JP7332307B2 - Method for producing highly hollow polyester fiber - Google Patents

Method for producing highly hollow polyester fiber Download PDF

Info

Publication number
JP7332307B2
JP7332307B2 JP2019044435A JP2019044435A JP7332307B2 JP 7332307 B2 JP7332307 B2 JP 7332307B2 JP 2019044435 A JP2019044435 A JP 2019044435A JP 2019044435 A JP2019044435 A JP 2019044435A JP 7332307 B2 JP7332307 B2 JP 7332307B2
Authority
JP
Japan
Prior art keywords
hollow
hollow polyester
fiber
polyester fiber
yarn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019044435A
Other languages
Japanese (ja)
Other versions
JP2020147862A (en
Inventor
章宏 鈴木
裕憲 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Frontier Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Frontier Co Ltd filed Critical Teijin Frontier Co Ltd
Priority to JP2019044435A priority Critical patent/JP7332307B2/en
Publication of JP2020147862A publication Critical patent/JP2020147862A/en
Application granted granted Critical
Publication of JP7332307B2 publication Critical patent/JP7332307B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

本発明は、高中空ポリエステル繊維の製造方法に関する。 The present invention relates to a method for producing highly hollow polyester fibers.

従来提案されている中空率40%以上の高中空ポリエステル繊維は、その多くが高中空を得るための特殊な紡糸方法を用いられている。 Many of the conventionally proposed highly hollow polyester fibers having a hollowness of 40% or more use a special spinning method to obtain a highly hollowed state.

特許文献1には、複数のスリット孔に囲まれた部分が外接円面積に占める面積占有率を大きくしたノズルから溶融ポリマーを吐出させ、通常の条件で紡糸延伸する方法が提案されている。しかし、スリット幅は0.05~0.03mm程度が下限で、これより小さくするとポリマー中の不純物(異物)等によりスリットが目詰まりしやすくなり、一方、円弧状スリットの径を大きくすると、一吐出孔当たりの下限吐出量がアップして繊度が大きくなるため、細繊度で且つ中空率40%以上の高中空ポリエステル繊維は得がたく、限定された製糸条件で製造されているのが実情である。 Patent Document 1 proposes a method in which a molten polymer is discharged from a nozzle in which a portion surrounded by a plurality of slit holes occupies a large percentage of the circumscribed circle area, and is spun and drawn under normal conditions. However, the lower limit of the slit width is about 0.05 to 0.03 mm. Since the minimum discharge rate per discharge hole increases and the fineness increases, it is difficult to obtain a highly hollow polyester fiber with a fine fineness and a hollow ratio of 40% or more, and the actual situation is that it is manufactured under limited spinning conditions. be.

特許文献2には、スリット状ノズルの内側から窒素ガス等の不活性ガスを導入して内外から吐出糸条を冷却する方法が提案されている。この方法によれば、高中空ポリエステル繊維は得られるものの、ノズルの構造が複雑になるため孔数を増やすことができない。従って、細繊度を得るには極度に生産能力が低下するためにコストが高くなるという欠点を有している。 Patent Document 2 proposes a method of introducing an inert gas such as nitrogen gas from the inside of a slit-shaped nozzle to cool the discharged yarn from the inside and outside. According to this method, highly hollow polyester fibers can be obtained, but the number of holes cannot be increased due to the complicated structure of the nozzle. Therefore, there is a drawback that the production capacity is extremely lowered to obtain a fine fineness, resulting in an increase in cost.

特許文献3および特許文献4には、溶融ポリエステルを、複数のスリットから構成される公知の中空糸製造用紡糸孔を具備する紡糸口金から吐出して、中空未延伸糸を得る際、吐出糸条を口金直下で一旦急冷し、次いで徐冷すると共に、紡糸ドラフトが150以上、かつ引取速度が1000~1800m/分で紡糸し、続いて未延伸糸を温度50~70℃の温水中で、1.8~5.5倍の延伸倍率で延伸(ネック延伸)することによる、0.1~8.0デニール(9.0デシテックス)の細繊度かつ40~85%の高中空率の繊維を得る方法が開示されている。但し、高中空率を得るための口金直下での急冷や高い紡糸ドラフトにより、溶融ポリエステルが接合する前に固化することで中空繊維の表面に亀裂が生じたり(中空破断という)、紡糸中の糸切れ(断糸ともいう)や、未延伸糸の中空破断に伴う延伸時の断糸が比較的多いといった欠点があった。 In Patent Documents 3 and 4, when a molten polyester is extruded from a spinneret having a known hollow fiber manufacturing spinning hole composed of a plurality of slits to obtain a hollow undrawn yarn, the extruded yarn is rapidly cooled immediately below the spinneret, then slowly cooled, and spun at a spinning draft of 150 or more and a take-up speed of 1000 to 1800 m / min. A fiber with a fineness of 0.1 to 8.0 denier (9.0 decitex) and a high hollowness of 40 to 85% is obtained by drawing (neck drawing) at a draw ratio of 8 to 5.5 times. A method is disclosed. However, due to rapid cooling directly below the spinneret and high spinning draft to obtain a high hollow ratio, the molten polyester solidifies before joining, causing cracks on the surface of the hollow fibers (called hollow breakage), There are drawbacks such as breakage (also called broken yarn) and broken yarn during drawing due to hollow breakage of undrawn yarn.

したがって、前記の従来技術では、高い生産性を維持しながら高中空ポリエステル繊維
を安定して製造するには至っていないのが実情である。
Therefore, the actual situation is that the above-mentioned prior art cannot stably produce highly hollow polyester fibers while maintaining high productivity.

特開平6-2210号公報JP-A-6-2210 特開昭62-289642号公報JP-A-62-289642 特開平11-302921号公報JP-A-11-302921 特開平10-292222号公報JP-A-10-292222

本発明は、上記従来技術を背景になされたもので、その目的は繊維横断面に占める中空部の割合が40%以上と高中空率のポリエステル繊維の、製造工程での中空破断による紡糸断糸や延伸断糸を抑制した、安定した製造方法を提供することにある。 The present invention was made against the background of the above-mentioned prior art, and its object is to break spun yarn by hollow breakage in the manufacturing process of polyester fibers with a high hollow ratio of 40% or more in the cross section of the fiber. To provide a stable production method that suppresses stretched yarn and broken yarn.

本発明者は、上記の課題を解決するために鋭意検討をおこなった結果、未延伸糸の中空率を抑え、延伸で高中空化させるという、紡糸及び延伸の工程調子が安定化する製造方法を見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found a production method that stabilizes the process condition of spinning and drawing by suppressing the hollowness of undrawn yarn and making it highly hollow by drawing. The discovery led to the completion of the present invention.

すなわち本発明によれば、
1.中空率15~35%の中空ポリエステル未延伸繊維をフロー延伸することで、延伸後繊維の中空率を40~90%とすることを特徴とする高中空ポリエステル繊維の製造方法、であり、
他の発明として
2.上記1に記載の方法で得られた高中空繊維を更にネック延伸することで細繊度化と高強度化を両立させることを特徴とする、単繊維繊度が0.1~9.0dtex、引張強度が2cN/dtex以上である高中空ポリエステル繊維の製造方法、を提供する。
That is, according to the present invention,
1. A method for producing a highly hollow polyester fiber characterized by flow-drawing hollow polyester undrawn fibers having a hollowness of 15 to 35% so that the hollowness of the fibers after stretching is 40 to 90%,
As another invention, 2. The high hollow fiber obtained by the method described in 1 above is further neck-drawn to achieve both a fine fineness and a high strength, and has a single fiber fineness of 0.1 to 9.0 dtex and a tensile strength. is 2 cN/dtex or more.

本発明の製造方法により、中空率が40~90%の高中空率を有するポリエステル繊維を、中空率15~35%の中空未延伸繊維から得るため、従来の方法よりも中空破断が少なく、かつ、紡糸断糸、延伸断糸ともに少なくなり、高い歩留まりを達成することができる。 According to the production method of the present invention, a polyester fiber having a high hollowness of 40 to 90% is obtained from a hollow undrawn fiber having a hollowness of 15 to 35%. , both spun yarn breakage and drawn yarn breakage are reduced, and a high yield can be achieved.

本発明の高中空率繊維の断面図である。1 is a cross-sectional view of a high hollowness fiber of the present invention; FIG. 本発明の未延伸糸を得るために用いる吐出孔の形状の一例である。It is an example of the shape of the discharge hole used to obtain the undrawn yarn of the present invention. 従来技術(特許文献1)の高中空率繊維を得るために用いる吐出孔の形状の一例である。It is an example of the shape of a discharge hole used for obtaining a high hollowness fiber of the prior art (Patent Document 1).

以下、本発明について詳細に述べる。
本発明のポリエステル繊維は、エチレンテレフタレートを主たる繰返し単位とするエチレンテレフタレート系のホモポリエステル、コポリエステル又はこれらのポリエステルに第3成分を混合したポリエステルからなるものであり、特に繰返し単位の90モル%以上がエチレンテレフタレート単位であるポリエステルが好ましく、ホモポリエチレンテレフタレートが最も好ましい。
The present invention will be described in detail below.
The polyester fiber of the present invention is an ethylene terephthalate-based homopolyester or copolyester having ethylene terephthalate as a main repeating unit, or a polyester obtained by mixing these polyesters with a third component, and particularly 90 mol % or more of the repeating unit. are ethylene terephthalate units, and homopolyethylene terephthalate is most preferred.

10モル%以下で共重合し得る共重合成分としては、酸成分としてイソフタル酸、5-ナトリウムスルホイソフタル酸、ジフェニルジカルボン酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸、シュウ酸、アジピン酸、セバシン酸、ドデカン二酸等の脂肪族ジカルボン酸、P-オキシ安息香酸、P-β-ヒドロキシエトキシ安息香酸等のオキシカルボン酸があげられ、またジオール成分としては、1,3-プロパンジオール、1,4-ブタンジオール、1,6-へキサンジオール、ネオペンチルグリコール等の脂肪族ジオール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン等の芳香族ジオール、ポリエチレングリコール、ポリテトラメチレングリコール等のポリアルキレングリコール等があげられる。なおこれら第3成分は、単独で共重合させても2種以上を同時に共重合させてもよい。 Examples of copolymerizable components that can be copolymerized at 10 mol % or less include aromatic dicarboxylic acids such as isophthalic acid, 5-sodiumsulfoisophthalic acid, diphenyldicarboxylic acid and naphthalenedicarboxylic acid as acid components, oxalic acid, adipic acid, and sebacic acid. , dodecanedioic acid and other aliphatic dicarboxylic acids, p-oxybenzoic acid, P-β-hydroxyethoxybenzoic acid and other oxycarboxylic acids. -aliphatic diols such as butanediol, 1,6-hexanediol and neopentyl glycol; aromatic diols such as 1,4-bis(β-hydroxyethoxy)benzene; polyalkylenes such as polyethylene glycol and polytetramethylene glycol; Glycol and the like can be mentioned. These third components may be copolymerized singly or two or more of them may be copolymerized simultaneously.

ポリエステルの重合度(固有粘度)は特に限定する必要はないが、大きくなりすぎると紡糸時の工程安定性が低下して細繊度のものが得難くなる傾向にあり、一方小さくなりすぎると高中空のものが得難くなる傾向にあるので、オルソクロロフェノール中35℃で測定した固有粘度IVは0.45~1.00、好ましくは0.5~0.9の範囲が適当である。 The degree of polymerization (intrinsic viscosity) of the polyester does not have to be particularly limited, but if it is too large, the process stability during spinning tends to decrease, making it difficult to obtain fine fineness, while if it is too small, it will be highly hollow. Therefore, the intrinsic viscosity IV measured in orthochlorophenol at 35° C. is in the range of 0.45 to 1.00, preferably 0.5 to 0.9.

また、上記ポリエステルには各種添加剤を混合してもよく、例えば抗菌剤、親水剤、防ダニ剤、消臭剤、遠赤外線放射剤等の各種機能性付与剤、二酸化チタン、酸化ケイ素、酸化亜鉛、硫酸バリウム、酸化ジルコニウム、酸化アルミニウム、酸化マグネシウム、酸化カルシウム、トルマリン等の無機微粒子をあげることができ、目的に応じて適宜選択使用すればよい。ただし、無機微粒子を配合する際には、ポリエステル中への分散性の点から、その平均粒径は1.0μm以下、好ましくは、0.1~0.7μmが適当であり、また、その混合量は1~10重量% 、特に2~7重量%の範囲が適当である。 In addition, the above polyester may be mixed with various additives, such as antibacterial agents, hydrophilic agents, anti-mite agents, deodorants, various function-imparting agents such as far-infrared radiation agents, titanium dioxide, silicon oxide, oxidation Inorganic fine particles such as zinc, barium sulfate, zirconium oxide, aluminum oxide, magnesium oxide, calcium oxide, and tourmaline can be mentioned, and can be appropriately selected and used depending on the purpose. However, when blending inorganic fine particles, the average particle size is 1.0 μm or less, preferably 0.1 to 0.7 μm, from the viewpoint of dispersibility in polyester. A suitable amount is 1 to 10% by weight, particularly 2 to 7% by weight.

中空ポリエステル未延伸繊維は、公知の中空ポリエステル未延伸繊維と同様のプロセスや口金を用いて採取し、後述するフロー延伸を施すことにより高中空化できるので、中空率が15~35%であればよく、従来技術のように、ポリマー吐出後に高い中空率を必要としないので、紡糸断糸や中空破断、および、それに伴う延伸断糸を少なくすることができる。用いられる公知の中空口金の孔形状の一例を図2に示す。なお、中空率が15%を下回ると、フロー延伸後であっても中空率を40%以上にすることが難しく、また、中空率が35%を超えると、中空破断や断糸が生じやすくなる。中空ポリエステル未延伸繊維の好ましい中空率の範囲は18~33%である。 Hollow polyester undrawn fibers can be collected using the same process and spinneret as known hollow polyester undrawn fibers, and can be highly hollowed by applying flow drawing described later. Well, unlike the prior art, high hollowness is not required after polymer extrusion, so it is possible to reduce spun yarn breakage, hollow breakage, and accompanying drawn yarn breakage. FIG. 2 shows an example of the hole shape of a known hollow spinneret used. If the hollow ratio is less than 15%, it is difficult to increase the hollow ratio to 40% or more even after flow drawing. . The preferred range of hollowness for hollow polyester undrawn fibers is 18-33%.

また、中空ポリエステル未延伸繊維は、紡糸速度や紡糸ドラフトはなるべく低くする方が後述のフロー延伸倍率およびネック延伸倍率を大きくするために好ましく、紡糸速度は800m/分以下、好ましくは700m/min以下、更に好ましくは600m/分以下がよく、紡糸ドラフトは140以下、好ましくは120以下、更に好ましくは100以下がよい。 In addition, the hollow polyester undrawn fibers preferably have a spinning speed and a spinning draft as low as possible in order to increase the flow draw ratio and neck draw ratio described later, and the spinning speed is 800 m / min or less, preferably 700 m / min or less. , more preferably 600 m/min or less, and a spinning draft of 140 or less, preferably 120 or less, more preferably 100 or less.

ここで、本願が称するフロー延伸とは、ポリエステルのガラス転移温度より高い温度で0.1cN/dtex以下の低張力下で行う延伸方法であり、未延伸糸内の分子配向が殆ど変化せずに高倍率延伸が可能な延伸方法のことである。 Here, the flow drawing referred to in the present application is a drawing method performed at a temperature higher than the glass transition temperature of polyester under a low tension of 0.1 cN/dtex or less, and the molecular orientation in the undrawn yarn is hardly changed. It is a stretching method that enables high-ratio stretching.

そして、ネック延伸とは、ポリエステルのガラス転移温度以下の温度で、未延伸糸の降伏応力以上の張力で未延伸糸の自然延伸倍率以上(未延伸糸の荷伸曲線の定応力伸長領域長を試験長で除した値に+1を加えた値で定義され、NDRともいう)で、未延伸糸の太さが均一になるまで(ネック点が消失するまで)延伸する延伸方法のことである。 And neck stretching means that at a temperature below the glass transition temperature of polyester, at a tension above the yield stress of the undrawn yarn, and above the natural draw ratio of the undrawn yarn (the length of the constant stress elongation region of the stretching curve of the undrawn yarn Defined by adding +1 to the value divided by the test length, also called NDR), and drawing until the thickness of the undrawn yarn becomes uniform (until the neck point disappears).

上記のポリエステルからなる中空未延伸糸をフロー延伸することで、高中空ポリエステルを得る。フロー延伸では、ポリエステルの場合、通常70~100℃、好ましくは75~99℃の熱媒浴中で0.01~0.10cN/dtex、好ましくは0.02~0.08cN/dtexの低い延伸張力で行うため、降伏応力以上の高い延伸張力で分子が延伸方向に高度に配向するネック延伸に対し、分子配向を未延伸糸とほぼ同等のまま延伸することができる。従って、低張力下でのフロー延伸により、未延伸糸の中空部に閉じ込められた空気が膨張し、中空率が未延伸糸よりも大きくなる効果がある。 A highly hollow polyester is obtained by flow-drawing the above hollow undrawn polyester yarn. In the flow drawing, in the case of polyester, a low drawing of 0.01 to 0.10 cN/dtex, preferably 0.02 to 0.08 cN/dtex is usually performed in a heat medium bath at 70 to 100°C, preferably 75 to 99°C. Since the yarn is drawn under tension, the yarn can be drawn with the molecular orientation almost equal to that of the undrawn yarn, in contrast to the neck drawing in which the molecules are highly oriented in the drawing direction at a drawing tension higher than the yield stress. Therefore, flow drawing under a low tension has the effect of expanding the air trapped in the hollow portions of the undrawn yarn and making the hollow ratio greater than that of the undrawn yarn.

また、フロー延伸は、延伸倍率も分子配向の大きな変化を伴わずにネック延伸より大きくすることができるので、伸度を下げることなく細繊度化が可能である。フロー延伸の延伸倍率は、好ましくは5倍以上、より好ましくは10倍以上、更に好ましくは15倍以上である。 In addition, since flow drawing can make the draw ratio larger than that of neck drawing without causing a large change in molecular orientation, it is possible to reduce the fineness without lowering the elongation. The draw ratio of flow drawing is preferably 5 times or more, more preferably 10 times or more, and still more preferably 15 times or more.

また、フロー延伸後の繊維に、55℃~75℃の温水浴中で1.05倍以上、好ましくは1.5~5倍の範囲でネック延伸を加えることによって、更なる細繊度化と引張強度の向上ができる。なお、ネック延伸後の中空率は、フロー延伸後のものとほぼ同一となる。 In addition, the fiber after the flow drawing is subjected to neck drawing in a warm water bath at 55° C. to 75° C. at a rate of 1.05 times or more, preferably 1.5 to 5 times, thereby further reducing the fineness and tensile strength. Strength can be improved. The hollowness after neck stretching is almost the same as that after flow stretching.

本発明の高中空ポリエステル繊維は、その単繊維繊度が0.1~9.0dtex、好ましくは0.2~3.0dtex、特に好ましくは0.6~1.7dtexの範囲にあることが必要である。単繊維繊度が0.1dtex未満の場合にも安定に生産することが可能だが、フロー延伸の倍率をかなり大きくする必要があるため、下限に近いと考えている。 The highly hollow polyester fiber of the present invention should have a single fiber fineness of 0.1 to 9.0 dtex, preferably 0.2 to 3.0 dtex, particularly preferably 0.6 to 1.7 dtex. be. It is possible to stably produce even if the single fiber fineness is less than 0.1 dtex, but it is necessary to increase the flow drawing ratio considerably, so we think that it is close to the lower limit.

次に、本発明の高中空ポリエステル繊維の繊維横断面における中空率は40~90%、好ましくは45~85%、更に好ましくは50~80%の範囲であることが必要である。 Next, the highly hollow polyester fiber of the present invention must have a hollowness of 40 to 90%, preferably 45 to 85%, more preferably 50 to 80% in the fiber cross section.

中空率が40%未満では、繊維を中空化することにより得られる優れた風合(ドレープ、柔軟性、ソフトタッチ)、隠蔽性、嵩高性、保温・断熱性等の改善効果が不十分となる。一方、90%を越える場合には、中空壁面の厚さが薄くなりすぎて中空破断が発生しやすくなったり、圧縮応力に対する抵抗性が低下して形態保持性が悪化するので好ましくない。 If the hollowness ratio is less than 40%, the improvement effect of excellent feeling (drape, flexibility, soft touch), hiding property, bulkiness, heat retention and heat insulation, etc. obtained by hollowing the fiber becomes insufficient. . On the other hand, if it exceeds 90%, the thickness of the wall surface of the hollow becomes too thin, and hollow breakage tends to occur, and the resistance to compressive stress is lowered, resulting in poor shape retention.

原糸(延伸前)の中空率が15%よりも低い場合、40%以上の高中空率を得られないため、原糸の中空率は15%以上であることが必要である。ここで中空率とは、繊維横断面において該横断面の外周部で囲まれた図1の面積に対する、中空部の総面積の割合(%)をいう。 If the hollowness of the raw yarn (before stretching) is lower than 15%, a high hollowness of 40% or more cannot be obtained, so the raw yarn must have a hollowness of 15% or more. Here, the hollow ratio means the ratio (%) of the total area of the hollow portion to the area of FIG. 1 surrounded by the outer peripheral portion of the cross section of the fiber.

繊維横断面における中空部の数は、一つであっても複数であってもよいが、複数の場合には、高中空率でありながら単繊維繊度が小さいものを得ることが困難となるので、中空部は一つの方がより好ましい。 The number of hollow parts in the cross section of the fiber may be one or more, but in the case of more than one, it becomes difficult to obtain a fiber with a high hollow ratio and a small single fiber fineness. , more preferably one hollow portion.

中空部の形状は任意であるが、真円である場合には高中空率のものが得やすく、また円周方向に配向が進んだものが得やすいために中空形状の回復特性も良好となるので好ましい。 The shape of the hollow portion is arbitrary, but when it is a perfect circle, it is easy to obtain a high hollow ratio, and it is easy to obtain a shape with advanced orientation in the circumferential direction, so that the recovery characteristics of the hollow shape are good. Therefore, it is preferable.

なお、引張強度については、フロー延伸により原糸中空率を高めた後に、前述のようなネック延伸をすることにより、2cN/dtex以上と、各種繊維製品に用いるために実用的な引張強度とすることが可能となる。好ましくは2.5cN/dtex、更に好ましくは3.0cN/dtexである。なお、ネック延伸倍率は、自然延伸倍率(NDR)対比高い倍率とするほど、高い引張強度を得ることができる。 Regarding the tensile strength, after increasing the hollowness of the raw fiber by flow drawing, by neck drawing as described above, the tensile strength is 2 cN / dtex or more, which is a practical tensile strength for use in various textile products. becomes possible. It is preferably 2.5 cN/dtex, more preferably 3.0 cN/dtex. In addition, the higher the neck draw ratio is compared to the natural draw ratio (NDR), the higher the tensile strength can be obtained.

以下、実施例により本発明をさらに具体的に説明するが、本発明は何等これらに限定されるものではない。なお、実施例中における各特性値の測定は、以下の方法にしたがった。
<繊度>
JIS L1015:2010 8.5.1 A法により測定した。
<見掛け(外見)繊度>
画像解析システム、ピアス-2(ピアス(株)製)を用い、単繊維のセクション断面画像を500倍に拡大して断面積(中空部を含む)を求め、ポリマーの比重dを1.38と仮定して算出した。
<中空率>
上記の500倍断面画像から単繊維の断面積A(中空部を含む外周の内側の面積)と中空部面積Bを測定し、その面積比を求めた。
中空率=B/A×100(%)
<引張強度>
JIS L1015:2010 8.7.1法により測定し、単位はcN/dtexとした。
<紡糸性及び延伸性>
紡糸性は下記判定基準で評価した。
良好(○):断糸回数が0.05回未満/錘・日、密着糸が0.1本未満/錘・日、セクション変動率Vが8%未満。
やや不良(△):断糸回数が0.05~0.10回/錘・日、密着糸が0.1~0.2本/ 錘・日、セクション変動率Vが8~9%。
不良(×):断糸回数が0.15回/ 錘・日超、密着糸が0.2本/錘・日超、セクション変動率Vが9%超。
但し、ここでいう密着糸とは、単糸2本以上が融着しているものをいい、またセクション変動率Vとは、単糸断面写真より、ランダムに糸直径を測定(n=20)した時のバラツキを示す。
セクション変動率V=糸直径の標準偏差/糸直径の平均値×100(%)
また延伸性は下記判定基準で評価した。
良好(○):単糸切れローラー巻き付きが0.5回未満/日、未延伸が5本未満/10万本、
やや不良(△):単糸切れローラー巻き付きが0.5~2回/日、未延伸が5~10本/10万本、
不良(×):単糸切れローラー巻き付きが2回/日超、未延伸が10本超/10万本
ここで、単糸切れローラー巻き付きとは、単糸レベルの延伸断糸が原因となって、断糸端が回転する延伸ローラーに巻き付いて、そのまま延伸を継続するのが延伸糸品質上および延伸機保全上困難である状態をいう。
EXAMPLES The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples. In addition, the measurement of each characteristic value in the examples was carried out according to the following method.
<Fineness>
Measured according to JIS L1015:2010 8.5.1 A method.
<Apparent (appearance) fineness>
Using an image analysis system, Pierce-2 (manufactured by Pierce Co., Ltd.), the cross-sectional image of the single fiber section is magnified 500 times to obtain the cross-sectional area (including the hollow portion), and the specific gravity d of the polymer is 1.38. Calculated assuming
<Hollowness rate>
The cross-sectional area A of the single fiber (the inner area of the outer periphery including the hollow portion) and the hollow portion area B were measured from the above 500-fold cross-sectional image, and the area ratio was determined.
Hollow ratio = B/A x 100 (%)
<Tensile strength>
It was measured according to JIS L1015:2010 8.7.1 method, and the unit was cN/dtex.
<Spinnability and drawability>
Spinnability was evaluated according to the following criteria.
Good (◯): The number of thread breakages is less than 0.05 times/weight/day, the number of adherent threads is less than 0.1/weight/day, and the section variation rate V is less than 8%.
Somewhat poor (Δ): The number of thread breakage is 0.05 to 0.10 times/weight/day, the adherent thread is 0.1 to 0.2/weight/day, and the section variation rate V is 8 to 9%.
Poor (x): The number of yarn breakages exceeds 0.15 times/weight/day, the number of adherent yarns exceeds 0.2/weight/day, and the section variation rate V exceeds 9%.
However, the coherent yarn referred to here means one in which two or more single yarns are fused together, and the section variation rate V is obtained by randomly measuring the yarn diameter from a single yarn cross-sectional photograph (n = 20). Shows the variation when
Section variation rate V = standard deviation of thread diameter / average value of thread diameter x 100 (%)
In addition, stretchability was evaluated according to the following criteria.
Good (○): single yarn broken roller winding less than 0.5 times/day, unstretched less than 5/100,000;
Slightly poor (△): 0.5 to 2 times/day of single yarn broken roller winding, 5 to 10/100,000 unstretched,
Defective (x): Single yarn broken roller winding more than 2 times/day, unstretched more than 10/100,000. , refers to a state in which the broken end is wound around the rotating drawing roller and it is difficult to continue drawing as it is in terms of drawn yarn quality and drawing machine maintenance.

[実施例1]
酸化チタンを0.3重量%含有する固有粘度が0.64のポリエチレンテレフタレートを、図2に示す中空型ノズルを408ホール有する紡糸口金から、ポリマー温度270℃、吐出量390g/分で押出し、紡糸速度500m/分で引取って単繊維繊度が19.1dtex、中空率が17%の未延伸糸を得た。この時の口金下の冷却条件は、冷却風吹出し位置48mm、冷却風吹出し長200mm、冷却風温度30℃、冷却風湿度70%、冷却風速度0.5m/秒とした。得られた中空未延伸糸を、温度97℃の温水中で0.03cN/dtexの張力で6.9倍にフロー延伸した後、更に温度75℃の温水中で2.9倍にネック延伸をし、ポリエステル繊維を得た。これに12~13個/25mmの捲縮を付与してから140℃の熱風で熱セットし、繊維長51mmに切断して短繊維となした。
得られた中空ポリエステル短繊維の評価結果を表1に示す。
[Example 1]
Polyethylene terephthalate containing 0.3% by weight of titanium oxide and having an intrinsic viscosity of 0.64 was extruded from a spinneret having a hollow nozzle with 408 holes shown in FIG. An undrawn yarn having a single fiber fineness of 19.1 dtex and a hollow ratio of 17% was obtained by taking off at a speed of 500 m/min. The cooling conditions below the nozzle at this time were as follows: cooling air blowing position: 48 mm, cooling air blowing length: 200 mm, cooling air temperature: 30°C, cooling air humidity: 70%, cooling air speed: 0.5 m/sec. The obtained hollow undrawn yarn was flow-drawn at a tension of 0.03 cN/dtex in warm water at a temperature of 97°C to 6.9 times, and then neck-drawn at a factor of 2.9 in warm water at a temperature of 75°C. to obtain a polyester fiber. This was crimped with 12 to 13 crimps/25 mm, heat-set with hot air at 140° C., and cut into short fibers having a fiber length of 51 mm.
Table 1 shows the evaluation results of the obtained hollow polyester short fibers.

[実施例2]
フロー延伸倍率を15.0倍に変更した以外は、本発明の実施例1と同様の方法で実施した。
得られた中空ポリエステル短繊維の評価結果を表1に示す。
[Example 2]
It was carried out in the same manner as in Example 1 of the present invention, except that the flow draw ratio was changed to 15.0 times.
Table 1 shows the evaluation results of the obtained hollow polyester short fibers.

[実施例3]
表1に記載の延伸条件に変更(フロー延伸のみ)した以外は、本発明の実施例1と同様の方法で実施した。得られた中空ポリエステル短繊維の評価結果を表1に示す。
[Example 3]
It was carried out in the same manner as in Example 1 of the present invention, except that the drawing conditions were changed to those shown in Table 1 (flow drawing only). Table 1 shows the evaluation results of the obtained hollow polyester short fibers.

[比較例1]
表1に記載の延伸条件に変更(ネック延伸のみ)した以外は、本発明の実施例1と同様の方法で実施した。得られた中空ポリエステル短繊維の評価結果を表1に示す
[Comparative Example 1]
It was carried out in the same manner as in Example 1 of the present invention, except that the drawing conditions were changed to those shown in Table 1 (only the neck drawing). Table 1 shows the evaluation results of the obtained hollow polyester short fibers .

比較例
本発明の実施例1と同様の方法で冷却条件を変更し、単糸繊度9.1dtex、中空率10%の未延伸糸を得た。実施例2と同じくフロー延伸で15倍、ネック延伸で2.9倍延伸した。紡糸性、延伸性は良好であったが得られた繊維の中空率は26%で、中空率40%以上の高中空率繊維を得られなかった。得られた中空ポリエステル短繊維の評価結果を表1に示す。
[ Comparative Example 2 ]
By changing the cooling conditions in the same manner as in Example 1 of the present invention, an undrawn yarn having a single filament fineness of 9.1 dtex and a hollow ratio of 10% was obtained. As in Example 2, the film was stretched 15 times by flow stretching and 2.9 times by neck stretching. Spinnability and drawability were good, but the resulting fiber had a hollowness of 26%, and a high hollowness fiber with a hollowness of 40% or more could not be obtained. Table 1 shows the evaluation results of the obtained hollow polyester short fibers.

本発明によれば、従来技術対比、中空率40%以上の高中空繊維の品質と歩留まりを向上することができる。得られた高中空繊維は、軽量性、保温性、嵩高性、形態保持性、防皺性等の機能に優れており、織編物や不織布、衣料用中綿や寝具、繊維構造体などに好適に用いられる。 According to the present invention, it is possible to improve the quality and yield of highly hollow fibers having a hollowness of 40% or more compared with the prior art. The obtained high hollow fiber has excellent functions such as light weight, heat retention, bulkiness, shape retention, and wrinkle resistance, and is suitable for woven and knitted fabrics, nonwoven fabrics, batting for clothing, bedding, fiber structures, etc. Used.

a:高中空繊維
b:中空部分
c:スリット孔(スリット状ノズル)
d:突起部
a: high hollow fiber b: hollow portion c: slit hole (slit nozzle)
d: protrusion

Claims (4)

中空率15~35%の中空ポリエステル未延伸繊維をフロー延伸することで、延伸後繊維の中空率を40~90%とすることを特徴とする高中空ポリエステル繊維の製造方法。 A method for producing a highly hollow polyester fiber, comprising flow-drawing an undrawn hollow polyester fiber having a hollowness of 15 to 35% so that the hollowness of the fiber after stretching is 40 to 90%. 前記フロー延伸が、70~100℃の温水浴中で0.01~0.10cN/dtexの低張力で延伸することを特徴とする、請求項1に記載の高中空ポリエステル繊維の製造方法。 The method for producing a highly hollow polyester fiber according to claim 1, wherein the flow drawing is performed in a hot water bath at 70 to 100°C at a low tension of 0.01 to 0.10 cN/dtex. 前記フロー延伸後に、引き続いて降伏応力以上の張力を負荷することで分子配向を伴う条件でネック延伸をする、請求項1または2に記載の高中空ポリエステル繊維の製造方法。 3. The method for producing a highly hollow polyester fiber according to claim 1 or 2, wherein, after the flow drawing, neck drawing is performed under conditions involving molecular orientation by subsequently applying a tension equal to or higher than the yield stress. 請求項3に記載の高中空ポリエステル繊維の製造方法であって、前記製造方法で得られた高中空ポリエステル繊維の単繊維繊度が0.1~9.0dtex、引張強度が2cN/dtex以上である高中空ポリエステル繊維の製造方法。 The method for producing a highly hollow polyester fiber according to claim 3, wherein the highly hollow polyester fiber obtained by the above method has a single fiber fineness of 0.1 to 9.0 dtex and a tensile strength of 2 cN/dtex or more. A method for producing highly hollow polyester fibers.
JP2019044435A 2019-03-12 2019-03-12 Method for producing highly hollow polyester fiber Active JP7332307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019044435A JP7332307B2 (en) 2019-03-12 2019-03-12 Method for producing highly hollow polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019044435A JP7332307B2 (en) 2019-03-12 2019-03-12 Method for producing highly hollow polyester fiber

Publications (2)

Publication Number Publication Date
JP2020147862A JP2020147862A (en) 2020-09-17
JP7332307B2 true JP7332307B2 (en) 2023-08-23

Family

ID=72429115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019044435A Active JP7332307B2 (en) 2019-03-12 2019-03-12 Method for producing highly hollow polyester fiber

Country Status (1)

Country Link
JP (1) JP7332307B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014210989A (en) 2013-04-18 2014-11-13 帝人株式会社 Fine-denier modified cross-section hollow staple fiber, spun yarn using the same, woven or knitted fabric, and production method for fine-denier modified cross-section hollow fiber
JP2014210990A (en) 2013-04-18 2014-11-13 帝人株式会社 Fine-denier porous hollow staple fiber, spun yarn using the same, woven or knitted fabric, and production method for fine-denier porous hollow fiber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59204919A (en) * 1983-05-09 1984-11-20 Teijin Ltd Production of polyester fiber having fine size
JP3966988B2 (en) * 1998-04-16 2007-08-29 帝人ファイバー株式会社 High-hollow polyester fiber excellent in durability and fiber product using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014210989A (en) 2013-04-18 2014-11-13 帝人株式会社 Fine-denier modified cross-section hollow staple fiber, spun yarn using the same, woven or knitted fabric, and production method for fine-denier modified cross-section hollow fiber
JP2014210990A (en) 2013-04-18 2014-11-13 帝人株式会社 Fine-denier porous hollow staple fiber, spun yarn using the same, woven or knitted fabric, and production method for fine-denier porous hollow fiber

Also Published As

Publication number Publication date
JP2020147862A (en) 2020-09-17

Similar Documents

Publication Publication Date Title
JP4065592B2 (en) High hollow polyester fiber, woven / knitted fabric, pile fiber product and nonwoven fabric structure using the same, and method for producing hollow polyester fiber
TW567257B (en) Polytrimethyleneterephthalate modified cross section yarn
JP4954955B2 (en) High-shrinkage polyester fiber and production method and use thereof
JP2019060049A (en) Hollow polyester staple fiber and spun yarn using the same
JP7332307B2 (en) Method for producing highly hollow polyester fiber
JP4639889B2 (en) Polytrimethylene terephthalate extra fine yarn
JPH09137317A (en) Melt-spinning apparatus for ultrafine multifilament yarn, spinning therefor and production of the same yarn
JP3583248B2 (en) Splittable conjugate fiber comprising polyester and polyamide and method for producing the same
JPS5837408B2 (en) Manufacturing method of polyester ultrafine fiber
JPH0813244A (en) Polyester flat cross-section yarn having turning part and its production
JPH0931749A (en) Production of polyester fiber
JP4995523B2 (en) False twisted yarn and method for producing the same
JP2001355123A (en) Polyester monofilament for screen fabric
JP2000234218A (en) Polyamide conjugated fiber having excellent heat retaining property and feeling
JPH11158724A (en) Polyester hollow fiber
JP2020070530A (en) Modified cross-section crimped hollow filament
JP3296080B2 (en) Polyester hollow fiber with good shrinkage and gloss
JP2005113309A (en) Modified cross-section polytrimethylene terephthalate fiber
JPH10158932A (en) Polyester ultrafine yarn and its production
JPS5812372B2 (en) Trilobal polyester
JP2005206961A (en) High elongation polymer alloy fiber and method for producing the same
JP2001279528A (en) Method for producing polyester fiber
JP3359755B2 (en) Polyester thick &amp; thin yarn manufacturing method
JP2020193411A (en) Polyester multifilament
JPH1096117A (en) Polyester fiber and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230810

R150 Certificate of patent or registration of utility model

Ref document number: 7332307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150