましい。
In the present invention, it is very important that the spinning surface temperature at the time of extruding the polymer is 235 to 275 ° C. If the spinning surface temperature is lower than 235 ° C., the polymer is not extruded in a completely melted state, resulting in a fiber having large breaking elongation unevenness and large U% unevenness. On the other hand, at 275 ° C. or higher, it is not possible to obtain a fiber having the irregularity of the present invention.
The surface temperature of the spout is preferably 240 to 270 ° C, and 245 to 270 ° C.
265 ° C. is more preferred.

【0025】押し出された溶融ポリマーは冷却され、固
化するが、この際に偏冷却しないことが必要である。偏
冷却すると単糸間で分子の配向に差ができるために未延
伸の破断伸度むらが発生してしまい、延伸後の繊維も破
断伸度むらが残り、たるみの原因となってしまう。繊維
はあまり急速に冷却しない方が好ましい。紡口の形状は
特に規定されるものではないが、三角断面の繊維を製造
する際はY型吐出孔を、四角断面の繊維を製造する際は
十字型吐出孔を有した紡口を用いることが好ましい。紡
口から吐出され、冷却固化された繊維束は引き取られて
未延伸糸として巻き取られ、公知の方法で延伸される。
引き取りに際しては、繊維束を集束し、公知の給油や予
備交絡を付与する。
The extruded molten polymer is cooled and solidified. At this time, it is necessary that the partial cooling is not performed. The uneven cooling causes a difference in the molecular orientation between the single yarns, so that the unstretched non-uniform breaking elongation occurs, and the stretched fiber also has the non-uniform breaking elongation, which causes slackness. Preferably, the fibers do not cool too quickly. The shape of the spout is not particularly limited, but when manufacturing fibers having a triangular cross-section, use a spout having a Y-shaped discharge hole when manufacturing fibers having a square cross-section. Is preferred. The fiber bundle discharged from the spinneret and cooled and solidified is taken out, wound up as an undrawn yarn, and drawn by a known method.
At the time of collection, the fiber bundles are bundled, and a known lubrication or pre-entanglement is applied.

【0026】未延伸糸の巻き取り速度は、2000〜5
000m/minとする必要がある。特に好ましくは強
度発現の観点から2500〜4000m/minであ
る。紡糸速度が5000m/minを越えると、紡糸過
程で結晶化が進みすぎて、後に続く延伸で十分な配向が
困難になるとともに、糸径むらが大きくなってしまう。
また、紡糸速度が2000m/min未満では未延伸糸
の配向度があまり高くならないため、後に続く延伸で分
子を十分に配向することが困難となり、本発明の目的で
ある、破断強度、降伏点強度の高い異形断面繊維を得る
ことが困難となってしまう。
The winding speed of the undrawn yarn is from 2000 to 5
000 m / min. Particularly preferably, it is 2500-4000 m / min from the viewpoint of strength development. If the spinning speed exceeds 5000 m / min, crystallization proceeds excessively in the spinning process, making it difficult to perform sufficient orientation in subsequent drawing, and increasing the yarn diameter unevenness.
Further, when the spinning speed is less than 2000 m / min, the degree of orientation of the undrawn yarn does not become so high that it becomes difficult to sufficiently orient the molecules in the subsequent drawing, and the object of the present invention is to achieve the breaking strength and the yield point strength. However, it becomes difficult to obtain a modified cross section fiber having a high cross section.

【0027】本発明のポリエステル異形断面繊維の延伸
は、未延伸繊維を一旦巻き取った後延伸しても良く、ま
たは一旦巻き取ることなく2つ以上のゴデットロール間
で連続して延伸しても良い。未延伸繊維を一旦巻き取っ
て延伸する場合は、巻取り後12〜96時間の間に延伸
する事が好ましい。未延伸繊維は非晶質であるため室温
でも結晶化や配向緩和などの構造変化が起こり、最高延
伸倍率が変化し、これに伴い延伸繊維の物性も変化して
しまう。特に巻取り後12時間未満では構造の変化が大
きく、同じ条件で延伸を行っても、繊維物性が大きく変
化してしまう。一方、96時間を越えると結晶化、配向
緩和が進み、本発明の目的である高破断強度、高降伏点
強度の繊維を得られるような高倍率の延伸を連続して行
うことが困難となってしまう。
In the stretching of the modified polyester fiber of the present invention, the undrawn fiber may be drawn after being wound once, or may be drawn continuously between two or more godet rolls without being wound once. . When the undrawn fiber is once wound and drawn, it is preferable that the drawing be performed for 12 to 96 hours after the winding. Since the undrawn fiber is amorphous, structural changes such as crystallization and orientation relaxation occur even at room temperature, and the maximum draw ratio changes, and accordingly, the physical properties of the drawn fiber also change. In particular, if the time is less than 12 hours after the winding, the structural change is large, and even if the drawing is performed under the same conditions, the fiber properties are greatly changed. On the other hand, if it exceeds 96 hours, crystallization and orientation relaxation progress, and it is difficult to continuously perform high-magnification stretching to obtain a fiber having high breaking strength and high yield point strength, which is the object of the present invention. Would.

【0028】繊維は好ましくは紡糸後24〜72時間の
間に延伸するのが良い。また、未延伸繊維は構造変化を
避けるために、温度0〜30℃、湿度20〜80%RH
以下、好ましくは10〜25℃、40〜60%RH以下
の雰囲気にて保管するのがよい。未延伸繊維の構造変化
は30℃を越え、湿度80%RHを越えると激しくなる
ため好ましくなく、また0℃未満では付与している繊維
の仕上げ剤が凍結してしまい、湿度20%RH未満では
仕上げ剤中の水分が蒸発してしまうため好ましくない。
延伸倍率は未延伸糸の重合度、巻取速度、冷却温度、糸
種によって異なるが、破断延伸倍率の70〜99%で延
伸する必要があり、好ましくは80〜97%である。7
0%以下では破断強度、降伏点強度が高い繊維は得られ
ない。一方、99%を越える倍率では糸切れが多発して
しまい安定して繊維を延伸することができない。
The fibers are preferably drawn between 24 and 72 hours after spinning. The unstretched fiber has a temperature of 0 to 30 ° C and a humidity of 20 to 80% RH in order to avoid a structural change.
Below, it is preferable to store in an atmosphere of preferably 10 to 25 ° C. and 40 to 60% RH or less. The structural change of the unstretched fiber exceeds 30 ° C. and becomes intense when the humidity exceeds 80% RH, which is not preferable. When the temperature is lower than 0 ° C., the finishing agent of the applied fiber freezes. It is not preferable because moisture in the finish evaporates.
The draw ratio varies depending on the degree of polymerization of the undrawn yarn, the winding speed, the cooling temperature, and the yarn type, but it is necessary to draw at 70 to 99% of the breaking draw ratio, and preferably 80 to 97%. 7
If it is 0% or less, a fiber having high breaking strength and high yield point strength cannot be obtained. On the other hand, if the magnification exceeds 99%, yarn breakage occurs frequently, and the fiber cannot be drawn stably.

【0029】延伸温度は、20℃〜70℃、好ましくは
25℃〜65℃、更に好ましくは30℃〜60℃である
ことが必要である。延伸温度が20℃未満では、延伸の
際に糸切れが多発し連続した延伸ができないばかりか、
得られる繊維は延伸むらが発生するためにたるみが発生
し、また繊維内部に微小なクラックが発生し、白く光沢
の無い繊維となり、破断強度が低下してしまう。延伸温
度が70℃を越えると、延伸ロールなどでの滑り性が悪
化し単糸切れが多発し安定な延伸が困難となるととも
に、分子の配向緩和が起こるために繊維の破断強度も低
下してしまう。延伸の際の温度のかけ方は、加熱したロ
ールや、加熱したピンを用いても良く、また非接触式の
ヒーターを用いても良い。延伸むらを少なくしたるみを
抑制するためには加熱ロールを用いることが望ましい。
The stretching temperature must be 20 ° C. to 70 ° C., preferably 25 ° C. to 65 ° C., and more preferably 30 ° C. to 60 ° C. If the stretching temperature is lower than 20 ° C., not only continuous yarn cannot be drawn due to frequent thread breakage during stretching,
The obtained fiber is sagged due to uneven drawing, and fine cracks are generated inside the fiber, resulting in a white and glossy fiber, and a reduced breaking strength. If the stretching temperature exceeds 70 ° C., slipperiness with a stretching roll or the like is deteriorated, single yarn breakage occurs frequently, and stable stretching becomes difficult, and since the orientation of molecules is relaxed, the breaking strength of the fiber also decreases. I will. Regarding how to apply the temperature at the time of stretching, a heated roll or a heated pin may be used, or a non-contact type heater may be used. It is desirable to use a heating roll in order to suppress the slack which reduces the stretching unevenness.

【0030】延伸した糸は90℃〜200℃、好ましく
は100℃〜190℃で熱処理を行うことが望ましい。
熱処理温度が90℃未満では繊維の結晶化度を十分に高
くすることができず、高い破断強度、降伏点強度の繊維
を得ることが困難となってしまう。熱処理温度が200
℃以上では繊維の破断が起こり易くなり連続して熱処理
を行うことが困難となってしまう。
It is desirable that the drawn yarn is heat-treated at 90 to 200 ° C, preferably 100 to 190 ° C.
If the heat treatment temperature is less than 90 ° C., the crystallinity of the fiber cannot be sufficiently increased, and it becomes difficult to obtain a fiber having high breaking strength and yield strength. Heat treatment temperature is 200
Above ° C, fiber breakage is likely to occur, making continuous heat treatment difficult.

【0031】本発明のポリトリメチレンテレフタレート
異形断面繊維維は、単独あるいは他の繊維と混用して布
帛として使用することも可能である。混用する他の繊維
としては、ポリエステル、ポリアミド、セルロース、ウ
ール、綿、絹、アセテート、ストレッチ繊維などのいず
れか、もしくはこれらの混用であっても良い。混用の方
法としては、経糸または緯糸に用いる交織織物、リバー
シブル織物などの織物、トリコット、ラッセルなどの編
物などがあげられる。その他、交撚、合糸、交絡を施し
ても良い。特に、本発明のポリトリメチレンテレフタレ
ート異形断面繊維は110℃以下で染色できるため、ウ
ール、絹、ポリウレタン繊維、アセテート繊維のような
110℃を越える染色温度では熱劣化を受けやすい繊維
との混用において、これらを痛めずに染色が可能である
ので、適している。
The polytrimethylene terephthalate modified cross-section fiber fiber of the present invention can be used as a fabric alone or as a mixture with other fibers. As other fibers to be mixed, any of polyester, polyamide, cellulose, wool, cotton, silk, acetate, stretch fiber, and the like, or a mixture thereof may be used. Examples of the mixing method include a woven fabric used for warp or weft, a woven fabric such as a reversible woven fabric, and a knitted fabric such as tricot and Russell. In addition, twisting, twining, and entanglement may be performed. In particular, since the polytrimethylene terephthalate modified cross-section fiber of the present invention can be dyed at 110 ° C. or lower, it is difficult to mix with fibers susceptible to thermal degradation at a dyeing temperature exceeding 110 ° C. such as wool, silk, polyurethane fiber, and acetate fiber. It is suitable because it can be dyed without damaging them.

【0032】[0032]

【発明の実施態様】以下、実施例などをもって本発明を
更に詳細に説明するが、本発明は実施例などにより何ら
限定されるものではない。なお、実施例中の主な測定値
は以下の方法で測定した。 (1)極限粘度[η] 極限粘度[η]は次の定義式に基づいて求められる値で
ある。 定義式のηrは、純度98%以上のo−クロロフェノー
ルで溶解したポリトリメチレンテレフタレートの希釈溶
液の35℃での粘度を、同一温度で測定した上記溶剤自
体の粘度で割った値であり、相対粘度と定義されている
ものである。また、Cは上記溶液100ml中のグラム
単位による溶質重量値である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to examples and the like, but the present invention is not limited to the examples and the like. In addition, the main measurement value in an Example was measured by the following method. (1) Intrinsic viscosity [η] Intrinsic viscosity [η] is a value obtained based on the following definition formula. Ηr in the definition formula is a value obtained by dividing the viscosity at 35 ° C. of a diluted solution of polytrimethylene terephthalate dissolved in o-chlorophenol having a purity of 98% or more by the viscosity of the solvent itself measured at the same temperature, It is defined as relative viscosity. C is the solute weight value in grams in 100 ml of the solution.

【0033】(2)密度 四塩化炭素およびトルエンにより作成した密度勾配管を
用いて測定を行った。 (3)破断強度、破断伸度、破断伸度むら オリエンテック(株)製テンシロンを用い、糸長20c
m、引っ張り速度20cm/minの条件で引張り試験
を行い測定した。また、破断伸度むらは、引っ張り試験
の際に最も最初に破断した単糸の伸度(最小破断伸度)
と最も最後に破断した単糸の伸度(最大破断伸度)より
次の式により計算した。 破断伸度むら=(最小破断伸度)/(最大破断伸度)
(2) Density Measurement was performed using a density gradient tube made of carbon tetrachloride and toluene. (3) Breaking strength, breaking elongation, uneven breaking elongation Using Orientec Co., Ltd. Tensilon, yarn length 20c
m, and a tensile test was performed under the conditions of a tensile speed of 20 cm / min. The breaking elongation unevenness is the elongation of the single yarn that broke first during the tensile test (minimum breaking elongation).
And the elongation (maximum elongation at break) of the single yarn that was most recently broken was calculated by the following equation. Uneven breaking elongation = (minimum breaking elongation) / (maximum breaking elongation)

【0034】(4)降伏点強度 降伏点強度は、破断強度などと同じ装置、条件を用いて
引っ張り試験を行い測定した。引張り試験を行うと図1
に示すような伸びと応力の関係を示すSSカーブが得ら
れる。伸びの小さい時はほぼA−A’の線上を通って応
力が増加する。さらに伸びが大きくなるとB点より応力
の増加割合が急激に減少する。このA−A’より外れる
B点の応力より次式を用いて降伏点強度を求めた。 降伏点強度(g/d)=B点の応力(g)/繊維のデニ
ール(d)
(4) Yield point strength Yield point strength was measured by conducting a tensile test using the same apparatus and conditions as those for breaking strength. Figure 1 shows the results of the tensile test.
An SS curve showing the relationship between elongation and stress as shown in FIG. When the elongation is small, the stress increases substantially along the line AA '. When the elongation is further increased, the rate of increase of the stress decreases sharply from the point B. The yield point strength was determined from the stress at point B that deviated from AA 'using the following equation. Yield point strength (g / d) = stress at point B (g) / denier of fiber (d)

【0035】(5)異形度 繊維の断面写真から次式(2)により算出した。 異形度=(外接円直径)/(内接円直径) ・・・・・式(2) 外接円直径:繊維断面全てを囲む最も小さい円の直径 内接円直径:繊維断面の中に入る最も大きい円の直径(5) Deformity Degree was calculated from the cross-sectional photograph of the fiber by the following equation (2). Degree of irregularity = (circumscribed circle diameter) / (inscribed circle diameter) Equation (2): circumscribed circle diameter: diameter of the smallest circle surrounding the entire fiber cross section inscribed circle diameter: most inside the fiber cross section Large circle diameter

【0036】(6)U% Zellweger Uster(株)社製のUSTE
R TESTER3を用いて測定を行った。測定は20
0m/minの速度にて測定を行い、5分間の平均値を
用いた。 (7)たるみ 紡糸−延伸を行い得られた異形断面繊維を1mの長さを
ボビンより引き出し、(1/20×繊度)gの張力をか
けた状態にてたるみの有無を目視にて判断した。繊維に
たるみが見られない場合を○、わずかにたるみが見られ
る場合を△、たるみが多数見られる場合を×とした。
(6) U% USTE manufactured by Zellweger Uster Co., Ltd.
The measurement was performed using R TESTER3. Measurement is 20
The measurement was performed at a speed of 0 m / min, and an average value for 5 minutes was used. (7) Sag The deformed cross-section fiber obtained by spinning-drawing was pulled out from the bobbin with a length of 1 m, and the presence or absence of the slack was visually judged under a tension of (1/20 × fineness) g. . The case where no slack was observed in the fiber was evaluated as ○, the case where slight sag was observed was evaluated as Δ, and the case where a large amount of sag was observed was evaluated as ×.

【0037】(8)染色性{吸尽率、深色度(K/
S)} 試料は繊維の一口編地を用い、スコアロール400を2
g/リットルで含む温水を用いて、70℃、20分間精
練処理し、タンブラー乾燥機で乾燥させ、次いで、ピン
テンターを用いて、180℃、30秒の熱セットを行っ
たものを使用した。吸尽率は、40℃から110℃に昇
温後、更にそのまま1時間保持した後の吸尽率で評価し
た。染料は、カヤロンポリエステルブルー3RSF(日
本化薬(株)製)を使用し、6%owf、浴比1:50
で染色した。分散剤は、ニッカサンソルト7000(日
華化学(株)製)を0.5g/リットル使用し、酢酸
0.25ml/リットルと酢酸ナトリウム1g/リット
ルを加え、pHを5に調整した。
(8) Dyeability: exhaustion rate, deep chromaticity (K /
S)} The sample was a single-knit knitted fabric, and two score rolls 400 were used.
A scouring treatment was performed at 70 ° C. for 20 minutes using warm water containing g / liter, dried by a tumbler drier, and then heat-set at 180 ° C. for 30 seconds using a pin tenter. The exhaustion rate was evaluated based on the exhaustion rate after the temperature was raised from 40 ° C. to 110 ° C. and further kept for 1 hour. The dye used was Kayaron Polyester Blue 3RSF (manufactured by Nippon Kayaku Co., Ltd.), 6% owf, bath ratio 1:50.
Stained. As a dispersant, 0.5 g / l of Nikka San Salt 7000 (manufactured by Nika Chemical Co., Ltd.) was used, and 0.25 ml / l of acetic acid and 1 g / l of sodium acetate were added to adjust the pH to 5.

【0038】どの程度濃色に染まったかを表す深色度
は、K/Sを用いて評価した。この値は、染色後のサン
プル布の分光反射率Rを測定し、以下に示すクベルカ−
ムンク(Kubelka−Munk)の式から求めた。
この値が大きい程、深色効果が大きいこと、すなわち、
よく発色されていることを示す。Rは、当該染料の最大
吸収波長での値を採用した。 K/S=(1−R)2 /2R
The deep chromaticity, which indicates how deep the color was, was evaluated using K / S. This value is obtained by measuring the spectral reflectance R of the sample cloth after dyeing, and
It was determined from the equation of Kubelka-Munk.
The larger this value, the greater the deep color effect, ie,
Indicates that the color is well developed. As R, the value at the maximum absorption wavelength of the dye was used. K / S = (1-R) 2 / 2R

【0039】[0039]

【実施例1】1,3ープロパンジオールとジメチルテレ
フタレートとを定法により重縮合し、極限粘度[η]
0.9のポリトリメチレンテレフタレートポリマーを得
た。このポリトリメチレンテレフタレートポリマーを押
出し温度260℃にてY型の孔36ホールが一重円に配
列してある紡口を用い、吐出量23.1g/分で押し出
した。紡口は吐出面以外の周辺を厚さ16mmの断熱板
で遮蔽した。この時の紡口表面温度は255℃であっ
た。冷却は風速0.4m/秒で25℃の空気を紡口下8
0mmのところより繊維にあてて行った。冷却した異形
断面未延伸繊維は集束ガイドにより一束に集束し、30
00m/minで巻き取った。紡糸は、24時間糸切れ
もなく極めて安定していた。
Example 1 1,3-propanediol and dimethyl terephthalate are polycondensed by a conventional method, and the intrinsic viscosity [η] is obtained.
A polytrimethylene terephthalate polymer of 0.9 was obtained. This polytrimethylene terephthalate polymer was extruded at an extrusion temperature of 260 ° C. at a discharge rate of 23.1 g / min using a spinneret in which 36 Y-shaped holes were arranged in a single circle. In the spinneret, the periphery other than the discharge surface was shielded by a heat insulating plate having a thickness of 16 mm. The spinning surface temperature at this time was 255 ° C. Cooling is performed at a wind speed of 0.4 m / sec.
It was applied to the fiber from 0 mm. The cooled unshaped cross-sectioned fibers are bundled into a bundle by a bundle guide,
It was wound at 00 m / min. The spinning was extremely stable without breakage for 24 hours.

【0040】得られた未延伸糸を、温度20℃、湿度5
5%に調節された保管場所に24時間保管した後、ホッ
トロール55℃、ホットプレート140℃、延伸倍率
1.8倍(最高延伸倍率の95%)、延伸速度800m
/minで延伸を行い、50.5デニール/36フィラ
メントの延伸繊維を得た。異形断面繊維は極限粘度
[η]0.68、異形度1.45、破断強度5.2g/
d、破断伸度22%、降伏点強度4.1g/dと良好な
引っ張り物性を示した。繊維の破断伸度むらは1.1、
U%は1.2%と良好であり、繊維にたるみは見られな
かった。この時の繊維密度は1.355g/cm3 と結
晶性の高い繊維であった。この異形断面繊維を筒編みし
たところ、得られた筒編み地は絹様の光沢を有し非常に
ソフトな風合であった。
The obtained undrawn yarn was subjected to a temperature of 20 ° C. and a humidity of 5
After storing in a storage place adjusted to 5% for 24 hours, a hot roll at 55 ° C., a hot plate at 140 ° C., a draw ratio of 1.8 times (95% of the maximum draw ratio), and a drawing speed of 800 m
The fiber was drawn at a rate of 50.5 denier / 36 filaments. The modified cross-section fiber has an intrinsic viscosity [η] of 0.68, a degree of irregularity of 1.45, and a breaking strength of 5.2 g /
d, elongation at break of 22% and yield point strength of 4.1 g / d, showing good tensile properties. The elongation at break of the fiber is 1.1,
U% was as good as 1.2%, and no slack was observed in the fiber. At this time, the fiber density was 1.355 g / cm 3, and the fiber had high crystallinity. When this irregular cross-section fiber was knitted in a tube, the obtained knitted tube had a silky luster and a very soft feel.

【0041】本実施例の異形断面繊維の100℃に於け
る染料吸尽率は88%、K/Sは21.3であった。こ
の結果は、同一単繊維繊度のポリエチレンテレフタレー
トからなるマルチフイラメントを130℃、60分間染
色した場合の染料吸尽率が91%、K/Sが21である
ことから、極めて易染性で発色性が良いといえる。
The dye exhaustion at 100 ° C. of the modified cross-section fiber of this example was 88%, and the K / S was 21.3. This result shows that when a multifilament made of polyethylene terephthalate having the same single fiber fineness is dyed at 130 ° C. for 60 minutes, the dye exhaustion rate is 91% and the K / S is 21, so that it is extremely easy to dye and has high coloring properties. Is good.

【0042】[0042]

【実施例2〜6、比較例1〜5】紡糸条件(巻取速度、
延伸倍率、熱処理温度)を第1表に示す如くに変えて、
実施例1と同様な方法で異形断面繊維を得た。結果を第
1表および第2表に示す。本発明の範囲の異形断面繊維
は良好な光沢、強度、ソフトさを有していた。一方、本
発明の範囲から外れた異形断面繊維(比較例1〜5)は
光沢、強度など満足できるものが得られなかった。
Examples 2 to 6, Comparative Examples 1 to 5 Spinning conditions (winding speed,
Stretching ratio, heat treatment temperature) as shown in Table 1,
In the same manner as in Example 1, a fiber having a modified cross section was obtained. The results are shown in Tables 1 and 2. The modified cross-section fibers within the scope of the present invention had good gloss, strength, and softness. On the other hand, fibers having irregular cross-sections (Comparative Examples 1 to 5) out of the range of the present invention could not obtain satisfactory gloss and strength.

【0043】[0043]

【表1】 [Table 1]

【0044】[0044]

【表2】 [Table 2]

【0045】[0045]

【比較例6】ホットロールの温度を15℃とした以外は
実施例1と同様な方法で重合・紡糸・延伸を行った。延
伸の際には糸切れが多発し、連続して繊維を得ることが
できなかった。また得られる繊維にはたるみが多数みら
れた。
Comparative Example 6 Polymerization, spinning and stretching were carried out in the same manner as in Example 1 except that the temperature of the hot roll was changed to 15 ° C. During drawing, yarn breakage frequently occurred, and fibers could not be obtained continuously. In addition, many slacks were observed in the obtained fiber.

【比較例7】ホットロールの温度を85℃とした以外は
実施例1と同様な方法で重合・紡糸・延伸を行った。延
伸の際にホットロールに糸が融着するため単糸切れが多
発し、得られた繊維は毛羽だらけであった。
Comparative Example 7 Polymerization, spinning and stretching were carried out in the same manner as in Example 1 except that the temperature of the hot roll was changed to 85 ° C. Since the yarn was fused to the hot roll during stretching, single yarn breakage occurred frequently, and the resulting fiber was full of fluff.

【0046】[0046]

【比較例8】ホットプレートの温度を210℃とした以
外は実施例1と同様な方法で重合・紡糸・延伸を行っ
た。繊維はホットプレートのところで切れ、延伸を行う
ことができなかった。
Comparative Example 8 Polymerization, spinning and stretching were carried out in the same manner as in Example 1 except that the temperature of the hot plate was 210 ° C. The fibers broke at the hot plate and could not be stretched.

【比較例9】エチレングリコールとジメチルテレフタレ
ートとを定法により重縮合し、極限粘度[η]0.7の
ポリエチレンテレフタレートポリマーを得た。このポリ
マーを用いて実施例1と同様の方法で紡糸、延伸を行い
異形断面繊維を得た。しかしこの繊維は弾性率が高く、
ごわごわで風合いの硬い布帛しか得ることができなかっ
た。
COMPARATIVE EXAMPLE 9 Ethylene glycol and dimethyl terephthalate were polycondensed by a conventional method to obtain a polyethylene terephthalate polymer having an intrinsic viscosity [η] of 0.7. Using this polymer, spinning and stretching were carried out in the same manner as in Example 1 to obtain fibers with irregular cross sections. However, this fiber has a high elastic modulus,
Only a stiff, hard-textured fabric could be obtained.

【0047】[0047]

【発明の効果】本発明により得られるポリトリメチレン
テレフタレートから構成されるポリエステル異形断面繊
維は、従来繊維の欠点を改良し、ソフトでストレッチ性
に優れ、しかも高い破断強度や降伏点強度、適度な異形
度を有しているため絹様の光沢を有し、また後加工工程
での切れ、毛羽発生等のトラブルが少なく、着用時の毛
羽発生等が少なく、衣料用素材、特にインナー分野用素
材に有用である。
The polyester modified cross-section fiber composed of polytrimethylene terephthalate obtained by the present invention improves the drawbacks of conventional fibers, is soft and has excellent stretchability, and has high breaking strength, yield strength, and moderate Due to its irregular shape, it has silk-like luster, and there are few troubles such as cutting and fluffing in the post-processing process, and there is little fluffing when worn, materials for clothing, especially materials for the inner field Useful for

【図面の簡単な説明】[Brief description of the drawings]

【図1】引張り試験を行った際に、伸びと応力の関係を
示すSSカーブである。
FIG. 1 is an SS curve showing the relationship between elongation and stress when a tensile test is performed.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) D01F 6/62 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) D01F 6/62

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 実質的にポリトリメチレンテレフタレー
トから構成される繊維であって、破断強度が4g/d以
上、降伏点強度が2.5g/d以上、破断伸度が15〜
50%、かつ下記式(1)で表す繊維の破断伸度むらが
1〜1.2であり、下記式(2)で表す繊維断面の異形
度が1.1〜1.8であることを特徴とするポリエステ
ル異形断面繊維。 破断伸度むら=単糸の最大破断伸度/単糸の最小破断伸度 ・・・・・式(1) 異形度=(外接円直径)/(内接円直径) ・・・・・式(2) 外接円直径:繊維断面全てを囲む最も小さい円の直径 内接円直径:繊維断面の中に入る最も大きい円の直径
1. A fiber substantially composed of polytrimethylene terephthalate, having a breaking strength of 4 g / d or more, a yield point strength of 2.5 g / d or more, and a breaking elongation of 15 to 15 g / d.
50%, and the irregularity of elongation at break of the fiber represented by the following formula (1) is 1 to 1.2, and the irregularity of the fiber cross section represented by the following formula (2) is 1.1 to 1.8. Characterized polyester modified cross section fiber. Uneven breaking elongation = maximum breaking elongation of single yarn / minimum breaking elongation of single yarn Formula (1) Deformity = (circumscribed circle diameter) / (inscribed circle diameter) formula (2) Diameter of circumscribed circle: diameter of the smallest circle surrounding the entire fiber cross section Diameter of inscribed circle: diameter of the largest circle entering the fiber cross section
【請求項2】 実質的にポリトリメチレンテレフタレー
トから構成されるポリエステルポリマーを溶融紡糸する
に際し、極限粘度[η]が0.5〜1.5のポリマーを
用い、押出し温度が250〜290℃、紡口表面温度が
235〜275℃の紡糸機より押出し、偏冷却せずに冷
却固化した後、2000〜5000m/minで巻き取
った糸を20〜70℃の延伸温度にて最高延伸倍率の7
0〜99%延伸することを特徴とするポリエステル異形
断面繊維の製造法。
2. When melt-spinning a polyester polymer substantially composed of polytrimethylene terephthalate, a polymer having an intrinsic viscosity [η] of 0.5 to 1.5, an extrusion temperature of 250 to 290 ° C., After being extruded from a spinning machine having a spinneret surface temperature of 235 to 275 ° C. and solidified by cooling without uneven cooling, the yarn wound at 2000 to 5000 m / min was drawn at a stretching temperature of 20 to 70 ° C. and a maximum draw ratio of 7
A method for producing a polyester cross-section fiber, wherein the fiber is stretched by 0 to 99%.
JP12812798A 1998-04-23 1998-04-23 Polyester irregular cross section fiber Expired - Fee Related JP3167677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12812798A JP3167677B2 (en) 1998-04-23 1998-04-23 Polyester irregular cross section fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12812798A JP3167677B2 (en) 1998-04-23 1998-04-23 Polyester irregular cross section fiber

Publications (2)

Publication Number Publication Date
JPH11302922A JPH11302922A (en) 1999-11-02
JP3167677B2 true JP3167677B2 (en) 2001-05-21

Family

ID=14977072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12812798A Expired - Fee Related JP3167677B2 (en) 1998-04-23 1998-04-23 Polyester irregular cross section fiber

Country Status (1)

Country Link
JP (1) JP3167677B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4406474A1 (en) 1994-02-23 1995-08-24 Schering Ag Gas-containing microparticles, agents containing them, their use in ultrasound diagnostics, and methods for producing the particles and agents
TW567257B (en) 1999-08-26 2003-12-21 Asahi Chemical Ind Polytrimethyleneterephthalate modified cross section yarn
KR100442916B1 (en) 1999-09-30 2004-08-02 아사히 가세이 가부시키가이샤 Poly(trimethylene terephthalate)multifilament yarn
TR200103145T1 (en) * 2000-03-03 2002-08-21 E. I. Du Pont De Nemours & Company Poly (trimethylene terephthalate) yarn.
US6663806B2 (en) 2000-03-03 2003-12-16 E. I. Du Pont De Nemours And Company Processes for making poly (trimethylene terephthalate) yarns
KR20030062836A (en) * 2002-01-21 2003-07-28 주식회사 효성 Polytrimethyleneterephthalate Fiber Having Good Processibility and Producing Method Thereof

Also Published As

Publication number Publication date
JPH11302922A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
JP3859672B2 (en) Composite fiber and method for producing the same
JP3199669B2 (en) Extra-fine multifilament and method for producing the same
KR20020025994A (en) Poly(trimethylene terephthalate) modified cross-section yarn
JP4021535B2 (en) Polyester hollow fiber and method for producing the same
JP3167677B2 (en) Polyester irregular cross section fiber
JP5718045B2 (en) Polyester fibers and fiber aggregates with excellent dyeability
WO2001068498A1 (en) Stretched yarn pirn
JP2000239921A (en) Production of polyester fiber
JP3001539B1 (en) Method for producing polyester mixed fiber yarn
JP2844680B2 (en) Different fineness / different shrinkage mixed fiber and method for producing the same
JP2002161436A (en) Polytrimethylene terephthalate fiber dyeable with cationic dye
JP3753844B2 (en) Polytrimethylene terephthalate sheath-core type composite fiber and fabric using the same
JP3874529B2 (en) Pre-oriented polyester fiber and processed yarn therefrom
JP3693552B2 (en) Method for producing polyester fiber
JP4007856B2 (en) Polyester different shrinkage mixed yarn
JPS6211085B2 (en)
JP3647373B2 (en) Polyester fiber for drawn false twist and method for producing the same
JP4059800B2 (en) Method for producing polytrimethylene terephthalate composite fiber
JPH09143827A (en) Polyester-based multifilament composite yarn and woven or knitted fabric using the same
JP2003342843A (en) False-twist textured yarn and method for producing the same
JP4059681B2 (en) Process for producing pre-oriented yarn of polytrimethylene terephthalate
JPH1193021A (en) Sheath-core polyester yarn
JP4119065B2 (en) Polyester multifilament
JP3484822B2 (en) Polyester multifilament composite yarn and method for producing the same
JP2005179810A (en) Water-absorbing, quick-drying and see-through-proof polyester-blended product and fabric

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080309

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees