JP2003027337A - Conjugate fiber having heat-storing and heat-retaining property - Google Patents

Conjugate fiber having heat-storing and heat-retaining property

Info

Publication number
JP2003027337A
JP2003027337A JP2001218211A JP2001218211A JP2003027337A JP 2003027337 A JP2003027337 A JP 2003027337A JP 2001218211 A JP2001218211 A JP 2001218211A JP 2001218211 A JP2001218211 A JP 2001218211A JP 2003027337 A JP2003027337 A JP 2003027337A
Authority
JP
Japan
Prior art keywords
core
heat
fiber
sheath
conjugate fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001218211A
Other languages
Japanese (ja)
Inventor
Kazunori Hashimoto
和典 橋本
Kenji Yamashita
賢司 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Ester Co Ltd
Original Assignee
Nippon Ester Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Ester Co Ltd filed Critical Nippon Ester Co Ltd
Priority to JP2001218211A priority Critical patent/JP2003027337A/en
Publication of JP2003027337A publication Critical patent/JP2003027337A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a conjugate fiber excellent in heat-storing and heat- retaining properties and having good dyeing property. SOLUTION: This conjugate fiber is a core-sheath type conjugate fiber in which a conjugate weight ratio of a core component to a sheath component is (10/90) to (50/50). The core part is composed of a polyester-based polymer in which titanium oxide surface-coated with tin oxide is contained in an amount of 4-20 wt.% based on the weight of the core component. The sheath part is composed of a readily dyeable polyester-based polymer in which an aromatic dicarboxylic acid component containing a sulfonate group in polyethylene terephthalate is contained in an amount of 1.0-5.0 mol% and adipic acid and/or polyethylene glycol having <=2,000 molecular weight is contained in an amount of 0.5-8.0 wt.%.

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、保温性が要求され
る衣料用途等に好適な蓄熱保温性能を有するとともに、
易染色性を有し、染色時の発色性が良好なポリエステル
複合繊維に関するものである。 【0002】 【従来の技術】保温性が要求される防寒衣料や野外での
スポーツ用衣料、特に水着用途、あるいはレジャー用衣
料に好適な繊維として、炭化ジルコニウム微粒子等を配
合させることにより、太陽熱を吸収する蓄熱保温性の繊
維が開発されている(特公平3−9202号公報)。こ
の繊維は芯鞘形状の複合繊維であり、芯部に炭化ジルコ
ニウム微粒子等が配合されている。しかしながら、この
複合繊維は、芯部に配された炭化ジルコニウム微粒子等
の有する色彩が繊維表面に表れて着色しているため、布
帛の色調を重視する用途には使用し難いのが現状であ
る。 【0003】この問題を解決するものとして、特開平3
−51312号公報には、炭化ジルコニウム微粒子と、
酸化アンチモン等で表面を被覆した酸化チタン微粒子と
を含有する熱可塑性ポリマーを芯部に用いた芯鞘構造の
蓄熱保温性繊維が提案されている。この複合繊維は、炭
化ジルコニウム微粒子と、酸化錫と酸化アンチモンで表
面被覆された酸化チタン微粒子とを併用することによっ
て、炭化ジルコニウム微粒子の量を滅じても、蓄熱保温
性を低下させることがなく、また、炭化ジルコニウム微
粒子を芯部に配合しているので、炭化ジルコニウムの着
色が鞘成分で隠蔽され、白度を向上させることができる
ものである。しかしながら、この繊維でも染色時の発色
性は十分でないという間題があった。 【0004】また、特開平2−269808号公報に
は、芯部のポリマーが炭化ジルコニウム微粒子を含有
し、鞘部のポリマーはこれらの粒子を含有しない芯鞘構
造の繊維であって、さらには、芯部に独立した多数の気
泡が形成されているものが提案されている。この織維は
芯部の独立した多数の気泡によって入射光が乱反射さ
れ、白度が向上するものである。しかしながら、この繊
維の独立気泡は芯部に形成されており、しかも独立した
一個の気泡は小さなものであるため、入射光が十分に乱
反射されず、この繊維も発色性は不十分であった。 【0005】 【発明が解決しようとする課題】本発明は上述した問題
点を解決し、蓄熱保温性に優れると同時に、白度の向上
のみならず、染色時の発色性が良好な布帛を得ることが
できる複合繊維を提供することを技術的な課題とするも
のである。 【0006】 【課題を解決するための手段】本発明者らは上記課題を
解決するために鋭意研究の結果、本発明に到達したもの
である。すなわち、本発明は、芯成分と鞘成分の複合比
率が質量比10/90〜50/50の芯鞘複合繊維であり、芯部
は、酸化錫で表面被覆された酸化チタンが芯成分の質量
に対して4〜20質量%含有されたポリエステル系重合体
からなり、鞘部は、ポリエチレンテレフタレートにスル
ホン酸塩基を含有した芳香族ジカルボン酸成分を1.0〜
5.0モル%含有し、かつアジピン酸及び/又は分子量200
0以下のポリエチレングリコールを 0.5〜8.0質量%含有
する易染色性ポリエステル系重合体からなることを特徴
とする蓄熱保温性複合繊維を要旨とするものである。 【0007】 【発明の実施の形態】以下、本発明について詳細に説明
する。本発明の芯鞘複合繊維の芯部に用いられる重合体
は、繊維形成性を有するポリエステル系重合体から形成
されるものであり、繊維形成性を有するポリエステル系
重合体としては、芳香族ポリエステル系重合体や脂肪族
ポリエステル系重合体等を用いることができる。 【0008】芳香族ポリエステル系重合体としては、例
えぱ、テレフタル酸、イソフタル酸、ナフタリン−2,
6−ジカルボン酸等の芳香族ジカルボン酸又はこれらの
エステル類を酸成分とし、かつエチレングリコール、ジ
エチレングリコール、1,4−ブタンジオール、ネオペ
ンチルグリコール、シクロヘキサン−1,4−ジメタノ
ール等のジオール化合物をグリコール成分とするホモポ
リエステル重合体又はポリエステル共縮重合体を用いる
ことができる。なお、これらの芳香族ポリエステル系重
合体には、パラオキシ安息香酸、5−ソジウムスルホイ
ソフタール酸、ポリアルキレングリコール、ペンタエリ
スリトール、ビスフェノールA等が添加又は共重合され
ていてもよい。 【0009】本発明の芯鞘複合繊維の芯部を構成するポ
リエステル系重合体には、酸化錫で表面被覆された酸化
チタンの微粒子を、芯成分の質量に対する割合で4〜20
質量%含有し、これにより得られる布帛に蓄熱保温性能
を付与するものである。この酸化錫で表面被覆された酸
化チタン微粒子の含有量が4質量%未満であると、十分
な畜熱保温性を付与することができない。一方、含有量
が20質量%を超えると、蓄熱保温性の効果は飽和し、紡
糸性が悪化したり、繊維強度の低下を招いたり、布帛に
加工された際、軽量感に乏しいものとなる。 【0010】本発明で使用する酸化錫で表面が被覆され
た酸化チタンの微粒子としては、平均粒径が5μm以下
のものが好ましく、さらには1μm以下とすることがよ
い。平均粒径が5μmを超えると、溶融紡糸工程におい
て濾材の目詰まりが生じやすく、糸切れ等が生じやすく
なり、生産性が阻害され好ましくない。 【0011】なお、この芯部に用いられるポリエステル
系重合体は、一般的には主たる繰り返し単位がポリエチ
レンテレフタレートが用いられるが、酸化錫で表面被覆
された酸化チタンは、ポリエチレンテレフタレートに均
一に混合されたものを用いても、あるいは、ポリエチレ
ンテレフタレート重合体に高濃度で混合された重合体を
マスターチップとし、ベースポリマーに混合して所定の
比率に混合して用いることもできる。 【0012】次に、本発明の芯鞘複合繊維の鞘部を形成
する重合体は、主たる繰り返し単位をポリエチレンテレ
フタレートとし、 スルホン酸塩基を含有した芳香族ジ
カルボン酸成分を1.0〜 5.0モル%含有している。スル
ホン酸塩基としては、5−ソジウムスルホイソフタール
酸等が挙げられる。スルホン酸塩基を含有した芳香族ジ
カルボン酸成分は、カチオン染料と反応して発色する染
着席を有し、この含有量が多いほど多量の染料が繊維中
に固着され、良好な発色性を発現するものである。 【0013】スルホン酸塩基を含有した芳香族ジカルボ
ン酸成分の含有量が1.0モル%未満では、染色性が損な
われ、一方、含有量が5.0モル%を超えると、過多な酸
成分により紡糸性が阻害されたり、繊維強度が損なわれ
るという問題が生じる。 【0014】さらに、鞘部を形成する重合体は、ポリエ
チレンテレフタレートにアジピン酸又は分子量2000以下
のポリエチレングリコール(PEG)又は両者を含有す
るもので、含有量は単体で用いる際、併用する際ともに
0.5〜8.0質量%とする。アジピン酸又はPEGは、ポリ
エステル重合体の内部を嵩高にし、染料の拡散性を増す
ことによって、繊維中への染料の吸着量を増加させ、発
色性をより向上させることができるものであり、特に、
常圧での染色時にその効果を発揮し、通常の加圧染色と
同等の発色性を得ることができる。 【0015】含有量が0.5質量%未満であると、染色性
が損なわれ、一方、8.0質量%を超えると、紡糸性が阻
害されたり、繊維強度が損なわれることになる。 【0016】PEGはその分子量が2000以下である必要
がある。この分子量が2000を超えるとポリエステルと完
全には共重合せず重合体内に遊離して存在し、染料拡散
効果に乏しくなるため、好ましくない。また、分子量は
400以上であることがより好ましい。分子量が 400未満
ではポリエステル全体の溶融粘度を低下させ、繊維強度
が損なわれたり、繊維の耐熱性を損ねる等、繊維物性に
悪影響を及ぼすことがあり、好ましくない。 【0017】なお、芯部及び鞘部を形成するポリエステ
ル系重合体中には、必要に応じて、艶消し剤、顔料、防
炎剤、消臭剤、光安定剤、熱安定剤、酸化防止剤、結晶
化促進剤等の各種添加剤を本発明の目的を損なわない範
囲で添加してもよい。 【0018】そして、本発明の芯鞘複合繊維の芯鞘部の
複合比率(芯/鞘)は、質量比で10/90〜50/50であ
る。芯部の重合体の比率がこの範囲より少ないと、酸化
チタンの絶対量を含有させるに必要とするポリエステル
重合体の量が不足するため、十分な蓄熱保温性が得られ
ない。一方、芯部の重合体の比率がこの範囲を超える
と、蓄熱保温性は十分に保持されるものの、酸化チタン
の量が多大となり、溶融紡糸時において濾材の目詰ま
り、糸切れの発生が生じ、生産性が損なわれる。 【0019】このような芯鞘複合比率とすることによ
り、酸化錫で表面を覆われた酸化チタンは、芯成分中に
均一かつ緻密に分散状態で配されるよう、チタン微粒子
の含有量を上記範囲内で適宜選択することが可能であ
る。特に、芯部の割合が50質量%に近い複合繊維は、
保温効果が高く、防寒衣等に好適な素材となる。 【0020】本発明の複合繊維は、複合繊維の製造の常
法に従い、複合紡糸装置を用いて製造することができ、
引取速度が4500m/分以下の範囲で紡糸した後、延伸を
施して得ることができる。引取速度が4500m/分を超え
ると紡糸時に糸切れが発生しやすく、また、延伸倍率が
低くなるため延伸後の強度が低く、実用的な物性の繊維
が得られない。また、生産性よく製造するには引取速度
を1000m/分以上とすることが好ましい。延伸は紡糸し
た繊維を一旦捲き取った後に延伸機に供給するか、ある
いは、紡糸に引き続き、延伸ローラを介して直接延伸を
施してから捲き取ることもできる。 【0021】本発明の複合繊維の単糸繊度は特に限定さ
れるものではないが、衣料用分野においては、1.5〜8
デシテックスの範囲が好ましく、特に2〜5デシテック
スの範囲が好ましい。単糸繊度が1.5デシテックス未満
であると、繊維が細すぎて、複合溶融紡糸法での製糸性
が低下する。単糸繊度が8デシテックスを超えると、繊
維が太くなりすぎて、繊維の柔軟性が損なわれたり、金
属成分である酸化チタンの含有量によっては、重量感を
持つ繊維となり好ましくない。しかしながら、本発明の
複合繊維を、衣料用途以外、例えば植物のマルチ栽培用
シート、各種ハウス保温材等のテント基材に用いる場合
は、8デシテックス以上の太繊度糸であってもよい。 【0022】また、一般的な長繊維の製造法において
は、紡糸孔として10〜 200個の孔が配設されたスピナレ
ットを用い、長繊維束の繊度は、前記の単糸繊度と繊維
本数とにより決定されるものであることは言うまでもな
い。 【0023】さらに、本発明の複合繊維の断面形状は特
に限定されるものではなく、通常の丸断面のほか、三角
断面形状等の多角形断面形状、あるいは、断面の最外周
の一部が突起を形成しているような異形断面形状のもの
でもよい。 【0024】 【実施例】以下、実施例により本発明を具体的に説明す
る。実施例において使用する各物性等の測定方法は、次
のとおりである。 (1)蓄熱保温性:得られた繊維を経、緯糸として用
い、経密度 113本/2.54cm、緯密度77本/2.54cmの平織
物を製織し、20℃、65%RHの恒温室内において 1.5m
の距離から 500W白色電球の光を照射し、照射開始約3
分後に反対側の表面温度を日本電子社製赤外センサー:
サーモビュアによって測定した。26℃以上のものを蓄熱
保温性に優れていると判断した。 (2)相対粘度:フェノールと四塩化エタンの等重量混
合液を溶媒とし、この溶媒 100ccに試料0.5gを溶解し、
温度20℃で常法により測定した。 (3)染色性:(1)と同様にして織物を得、この織物
を用いて下記染色条件で染色を行い、染色性について目
視にて下記に示すように4段階評価した。 (染色条件) カチオン染料:Diacryl Black RTL-PF 5%owf 助剤:CH3C00H(48%) 0.3cc/L 染色時間:100℃ 30分 (評価) ◎ 非常に良好 ○ 良好 △ 普通 × 良くない 【0025】実施例1 芯成分ポリエステルとして相体粘度1.385のポリエチレ
ンテレフタレート重合体を用い、酸化錫で表面被覆され
た粒子径1μmの酸化チタン微粒子が、芯成分質量に対
し6質量%含有させた。鞘成分には芯成分と同様のポリ
エチレンテレフタレートにスルホン酸塩基を含有した芳
香族ジカルボン酸成分(5−ソジウムスルホイソフター
ル酸)が 2.4モル%、アジピン酸が 3.8質量%共重合さ
れ、相体粘度が 1.301に調整されたポリエステル共重合
体を用いた。芯鞘比を質量比15/85とし、芯鞘複合紡糸
口金を用い、溶融温度を 290℃として紡糸を行った。紡
糸した糸条にオイリングロールを介して油剤を付与し、
表面速度が1300m/分のローラで繊維を引取った。続い
て延伸ローラを介して、捲取速度が3800m/分の捲取機
で繊維を捲取り、56デシテックス24フィラメントの長繊
維束を得た。得られた芯鞘複合繊維、および芯鞘複合繊
維から得られた布帛の特性値を表1に示す。 【0026】実施例2〜7、比較例1〜9 芯鞘比の複合比率、酸化チタン量、スルホン酸塩基を含
有した芳香族ジカルボン酸成分、アジピン酸、PEG
の量を表1、2に示すように変更した以外は実施例1と
同様にして複合繊維を得た。得られた複合繊維、および
布帛の特性値を表1、2に示す。 【0027】 【表1】 【0028】 【表2】【0029】実施例1〜7の複合繊維は、芯部に酸化錫
で表面被覆された酸化チタンの存在により、太陽熱、光
線による蓄熱性および保温性を有しており、かつ白度に
優れ、さらに、鞘部を形成する重合体がポリエチレンテ
レフタレートを主体とし、スルホン酸およびアジピン酸
又はPEGを含有しているので、優れた染色性を示す複
合繊維であり、蓄熱保温性を求められる防寒衣料、野外
におけるスポーツ衣料、特に水着等、およびレジャー等
において有用な布帛が得られるものであった。一方、比
較例1の繊維は、ポリエチレンテレフタレートからなる
単一成分による繊維であり、本発明の目的とする蓄熱保
温性に到達しないのみでなく、染色性にも劣るものであ
った。比較例2の芯鞘複合繊維は、酸化チタンの量の不
足により蓄熱保温性に乏しく、一方、比較例3の複合繊
維は、酸化チタンの量が多すぎたため、紡糸時において
多数の糸切れが発生し、繊維を得ることができなかっ
た。比較例4、5の繊維は、それぞれスルホン酸塩基を
含有した芳香族ジカルボン酸成分、アジピン酸の含有量
が不足し、得られた布帛は良好な染色性が得られなかっ
た。比較例6、7は、それぞれスルホン酸塩基を含有し
た芳香族ジカルボン酸成分、アジピン酸またはPEGの
含有量が多すぎたため、繊維強度が著しく低下し、糸切
れが多発して実用的な繊維を得ることができなかった。
比較例8の繊維は芯成分の比率が低すぎたため、蓄熱保
温性が不足しており、また、PEGの分子量が高すぎた
ため染色性も不十分であった。比較例9は芯成分の比率
が高すぎたため、糸切れが多発し、採取できなかった。 【0030】 【発明の効果】本発明の芯鞘複合繊推は、芯部に酸化錫
で表面被覆された酸化チタン微粒子が配合されているた
め蓄熱保温性に優れ、かつ白度にも優れており、そし
て、鞘部を形成するポリエステル重合体がスルホン酸塩
基を含有した芳香族ジカルボン酸成分、アジピン酸及び
/又はPEGが添加されたポリエステル重合体を用いた
ことで、特にカチオン染料による染色性の改善された複
合繊維であり、染色性を必要とする分野でも好適に使用
することができる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention has a heat storage and heat insulation performance suitable for use in clothing and the like, which requires heat insulation.
The present invention relates to a polyester composite fiber which has easy dyeability and good coloring property at the time of dyeing. BACKGROUND OF THE INVENTION [0002] Zirconium carbide fine particles and the like are blended as fibers suitable for cold weather garments that require heat retention and sports garments in the field, especially for swimwear and leisure garments, thereby reducing solar heat. Absorbing heat storage and heat retaining fibers have been developed (Japanese Patent Publication No. 3-9202). This fiber is a core-sheath composite fiber, and zirconium carbide fine particles and the like are blended in the core. However, since the color of the zirconium carbide fine particles and the like disposed on the core is colored on the fiber surface, it is difficult to use the conjugate fiber in applications where the color tone of the fabric is important. To solve this problem, Japanese Patent Laid-Open Publication No.
JP-A-5-51312 discloses zirconium carbide fine particles,
A heat- and heat-retaining fiber having a core-sheath structure using a thermoplastic polymer containing titanium oxide fine particles whose surface is coated with antimony oxide or the like has been proposed. This composite fiber, by using a combination of zirconium carbide fine particles and titanium oxide fine particles surface-coated with tin oxide and antimony oxide, even if the amount of zirconium carbide fine particles is reduced, without lowering the heat storage heat retention. In addition, since the zirconium carbide fine particles are blended in the core, the coloring of the zirconium carbide is concealed by the sheath component, and whiteness can be improved. However, there was a problem that the coloring property at the time of dyeing was not sufficient even with this fiber. JP-A-2-269808 discloses that the core polymer contains fine particles of zirconium carbide and the sheath polymer is a fiber having a core-sheath structure not containing these particles. One in which a number of independent air bubbles are formed in a core portion has been proposed. In this fiber, incident light is irregularly reflected by a large number of independent bubbles in the core, and whiteness is improved. However, since the closed cells of this fiber are formed in the core portion, and one independent bubble is small, incident light is not sufficiently diffusely reflected, and this fiber also has insufficient coloring properties. SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and provides a fabric which is excellent not only in whiteness but also in coloration at the time of dyeing while being excellent in heat storage and heat retention. It is an object of the present invention to provide a composite fiber that can be used. Means for Solving the Problems The inventors of the present invention have accomplished the present invention as a result of intensive studies for solving the above problems. That is, the present invention relates to a core / sheath composite fiber having a core / sheath composite ratio of 10/90 to 50/50 in mass ratio, wherein the core portion is made of titanium oxide surface-coated with tin oxide. The sheath portion is made of polyethylene terephthalate containing an aromatic dicarboxylic acid component containing a sulfonate group in an amount of 1.0 to 20% by mass.
5.0 mol%, and adipic acid and / or molecular weight 200
A heat storage and heat insulating conjugate fiber comprising a readily dyeable polyester polymer containing 0.5 to 8.0% by mass of polyethylene glycol of 0 or less. Hereinafter, the present invention will be described in detail. The polymer used for the core portion of the core-sheath conjugate fiber of the present invention is formed from a polyester-based polymer having a fiber-forming property. Examples of the polyester-based polymer having a fiber-forming property include aromatic polyester-based polymers. Polymers and aliphatic polyester-based polymers can be used. Examples of the aromatic polyester polymer include, for example, terephthalic acid, isophthalic acid, naphthalene-2,
An aromatic dicarboxylic acid such as 6-dicarboxylic acid or an ester thereof is used as an acid component, and a diol compound such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol, cyclohexane-1,4-dimethanol is used. A homopolyester polymer or a polyester co-condensation polymer as a glycol component can be used. In addition, paraoxybenzoic acid, 5-sodium sulfoisophthalic acid, polyalkylene glycol, pentaerythritol, bisphenol A, and the like may be added or copolymerized to these aromatic polyester polymers. The polyester polymer constituting the core of the core-sheath conjugate fiber of the present invention contains fine particles of titanium oxide surface-coated with tin oxide in an amount of 4 to 20 parts by mass based on the mass of the core component.
% By mass to impart heat storage and heat retaining performance to the resulting fabric. If the content of the titanium oxide fine particles surface-coated with tin oxide is less than 4% by mass, sufficient heat retention property cannot be provided. On the other hand, when the content exceeds 20% by mass, the effect of heat storage and heat retention is saturated, spinnability is deteriorated, fiber strength is reduced, and when processed into a fabric, lightness is poor. . The fine particles of titanium oxide whose surface is coated with tin oxide used in the present invention preferably have an average particle size of 5 μm or less, more preferably 1 μm or less. If the average particle size exceeds 5 μm, clogging of the filter medium easily occurs in the melt spinning step, yarn breakage and the like easily occur, and productivity is impaired, which is not preferable. The polyester polymer used for the core is generally made of polyethylene terephthalate, whose main repeating unit is polyethylene terephthalate. Titanium oxide whose surface is coated with tin oxide is uniformly mixed with polyethylene terephthalate. Alternatively, a polymer mixed at a high concentration with a polyethylene terephthalate polymer may be used as a master chip, mixed with a base polymer and mixed at a predetermined ratio. Next, the polymer forming the sheath portion of the core-sheath conjugate fiber of the present invention contains polyethylene terephthalate as a main repeating unit and contains 1.0 to 5.0 mol% of an aromatic dicarboxylic acid component containing a sulfonate group. ing. Examples of the sulfonate group include 5-sodium sulfoisophthalic acid. The aromatic dicarboxylic acid component containing a sulfonic acid group has a dyeing site that reacts with a cationic dye to form a color, and as this content increases, a larger amount of the dye is fixed in the fiber and expresses good color developability. Things. When the content of the aromatic dicarboxylic acid component containing a sulfonate group is less than 1.0 mol%, the dyeability is impaired. On the other hand, when the content exceeds 5.0 mol%, the spinnability is increased due to excessive acid components. Problems arise, such as hindrance or loss of fiber strength. Further, the polymer forming the sheath portion is a material in which polyethylene terephthalate contains adipic acid, polyethylene glycol (PEG) having a molecular weight of 2000 or less, or both, when used alone or in combination.
0.5 to 8.0 mass%. Adipic acid or PEG increases the amount of dye adsorbed in the fiber by increasing the bulk of the polyester polymer and increasing the diffusivity of the dye, and can further improve the color developability. ,
It exerts its effect at the time of dyeing at normal pressure, and can obtain the same color development as that of normal pressure dyeing. If the content is less than 0.5% by mass, the dyeability is impaired, while if it exceeds 8.0% by mass, the spinnability is impaired or the fiber strength is impaired. PEG must have a molecular weight of 2000 or less. If the molecular weight exceeds 2,000, it is not preferable because it is not completely copolymerized with the polyester but is free in the polymer and has a poor dye diffusion effect. The molecular weight is
More preferably, it is 400 or more. If the molecular weight is less than 400, the melt viscosity of the entire polyester is lowered, and the fiber strength is impaired, and the heat resistance of the fiber is impaired. The polyester polymer forming the core and the sheath may contain a matting agent, a pigment, a flame retardant, a deodorant, a light stabilizer, a heat stabilizer, an antioxidant, if necessary. Various additives such as an agent and a crystallization accelerator may be added within a range that does not impair the purpose of the present invention. The composite ratio (core / sheath) of the core / sheath portion of the core / sheath composite fiber of the present invention is from 10/90 to 50/50 by mass. If the ratio of the polymer in the core is less than this range, the amount of the polyester polymer required to contain the absolute amount of titanium oxide is insufficient, so that sufficient heat storage and heat retention cannot be obtained. On the other hand, if the ratio of the polymer in the core portion exceeds this range, the heat storage and heat retaining property is sufficiently maintained, but the amount of titanium oxide is large, and the clogging of the filter medium and the occurrence of thread breakage during melt spinning occur. , Productivity is impaired. With such a core-sheath composite ratio, the content of titanium fine particles is adjusted so that the titanium oxide covered with tin oxide is uniformly and densely dispersed in the core component. It can be appropriately selected within the range. In particular, composite fibers having a core ratio close to 50% by mass
It has a high heat retention effect and is a material suitable for winter clothing and the like. The conjugate fiber of the present invention can be produced using a conjugate spinning apparatus according to a conventional method for producing a conjugate fiber,
After spinning at a take-up speed of 4500 m / min or less, it can be obtained by stretching. If the take-up speed exceeds 4500 m / min, yarn breakage tends to occur during spinning, and since the draw ratio is low, the strength after drawing is low, and fibers having practical physical properties cannot be obtained. In addition, in order to manufacture with good productivity, the take-off speed is preferably set to 1000 m / min or more. In the stretching, the spun fiber may be once wound up and then supplied to a stretching machine, or, after the spinning, may be directly stretched via a stretching roller and then wound up. The single fiber fineness of the conjugate fiber of the present invention is not particularly limited, but is 1.5 to 8 in the field of clothing.
A range of decitex is preferable, and a range of 2 to 5 decitex is particularly preferable. If the single yarn fineness is less than 1.5 decitex, the fibers are too thin, and the spinning properties in the composite melt spinning method are reduced. If the single-fiber fineness exceeds 8 decitex, the fibers become too thick, and the flexibility of the fibers is impaired, or depending on the content of titanium oxide as a metal component, the fibers become undesirably heavy. However, when the conjugate fiber of the present invention is used for purposes other than apparel, for example, as a sheet for multi-cultivation of plants or a tent base material such as a heat insulating material for various houses, a thick fineness yarn of 8 decitex or more may be used. In a general method for producing long fibers, a spinneret having 10 to 200 holes as spinning holes is used, and the fineness of the long fiber bundle is determined by the above-described single fiber fineness, the number of fibers, and the like. Needless to say, it is determined by Further, the cross-sectional shape of the conjugate fiber of the present invention is not particularly limited. In addition to a normal circular cross-section, a polygonal cross-sectional shape such as a triangular cross-sectional shape, or a portion of the outermost periphery of the cross-section is a protrusion. May have an irregular cross-sectional shape such as The present invention will be described below in detail with reference to examples. The measuring methods of each property used in the examples are as follows. (1) Heat storage heat retention property: Using the obtained fiber as warp and weft, weaving a plain woven fabric with a warp density of 113 threads / 2.54 cm and a weft density of 77 threads / 2.54 cm, in a constant temperature room at 20 ° C and 65% RH. 1.5m
Irradiate light from a 500W white light bulb from a distance of
After a minute, the surface temperature on the opposite side is measured by JEOL infrared sensor:
It was measured by a thermoviewer. Those having a temperature of 26 ° C or more were judged to be excellent in heat storage and heat retention. (2) Relative viscosity: 0.5 g of a sample was dissolved in 100 cc of the solvent using an equal weight mixture of phenol and ethane tetrachloride as a solvent.
The measurement was performed at a temperature of 20 ° C. by a conventional method. (3) Dyeability: A woven fabric was obtained in the same manner as in (1), and the woven fabric was dyed under the following dyeing conditions, and the dyeability was visually evaluated in four steps as shown below. (Dyeing conditions) Cationic dye: Diacryl Black RTL-PF 5% owf Auxiliary agent: CH3C00H (48%) 0.3 cc / L Dyeing time: 100 ° C 30 minutes (Evaluation) ◎ Very good ○ Good △ Normal × Not good [0025] Example 1 A polyethylene terephthalate polymer having a phase viscosity of 1.385 was used as a core component polyester, and titanium oxide fine particles having a particle diameter of 1 μm and surface-coated with tin oxide were contained in an amount of 6% by mass based on the mass of the core component. 2.4 mol% of aromatic dicarboxylic acid component (5-sodium sulfoisophthalic acid) containing sulfonic acid group in polyethylene terephthalate, which is the same as the core component, and 3.8 mass% of adipic acid are copolymerized in the sheath component. A polyester copolymer having a viscosity adjusted to 1.301 was used. Spinning was performed with a core / sheath ratio of 15/85 by mass and a melting temperature of 290 ° C. using a core / sheath composite spinneret. An oil agent is applied to the spun yarn via an oiling roll,
The fiber was pulled by a roller having a surface speed of 1300 m / min. Subsequently, the fiber was wound up by a winding machine having a winding speed of 3800 m / min through a drawing roller, to obtain a long fiber bundle of 56 decitex 24 filaments. Table 1 shows the characteristic values of the obtained core-sheath conjugate fiber and the fabric obtained from the core-sheath conjugate fiber. Examples 2 to 7, Comparative Examples 1 to 9 Composite ratio of core-sheath ratio, amount of titanium oxide, aromatic dicarboxylic acid component containing sulfonate group, adipic acid, PEG
A conjugate fiber was obtained in the same manner as in Example 1 except that the amount of was changed as shown in Tables 1 and 2. Tables 1 and 2 show the characteristic values of the obtained conjugate fiber and fabric. [Table 1] [Table 2] The composite fibers of Examples 1 to 7 have a heat storage property and a heat retention property by solar heat and light rays, and have excellent whiteness due to the presence of titanium oxide whose surface is coated with tin oxide on the core. Furthermore, since the polymer forming the sheath is mainly composed of polyethylene terephthalate and contains sulfonic acid and adipic acid or PEG, it is a composite fiber showing excellent dyeing properties, and is a winter clothing that requires heat storage and heat retention, A useful cloth was obtained in sports clothing in the outdoors, especially in swimwear, leisure and the like. On the other hand, the fiber of Comparative Example 1 was a fiber composed of a single component made of polyethylene terephthalate, and did not not only achieve the heat storage and heat retention intended for the present invention, but also had poor dyeability. The core-sheath conjugate fiber of Comparative Example 2 has poor heat storage and heat retention due to an insufficient amount of titanium oxide, whereas the conjugate fiber of Comparative Example 3 has too much yarn breakage during spinning because the amount of titanium oxide is too large. Occurred and no fibers could be obtained. The fibers of Comparative Examples 4 and 5 each lacked the content of the aromatic dicarboxylic acid component containing a sulfonate group and the content of adipic acid, and the obtained fabrics could not obtain good dyeability. In Comparative Examples 6 and 7, since the content of the aromatic dicarboxylic acid component containing a sulfonate group, adipic acid or PEG was too large, the fiber strength was remarkably reduced, and the number of thread breaks was increased. I couldn't get it.
In the fiber of Comparative Example 8, the ratio of the core component was too low, so that the heat storage / insulation property was insufficient, and the dyeability was also insufficient, because the molecular weight of PEG was too high. In Comparative Example 9, since the ratio of the core component was too high, thread breakage occurred frequently and could not be collected. The core-sheath composite fiber of the present invention is excellent in heat storage and heat retention and whiteness because titanium oxide fine particles surface-coated with tin oxide are blended in the core. In addition, since the polyester polymer forming the sheath uses a polyester polymer to which an aromatic dicarboxylic acid component containing a sulfonate group, adipic acid and / or PEG is added, especially the dyeability by a cationic dye is used. And can be suitably used in fields requiring dyeability.

Claims (1)

【特許請求の範囲】 【請求項1】 芯成分と鞘成分の複合比率が質量比10/
90〜50/50の芯鞘複合繊維であり、芯部は、酸化錫で表
面被覆された酸化チタンが芯成分の質量に対して4〜20
質量%含有されたポリエステル系重合体からなり、鞘部
は、ポリエチレンテレフタレートにスルホン酸塩基を含
有した芳香族ジカルボン酸成分を1.0〜5.0モル%含有
し、かつアジピン酸及び/又は分子量2000以下のポリエ
チレングリコールを 0.5〜8.0質量%含有する易染色性
ポリエステル系重合体からなることを特徴とする蓄熱保
温性複合繊維。
Claims: 1. The composite ratio of a core component and a sheath component is 10 /
A core / sheath composite fiber of 90 to 50/50, and the core is made of titanium oxide coated with tin oxide on the surface thereof in an amount of 4 to 20 with respect to the mass of the core component.
The sheath portion is composed of polyethylene terephthalate containing 1.0 to 5.0 mol% of an aromatic dicarboxylic acid component containing a sulfonate group, and adipic acid and / or polyethylene having a molecular weight of 2000 or less. A heat-insulating and heat-retaining conjugate fiber comprising an easily dyeable polyester polymer containing 0.5 to 8.0% by mass of glycol.
JP2001218211A 2001-07-18 2001-07-18 Conjugate fiber having heat-storing and heat-retaining property Pending JP2003027337A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001218211A JP2003027337A (en) 2001-07-18 2001-07-18 Conjugate fiber having heat-storing and heat-retaining property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001218211A JP2003027337A (en) 2001-07-18 2001-07-18 Conjugate fiber having heat-storing and heat-retaining property

Publications (1)

Publication Number Publication Date
JP2003027337A true JP2003027337A (en) 2003-01-29

Family

ID=19052423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001218211A Pending JP2003027337A (en) 2001-07-18 2001-07-18 Conjugate fiber having heat-storing and heat-retaining property

Country Status (1)

Country Link
JP (1) JP2003027337A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242021A (en) * 2005-03-01 2006-09-14 Fujitsu Ten Ltd Abnormality diagnostic device
EP2145934A1 (en) 2008-07-16 2010-01-20 Outlast Technologies, Inc. Functional polymeric phase change materials
EP2145935A1 (en) 2008-07-16 2010-01-20 Outlast Technologies, Inc. Functional polymeric phase change materials and methods of manufacturing the same
WO2010008908A1 (en) 2008-07-16 2010-01-21 Outlast Technologies, Inc. Articles containing functional polymeric phase change materials and methods of manufacturing the same
WO2010008910A1 (en) 2008-07-16 2010-01-21 Outlast Technologies, Inc. Heat regulating article with moisture enhanced temperature control
WO2010008909A1 (en) 2008-07-16 2010-01-21 Outlast Technologies, Inc. Microcapsules and other containment structures for articles incorporating functional polymeric phase change materials
JP2010116660A (en) * 2008-10-17 2010-05-27 Kb Seiren Ltd Sheath-core conjugate fiber
JP2011241530A (en) * 2010-04-21 2011-12-01 Kb Seiren Ltd Sheath-core conjugate fiber
US8221910B2 (en) 2008-07-16 2012-07-17 Outlast Technologies, LLC Thermal regulating building materials and other construction components containing polymeric phase change materials
US8673448B2 (en) 2011-03-04 2014-03-18 Outlast Technologies Llc Articles containing precisely branched functional polymeric phase change materials
US10003053B2 (en) 2015-02-04 2018-06-19 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
JP2018168518A (en) * 2017-03-30 2018-11-01 Kbセーレン株式会社 Heat storage thermal insulation fiber
US10431858B2 (en) 2015-02-04 2019-10-01 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
JP2019183290A (en) * 2018-03-31 2019-10-24 Kbセーレン株式会社 Sheet cotton
USD911961S1 (en) 2017-04-03 2021-03-02 Latent Heat Solutions, Llc Battery container

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006242021A (en) * 2005-03-01 2006-09-14 Fujitsu Ten Ltd Abnormality diagnostic device
US9797087B2 (en) 2006-01-26 2017-10-24 Outlast Technologies, LLC Coated articles with microcapsules and other containment structures incorporating functional polymeric phase change materials
US8404341B2 (en) 2006-01-26 2013-03-26 Outlast Technologies, LLC Microcapsules and other containment structures for articles incorporating functional polymeric phase change materials
WO2010008908A1 (en) 2008-07-16 2010-01-21 Outlast Technologies, Inc. Articles containing functional polymeric phase change materials and methods of manufacturing the same
WO2010008910A1 (en) 2008-07-16 2010-01-21 Outlast Technologies, Inc. Heat regulating article with moisture enhanced temperature control
WO2010008909A1 (en) 2008-07-16 2010-01-21 Outlast Technologies, Inc. Microcapsules and other containment structures for articles incorporating functional polymeric phase change materials
US10590321B2 (en) 2008-07-16 2020-03-17 Outlast Technologies, Gmbh Articles containing functional polymeric phase change materials and methods of manufacturing the same
US8221910B2 (en) 2008-07-16 2012-07-17 Outlast Technologies, LLC Thermal regulating building materials and other construction components containing polymeric phase change materials
EP2145935A1 (en) 2008-07-16 2010-01-20 Outlast Technologies, Inc. Functional polymeric phase change materials and methods of manufacturing the same
US10377936B2 (en) 2008-07-16 2019-08-13 Outlast Technologies, LLC Thermal regulating building materials and other construction components containing phase change materials
US9234059B2 (en) 2008-07-16 2016-01-12 Outlast Technologies, LLC Articles containing functional polymeric phase change materials and methods of manufacturing the same
EP2145934A1 (en) 2008-07-16 2010-01-20 Outlast Technologies, Inc. Functional polymeric phase change materials
JP2010116660A (en) * 2008-10-17 2010-05-27 Kb Seiren Ltd Sheath-core conjugate fiber
US9371400B2 (en) 2010-04-16 2016-06-21 Outlast Technologies, LLC Thermal regulating building materials and other construction components containing phase change materials
JP2011241530A (en) * 2010-04-21 2011-12-01 Kb Seiren Ltd Sheath-core conjugate fiber
US9938365B2 (en) 2011-03-04 2018-04-10 Outlast Technologies, LLC Articles containing precisely branched functional polymeric phase change materials
US8673448B2 (en) 2011-03-04 2014-03-18 Outlast Technologies Llc Articles containing precisely branched functional polymeric phase change materials
US10003053B2 (en) 2015-02-04 2018-06-19 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
US10431858B2 (en) 2015-02-04 2019-10-01 Global Web Horizons, Llc Systems, structures and materials for electrochemical device thermal management
US11411262B2 (en) 2015-02-04 2022-08-09 Latent Heat Solutions, Llc Systems, structures and materials for electrochemical device thermal management
JP2018168518A (en) * 2017-03-30 2018-11-01 Kbセーレン株式会社 Heat storage thermal insulation fiber
JP7038481B2 (en) 2017-03-30 2022-03-18 Kbセーレン株式会社 Heat storage and heat retention fiber
USD911961S1 (en) 2017-04-03 2021-03-02 Latent Heat Solutions, Llc Battery container
JP2019183290A (en) * 2018-03-31 2019-10-24 Kbセーレン株式会社 Sheet cotton

Similar Documents

Publication Publication Date Title
JP2003027337A (en) Conjugate fiber having heat-storing and heat-retaining property
MXPA02005064A (en) Polyethylene glycol modified polyester fibers and method for making the same.
WO2008007803A1 (en) Antistatic polyester false twist yarn, process for producing the same, and antistatic special composite false twist yarn including the antistatic polyester false twist yarn
JP6129608B2 (en) Polyester core-sheath type composite fiber excellent in permeation resistance and method for producing the same
JPH07189036A (en) Polyester conjugate fiber
JP2016113714A (en) False-twisted hollow multifilament yarn, and woven or knitted fabric
JP2019007096A (en) Polyester composite fiber and fiber aggregate
JP2008127722A (en) Black spun-dyed polyester multifilament for blackout curtain and woven fabric for blackout curtain
JP2006249585A (en) Conjugated textured yarn and woven or knitted fabric thereof
JP3753844B2 (en) Polytrimethylene terephthalate sheath-core type composite fiber and fabric using the same
JP2009209478A (en) Ultrafine drawn yarn having antistatic property and method for producing the same
JPH1181048A (en) Conjugate polyester fiber
JP3257114B2 (en) Polyester hollow fiber with high coloring properties
JP3293704B2 (en) Polyester fiber and method for producing the same
JPH11107048A (en) Sheath-core type polyester textile excellent in dyeability and ultraviolet screening effects and production of the same
JPH108345A (en) Lightweight heat insulating fabric
JP3268906B2 (en) Extra-fine fiber fabric with good coloring
JP2983912B2 (en) Polyester fiber excellent in see-through prevention and method for producing the same
JP2675414B2 (en) Polyester fiber with excellent coloring and deep color
JPH0987927A (en) Conjugate fiber having high luster and high colorability
JPH11302924A (en) Cationic dye-dyeable sheath-core polyester fiber
JPH08291463A (en) Polyester hollow thick and thin yarn and its production
JPS62110918A (en) Polyester conjugated yarn
JPH04146215A (en) Antistatic polyester fiber
JPH09157960A (en) Conjugate fiber