JPH10158932A - Polyester ultrafine yarn and its production - Google Patents

Polyester ultrafine yarn and its production

Info

Publication number
JPH10158932A
JPH10158932A JP30920696A JP30920696A JPH10158932A JP H10158932 A JPH10158932 A JP H10158932A JP 30920696 A JP30920696 A JP 30920696A JP 30920696 A JP30920696 A JP 30920696A JP H10158932 A JPH10158932 A JP H10158932A
Authority
JP
Japan
Prior art keywords
yarn
spinning
polyester
fiber
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30920696A
Other languages
Japanese (ja)
Inventor
Tadayoshi Koizumi
忠由 古泉
Kenichi Yoshioka
謙一 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP30920696A priority Critical patent/JPH10158932A/en
Publication of JPH10158932A publication Critical patent/JPH10158932A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a polyester yarn excellent in uniformity, dynamic characteristics such as mechanical strength and elongation and dyeability free from occurrence of loop and fluff and unevenness of fineness. SOLUTION: In cooling a polyester yarn of melt spinning to <=a glass transition temperature, traveling the yarn in a heating apparatus, drawing and heat- treating the yarn and taking up the yarn at >=4,000 minutes/minute, when an extruded amount of a single hole of a spinneret diameter (g/min)/an area (mm<2> ) of a single hole of the spinneret is M, an inlet, an inlet diameter of the heating apparatus is G (mm), a spinning speed is V (m/minute), a denier of single yarn after drawing is D, the number of filaments is N, the spinning is carried out under a condition satisfying the equations 10<=M+5D<=65, -20<=G-0.2N<=5 and -85<=M-0.02V<=-35 to make the denier of the single yarn <=1d and >=50% trans fraction of a crystal region in the whole trans fraction by infrared absorption method.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は繊度斑が少なく糸質
性能の極めて優れたポリエステル極細繊維とその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polyester ultrafine fiber having a small fineness and extremely excellent yarn quality, and a method for producing the same.

【0002】[0002]

【従来の技術】ポリエステル繊維は、強度や伸度などの
力学的特性、寸法安定性、その他の点から延伸して用い
るのが一般的である。従来のポリエステル繊維を製造法
により区分してみると、紡糸と延伸の2工程により得ら
れた糸(FOY)、紡糸直結延伸の1工程で得られた糸
(SDY)、5000m/分以上の高速で引取られた糸(DS
Y)等に分けられる。
2. Description of the Related Art Polyester fibers are generally used after being drawn from the viewpoints of mechanical properties such as strength and elongation, dimensional stability, and other points. When the conventional polyester fiber is classified according to the manufacturing method, the yarn (FOY) obtained by two steps of spinning and drawing, the yarn (SDY) obtained by one step of direct spinning and drawing, and a high speed of 5000 m / min or more Thread (DS
Y) and the like.

【0003】しかし、FOYは工程が2工程に分けられ
工程間の移動による品質低下や、それによる次工程での
生産能率低下等の問題を生じることが多く、結果として
量産性の点でコスト面等の苦労が多かった。
[0003] However, the FOY process is divided into two processes, and often causes problems such as a decrease in quality due to movement between processes and a decrease in production efficiency in the next process. As a result, cost is reduced in terms of mass productivity. There were many difficulties such as.

【0004】また、SDYでは紡糸・延伸を1step化す
ることにより、工程性、量産性には優れているがローラ
ー上での熱処理において銘柄によっては糸切れが著しく
捲付の原因となる。更に繊維物性の点においてもFOY
に比べると一般的に収縮応力が低く、加工後の評価では
膨らみ感に乏しいものであった。さらにDSYでは工程
性、量産性は良好であるが、この製糸化方法では低収縮
(4〜5%)の糸しか得られず用途面で限られた。
[0004] In the case of SDY, by making spinning and drawing in one step, processability and mass productivity are excellent, but depending on the brand in heat treatment on a roller, thread breakage is remarkable and causes winding. Furthermore, in terms of fiber properties, FOY
In general, the shrinkage stress was lower than that of, and the swelling feeling was poor in the evaluation after processing. In addition, DSY has good processability and mass productivity, but this method of spinning can obtain only a low shrinkage (4 to 5%) yarn and is limited in application.

【0005】更に1step法の一種として溶融紡出したポ
リエステル繊維を例えば4000m/分以上、または2000〜45
00m/分という高速で引き取りながら(高速で走行させな
がら)一旦そのガラス転移温度以下の温度にまで冷却し
た後、引続いて加熱帯域を通過させてその加熱帯域で延
伸させる方法が知られている(特公昭45- 1932号公報お
よび特公昭55-10684号公報)。
Further, as one type of the one-step method, a polyester fiber melt-spun is used, for example, at a rate of 4,000 m / min or more, or 2,000-45.
A method is known in which the material is once cooled to a temperature equal to or lower than its glass transition temperature while being taken up at a high speed of 00 m / min (while running at a high speed), and subsequently passed through a heating zone and stretched in the heating zone. (JP-B-45-1932 and JP-B-55-10684).

【0006】この方法では紡出させた糸条が高速で加熱
帯域を走行している間に、その加熱帯域内で空気抵抗が
走行糸条に作用して糸条の張力が増大して延伸が行われ
る。そのため、回転速度の異なる複数のローラーを用い
るというような機械的な延伸装置を特に使用する必要が
なくなり、簡略化した設備により延伸したポリエステル
繊維を効率的に製造できるという長所がある。しかしな
がら、この方法では延伸がローラー速度差による機械延
伸でないため加熱帯域の温度、糸条の走行速度、走行糸
条にかかる張力などによって繊維の品質が大きく左右さ
れ、加熱帯域における糸条の走行速度や走行糸条にかか
る張力などが微妙に変動しても延伸斑が生じ易く、それ
により断糸、ループ、毛羽、繊度斑などが起こり易いと
いう欠点がある。殊に、単糸デニールが1.0デニール
以下になると、工程性に関する前述の問題点は一層顕著
になり易かった。
In this method, while the spun yarn is traveling at a high speed in the heating zone, air resistance acts on the traveling yarn in the heating zone, the tension of the yarn increases, and the yarn is drawn. Done. Therefore, it is not necessary to particularly use a mechanical drawing device such as using a plurality of rollers having different rotation speeds, and there is an advantage that drawn polyester fibers can be efficiently produced by simplified equipment. However, in this method, the quality of the fiber is greatly affected by the temperature of the heating zone, the running speed of the yarn, the tension applied to the running yarn, and the running speed of the yarn in the heating zone. There is a drawback that even if the tension applied to the running yarn or the running yarn delicately fluctuates, drawing unevenness is apt to occur, thereby easily causing yarn breakage, loop, fluff, fineness unevenness and the like. In particular, when the denier of a single yarn is 1.0 denier or less, the above-mentioned problem concerning the processability tends to be more remarkable.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、ルー
プや毛羽の発生、繊度斑がなく均一性に優れ、しかも強
度や伸度などの力学特性や染色性にも優れる、高品質の
ポリエステル極細繊維とその製造方法を提供することで
ある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a high-quality polyester which is excellent in uniformity without generation of loops and fluff, unevenness in fineness, and excellent in mechanical properties such as strength and elongation and dyeability. An object of the present invention is to provide an ultrafine fiber and a method for producing the same.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め、本発明者らは糸質性能の良好なポリエステル繊維の
繊維構造物性について検討し、更にその繊維を得るため
の製糸化方法として、紡出させたポリエステル糸条を一
旦ガラス転移温度以下に冷却した後、引き続いて高速で
引取りながら加熱帯域を通過させて加熱帯域で直接延伸
させてポリエステル繊維を製造する直接紡糸延伸法を行
うにあたりM値(単孔吐出量Q/単孔面積L)と単糸デ
ニール、M値と紡速、加熱帯域径とフィラメント数等に
ついて適性紡糸条件を定めることにより加熱帯域温度、
糸条の走行速度、走行糸条にかかる張力などに変動が少
なく、ループ、毛羽の発生がなく、しかも繊度斑のな
い、力学特性にも優れた延伸したポリエステル極細繊維
が良好な工程性で効率よく製造できることを見出して本
発明に到達した。
Means for Solving the Problems In order to achieve the above object, the present inventors have studied the fiber structure properties of polyester fibers having good yarn quality, and furthermore, as a method for producing such fibers, When the spun polyester yarn is once cooled to a glass transition temperature or lower, and then passed through a heating zone while being taken off at a high speed, and then directly drawn in the heating zone to perform a direct spinning drawing method for producing polyester fibers. The heating zone temperature is determined by determining appropriate spinning conditions for the M value (single hole discharge amount Q / single hole area L) and single yarn denier, M value and spinning speed, heating zone diameter and number of filaments, etc.
Efficient processability of stretched polyester ultrafine fibers with little fluctuations in yarn running speed, tension applied to running yarns, no loops, no fluff, no unevenness of fineness, and excellent mechanical properties The inventors have found that they can be manufactured well, and arrived at the present invention.

【0009】すなわち、本発明は、単糸デニールDが1.
0d以下であり、かつ赤外吸収法による全トランス分率の
うち結晶領域のトランス分率が50%以上を占めることを
特徴とするポリエステル極細繊維である。
That is, according to the present invention, the single yarn denier D is 1.
It is a polyester ultrafine fiber characterized by being not more than 0d and having a trans fraction of 50% or more in a crystalline region among all trans fractions measured by an infrared absorption method.

【0010】更に、本発明は、繊維形成性ポリエステル
を紡糸口金より、溶融紡出し紡出糸条を一旦ガラス転移
点以下の温度に冷却し、次いで加熱装置内を走行させ
て、延伸熱処理した後、油剤を付与し、4000m/分以上で
引き取る紡糸方法において、紡糸条件として、口金単孔
吐出量Q(g/min)/口金単孔面積L(mm2 )をMとし、
加熱装置の入口径をG(mm)、紡速V(m/分)、延伸後の
単糸デニールをD、フィラメント数Nとしたとき、下記
式(1)〜(3)を同時に満たす条件にて紡糸すること
を特徴とする上記のポリエステル極細繊維の製造方法で
ある。 10≦M+5D≦65 (1) −20≦G−0.2N≦5 (2) −85≦M−0.02V≦35 (3)
Furthermore, the present invention relates to a method for producing a fiber-forming polyester from a spinneret by melt-spinning a spun yarn to a temperature below the glass transition temperature, and then running the same in a heating device to carry out a drawing heat treatment. In the spinning method in which an oil agent is applied and drawn at 4000 m / min or more, the spinning conditions are as follows: spinneret single hole discharge amount Q (g / min) / sleeve single hole area L (mm 2 );
When the inlet diameter of the heating device is G (mm), the spinning speed V (m / min), the denier of the single yarn after drawing is D, and the number of filaments is N, the conditions satisfying the following expressions (1) to (3) are satisfied. And spinning the polyester microfiber. 10 ≦ M + 5D ≦ 65 (1) −20 ≦ G−0.2N ≦ 5 (2) −85 ≦ M−0.02V ≦ 35 (3)

【0011】[0011]

【発明の実施の形態】本発明で用いるポリエステルとは
溶融紡糸可能なポリエステルであればいずれでもよく特
に限定されないが、ポリエステルがポリエチレンテレフ
タレート、ポリエチレンテレフタレート、或いはエチレ
ンテレフタレート単位および/またはブチレンテレフタ
レート単位を主たる構成単位とし、これに少量の他の共
重合単位を含有させたコポリエステルであるのが好まし
く、特にポリエチレンテレフタレートであるのがより好
ましい。
BEST MODE FOR CARRYING OUT THE INVENTION The polyester used in the present invention is not particularly limited as long as it is a melt-spinnable polyester, and the polyester is mainly polyethylene terephthalate, polyethylene terephthalate, or an ethylene terephthalate unit and / or a butylene terephthalate unit. It is preferably a copolyester containing a small amount of other copolymerized units as a structural unit, and more preferably polyethylene terephthalate.

【0012】ポリエステルとして、エチレンテレフタレ
ート単位および/またはブチレンテレフタレート単位を
主とするコポリエステルを用いる場合には、コポリエス
テル中における他の共重合単位の割合が10モル%以下で
あるのが好ましく、その際の他の共重合単位の例として
は、イソフタル酸、フタル酸、2,6ナフタリンジカル
ボン酸、5−アルカリ金属スルホイソフタル酸などの芳
香族ジカルボン酸、シュウ酸、アジピン酸、アゼライン
酸、セバシン酸などの脂肪族ジカルボン酸;トリメリッ
ト酸、ピロメリット酸などの多官能性カルボン酸、また
はそれらのエステル形成性成分に由来するカルボン酸単
位;ジエチレングリコール、プロピレングリコール、ブ
タンシオールまたはエチレングリコール、ポリエチレン
グリコール、グリセリン、ペンタエリスリトールなどか
ら誘導される単位を挙げることができる。そして、コポ
リエステルは前記した共重合単位の1種又は2種以上を
含んでいることができる。
When a copolyester mainly comprising ethylene terephthalate units and / or butylene terephthalate units is used as the polyester, the proportion of other copolymerized units in the copolyester is preferably 10 mol% or less. Examples of other copolymerized units in this case include aromatic dicarboxylic acids such as isophthalic acid, phthalic acid, 2,6-naphthalene dicarboxylic acid, and 5-alkali metal sulfoisophthalic acid, oxalic acid, adipic acid, azelaic acid, and sebacic acid. Aliphatic dicarboxylic acids such as; trimellitic acid, polyfunctional carboxylic acids such as pyromellitic acid, or carboxylic acid units derived from their ester-forming components; diethylene glycol, propylene glycol, butanethiol or ethylene glycol, polyethylene glycol, Guri Phosphorus, may be mentioned units derived from pentaerythritol. The copolyester can contain one or more of the above-mentioned copolymer units.

【0013】更にポリエステル中に必要に応じて蛍光増
白剤、安定剤、酸化防止剤、紫外線吸収剤、加水分解防
止剤、帯電防止剤、難燃剤、つや消しのための無機微粒
子その他添加剤の1種または2種以上含まれていてもよ
い。
Further, if necessary, the polyester may contain one of a fluorescent whitening agent, a stabilizer, an antioxidant, an ultraviolet absorber, a hydrolysis inhibitor, an antistatic agent, a flame retardant, an inorganic fine particle for matting, and other additives. Species or two or more species may be contained.

【0014】本発明ではポリエステルの粘度や分子量に
ついては特に限定されず、溶融紡糸可能な粘度や分子量
であればよい。しかしウベローデ型粘度計においてフェ
ノールとテトラクロロエタン等量混合液中、30℃で測定
したときにその極限粘度〔η〕が0.60〜0.65のポリエス
テルを用いるのが紡糸性や得られるポリエステル繊維の
物性の点から好ましい。
In the present invention, the viscosity and molecular weight of the polyester are not particularly limited, and may be any viscosity and molecular weight that can be melt-spun. However, the use of a polyester having an intrinsic viscosity [η] of 0.60 to 0.65 when measured at 30 ° C. in a mixed solution of phenol and tetrachloroethane in an Ubbelohde viscometer in terms of spinnability and physical properties of the obtained polyester fiber. Is preferred.

【0015】また、本発明のポリエステル極細繊維とは
単糸デニールが1.0デニール以下、更に好ましくは
0.8デニール以下であるものをいう。1.0デニール
を越えると衣料用織物用途等に使用した場合に、目標と
する極細繊維の風合に欠けるものとなる。フィラメント
数に関しては特に限定されないが、デニールに応じた、
あるいは用途に応じたフィラメント数を採用することが
出来る。
The polyester ultrafine fibers of the present invention are those having a single yarn denier of 1.0 denier or less, more preferably 0.8 denier or less. If it exceeds 1.0 denier, the texture of the target ultrafine fibers will be lacking when used for clothing fabrics and the like. There is no particular limitation on the number of filaments, but depending on the denier,
Alternatively, the number of filaments according to the application can be adopted.

【0016】次に、本発明のポリエステル極細繊維の繊
維構造は、赤外吸収法による全トランス分率(A)のう
ち結晶領域のトランス分率(B)の占める割合(B/
A)が50%以上であることを必要とする。すなわち、赤
外吸収法は下表1のようにコンホーメーション解析によ
り、非晶部をトランスとゴージュの2種に分類して比較
できるが全トランス分率(トランスCTtotal )のうち
50%以上、更に好ましくは60%以上が結晶領域のトラン
ス(CTcrys)である必要がある。全トランス分率のう
ち結晶領域のトランス分率が50%未満の場合には熱収縮
応力が低いものとなり織物とした場合に極細繊維として
の風合や表面感の乏しいものとなる。
Next, the fiber structure of the polyester ultrafine fiber of the present invention is such that the ratio (B / B) occupied by the trans fraction (B) of the crystal region to the total trans fraction (A) determined by the infrared absorption method.
A) needs to be 50% or more. That is, in the infrared absorption method, the amorphous portion can be classified into two types, trans and gouge, by conformation analysis as shown in Table 1 below and compared, but the total trans fraction (trans CTtotal)
At least 50%, more preferably at least 60%, must be trans (CTcrys) in the crystalline region. When the trans fraction in the crystal region is less than 50% of the total trans fraction, the heat shrinkage stress is low, and when it is made into a woven fabric, the feeling and surface feeling as ultrafine fibers are poor.

【0017】[0017]

【表1】 [Table 1]

【0018】次に本発明の製造方法について説明する。
本発明の製造方法は紡糸口金より溶融紡出した繊維形成
性ポリエステルの糸条を一旦ガラス転移点以下の温度に
冷却し、次いで加熱装置(加熱帯域と称することもあ
る)内を走行させて延伸−熱処理した後油剤を付与し、
4000m/分以上の引取速度で巻取るものである。この場合
の溶融紡出温度、溶融紡出速度などは特に制限されず、
ポリエステル繊維を製造するのに通常用いられているの
と同様の条件下で行うことができるが、一般に溶融紡出
温度を(ポリエステルの融点+20℃)〜(ポリエステル
溶融点+40℃)の範囲の温度(例えばポリエチレンテレ
フタレートの場合は一般に約280〜300℃)にし、
かつ溶融紡出速度(溶融紡出量)を約15〜50g/紡糸孔1
mm2 ・分程度とすると、品質の良好なポリエステル極細
繊維を良好な紡糸工程性で得ることができるので好まし
い。また、紡糸口金における紡糸孔の大きさや数、紡糸
孔の形状なども特に制限されず、目的とするポリエステ
ル極細繊維の単繊維繊度、総合デニール数、断面形状な
どに応じて調節することができる。紡糸孔(単孔)の大
きさは約 0.018〜0.07mm2 程度にしておくのが望まし
い。
Next, the manufacturing method of the present invention will be described.
In the production method of the present invention, a fiber-forming polyester yarn melt-spun from a spinneret is once cooled to a temperature lower than the glass transition point, and then drawn in a heating device (sometimes called a heating zone). -Apply oil after heat treatment,
It winds at a take-up speed of 4000m / min or more. In this case, the melt spinning temperature, the melt spinning speed and the like are not particularly limited,
It can be carried out under the same conditions as those usually used for producing polyester fibers, but generally has a melt spinning temperature of (melting point of polyester + 20 ° C) to (polyester melting point + 40 ° C). (For example, generally about 280 to 300 ° C. in the case of polyethylene terephthalate),
And the melt spinning speed (melt spinning amount) is about 15-50g / spinning hole 1
The range of about mm 2 · minute is preferable because a polyester fine fiber of good quality can be obtained with good spinning processability. The size and number of the spinning holes in the spinneret, the shape of the spinning holes, and the like are not particularly limited, and can be adjusted according to the desired single-fiber fineness, the total denier number, and the cross-sectional shape of the target polyester ultrafine fiber. The size of the spinning hole (single hole) is desirably about 0.018 to 0.07 mm 2 .

【0019】そして、上記によって溶融紡出したポリエ
ステル繊維を、一旦そのガラス転移温度以下の温度、好
ましくはガラス転移温度よりも10℃以上低い温度に冷却
する。この場合の冷却方法や冷却装置としては、紡出し
たポリエステル繊維をそのガラス転移温度以下に冷却で
きる方法や装置であればいずれでもよく特に制限されな
いが、紡糸口金の下に冷却風吹き付け筒などの冷却風吹
き付け装置を設けておいて、紡出されてきたポリエステ
ル繊維に冷却風を吹き付けてガラス転移温度以下に冷却
するようにするのが好ましい。その際に冷却風の温度や
湿度、冷却風の吹き付け速度、紡出糸条に対する冷却風
の吹き付け角度などの冷却条件も特に制限されず、口金
から紡出されてきたポリエステル繊維の揺れなどを生じ
ないようにしながら速やかに且つ均一にガラス転移温度
以下にまで冷却できる条件であればいずれでもよい。そ
のうちでも、冷却風の温度を約20〜30℃、冷却風の湿度
を20〜60%、冷却風の吹き付け速度を 0.4〜 1.0m/秒速
度として、紡出繊維に対する冷却風の吹き付け方向を紡
出方向に対して垂直にして紡出したポリエステル繊維の
冷却を行うのが、高品質のポリエステル繊維を円滑に得
ることができるので好ましい。また、冷却風吹き付け筒
を用いて前記の条件下で冷却を行う場合は、紡糸口金の
直下にやや間隔をあけてまたは間隔をあけないで、長さ
が約80〜 120cm程度の冷却風吹き付け筒を配置するのが
好ましい。
Then, the polyester fiber melt-spun as described above is once cooled to a temperature lower than its glass transition temperature, preferably 10 ° C. or lower than the glass transition temperature. The cooling method and the cooling device in this case are not particularly limited as long as the method and the device can cool the spun polyester fiber to the glass transition temperature or lower, but are not particularly limited. It is preferable that a cooling air blowing device is provided, and cooling air is blown onto the spun polyester fiber to cool the polyester fiber to a temperature lower than the glass transition temperature. At this time, cooling conditions such as the temperature and humidity of the cooling air, the blowing speed of the cooling air, and the angle at which the cooling air is blown onto the spun yarn are not particularly limited, and the polyester fibers spun from the die may shake. Any conditions may be used as long as they can be rapidly and uniformly cooled to the glass transition temperature or lower while keeping the temperature below the glass transition temperature. Among them, the cooling air temperature is about 20 ~ 30 ℃, the cooling air humidity is 20 ~ 60%, and the cooling air blowing speed is 0.4 ~ 1.0m / sec. It is preferable to cool the spun polyester fiber in a direction perpendicular to the exit direction because high-quality polyester fiber can be smoothly obtained. In addition, when cooling is performed under the above conditions using a cooling air blowing cylinder, a cooling air blowing cylinder having a length of about 80 to 120 cm is provided with or without a slight interval directly below the spinneret. Is preferably arranged.

【0020】次に、ガラス転移温度以下にまで冷却した
ポリエステル繊維を引き続いてそのまま直接加熱帯域に
導入して延伸する。加熱帯域の温度はポリエステルの種
類などに応じて異なり得るが、ポリエステルのガラス転
移温度よりも40℃以上高い温度としておくと、得られる
ポリエステル繊維の物性を実用上満足のゆくものとする
ことができるので好ましく、例えばポリエチレンテレフ
タレート繊維の場合は加熱帯域の温度を約100℃以上
とするのが好ましい。加熱帯域の上限温度は、加熱帯域
内で繊維間の融着や糸切れ、単糸切れなどが生じないよ
うな温度であればよい。
Next, the polyester fiber cooled to the glass transition temperature or lower is subsequently directly introduced into the heating zone as it is and stretched. The temperature of the heating zone may vary depending on the type of polyester, etc., but if the temperature is set at 40 ° C. or higher than the glass transition temperature of the polyester, the physical properties of the obtained polyester fiber can be made practically satisfactory. For example, in the case of polyethylene terephthalate fiber, the temperature of the heating zone is preferably set to about 100 ° C. or higher. The upper limit temperature of the heating zone may be any temperature that does not cause fusion between fibers, breakage of yarn, breakage of single yarn, and the like in the heating zone.

【0021】加熱帯域の種類や構造は、加熱帯域内を走
行するポリエステル繊維を加熱帯域内の加熱手段などに
接触せずに加熱することができ、しかも加熱帯域内を走
行する糸条とそれを包囲する空気との間に抵抗を生じさ
せて糸条張力を増大させて、繊維に延伸を生じさせるこ
とのできる構造であればいずれでもよい。そのうちで
も、加熱帯域としては、筒状構造の加熱帯域が好ましく
用いられ、特に筒状壁自体がヒーターとなっている内径
約20〜50mm程度のチューブヒーターなどが好まし
い。
The type and structure of the heating zone are such that the polyester fiber running in the heating zone can be heated without contacting the heating means in the heating zone, and the yarn running in the heating zone and the filaments can be heated. Any structure may be used as long as it can generate resistance between the surrounding air and increase the yarn tension to cause drawing of the fiber. Among them, as the heating zone, a heating zone having a tubular structure is preferably used, and particularly a tube heater having an inner diameter of about 20 to 50 mm, in which the tubular wall itself is a heater, is preferred.

【0022】加熱帯域の紡糸口金からの設置位置、加熱
帯域の長さなどは、ポリエステル繊維の種類、ポリエス
テルの紡出量、ポリエステル繊維の冷却温度、ポリエス
テル繊維の走行速度、加熱帯域の温度、加熱帯域の内径
などに応じて調節できるが、紡糸口金直下から加熱帯域
の入口までの距離を 0.5〜 3.0m程度、特に極細繊維の
場合、糸ゆれ等の糸条走行安定性の点から 0.5〜 1.0m
が一層好ましく、そして加熱帯域の長さを 1.0〜 2.0m
程度としておくと、加熱帯域内でポリエステル繊維を加
熱して均一に円滑に延伸することができるので望まし
い。
The installation position of the heating zone from the spinneret, the length of the heating zone, etc. depend on the type of polyester fiber, the amount of polyester spun, the cooling temperature of the polyester fiber, the running speed of the polyester fiber, the temperature of the heating zone, and the heating zone. It can be adjusted according to the inner diameter of the band, etc., but the distance from directly below the spinneret to the entrance of the heating zone is about 0.5 to 3.0 m. m
Is more preferable, and the length of the heating zone is 1.0 to 2.0 m
It is desirable to set the degree to such a degree that the polyester fiber can be uniformly and smoothly stretched by heating in the heating zone.

【0023】そして、加熱帯域で延伸されたポリエステ
ル繊維に対して、必要に応じて油剤を付与してから、高
速で引き取る。本発明では、上記した一連の工程からな
る延伸したポリエステル繊維の製造工程を、ポリエステ
ル繊維の引取速度を4000m/分以上とすることが必要であ
り、引取速度が4500m/分以上であるのが好ましい。ポリ
エステル繊維の引取速度が4000m/分未満であると、加熱
帯域において繊維の延伸が十分に行われなくなり、得ら
れるポリエステル繊維の機械的物性が低下し、しかも上
記した一連の工程からなる本発明の方法が円滑に行われ
ず、特に加熱帯域における糸条の張力変動、過加熱など
が生じて、均一な延伸が行われにくくなる。
Then, an oil agent is applied to the polyester fiber drawn in the heating zone, if necessary, and then the polyester fiber is drawn at a high speed. In the present invention, the production process of the stretched polyester fiber consisting of the above-described series of processes requires that the take-up speed of the polyester fiber be 4000 m / min or more, and the take-up speed is preferably 4500 m / min or more. . When the take-up speed of the polyester fiber is less than 4000 m / min, the drawing of the fiber is not sufficiently performed in the heating zone, the mechanical properties of the obtained polyester fiber are reduced, and the present invention comprising the above-described series of steps is performed. The method is not carried out smoothly, and in particular, fluctuations in the tension of the yarn in the heating zone, overheating, etc. occur, making it difficult to perform uniform stretching.

【0024】また、本発明を行うに当たってはM値(単
孔吐出量Q/単孔面積L)と単糸デニールD、加熱帯域
入口G(mm)とフィラメント数N、M値と紡糸V(m/
分)について 10≦M+5D≦65 (1) −20≦G−0.2N≦5 (2) −85≦M−0.02V≦35 (3) を同時に満足している必要がある。(1)式においてM
+5Dの値が10未満であるとノズル背圧が低く吐出不良
による断面不良あるいは巻付きの要因となる。一方、M
+5Dの値が65を越えるとノズル背圧が高すぎるため
メルトフラクチャー傾向となりやはり断面均斉度が悪く
なる。より好ましくは15≦M+5D≦50の範囲であ
る。
In carrying out the present invention, the M value (single hole discharge amount Q / single hole area L) and single yarn denier D, the heating zone entrance G (mm), the number of filaments N, the M value and the spinning V (m /
Min) 10 ≦ M + 5D ≦ 65 (1) −20 ≦ G−0.2N ≦ 5 (2) −85 ≦ M−0.02V ≦ 35 (3) must be satisfied at the same time. In equation (1), M
If the value of + 5D is less than 10, the back pressure of the nozzle is low, which causes a sectional failure or winding due to a discharge failure. On the other hand, M
If the value of + 5D exceeds 65, the back pressure of the nozzle is too high, and the melt fracture tends to occur, and the uniformity of the cross section also deteriorates. More preferably, the range is 15 ≦ M + 5D ≦ 50.

【0025】次に(2)式においてG−0.2Nの値が
−20未満であると紡糸時にフィラメント数に対して、
加熱帯域の入口径が小さくなりすぎ、ガイド抵抗による
単糸切れが生じやすくなり工程性を悪化させることとな
る。一方、G−0.2Nの値が5を越えると加熱帯域の
入口径が大きくなりすぎ、加熱帯域中の温度が冷される
ため糸条の延伸、熱処理が十分行われず繊維物性として
満足なものが得られない。加熱帯域出口径については品
質的にはできるだけ小さいことが望ましいが導糸時の糸
おろし作業性等を考えるとフィラメント数等銘柄に応じ
て8mm〜15mmが適当である。
Next, if the value of G-0.2N in the formula (2) is less than -20, the number of filaments during spinning is
The diameter of the inlet of the heating zone becomes too small, and the single yarn breakage due to the guide resistance is apt to occur, thereby deteriorating the processability. On the other hand, when the value of G-0.2N exceeds 5, the inlet diameter of the heating zone becomes too large, and the temperature in the heating zone is cooled, so that the drawing and heat treatment of the yarn are not sufficiently performed and the fiber properties are satisfactory. Can not be obtained. The exit diameter of the heating zone is desirably as small as possible in terms of quality, but considering the workability of lowering the yarn at the time of yarn introduction, 8 mm to 15 mm is appropriate depending on the brand such as the number of filaments.

【0026】また(3)式のM値と紡速VについてはM
−0.02Vの値が−85未満であるとノズル背圧不足
となりM−0.02Vの値が−35を越えるとノズル背
圧が高すぎることとなり、いずれの場合も繊度不良や工
程調子悪化の原因となる。この(1)〜(3)式を満足
することにより従来問題となっていた糸条の走行速度や
走行糸条にかかる張力変動からくる延伸斑による断糸、
ループ、毛羽等が大幅に改善される。また本発明では、
ポリエステル極細繊維の断面形状なども特に限定され
ず、通常の丸断面だけでなく、例えば楕円形、三角形、
方形、多角形、中空形、多葉形、アレイ形、V字形、T
字形などの異形断面であってもよい。
Further, regarding the M value and the spinning speed V in the equation (3), M
When the value of -0.02V is less than -85, the nozzle back pressure becomes insufficient, and when the value of M-0.02V exceeds -35, the nozzle back pressure becomes too high. Cause. By satisfying the expressions (1) to (3), the yarn breakage due to the unevenness of the drawing caused by the fluctuation in the running speed and the tension applied to the running yarn, which has conventionally been a problem,
Loops, fluff, etc. are greatly improved. In the present invention,
The cross-sectional shape of the polyester ultrafine fiber is not particularly limited, and is not limited to a normal round cross-section, for example, an elliptical shape, a triangular shape,
Square, polygon, hollow, multi-lobe, array, V-shaped, T
It may have an irregular cross section such as a letter shape.

【0027】[0027]

【実施例】以下、本発明について実施例をあげて具体的
に説明するが、本発明はそれらに限定されるものではな
い。尚、各実施例、比較例における物性値等は以下の方
法で測定した。 <繊維の強伸度>インストロン製の引張試験機を用いて
得られる応力−歪曲線より強伸度を求めた。 <トランス分率の定量>日本電子製FT−IR(JIR-5500)
及びMTEX社製光音響分光装置を用い988cm-1バンド
(結晶化バンド)のピーク面積A988 、793cm-1バン
ド(内部標準)のピーク面積A793 より( 1')式を用い
て結晶分率CTcrysを求めた。 CTcrys={ 1.12×( A988 /A793 ) + 0.092} ×100 (1’) また973cm−1バンド(トランス):O−C stre
tchingのピーク面積A973と793cm-1バンド(内部標
準)のピーク面積A793 より(2')式と(3')式から全
トランス分率CTtotal 及び非晶中のトランス分率CT
amorを求めた。 CTtotal =0.12×(A973 /A793 )×100 (2') CTamor=CTtotal −CTcrys (3') <ポリエステル繊維の均一性(ウースター斑:U%)>
ツエルベーカー社製ウスター斑試験機を用いて、糸を電
極間に一定速度で通し(糸速100m/分、レンジ±1
2.5%、チャート速度10cm/分)断面変化に比例
する電気容量の変化を連続測定し、糸の一定長さの平均
偏差係数U%を測定した。 〈製糸化工程評価〉工程調子良好(○)、量産としては
今一歩のレベル(△)、量産性ナシ(×) 〈染色・風合評価〉得られたポリエステル繊維を経糸お
よび緯糸として使い平織物を製織し通常の減量染色、仕
上加工を施し織物を得、これについてパネラー評価を実
施し、良好(○)、今一歩(△)、不良(×)で示し
た。
EXAMPLES Hereinafter, the present invention will be described specifically with reference to examples, but the present invention is not limited thereto. In addition, the physical property values in each Example and Comparative Example were measured by the following methods. <Strength and elongation of fiber> The strength and elongation were determined from a stress-strain curve obtained using a tensile tester manufactured by Instron. <Quantification of transformer fraction> JEOL FT-IR (JIR-5500)
And the peak area A 988 of the 988 cm -1 band (crystallized band) and the peak area A 793 of the 793 cm -1 band (internal standard) using a photoacoustic spectrometer manufactured by MTEX and a crystal fraction using the formula (1 ′). CTcrys were sought. CTcrys = {1.12 × (A 988 / A 793) + 0.092} × 100 (1 ') The 973 cm -1 band (trans): O-C stre
peak area A 793 of tching peak area A 973 and 793cm -1 band (internal standard) (2 ') and (3') trans fraction of all-trans fraction CTtotal and in amorphous from equation CT
amor sought. CTtotal = 0.12 × (A 973 / A 793 ) × 100 (2 ′) CTamor = CTtotal−CTcrys (3 ′) <Uniformity of polyester fiber (Wooster spots: U%)>
The yarn is passed between the electrodes at a constant speed using a Worcester spot tester manufactured by Zellbaker (yarn speed 100 m / min, range ± 1).
(2.5%, chart speed 10 cm / min) A change in electric capacity proportional to a change in cross section was continuously measured, and an average deviation coefficient U% of a constant length of the yarn was measured. <Evaluation of yarn-making process> Good process condition (○), level of mass production now (△), mass-production pear (×) <Dyeing / hand feeling evaluation> Plain fabric using polyester fiber obtained as warp and weft Was woven and subjected to ordinary weight loss dyeing and finishing to obtain a woven fabric, which was evaluated by panelists, and was evaluated as good (○), now one step (△), and poor (×).

【0028】実施例1 ポリエチレンテレフタレート(〔η〕=0.65)を孔数96
個(孔径0.15mmφ)の口金を用いて紡糸温度 295℃、単
孔吐出量(Q)0.40g/分で溶融紡出し温度25℃、湿度60
%の冷却風を0.5m/secの速度で紡出糸条に吹付け糸条を
70℃以下にした後、紡糸口金下方1.0mの位置に設置した
長さ1.0m、入口径10mm、出口径10mm、内径30mmφのチュ
ーブヒーター(内温 180℃)に導入してチューブヒータ
ー内で延伸した後、チューブヒーターから出て来た糸条
にカラス口ガイドで給油し2個の引取ローラーを介して
4700m/分の速度で巻取り75d/96fの延伸したポリエス
テル繊維を得た。その時の製糸化条件とできた繊維の構
造物性及び染色・風合評価を表2、表3に示した。
Example 1 Polyethylene terephthalate ([η] = 0.65) was filled with 96 holes.
Spinning temperature of 295 ° C, single-hole discharge rate (Q) of 0.40 g / min, melt spinning temperature of 25 ° C, humidity of 60
% Cooling air at a speed of 0.5 m / sec onto the spun yarn.
After the temperature is reduced to 70 ° C or less, it is introduced into a tube heater (internal temperature: 180 ° C) with a length of 1.0m, an inlet diameter of 10mm, an outlet diameter of 10mm, and an inner diameter of 30mmφ, which is installed 1.0m below the spinneret. After that, the yarn coming out of the tube heater is lubricated with a crow mouth guide and passed through two take-off rollers.
At a speed of 4700 m / min, a drawn polyester fiber of 75d / 96f was obtained. Tables 2 and 3 show the yarn forming conditions at that time, and the structural properties and dyeing / feeling evaluation of the resulting fibers.

【0029】[0029]

【表2】 [Table 2]

【表3】 [Table 3]

【0030】実施例2 ポリエチレンテレフタレート(〔η〕=0.65)を孔数 1
44個(孔径0.15mmφ)の口金を用いて紡糸温度 298℃、
単孔吐出量(Q)0.26g/分で溶融紡糸し、温度25℃、湿
度60%の冷却風を0.5m/secの速度で紡出糸条に吹付け糸
条を70℃以下にした後、紡糸口金下方1.0mの位置に設置
した長さ1.0m、入口径12mm、出口径10mm、内径30mmφの
チューブヒーター(内温 180℃)に導入してチューブヒ
ーター内で延伸した後、チューブヒーターから出て来た
糸条にカラス口ガイド給油し2個の引取ローラーを介し
て4500m/分の速度で巻取り75d/144fの延伸したポリエ
ステル繊維を得た。その時の製糸化条件と出来た繊維の
構造、物性及び染色・風合評価を表2、表3に示した。
Example 2 Polyethylene terephthalate ([η] = 0.65) was filled with 1 hole.
Spinning temperature 298 ℃, using 44 (0.15mmφ hole diameter)
Melt spinning at a single hole discharge rate (Q) of 0.26 g / min. Spraying the cooling air at a temperature of 25 ° C and a humidity of 60% onto the spun yarn at a speed of 0.5 m / sec. After being introduced into a tube heater (internal temperature 180 ° C) with a length of 1.0m, an inlet diameter of 12mm, an outlet diameter of 10mm, and an inner diameter of 30mmφ, which is installed 1.0m below the spinneret, stretched in the tube heater, The emerging yarn was lubricated with a crow's mouth guide and wound up at a speed of 4500 m / min via two take-up rollers to obtain a drawn polyester fiber of 75d / 144f. Tables 2 and 3 show the spinning conditions and the evaluation of the structure, physical properties and dyeing / feeling of the resulting fiber.

【0031】実施例3 ポリエチレンテレフタレート(〔η〕=0.65)を孔数96
個(孔径0.15mmφ)の口金を用いて紡糸温度 295℃、単
孔吐出量(Q)0.23g/分で溶融紡糸し、温度25℃、湿度
60%の冷却風を0.5m/secの速度で紡出糸条に吹付け、糸
条を70℃以下にした後、紡糸口金下方1.0mの位置に設置
した長さ1.0m、入口径10mm、出口径10mm、内径30mmφの
チューブヒーター(内温 200℃)に導入してチューブヒ
ーター内で延伸した後、チューブヒーターから出て来た
糸条にカラス口ガイド給油し2個の引取ローラーを介し
て4000m/分の速度で巻取り50d/96fの延伸したポリエ
ステル繊維を得た。その時の製糸化条件と出来た繊維の
構造、物性及び染色・風合評価を表2、表3に示した。
Example 3 Polyethylene terephthalate ([η] = 0.65) was filled with 96 holes.
Melt spinning at 295 ° C with a single hole (hole diameter 0.15mmφ) at a spinning temperature of 295 ° C and a single hole discharge rate (Q) of 0.23g / min.
A 60% cooling air is blown onto the spun yarn at a speed of 0.5 m / sec to reduce the yarn to 70 ° C. or less, and then placed 1.0 m below the spinneret at a length of 1.0 m, an inlet diameter of 10 mm, After being introduced into a tube heater (inner temperature 200 ° C) with an outlet diameter of 10 mm and an inner diameter of 30 mmφ and stretched in the tube heater, the crow mouth guide oil is supplied to the yarn coming out of the tube heater and passed through two take-off rollers. At a speed of 4000 m / min, a drawn polyester fiber of 50d / 96f was obtained. Tables 2 and 3 show the spinning conditions and the evaluation of the structure, physical properties and dyeing / feeling of the resulting fiber.

【0032】比較例1 紡糸口金を孔数96個(孔数 0.3mmφ)とし、単孔吐出量
(Q)0.35g/分、巻取速度を4000m/分に変えたこと以外
は実施例1と同様に製糸し75d/96fの延伸したポリエ
ステル繊維を得た。工程調子は断糸が多く不調だった。
また繊維の断面均斉度は不満足なレベルであり、U%波
形、織物評価の結果も良くなかった。出来た繊維の構
造、物性及び染色、風合評価を表2、表3に示した。
Comparative Example 1 The procedure of Example 1 was repeated except that the number of holes in the spinneret was 96 (hole number: 0.3 mmφ), the single hole discharge rate (Q) was changed to 0.35 g / min, and the winding speed was changed to 4000 m / min. In the same manner, a 75d / 96f drawn polyester fiber was obtained. The process was unsatisfactory with many thread breaks.
Further, the cross-sectional uniformity of the fiber was at an unsatisfactory level, and the U% waveform and the evaluation of the fabric were not good. Tables 2 and 3 show the structure, physical properties, dyeing, and texture evaluation of the resulting fiber.

【0033】比較例2 単孔吐出量(Q)0.32g/分、巻取速度3700m/分に変えた
こと以外は実施例1と同様に製糸し、75d/96fの延伸し
たポリエステル繊維を得た。物性的に伸度が大きく熱応
力値が低目で織物評価は風合が乏しかった。出来た繊維
の構造、物性及び染色、風合評価を表2、表3に示し
た。
Comparative Example 2 A yarn was produced in the same manner as in Example 1 except that the single hole discharge rate (Q) was changed to 0.32 g / min and the winding speed was changed to 3700 m / min, to obtain a 75d / 96f drawn polyester fiber. . The elongation was large in physical properties, the thermal stress value was low, and the fabric evaluation was poor. Tables 2 and 3 show the structure, physical properties, dyeing, and texture evaluation of the resulting fiber.

【0034】比較例3 チューブヒーター入口径を8mm、紡速を4000m/分とした
こと以外は、実施例2と全く同じ条件にて製糸し、75d
/ 144fの延伸したポリエステル繊維を得た。工程調子
は著しく悪く、断糸が頻発した。出来た繊維の構造、物
性を表2、表3に示した。しかし工程調子が悪く織物評
価に供するには至らなかった。
Comparative Example 3 A yarn was produced under the same conditions as in Example 2 except that the inlet diameter of the tube heater was 8 mm and the spinning speed was 4000 m / min.
/ 144f drawn polyester fiber was obtained. Process condition was remarkably bad, and thread breakage occurred frequently. Tables 2 and 3 show the structure and physical properties of the resulting fiber. However, the process condition was poor and could not be used for fabric evaluation.

【0035】実施例1〜3により得られた繊維は、いず
れもその製糸化工程調子は良好であり、繊度斑がなく織
物評価も良好だった。一方、比較例1〜3では工程調子
が得られなかったり、工程調子が得られても物性的に不
十分であり、結果的に織物評価が不満足なものとなって
いた。
Each of the fibers obtained in Examples 1 to 3 had a good condition in the spinning process, no fineness unevenness, and a good woven fabric evaluation. On the other hand, in Comparative Examples 1 to 3, the process condition was not obtained, or even if the process condition was obtained, the physical properties were insufficient, and as a result, the fabric evaluation was unsatisfactory.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 単糸デニールDが1.0d以下であり、
かつ赤外吸収法による全トランス分率のうち結晶領域の
トランス分率が50%以上を占めることを特徴とするポ
リエステル極細繊維。
1. A single yarn denier D is 1.0d or less,
A polyester ultrafine fiber, wherein the trans fraction in the crystalline region accounts for 50% or more of the total trans fraction determined by an infrared absorption method.
【請求項2】 繊維形成性ポリエステルを紡糸口金より
溶融紡出し、紡出糸条を一旦ガラス転移点以下の温度に
冷却し、次いで加熱装置内を走行させて、延伸熱処理し
た後、油剤を付与し、4000m/分以上で引き取る紡糸方法
において、紡糸条件として、口金単孔吐出量Q(g/min)
/口金単孔面積L(mm2 )をMとし、加熱装置の入口径
をG(mm)、紡速V(m/分)、延伸後の単糸デニールを
D、フィラメント数Nとしたとき、下記式(1)〜
(3)を同時に満たす条件にて紡糸することを特徴とす
る請求項1項に記載のポリエステル繊維の製造方法。 10≦M+5D≦65 (1) −20≦G−0.2N≦5 (2) −85≦M−0.02V≦−35 (3)
2. A fiber-forming polyester is melt-spun from a spinneret, and the spun yarn is once cooled to a temperature below the glass transition temperature, then run in a heating device, subjected to a drawing heat treatment, and an oil agent is applied. In the spinning method of drawing at a speed of 4000 m / min or more, the spinning conditions include a single hole discharge rate Q (g / min).
Where M is the area of the single hole of the die, L (mm 2 ), G is the inlet diameter of the heating device, V is the spinning speed, and D is the denier of the single yarn after drawing, and N is the number of filaments. The following equation (1)
The method for producing a polyester fiber according to claim 1, wherein the spinning is performed under conditions that simultaneously satisfy (3). 10 ≦ M + 5D ≦ 65 (1) −20 ≦ G−0.2N ≦ 5 (2) −85 ≦ M−0.02V ≦ −35 (3)
JP30920696A 1996-11-20 1996-11-20 Polyester ultrafine yarn and its production Pending JPH10158932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30920696A JPH10158932A (en) 1996-11-20 1996-11-20 Polyester ultrafine yarn and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30920696A JPH10158932A (en) 1996-11-20 1996-11-20 Polyester ultrafine yarn and its production

Publications (1)

Publication Number Publication Date
JPH10158932A true JPH10158932A (en) 1998-06-16

Family

ID=17990210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30920696A Pending JPH10158932A (en) 1996-11-20 1996-11-20 Polyester ultrafine yarn and its production

Country Status (1)

Country Link
JP (1) JPH10158932A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041432A (en) * 2001-07-27 2003-02-13 Asahi Kasei Corp Polyester ultrafine fiber
CN102168319A (en) * 2011-04-23 2011-08-31 无锡市太极实业股份有限公司 Production method for high-strength high-modulus low-shrink polyester industrial yarns
CN102168318A (en) * 2011-04-23 2011-08-31 无锡市太极实业股份有限公司 Direct spinning method for single-part four-end 2200dtex high-modulus low-shrinkage polyester industrial yarns
CN102181954A (en) * 2011-04-23 2011-09-14 无锡市太极实业股份有限公司 Method for producing polyester industrial yarns with high strength, high elongation and low shrinkage

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003041432A (en) * 2001-07-27 2003-02-13 Asahi Kasei Corp Polyester ultrafine fiber
CN102168319A (en) * 2011-04-23 2011-08-31 无锡市太极实业股份有限公司 Production method for high-strength high-modulus low-shrink polyester industrial yarns
CN102168318A (en) * 2011-04-23 2011-08-31 无锡市太极实业股份有限公司 Direct spinning method for single-part four-end 2200dtex high-modulus low-shrinkage polyester industrial yarns
CN102181954A (en) * 2011-04-23 2011-09-14 无锡市太极实业股份有限公司 Method for producing polyester industrial yarns with high strength, high elongation and low shrinkage

Similar Documents

Publication Publication Date Title
US20090035568A1 (en) Polytrimethylene terephthalate hollow composite staple fibers and process for producing same
JPS62191511A (en) Highly shrinkable polyester fiber and combined filament yarn of polyester and their production
JPH10158932A (en) Polyester ultrafine yarn and its production
JP3583248B2 (en) Splittable conjugate fiber comprising polyester and polyamide and method for producing the same
JPH09137317A (en) Melt-spinning apparatus for ultrafine multifilament yarn, spinning therefor and production of the same yarn
JPH0931749A (en) Production of polyester fiber
JP7332307B2 (en) Method for producing highly hollow polyester fiber
JP3837227B2 (en) Direct spinning drawing method of polyester extra fine multifilament
JP2979977B2 (en) Method for producing crimped composite polyester fiber
JP2004052173A (en) High-strength polyester monofilament and method for producing the same
JP2609009B2 (en) Method for producing polyester ultrafine fiber
JP2866190B2 (en) Method for producing mixed fiber having different elongation
JPH11279825A (en) Melt spinning unit for multifilament yarn and melt spinning using the same
JPH11107048A (en) Sheath-core type polyester textile excellent in dyeability and ultraviolet screening effects and production of the same
JPH1096117A (en) Polyester fiber and its production
JPH10168653A (en) Polyester yarn and its production
JP3224879B2 (en) Ultrafine fiber and method for producing the same
JPH10158930A (en) Polyester yarn
KR100484119B1 (en) Manufacturing method of polyester microfilament yarn
JP3271401B2 (en) Method for producing polyester fiber
JP3657418B2 (en) Polyester fiber and method for producing the same
JP3574543B2 (en) Method for producing polyester thick yarn
JP2002194617A (en) Method for producing polyester fiber for industrial material
JPH11229228A (en) Hollow multifilament and woven fabric
JPS60209012A (en) Preparation of polyester yarn

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A02 Decision of refusal

Effective date: 20041102

Free format text: JAPANESE INTERMEDIATE CODE: A02