JP2019007096A - Polyester composite fiber and fiber aggregate - Google Patents

Polyester composite fiber and fiber aggregate Download PDF

Info

Publication number
JP2019007096A
JP2019007096A JP2017121609A JP2017121609A JP2019007096A JP 2019007096 A JP2019007096 A JP 2019007096A JP 2017121609 A JP2017121609 A JP 2017121609A JP 2017121609 A JP2017121609 A JP 2017121609A JP 2019007096 A JP2019007096 A JP 2019007096A
Authority
JP
Japan
Prior art keywords
core
sheath
fiber
component
titanium oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017121609A
Other languages
Japanese (ja)
Other versions
JP6882942B2 (en
Inventor
慎也 河角
Shinya Kawasumi
慎也 河角
中塚 均
Hitoshi Nakatsuka
均 中塚
貴志 池田
Takashi Ikeda
貴志 池田
祥玄 小野木
Yoshiharu Onoki
祥玄 小野木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2017121609A priority Critical patent/JP6882942B2/en
Publication of JP2019007096A publication Critical patent/JP2019007096A/en
Application granted granted Critical
Publication of JP6882942B2 publication Critical patent/JP6882942B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Knitting Of Fabric (AREA)
  • Multicomponent Fibers (AREA)

Abstract

To provide a polyester core-sheath type composite fiber and a method for producing the same, wherein the polyester core-sheath type composite fiber has superior penetrating property, heat shielding property, color development property and light resistance.SOLUTION: The polyester core-sheath type composite fiber comprises a polyester polymer that has a core component and a sheath component, in which the core component contains titanium oxide having a surface coated with an alumina compound and having an average particle diameter of 0.2 to 0.8 μm in an amount of 8 wt.% to 70 wt.%, the sheath component contains inorganic fine particles in the amount of 0.5 wt.% or more to 4.0 wt.% or less, and a weight ratio of the core component to the sheath component is from 10 : 90 to 40 : 60.SELECTED DRAWING: None

Description

本発明は、防透性、遮熱性、発色性及び耐光性に優れたポリエステル系複合繊維及び該複合繊維からなる繊維集合体に関するものである。   The present invention relates to a polyester-based composite fiber excellent in permeation resistance, heat-shielding property, color developability and light resistance, and a fiber assembly composed of the composite fiber.

最近の衣料へのニーズの動向として白色で透けない素材が求められ、レジャー用のスポーツ等に用いられるテニスウェアー、水着、そして医療分野に用いられる白衣等への該素材の需要が増加している。また、近年発生した東日本震災による電力不足の影響や地球温暖化防止の観点からクールビズ対策が実施されており、エコ繊維として薄くても透けない素材が求められている。
従来、衣料用として使用されているポリエステルやポリアミド等の合成繊維は、透明であるポリマーの特性により、布帛となした場合に着用して衣服や下着が透けて見えるという欠点を有している。
上記課題を解決するために特許文献1及び2には無機微粒子を含有させた芯鞘複合繊維で防透性に優れたものが得られることが記載されている。また、特許文献3には表面がシリカ、アルミナおよびジルコニアから選ばれた1種類以上の化合物で被覆された平均粒子径0.01〜0.15μmの酸化チタンが0.05〜6重量%含有されていることを特徴とする耐候性長繊維不織布が得られることが記載されている。
The trend of recent needs for apparel is demanding white and transparent materials, and the demand for such materials for tennis wear, swimwear used in sports for leisure, and white apparel used in the medical field is increasing. . Cool Biz measures are being implemented from the viewpoint of the effects of power shortages caused by the recent Great East Japan Earthquake and the prevention of global warming, and there is a need for materials that are thin but not transparent as ecofiber.
Conventionally, synthetic fibers such as polyester and polyamide used for clothing have a defect that clothes and underwear can be seen through when worn as a fabric due to the characteristics of a transparent polymer.
In order to solve the above-mentioned problems, Patent Documents 1 and 2 describe that a core-sheath composite fiber containing inorganic fine particles having excellent permeability can be obtained. Patent Document 3 contains 0.05 to 6% by weight of titanium oxide having an average particle size of 0.01 to 0.15 μm whose surface is coated with one or more compounds selected from silica, alumina and zirconia. It is described that a weather-resistant long-fiber non-woven fabric is obtained.

しかしながら、特許文献1および特許文献2では、酸化チタンを高濃度で樹脂中に含有させるため、光触媒の活性により繊維樹脂が黄変する問題があった。また、特許文献3では、耐候性による強度低下に対しては性能があるが、酸化チタンの表面がシリカおよびジルコニアで被覆したものでは光触媒の活性により繊維樹脂が黄変する問題があった。さらに、酸化チタンの平均粒子径が小さく赤外線反射が劣るものであった。   However, in patent document 1 and patent document 2, since titanium oxide is contained in the resin at a high concentration, there is a problem that the fiber resin is yellowed by the activity of the photocatalyst. Further, in Patent Document 3, although there is performance against strength reduction due to weather resistance, there is a problem that the fiber resin is yellowed due to the activity of the photocatalyst when the surface of titanium oxide is coated with silica and zirconia. Furthermore, the average particle diameter of titanium oxide was small and the infrared reflection was poor.

国際公開第2013/111661号International Publication No. 2013/111661 特開2014−189905号公報JP 2014-189905 A 特開平10−273867号公報Japanese Patent Laid-Open No. 10-273867

本発明はこのような従来技術における問題点を解決するものであり、防透性、遮熱性、発色性、及び耐光性に優れたポリエステル系芯鞘型複合繊維及びその製造方法を提供するものである。   The present invention solves such problems in the prior art, and provides a polyester core-sheath composite fiber excellent in permeation resistance, heat shielding properties, color development, and light resistance, and a method for producing the same. is there.

本発明者等は、上記課題を解決すべく鋭意検討した結果、芯成分がアルミナ化合物で被覆された平均粒子径0.2〜0.8μmの酸化チタンを8重量%以上70重量%以下含有するポリエステル系重合体で、鞘成分が無機微粒子を0.5重量%以上3重量%以下含有するポリエステル系重合体であり、かつ芯成分と鞘成分との重量比率が10:90〜40:60である芯鞘型複合繊維にすることによって、該繊維は従来のポリエステル繊維と同等の製糸性及び発色性を維持したまま、芯成分に高濃度含有させたアルミナ化合物で被覆された酸化チタンによって効率的に可視光や赤外線を反射または遮断することができ、遮熱性に優れていることを見出した。さらに、芯成分に酸化チタンを高含有させて防透性を付与しても、該繊維は高い耐光性を有していることを見出し、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors contain 8 wt% or more and 70 wt% or less of titanium oxide having a core component coated with an alumina compound and having an average particle size of 0.2 to 0.8 μm. A polyester polymer in which the sheath component contains 0.5% by weight or more and 3% by weight or less of inorganic fine particles, and the weight ratio of the core component to the sheath component is 10:90 to 40:60 By making a core-sheath type composite fiber, the fiber can be efficiently used with titanium oxide coated with an alumina compound containing a high concentration in the core component while maintaining the same yarn-making property and color development as conventional polyester fiber. It was found that it can reflect or block visible light and infrared rays and has excellent heat shielding properties. Furthermore, the present invention has been completed by finding that the fiber has high light resistance even when titanium oxide is contained in the core component to impart permeation resistance.

すなわち本発明は、芯成分がアルミナ化合物で表面が被覆された平均粒子径0.2〜0.8μmの酸化チタンを8重量%以上70重量%以下含有するポリエステル系重合体で、鞘成分が無機微粒子を0.5重量%以上4.0重量%以下含有するポリエステル系重合体であり、かつ芯成分と鞘成分との重量比率が10:90〜40:60である芯鞘型複合繊維である。   That is, the present invention is a polyester polymer containing 8 wt% or more and 70 wt% or less of titanium oxide having an average particle diameter of 0.2 to 0.8 μm whose core is coated with an alumina compound, and the sheath component is inorganic. It is a polyester-based polymer containing fine particles in an amount of 0.5 wt% to 4.0 wt%, and is a core-sheath type composite fiber in which the weight ratio of the core component to the sheath component is 10:90 to 40:60 .

また、前記鞘成分に含有する無機微粒子の平均粒子径が0.03〜0.8μmであってもよい。   Moreover, 0.03-0.8 micrometer may be sufficient as the average particle diameter of the inorganic fine particle contained in the said sheath component.

また、前記無機微粒子が酸化チタン、酸化亜鉛、硫酸バリウムおよび二酸化ケイ素からなる群より選ばれる少なくとも1種以上の無機微粒子であってもよい。   The inorganic fine particles may be at least one inorganic fine particle selected from the group consisting of titanium oxide, zinc oxide, barium sulfate, and silicon dioxide.

さらに、本発明は前記芯鞘型複合繊維を含む繊維集合体であって、可視光および赤外線の波長380〜3000nmにおける反射率が70%以上、不透明度が85%以上であり、かつ耐光堅牢度が4級以上であることを特徴とする繊維集合体である。   Furthermore, the present invention is a fiber assembly including the core-sheath type composite fiber, wherein the visible light and infrared wavelengths have a reflectance at a wavelength of 380 to 3000 nm of 70% or more, an opacity of 85% or more, and light fastness. Is a fiber assembly characterized in that it is grade 4 or higher.

本発明は芯成分がアルミナ化合物で被覆された平均粒子径0.2〜0.8μmの酸化チタンを8重量%以上70重量%以下含有するポリエステル系重合体であり、鞘成分が無機微粒子を0.5重量%以上3重量%以下含有するポリエステル系重合体であり、かつ芯成分と鞘成分との重量比率が10:90〜40:60である芯鞘型複合繊維とすることにより、芯成分に含有する酸化チタンの光触媒活性に起因した繊維樹脂の黄変を抑制することで、従来のポリエステル繊維と同等の耐光性を維持しつつも、防透性及び遮熱性を兼ね備えるポリエステル繊維を得ることが出来る。また、鞘成分の重量比率を60%以上有することで従来ポリエステルと同程度の発色性を有することが出来る。   The present invention is a polyester polymer containing 8 wt% or more and 70 wt% or less of titanium oxide having a core component coated with an alumina compound and having an average particle size of 0.2 to 0.8 μm, and the sheath component contains 0 inorganic fine particles. A core-sheath type composite fiber having a weight ratio of 10:90 to 40:60, which is a polyester polymer containing 5 wt% or more and 3 wt% or less. By suppressing yellowing of the fiber resin due to the photocatalytic activity of the titanium oxide contained in the polyester fiber, it is possible to obtain a polyester fiber that has both light-proofing properties and heat-shielding properties while maintaining light resistance equivalent to that of conventional polyester fibers. I can do it. Further, when the weight ratio of the sheath component is 60% or more, it can have the same color developability as conventional polyester.

本発明により得られる芯鞘型断面複合繊維は、可視光及び赤外線の波長380〜3000nmにおいて高い反射率を有することで遮熱性に優れ、かつ耐光性および発色性に優れているので、衣料全般に適した繊維及び繊維集合体を得ることができる。   The core-sheath cross-section composite fiber obtained by the present invention has a high reflectance at visible light and infrared wavelengths of 380 to 3000 nm, and thus has excellent heat shielding properties and light resistance and color development properties. Suitable fibers and fiber assemblies can be obtained.

本発明の芯鞘型複合繊維の芯成分を構成するポリエステル重合体について説明する。芯成分を構成するポリエステル重合体には、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル類またはこれらのポリエステルを主体骨格とし、イソフタル酸、金属スルホネート基を有するイソフタル酸等の芳香族ジカルボン酸、アジピン酸、セバチン酸等の脂肪族ジカルボン酸、ジエチレングリコール、ブタンジオール、ヘキサンジオール、シクロヘキサンジメタノール、ビスフェノールA、ポリアルキレングリコール、ペンタエリスリトール等の多価アルコール等の第3成分で変性した共重合ポリエステル類が好ましく用いられる。   The polyester polymer constituting the core component of the core-sheath type composite fiber of the present invention will be described. Polyester polymers constituting the core component include polyesters such as polyethylene terephthalate and polybutylene terephthalate, or these polyesters as the main skeleton, isophthalic acid, aromatic dicarboxylic acids such as isophthalic acid having a metal sulfonate group, adipic acid, Preferably used are copolyesters modified with a third component such as an aliphatic dicarboxylic acid such as sebacic acid, diethylene glycol, butanediol, hexanediol, cyclohexanedimethanol, bisphenol A, polyalkylene glycol, and polyhydric alcohols such as pentaerythritol. It is done.

また、本発明でいうアルミナ化合物で被覆された酸化チタンは、波長380〜3000nmの可視光および赤外線を反射もしくは透過させない、かつポリエステル重合体に高充填させることができ、さらに酸化チタンの光触媒作用に起因した樹脂の劣化を抑制できる。また、酸化チタンをコーティング剤で被覆させた場合は、製糸時の分散性が著しく改善し、酸化チタンを高濃度で樹脂中に含有させることができるためコーティングは必須である。
一般的に酸化チタンを被覆するコーティング剤としては、例えば、シリカ、アルミナ、ジルコニア等が挙げられる。本発明では、酸化チタンをアルミナで被覆することによって製糸時の分散性及び耐光性が優れている。しかし、シリカ、ジルコニアで被覆した酸化チタンでは、酸化チタンを高濃度で樹脂中に含有させた場合、製糸時の分散性は問題ないが、光触媒の活性により樹脂自体を黄変させる問題があり、耐光性の向上が不十分である。
In addition, the titanium oxide coated with the alumina compound in the present invention does not reflect or transmit visible light and infrared light having a wavelength of 380 to 3000 nm and can be highly filled in a polyester polymer. The resulting deterioration of the resin can be suppressed. Further, when titanium oxide is coated with a coating agent, the dispersibility during spinning is remarkably improved, and titanium oxide can be contained in the resin at a high concentration, so that coating is essential.
In general, examples of the coating agent for coating titanium oxide include silica, alumina, zirconia, and the like. In the present invention, the dispersibility and light resistance during spinning are excellent by coating titanium oxide with alumina. However, in titanium oxide coated with silica and zirconia, when titanium oxide is contained in the resin at a high concentration, there is no problem in dispersibility at the time of spinning, but there is a problem that the resin itself is yellowed by the activity of the photocatalyst. Improvement in light resistance is insufficient.

本発明においては、芯成分のポリエステル系重合体に含有させるアルミナ化合物で被覆された酸化チタンの含有量は8重量%以上70重量%以下であることが重要である。前記含有量にすることによって、可視光及び赤外線の波長を効率的に反射することができ、防透効果、遮熱効果が発揮させる。
アルミナ化合物で被覆された酸化チタンの含有量が8重量%未満では、可視光、赤外線の波長を効率的に反射することができず、十分な防透効果および遮熱効果を得ることができない。また、アルミナ化合物で被覆された酸化チタンの含有量が70重量%を超えると、紡糸時の曳糸性が極端に悪化するとともに、染色時の発色性が低下する。好ましくは10重量%以上60重量%以下、より好ましくは15重量%以上50重量%以下である。
In the present invention, it is important that the content of titanium oxide coated with the alumina compound contained in the polyester polymer of the core component is 8% by weight or more and 70% by weight or less. By setting the content, visible light and infrared wavelengths can be efficiently reflected, and a permeation effect and a heat shielding effect are exhibited.
When the content of the titanium oxide coated with the alumina compound is less than 8% by weight, visible and infrared wavelengths cannot be efficiently reflected, and sufficient anti-permeation effect and thermal insulation effect cannot be obtained. On the other hand, if the content of titanium oxide coated with an alumina compound exceeds 70% by weight, the spinnability at the time of spinning is extremely deteriorated and the colorability at the time of dyeing is lowered. Preferably they are 10 to 60 weight%, More preferably, they are 15 to 50 weight%.

本発明においては、芯成分のポリエステル系重合体に含有させるアルミナ化合物で被覆された酸化チタンの平均粒子径が0.2〜0.8μmであることが重要である。前記平均粒子径にすることによって、可視光及び赤外線の波長を効率的に反射することができ、防透効果、遮熱効果が発揮させる。
アルミナ化合物で被覆された酸化チタンの平均粒子径が0.2μmより小さいと、可視光および赤外線の波長を効率的に反射することができず、十分な防透効果、遮熱効果を得ることができない。また、アルミナ化合物で被覆された酸化チタンの平均粒子径が0.8μmより大きいと紡糸時の曳糸性が極端に悪化するとともに、染色時の発色性が低下する。アルミナ化合物で被覆された酸化チタンの平均粒子径は好ましくは0.3μm以上0.8μm以下で、より好ましくは0.4μm以上0.6μm以下である。
In the present invention, it is important that the average particle diameter of the titanium oxide coated with the alumina compound contained in the polyester polymer of the core component is 0.2 to 0.8 μm. By setting the average particle diameter, visible light and infrared wavelengths can be efficiently reflected, and a permeation effect and a heat shielding effect are exhibited.
If the average particle diameter of the titanium oxide coated with the alumina compound is smaller than 0.2 μm, the visible light and infrared wavelengths cannot be efficiently reflected, and a sufficient permeation effect and heat insulation effect can be obtained. Can not. On the other hand, if the average particle size of the titanium oxide coated with the alumina compound is larger than 0.8 μm, the spinnability at the time of spinning is extremely deteriorated and the colorability at the time of dyeing is lowered. The average particle size of the titanium oxide coated with the alumina compound is preferably 0.3 μm or more and 0.8 μm or less, more preferably 0.4 μm or more and 0.6 μm or less.

繊維表面から入射した可視又は近赤外線波長は屈折率の違いにより繊維中心を通過しようとするため、繊維全体に酸化チタンなどの無機粒子を均一に分散させるよりも、本発明の芯鞘型複合繊維のように、酸化チタンが芯成分に高充填された構成とすることにより、効果的に可視光及び赤外線を反射することができ、高い防透効果および遮熱効果を得ることができる。   Visible or near-infrared wavelength incident from the fiber surface tends to pass through the center of the fiber due to the difference in refractive index, so that the core-sheath type composite fiber of the present invention can be used rather than uniformly dispersing inorganic particles such as titanium oxide throughout the fiber. Thus, by setting it as the structure with which the titanium oxide was highly filled with the core component, visible light and infrared rays can be reflected effectively and the high permeation-proof effect and the heat-shielding effect can be acquired.

次に本発明の芯鞘型複合繊維の鞘成分を構成するポリエステル重合体について説明する。鞘成分を構成するポリエステル重合体には、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル類またはこれらのポリエステルを主体骨格とし、イソフタル酸、金属スルホネート基を有するイソフタル酸等の芳香族ジカルボン酸、アジピン酸、セバチン酸等の脂肪族ジカルボン酸、ジエチレングリコール、ブタンジオール、ヘキサンジオール、シクロヘキサンジメタノール、ビスフェノールA、ポリアルキレングリコール、ペンタエリスリトール等の多価アルコール等の第3成分で変性した共重合ポリエステル類が好ましく用いられる。   Next, the polyester polymer which comprises the sheath component of the core-sheath-type composite fiber of this invention is demonstrated. Polyester polymers constituting the sheath component include polyesters such as polyethylene terephthalate and polybutylene terephthalate or those polyesters as the main skeleton, isophthalic acid, aromatic dicarboxylic acids such as isophthalic acid having a metal sulfonate group, adipic acid, Preferably used are copolyesters modified with a third component such as an aliphatic dicarboxylic acid such as sebacic acid, diethylene glycol, butanediol, hexanediol, cyclohexanedimethanol, bisphenol A, polyalkylene glycol, and polyhydric alcohols such as pentaerythritol. It is done.

本発明においては、鞘成分に含有される無機微粒子は0.5重量%以上4.0重量%以下であることが重要である。前記含有量にすることによって、ポリエステル従来の良好な発色性を維持しつつ、防透性を発揮することができる。無機微粒子が0.5重量%未満では、製糸性が低下するため、該複合繊維を得ることができない。また。無機微粒子の含有量が4.0重量%を超えると、紡糸時の曳糸性が極端に悪化する、あるいは、紡糸できても延伸工程での糸切れ発生の問題が生じ、さらには延伸後の品質も満足なものを得ることができない場合がある。より好ましくは0.5重量%以上2.5重量%以下であり、さらに好ましくは0.5重量%以上2.0重量%以下である。また無機微粒子の種類としては酸化チタン、酸化亜鉛、硫酸バリウムおよび二酸化ケイ素などが挙げられるが、汎用性及び加工の点から酸化チタンを用いることが好ましい。   In the present invention, it is important that the inorganic fine particles contained in the sheath component is 0.5% by weight or more and 4.0% by weight or less. By setting the content, it is possible to exhibit permeation resistance while maintaining good color development properties of polyester. When the inorganic fine particles are less than 0.5% by weight, the yarn-making property is lowered, and thus the composite fiber cannot be obtained. Also. When the content of the inorganic fine particles exceeds 4.0% by weight, the spinnability at the time of spinning is extremely deteriorated, or even if the spinning can be performed, there is a problem of yarn breakage in the drawing process. The quality may not be satisfactory. More preferably, it is 0.5 to 2.5 weight%, More preferably, it is 0.5 to 2.0 weight%. Examples of the inorganic fine particles include titanium oxide, zinc oxide, barium sulfate, and silicon dioxide, but titanium oxide is preferably used from the viewpoint of versatility and processing.

本発明においては、鞘成分に含有される無機微粒子の平均粒子径は0.03〜0.8μmであることが好ましい。前記平均粒子径にすることによって、ポリエステル従来の良好な発色性を維持しつつ、防透性を発揮することができる。無機微粒子の平均粒子径が0.03μm未満では、製糸性が低下するため、該複合繊維を得ることができない。また。無機微粒子の含有量が0.8μmを超えると、紡糸時の曳糸性が極端に悪化する、あるいは、紡糸できても延伸工程での糸切れ発生の問題が生じ、さらには延伸後の品質も満足なものを得ることができない場合がある。より好ましくは0.1〜0.5μmである。   In the present invention, the average particle size of the inorganic fine particles contained in the sheath component is preferably 0.03 to 0.8 μm. By setting the average particle size, it is possible to exhibit permeation resistance while maintaining good color development properties of conventional polyester. When the average particle size of the inorganic fine particles is less than 0.03 μm, the yarn-making property is lowered, and the composite fiber cannot be obtained. Also. If the content of the inorganic fine particles exceeds 0.8 μm, the spinnability at the time of spinning is extremely deteriorated, or even if it can be spun, there is a problem of yarn breakage in the drawing process, and the quality after drawing is also high. You may not get a satisfactory one. More preferably, it is 0.1-0.5 micrometer.

さらに本発明の芯鞘型複合繊維において、芯成分と鞘成分との重量比率が10:90〜40:60であることが必要であり、10:90〜30:70であることが好ましい。芯成分ポリマーの重量比率が10%未満の場合は、芯成分の遮熱性、防透性が低くなる。また、芯成分ポリマーの重量比率が40%を超えると、良好な防透性及び遮熱性は得られるが、該複合繊維の製糸性及び発色性が劣る。   Furthermore, in the core-sheath type composite fiber of the present invention, the weight ratio of the core component to the sheath component needs to be 10:90 to 40:60, and preferably 10:90 to 30:70. When the weight ratio of the core component polymer is less than 10%, the heat shielding property and permeability of the core component are lowered. On the other hand, when the weight ratio of the core component polymer exceeds 40%, good permeability and heat shielding properties can be obtained, but the yarn-forming property and coloring property of the composite fiber are inferior.

本発明の芯鞘型複合繊維においては、繊維の太さは特に限定されず、任意の太さにすることができるが、発色性及び防透性の良好な繊維を得るためには複合繊維の単繊維繊度を0.3〜11dtex程度にしておくのが好ましい。また、長繊維のみならず短繊維でも本発明の効果が期待される。   In the core-sheath type composite fiber of the present invention, the thickness of the fiber is not particularly limited, and can be any thickness. However, in order to obtain a fiber having good color development and permeation resistance, It is preferable to set the single fiber fineness to about 0.3 to 11 dtex. The effect of the present invention is expected not only for long fibers but also for short fibers.

次に本発明の芯鞘型複合繊維の製造方法について以下説明する。
まず芯成分ポリマーと鞘成分ポリマーをそれぞれ別の押出機で溶融押出し、各々紡糸ヘッドへ導入し、目的とする個々の複合形状を形成させる紡糸口金を経由して溶融紡糸させることにより製造することができる。また、最終製品に求められる品質や良好な工程通過性を確保するために、最適な紡糸・延伸方法を選択することができる。より具体的には、スピンドロー方式や、紡糸原糸を採取した後に別工程で延伸を行う2−Step方式、また延伸を行わず非延伸糸のまま引き取り速度が2000m/分以上の速度で捲取る方式においても、任意の糸加工工程を通過させた後に製品化することで、良好な防透性及び発色性を有する該複合繊維製品を得ることができる。
Next, the manufacturing method of the core-sheath type composite fiber of this invention is demonstrated below.
First, the core component polymer and the sheath component polymer are melt-extruded by separate extruders, introduced into a spinning head, and melt-spun through a spinneret that forms each desired composite shape. it can. Further, in order to ensure the quality required for the final product and good processability, an optimum spinning / drawing method can be selected. More specifically, a spin draw method, a 2-step method in which a spinning raw yarn is collected and then drawn in a separate process, or a drawing speed of 2000 m / min or more without drawing is used as a non-drawn yarn. Even in the taking method, the composite fiber product having good permeation resistance and color developability can be obtained by making the product after passing through an arbitrary yarn processing step.

本発明の製造方法の紡糸工程において、通常の溶融紡糸装置を用いて口金より紡出する。また、口金の形状や大きさによって、得られる繊維の断面形状や径を任意に設定することが可能である。   In the spinning process of the production method of the present invention, spinning is performed from a die using a normal melt spinning apparatus. Moreover, it is possible to arbitrarily set the cross-sectional shape and diameter of the obtained fiber depending on the shape and size of the die.

本発明で得られる複合繊維は、各種繊維集合体(繊維構造物)として用いることができる。ここで繊維集合体とは、本発明の繊維単独よりなる織編物、不織布はもちろんのこと本発明の繊維を一部に使用してなる織編物や不織布、例えば、天然繊維、化学繊維、合成繊維など他の繊維との交編織布、あるいは混紡糸、混繊糸として用いた織編物、混綿不織布などであってもよいが、これらのような繊維構造物に占める本発明の繊維の割合は30重量%以上、好ましくは40重量%以上であることが好ましい。繊維構造物に占める本発明の繊維の割合を30重量%以上とすることにより、防透性評価の指標である不透明度を85%以上とすることができる。特に白生地や淡色系においてこの不透明度の判断は鋭敏であり、より有効に判定できる。   The conjugate fiber obtained in the present invention can be used as various fiber assemblies (fiber structures). Here, the fiber aggregate is a woven or knitted fabric made of the fiber of the present invention alone, a non-woven fabric as well as a woven or knitted fabric or nonwoven fabric made of a part of the fiber of the present invention, such as natural fiber, chemical fiber, and synthetic fiber. It may be a knitted or woven fabric with other fibers, or a blended yarn, a woven or knitted fabric used as a blended yarn, a blended non-woven fabric, etc., but the proportion of the fiber of the present invention in such a fiber structure is 30. It is preferable that it is at least 40% by weight, preferably 40% by weight or more. By setting the ratio of the fiber of the present invention in the fiber structure to 30% by weight or more, the opacity, which is an index for evaluating the permeation resistance, can be 85% or more. This determination of opacity is particularly sensitive in white fabrics and light-colored systems, and can be determined more effectively.

繊維集合体の不透明度が85%未満の場合、着用時とりわけ白地や淡色系の場合には、生地を通して内衣の着用物や肌が透けて見えやすいため、本発明の芯鞘型複合繊維を含む繊維集合体においては、不透明度の値が85%以上であることが重要である。85%以上であれば、薄地の白物においても透け防止効果を発揮するものとなる。   When the opacity of the fiber assembly is less than 85%, when wearing, especially in the case of a white background or light-colored system, the wear of the inner garment and the skin can be easily seen through the fabric, so the core-sheath type composite fiber of the present invention is included. In the fiber assembly, it is important that the opacity value is 85% or more. If it is 85% or more, the effect of preventing see-through will be exhibited even in a thin white object.

また、本発明の芯鞘型複合繊維を含有した繊維集合体は波長380〜3000nmにおける反射率が70%以上であることにも大きな特徴を有する。該反射率が70%未満の場合、遮熱性、防透性は不満足なものとなる。反射率とは、後述する式で表される値である。   Moreover, the fiber assembly containing the core-sheath type composite fiber of the present invention has a great feature in that the reflectance at a wavelength of 380 to 3000 nm is 70% or more. When the reflectance is less than 70%, the heat shielding property and the light shielding property are unsatisfactory. The reflectance is a value represented by an expression described later.

また、本発明の芯鞘型複合繊維および該複合繊維を含有する繊維集合体は、耐光堅牢度が4級以上であることが好ましい。耐光堅牢度が3級以下であった場合、取扱い性の点から一般衣料用途としては好ましくない。   Moreover, it is preferable that the light-fastness of the core-sheath-type conjugate fiber and the fiber assembly containing the conjugate fiber of the present invention is 4th or higher. When the light fastness is 3rd grade or less, it is not preferable for general clothing use from the viewpoint of handleability.

本発明の繊維の主な用途は、長繊維では単独で又は一部に使用して織編物等を作成し、良好な風合を発現させた衣料用素材とすることができる。一方、短繊維では衣料用ステープル、乾式不織布および湿式不織布等があり、衣料用のみならず各種リビング資材、産業資材等の非衣料用途にも好適に使用することができる。   The main use of the fiber of the present invention is to produce a woven or knitted fabric or the like by using long fibers alone or in part, and can be used as a clothing material in which a good texture is expressed. On the other hand, short fibers include garment staples, dry nonwoven fabrics and wet nonwoven fabrics, and can be suitably used not only for clothing but also for non-clothing applications such as various living materials and industrial materials.

以下、実施例により本発明を詳述するが、本発明はこれら実施例により何等限定されるものではない。なお、実施例中の測定値は以下の方法により測定されたものである。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by these Examples. In addition, the measured value in an Example is measured with the following method.

(無機微粒子の平均粒子径)
堀場製作所社製の遠心式自動粒度分布測定装置CAPA−500により測定した。
(Average particle size of inorganic fine particles)
The measurement was performed by a centrifugal automatic particle size distribution measuring apparatus CAPA-500 manufactured by Horiba.

<紡糸性>
以下の基準に従って紡糸性評価を行った。
◎:24時間の連続紡糸を行ったところ、紡糸時の断糸が何ら発生せず、しかも得られた該複合繊維には毛羽・ループが全く発生していないなど、紡糸性が極めて良好である
○:24時間の連続紡糸を行ったところ、紡糸時の断糸が1回以下の頻度で発生し、得られた該複合繊維に毛羽・ループが全く発生していないか、あるいは僅かに発生したものの、紡糸性がほぼ良好である
△:24時間の連続紡糸を行ったところ、紡糸時の断糸が1回より多く3回まで発生し、紡糸性が不良である
×:24時間の連続紡糸を行ったところ、紡糸時の断糸が3回よりも多く発生し、紡糸性が極めて不良である
<Spinnability>
Spinnability was evaluated according to the following criteria.
◎: After 24 hours of continuous spinning, no spinning breakage occurred during spinning, and the resulting composite fiber had no fuzz or loops, and the spinnability was very good. ○: When continuous spinning was performed for 24 hours, the yarn breakage during spinning occurred at a frequency of 1 or less, and the resulting composite fiber had no fluff or loop, or a slight amount However, the spinnability is almost good. Δ: When continuous spinning is performed for 24 hours, the yarn breakage during spinning occurs more than once and up to 3 times, and the spinnability is poor. X: Continuous spinning for 24 hours As a result, the yarn breakage during spinning occurred more than 3 times and the spinnability was extremely poor.

<耐光性>
(耐光堅牢度)
JIS L−0842の測定方法に準拠して測定した。
<Light resistance>
(Light fastness)
It measured based on the measuring method of JIS L-0842.

<防透性評価>
(繊維集合体の不透明度(%)測定)
単繊度3.5dtexの本発明の芯鞘型異形断面複合繊維を経糸および緯糸に用い、経糸38本/cm、緯糸28本/cmの筒編地を作製し、日立分光光度計(U−3400型)を用いて、この編地のL* を測定し、下記式により算出した。
不透明度(%)=(L* B /L* W )×100
* B :黒素地に布帛(繊維集合体)を重ねた時のL*
* W :白素地に布帛(繊維集合体)を重ねた時のL*
黒素地は黒色プラスチック板(L*値=12)、白素地は標準白板(L*値=100)を示す。
<Permeability evaluation>
(Measurement of opacity (%) of fiber assembly)
A cylindrical knitted fabric of 38 warps / cm and 28 wefts / cm was produced using the core-sheath-shaped modified cross-section composite fiber of the present invention having a single fineness of 3.5 dtex for warp and weft. Hitachi Spectrophotometer (U-3400 L * of this knitted fabric was measured using a mold, and calculated according to the following formula.
Opacity (%) = (L * B / L * W ) × 100
L * B: L when the piled fabric (fiber aggregate) to the black matrix * value L * W: when the piled fabric (fiber aggregate) in white matrix L * Necro green body is black plastic plate (L * Value = 12), white substrate indicates a standard white board (L * value = 100).

<遮熱性評価>
(1)ΔT(℃)
繊維径を均一に調整し、得られた複合繊維を用いて目付け200g/mの筒編地を精錬した後、レフランプを照射し、15分後の試料直下の温度を測定した。温度はタスコジャパン株式会社の貼付型センサーTNA−8Aを用いて測定した。
対照試料であるTiOを0.05重量%含有するポリエチレンテレフタレート繊維(比較例1)に対し、どの程度高い温度を示すかについて、温度差ΔT(℃)を測定した。
(2)反射率
繊維径を均一に調整し、得られた複合繊維を用いて目付け200g/mの筒編地を精錬した後、以下に示す測定装置を使用して380〜3000nmの反射率の平均値を測定した。
分光反射率測定器:分光光度計 HITACHI U3400
<Heat insulation evaluation>
(1) ΔT (° C)
After adjusting the fiber diameter uniformly and refining a tubular knitted fabric with a weight per unit area of 200 g / m 2 using the obtained composite fiber, it was irradiated with a ref lamp, and the temperature immediately under the sample after 15 minutes was measured. The temperature was measured using an adhesive sensor TNA-8A manufactured by Taxco Japan.
A temperature difference ΔT (° C.) was measured as to how much temperature was exhibited with respect to a polyethylene terephthalate fiber (Comparative Example 1) containing 0.05% by weight of TiO 2 as a control sample.
(2) Reflectivity After adjusting the fiber diameter uniformly and refining a tubular knitted fabric with a basis weight of 200 g / m 2 using the obtained composite fiber, the reflectivity of 380 to 3000 nm using the measuring device shown below. The average value of was measured.
Spectral reflectometer: spectrophotometer HITACHI U3400

<染色方法>
染 料:DiacrylBlack BSL-F 7%omf
分散助剤:Disper TL(明成化学工業社製) 1g/l
PH調整剤:ウルトラMTレベル 1g/l
浴 比: 1:50 温 度:130℃×40分
還元洗浄
ハイドロサルファイド 1g/l
アミラジン(第一工業製薬) 1g/l
NaOH 1g/l
浴 比: 1:30 温 度:80℃×120分
<Dyeing method>
Dye: DiacrylBlack BSL-F 7% omf
Dispersing aid: Disper TL (manufactured by Meisei Chemical Co., Ltd.) 1 g / l
PH adjuster: Ultra MT level 1g / l
Bath ratio: 1:50 Temperature: 130 ° C. × 40 minutes Reduction cleaning Hydrosulfide 1 g / l
Amirazine (Daiichi Kogyo Seiyaku) 1g / l
NaOH 1g / l
Bath ratio: 1:30 Temperature: 80 ° C x 120 minutes

<発色性>
(染着濃度 K/S)
染色後サンプル編地の最大吸収波長における反射率Rを測定し、以下に示すKubelka―Munkの式から求めた。
分光反射率測定器:分光光度計 HITACHI
C−2000S Color Analyzer
K/S=(1−R)/2R
<Color development>
(Dyeing density K / S)
The reflectance R at the maximum absorption wavelength of the sample knitted fabric after dyeing was measured and obtained from the Kubelka-Munk equation shown below.
Spectral reflectometer: spectrophotometer HITACHI
C-2000S Color Analyzer
K / S = (1-R) 2 / 2R

(実施例1)
芯成分に平均粒子径0.4μmのアルミナ化合物で被覆された酸化チタン30重量%を含有するポリエチレンテレフタレートと鞘成分に平均粒子径0.3μmの酸化チタン1.0重量%を含有するポリエチレンテレフタレートの複合比率(重量比率)10:90の条件で、孔数24個(孔径0.25mmφ)の口金を用いて紡糸温度290℃、単孔吐出量=1.42g/分で紡出し、温度25℃、湿度60%の冷却風を0.4m/秒の速度で紡出糸条に吹付け糸条を60℃以下にした後、紡糸口金下方1.2mの位置に設置した長さ1.0m、入口ガイド系8mm、出口ガイド系10mm、内径30mmφチューブヒーター(内温185℃)に導入してチューブヒーター内で延伸した後、チューブヒーターから出てきた糸条にオイリングノズルで給油し2個の引き取りローラーを介して4500m/分の速度で捲取り、84T/24fの該複合繊維フィラメントを得た。本発明の製造方法で得られた繊維の結果を表1に示した。さらに上記製造方法で得られた複合繊維を用いた繊維集合体(筒編地)はΔT=−3.8℃と高い遮熱効果を示し、防透性についても不透明度=90%と高い防透効果を示した。また耐光堅牢度5級であり優れた耐光性を示した。これら繊維集合体の評価結果についても表1に示した。
Example 1
A polyethylene terephthalate containing 30% by weight of titanium oxide coated with an alumina compound having an average particle size of 0.4 μm in the core component and a polyethylene terephthalate containing 1.0% by weight of titanium oxide having an average particle size of 0.3 μm in the sheath component. Spinning was performed at a spinning temperature of 290 ° C. and a single hole discharge rate of 1.42 g / min using a die having a number of holes of 24 (hole diameter of 0.25 mmφ) at a composite ratio (weight ratio) of 10:90, and a temperature of 25 ° C. A length of 1.0 m installed at a position 1.2 m below the spinneret after the temperature of the cooling yarn of 60% humidity is blown onto the spun yarn at a speed of 0.4 m / sec. Inlet guide system 8mm, outlet guide system 10mm, inner diameter 30mmφ Introduced into tube heater (inner temperature 185 ° C) and stretched in tube heater, oiling nozzle on thread coming out from tube heater Refueling up wound at 4500 m / min through two take-up rollers to give the conjugate fiber filaments of 84T / 24f. The results of the fibers obtained by the production method of the present invention are shown in Table 1. Further, the fiber assembly (cylindrical knitted fabric) using the composite fiber obtained by the above production method shows a high heat shielding effect with ΔT = −3.8 ° C., and the opacity is also high with 90% opacity. The see-through effect was shown. The light fastness was grade 5 and excellent light resistance was exhibited. The evaluation results of these fiber assemblies are also shown in Table 1.

(実施例2〜14)
次に、芯成分及び鞘成分のポリマー、芯成分及び鞘成分の添加粒子の平均粒子径と含有量を変更し、実施例1と同様の手法で紡糸して84T/24fの該複合繊維フィラメントを得た。得られた繊維の物性を表1に示した。いずれも良好な不透明度、ΔT、反射率、染着濃度を示し、実施例1と同性能の耐光堅牢度であり、何ら問題のない品質であった。
(Examples 2 to 14)
Next, the average particle diameter and content of the core component and sheath component polymer, and the core component and sheath component added particles were changed, and the composite fiber filament of 84T / 24f was spun by the same method as in Example 1. Obtained. Table 1 shows the physical properties of the obtained fiber. All exhibited good opacity, ΔT, reflectance, and dyeing density, light fastness with the same performance as Example 1, and no problem.

(比較例1〜13)
芯成分の酸化チタンのコーティング種、芯成分及び鞘成分に添加する粒子種と含有量を変更し、実施例1と同様の手法で紡糸して84T/24fの該複合繊維フィラメントを得た。得られた繊維の物性を表1に示した。
(Comparative Examples 1 to 13)
The core component titanium oxide coating type, the particle type added to the core component and the sheath component, and the content thereof were changed, and spinning was performed in the same manner as in Example 1 to obtain 84T / 24f composite fiber filament. Table 1 shows the physical properties of the obtained fiber.

比較例1では芯成分に酸化チタンを含有していないため、防透性、および遮熱性を得ることができなかった。   In Comparative Example 1, since the core component did not contain titanium oxide, it was not possible to obtain permeation resistance and heat insulation.

比較例2では芯成分に含有するアルミナ化合物で被覆された酸化チタン量が70%を超えるため、紡糸時の曳糸性が極端に悪化し紡糸が不可能であった。   In Comparative Example 2, the amount of titanium oxide coated with the alumina compound contained in the core component exceeded 70%, so that the spinnability during spinning was extremely deteriorated and spinning was impossible.

比較例3は鞘成分の酸化チタンの含有量が15重量%と多すぎるため、紡糸時の曳糸性が極端に悪化し、紡糸が不可能であった。   In Comparative Example 3, the content of titanium oxide as the sheath component was too high at 15% by weight, so that the spinnability at the time of spinning was extremely deteriorated and spinning was impossible.

比較例4は芯成分に含有するアルミナ化合物で被覆された酸化チタン量が5%と少なすぎるため、防透性、および遮熱性が劣る結果となった。   In Comparative Example 4, the amount of titanium oxide coated with the alumina compound contained in the core component was too small at 5%, resulting in poor permeation resistance and heat shielding properties.

比較例5は鞘成分の酸化チタンの含有量が5.0重量%と多すぎるため、発色性及び紡糸性が劣る結果となった。   In Comparative Example 5, the content of titanium oxide as the sheath component was too large at 5.0% by weight, resulting in poor color development and spinnability.

比較例6は芯成分の酸化チタンがコーティングを施していない酸化チタンであるため、紡糸性、耐光性が不良であった。   Comparative Example 6 had poor spinnability and light resistance because the core component, titanium oxide, was not coated.

比較例7は芯成分の酸化チタンをシリカでコーティングをしているため、紡糸性、耐光性が不良であった。   In Comparative Example 7, the core component of titanium oxide was coated with silica, so that the spinnability and light resistance were poor.

比較例8は芯成分の酸化チタンをジルコニアでコーティングをしているため、紡糸性、耐光性が不良であった。   In Comparative Example 8, since the core component titanium oxide was coated with zirconia, the spinnability and light resistance were poor.

比較例9は芯成分に含有するアルミナ化合物で被覆された酸化チタンの平均粒子径が0.1μmと小さいため、防透性、および遮熱性が劣る結果となった。   In Comparative Example 9, since the average particle diameter of titanium oxide coated with the alumina compound contained in the core component was as small as 0.1 μm, the results of inferior permeability and heat shielding were obtained.

比較例10は芯成分に含有するアルミナ化合物で被覆された酸化チタンの平均粒子径が1.0μmと大きいため、防透性、および紡糸性が劣る結果となった。   In Comparative Example 10, since the average particle diameter of titanium oxide coated with the alumina compound contained in the core component was as large as 1.0 μm, the results of inferior permeability and spinnability were obtained.

比較例11は芯鞘複合比率の芯成分量が5%と少ないため、防透性が劣る結果となった。   In Comparative Example 11, the core component amount of the core-sheath composite ratio was as small as 5%, and thus the permeability was inferior.

比較例12は芯鞘複合比率の芯成分量が50%と多すぎるため、発色性及び紡糸性が劣る結果となった。   In Comparative Example 12, the core component amount in the core-sheath composite ratio was too large at 50%, resulting in poor color developability and spinnability.

比較例13は鞘成分に無機微粒子が添加されていないため、紡糸時の曳糸性が極端に悪化し、紡糸性が劣る結果となった。   In Comparative Example 13, since inorganic fine particles were not added to the sheath component, the spinnability during spinning was extremely deteriorated, and the spinnability was poor.

本発明により得られる芯鞘型複合繊維は、高い防透性、遮熱性、耐光性を有し、かつ従来ポリエステルと同程度の発色性を有しているので、衣料全般に適している。   The core-sheath type composite fiber obtained by the present invention has high permeability, heat shielding and light resistance, and has a color development similar to that of conventional polyester, and is therefore suitable for all clothing.

Claims (4)

芯成分がアルミナ化合物で表面が被覆された平均粒子径0.2〜0.8μmの酸化チタンを8重量%以上70重量%以下含有するポリエステル系重合体で、鞘成分が無機微粒子を0.5重量%以上4.0重量%以下含有するポリエステル系重合体であり、かつ芯成分と鞘成分との重量比率が10:90〜40:60である芯鞘型複合繊維。   A polyester polymer containing 8 wt% or more and 70 wt% or less of titanium oxide having an average particle diameter of 0.2 to 0.8 μm whose core component is coated with an alumina compound and whose sheath component is 0.5 wt% inorganic fine particles. A core-sheath type composite fiber that is a polyester-based polymer that is contained in an amount of not less than 4.0% by weight and not more than 4.0% by weight, and the weight ratio of the core component to the sheath component is 10:90 to 40:60. 前記鞘成分に含有する無機微粒子の平均粒子径が0.03〜0.8μmである請求項1に記載の芯鞘型複合繊維。   The core-sheath-type conjugate fiber according to claim 1, wherein the inorganic fine particles contained in the sheath component have an average particle size of 0.03 to 0.8 µm. 前記無機微粒子が酸化チタン、酸化亜鉛、硫酸バリウムおよび二酸化ケイ素からなる群より選ばれる少なくとも1種以上の無機微粒子である、請求項1又は2に記載の芯鞘型複合繊維。   The core-sheath composite fiber according to claim 1 or 2, wherein the inorganic fine particles are at least one kind of inorganic fine particles selected from the group consisting of titanium oxide, zinc oxide, barium sulfate, and silicon dioxide. 請求項1〜3に記載の芯鞘型複合繊維を含む繊維集合体であって、可視光および赤外線の波長380〜3000nmにおける反射率が70%以上、不透明度が85%以上であり、かつ耐光堅牢度が4級以上であることを特徴とする繊維集合体。   A fiber assembly comprising the core-sheath composite fiber according to any one of claims 1 to 3, wherein the reflectance at visible light and infrared wavelengths of 380 to 3000 nm is 70% or more, the opacity is 85% or more, and light resistance A fiber assembly having a fastness of 4 or higher.
JP2017121609A 2017-06-21 2017-06-21 Polyester-based composite fibers and fiber aggregates Active JP6882942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017121609A JP6882942B2 (en) 2017-06-21 2017-06-21 Polyester-based composite fibers and fiber aggregates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017121609A JP6882942B2 (en) 2017-06-21 2017-06-21 Polyester-based composite fibers and fiber aggregates

Publications (2)

Publication Number Publication Date
JP2019007096A true JP2019007096A (en) 2019-01-17
JP6882942B2 JP6882942B2 (en) 2021-06-02

Family

ID=65029313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017121609A Active JP6882942B2 (en) 2017-06-21 2017-06-21 Polyester-based composite fibers and fiber aggregates

Country Status (1)

Country Link
JP (1) JP6882942B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021203867A1 (en) * 2020-04-05 2021-10-14 华中科技大学 Radiative cooling fiber and preparation method for fabric thereof
CN113699610A (en) * 2020-05-20 2021-11-26 东丽纤维研究所(中国)有限公司 Light-resistant high-transmittance-proof fiber and fabric

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046096A (en) * 1996-05-27 1998-02-17 Toyo Ink Mfg Co Ltd Coloring agent composition and molded product using the coloring agent composition
JP2003147628A (en) * 2001-11-02 2003-05-21 Mitsubishi Rayon Co Ltd Aqueous dispersion slurry of titanium dioxide and spinning dope containing the slurry
JP2010185028A (en) * 2009-02-13 2010-08-26 Ube Ind Ltd Resin particle, method of production thereof and cosmetic
JP2013044055A (en) * 2011-08-22 2013-03-04 Teijin Fibers Ltd Core-sheath type polyester fiber with flat cross-section and cloth with opacity using the same
JP2014177716A (en) * 2013-03-14 2014-09-25 Kuraray Co Ltd Core-sheath irregular shape cross section composite fiber excellent in heat shield property and permeability protecting property
JP2014189905A (en) * 2013-03-26 2014-10-06 Kuraray Co Ltd Polyester core-sheath type composite fiber excellent in see-through preventing property and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046096A (en) * 1996-05-27 1998-02-17 Toyo Ink Mfg Co Ltd Coloring agent composition and molded product using the coloring agent composition
JP2003147628A (en) * 2001-11-02 2003-05-21 Mitsubishi Rayon Co Ltd Aqueous dispersion slurry of titanium dioxide and spinning dope containing the slurry
JP2010185028A (en) * 2009-02-13 2010-08-26 Ube Ind Ltd Resin particle, method of production thereof and cosmetic
JP2013044055A (en) * 2011-08-22 2013-03-04 Teijin Fibers Ltd Core-sheath type polyester fiber with flat cross-section and cloth with opacity using the same
JP2014177716A (en) * 2013-03-14 2014-09-25 Kuraray Co Ltd Core-sheath irregular shape cross section composite fiber excellent in heat shield property and permeability protecting property
JP2014189905A (en) * 2013-03-26 2014-10-06 Kuraray Co Ltd Polyester core-sheath type composite fiber excellent in see-through preventing property and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021203867A1 (en) * 2020-04-05 2021-10-14 华中科技大学 Radiative cooling fiber and preparation method for fabric thereof
CN113699610A (en) * 2020-05-20 2021-11-26 东丽纤维研究所(中国)有限公司 Light-resistant high-transmittance-proof fiber and fabric

Also Published As

Publication number Publication date
JP6882942B2 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
JP6005070B2 (en) Polyester composite fiber with excellent heat insulation and color development
JP5735377B2 (en) Core-sheath type polyester flat cross-section fiber and fabric having permeation resistance
JP4228856B2 (en) Thermoplastic fibers, fabrics and textile products
JP6882942B2 (en) Polyester-based composite fibers and fiber aggregates
JP2003027337A (en) Conjugate fiber having heat-storing and heat-retaining property
JP5297331B2 (en) Core-sheath type composite fiber
JP6129608B2 (en) Polyester core-sheath type composite fiber excellent in permeation resistance and method for producing the same
JP5718045B2 (en) Polyester fibers and fiber aggregates with excellent dyeability
JP5379076B2 (en) Composite synthetic fiber
JP5735844B2 (en) Cationic dyeable polyester fibers and fiber aggregates with excellent dyeability
JP2008081863A (en) Polyester fiber and fabric having anti-see-through property and water absorbency
JP2019094593A (en) Core-in-sheath type composite fiber
JP5777391B2 (en) Interior interior materials
JP2017218698A (en) Extra fine flat false-twisted yarn
JP2011241529A (en) Sheath-core conjugate fiber
JP2014177716A (en) Core-sheath irregular shape cross section composite fiber excellent in heat shield property and permeability protecting property
JP6367070B2 (en) Synthetic fiber multifilament
JP2016069771A (en) Synthetic fiber
WO2022107671A1 (en) Sea-island composite polyester fiber
JPH1150335A (en) Polyester fiber and its production
JPH11107048A (en) Sheath-core type polyester textile excellent in dyeability and ultraviolet screening effects and production of the same
JP2012207318A (en) Artificial hair polyester fiber, and method for producing the same
JP2005226176A (en) Polyamide fiber having photocatalyst function and method for producing the same
TW201800631A (en) Crimped yarn having flat cross-section, method of manufacturing said crimped yarn, and textile comprising said crimped yarn
JP7117710B2 (en) Core-sheath type polyester composite fiber, false twist yarn of core-sheath type polyester composite fiber, woven and knitted fabric, and method for producing core-sheath type polyester composite fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210507

R150 Certificate of patent or registration of utility model

Ref document number: 6882942

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150