JP7038481B2 - Heat storage and heat retention fiber - Google Patents

Heat storage and heat retention fiber Download PDF

Info

Publication number
JP7038481B2
JP7038481B2 JP2017069379A JP2017069379A JP7038481B2 JP 7038481 B2 JP7038481 B2 JP 7038481B2 JP 2017069379 A JP2017069379 A JP 2017069379A JP 2017069379 A JP2017069379 A JP 2017069379A JP 7038481 B2 JP7038481 B2 JP 7038481B2
Authority
JP
Japan
Prior art keywords
fiber
heat
heat storage
sea
island
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017069379A
Other languages
Japanese (ja)
Other versions
JP2018168518A (en
JP2018168518A5 (en
Inventor
正之 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KB Seiren Ltd
Original Assignee
KB Seiren Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KB Seiren Ltd filed Critical KB Seiren Ltd
Priority to JP2017069379A priority Critical patent/JP7038481B2/en
Publication of JP2018168518A publication Critical patent/JP2018168518A/en
Publication of JP2018168518A5 publication Critical patent/JP2018168518A5/ja
Application granted granted Critical
Publication of JP7038481B2 publication Critical patent/JP7038481B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Multicomponent Fibers (AREA)

Description

本発明は、赤外線吸収剤を含有したポリプロピレン樹脂と熱可塑性樹脂を用いた蓄熱保温性に優れる海島型複合繊維に関する。 The present invention relates to a sea-island type composite fiber having excellent heat storage and heat retention using a polypropylene resin containing an infrared absorber and a thermoplastic resin.

防寒衣料用途など保温性を求められる繊維は、吸湿発熱繊維、太陽光を熱に変換する繊維、中空繊維など数多く提案されている。
吸湿発熱繊維は湿気を吸収した時に発熱することで保温性を高めているが、すぐに放熱してしまい持続性が低い。
一方、太陽光を熱に変換する繊維は太陽光が照射されると常に発熱するため、保温性とその持続性に優れている。特許文献1では、芯部に酸化錫で表面被覆された酸化チタンを含有したポリエステルを配し、鞘部に特定のポリエチレンテレフタレートを配した芯鞘繊維とすることで染色性の良好な蓄熱保温繊維が提案されている。また、特許文献2では酸化アンチモンをドーピングした酸化第二スズと遠赤外線放射性微粒子を含むことで優れた保温性と共に白度を有する機能性繊維を得られることが提案されている。
また、防寒衣料は通常の衣料よりも繊維を多く使い、重量感のあるものになるため、繊維の軽量化も重要となる。軽量性繊維としてはポリオレフィンを使用した繊維が挙げられるが、ポリオレフィンは染色性がなく、衣料用途への展開は困難である。そこで、特許文献3では繊維横断面中空率が50%以上のポリエステル繊維からなる紡績糸が提案されている。この提案では、中空部によって、紡績糸へ軽量性と保温性を付与している。
Many fibers that are required to retain heat, such as those used for winter clothing, have been proposed, such as moisture-absorbing heat-generating fibers, fibers that convert sunlight into heat, and hollow fibers.
Moisture-absorbing heat-generating fibers increase heat retention by generating heat when they absorb moisture, but they dissipate heat immediately and have low sustainability.
On the other hand, fibers that convert sunlight into heat always generate heat when irradiated with sunlight, so they are excellent in heat retention and durability. In Patent Document 1, a polyester containing titanium oxide surface-coated with tin oxide is arranged in the core portion, and a specific polyethylene terephthalate is arranged in the sheath portion to form a core-sheath fiber having good dyeability. Has been proposed. Further, Patent Document 2 proposes that a functional fiber having whiteness as well as excellent heat retention can be obtained by containing stannic oxide doped with antimony oxide and far-infrared radioactive fine particles.
In addition, since winter clothing uses more fibers than ordinary clothing and becomes heavy, it is also important to reduce the weight of the fibers. Examples of the lightweight fiber include fibers using polyolefin, but polyolefin is not dyeable and it is difficult to develop it for clothing applications. Therefore, Patent Document 3 proposes a spun yarn made of polyester fiber having a fiber cross-sectional hollow ratio of 50% or more. In this proposal, the hollow portion imparts lightness and heat retention to the spun yarn.

特開2003-027337号公報Japanese Patent Application Laid-Open No. 2003-0273337 特開2015-014076号公報Japanese Unexamined Patent Publication No. 2015-014076 特開2007-070768号公報Japanese Unexamined Patent Publication No. 2007-070768

しかしながら、十分な保温性を得るために特許文献1、2のように、酸化アンチモンをドーピングした酸化第二スズなどの無機微粒子を配合すると、繊維の比重が大きくなり、防寒衣料等が重量感のある衣料となりい。
また、特許文献3の実施例記載のようなポリエチレンテレフタレートの中空繊維はポリエチレンテレフタレートの比重が1.38と高く、軽量性を向上させるために中空率を高くしているが、中空率が高い場合には、仮撚加工や撚糸等の工程で中空部の割れや潰れが生じるため、軽量性の付与には限界があった。
したがって、防寒衣料として十分な保温性を有し、かつ軽量である染色可能な蓄熱保温性繊維を得ることを目的としたものである。
However, when inorganic fine particles such as stannic oxide doped with antimony oxide are blended as in Patent Documents 1 and 2 in order to obtain sufficient heat retention, the specific gravity of the fiber becomes large and the winter clothing and the like feel heavy. It tends to be a certain clothing.
Further, the hollow fiber of polyethylene terephthalate as described in Examples of Patent Document 3 has a high specific gravity of polyethylene terephthalate of 1.38, and the hollow ratio is increased in order to improve the lightness, but the hollow ratio is high. In addition, since the hollow portion is cracked or crushed in the process of false twisting or twisting, there is a limit to imparting lightness.
Therefore, it is an object of the present invention to obtain a dyeable heat storage heat retention fiber having sufficient heat retention as a winter clothing and being lightweight.

本発明は、島成分を、赤外線吸収剤を含有させた軽量性に優れるポリプロピレン樹脂とし、海成分を、染色可能な熱可塑性樹脂とし、海部と島部を特定の繊維横断面形状とする海島構造を有する蓄熱保温性繊維である。
すなわち、本発明の要旨は、海部と10個以上、20個以下の島部の接合面が繊維長さ方向に連続した海島構造を有し、以下の(a)~()を満たす蓄熱保温性繊維である。
(a)島成分が赤外線吸収剤を2質量%以上、15質量%以下含有するポリプロピレン樹脂
)海成分が染色可能な熱可塑性樹脂
)繊維横断面における海部の面積比率が30%以上、70%以下
)繊維横断面における海部の最小厚みが1μm以上
中でも、染色可能な熱可塑性樹脂はポリエステル系樹脂またはポリアミド系樹脂であることが好ましい。また、前記繊維が170℃の乾熱雰囲気下で乾熱処理後に融着および溶断のないことが好ましい。さらに、前記繊維の単糸繊度が1dtex以上であり、密度が1.25g/cm以下であることが好ましい。
また本発明は、上記繊維からなる繊維構造物でもある。
In the present invention, the island component is made of a lightweight polypropylene resin containing an infrared absorber, the sea component is made of a dyeable thermoplastic resin, and the sea part and the island part have a specific fiber cross-sectional shape. It is a heat storage heat retaining fiber having.
That is, the gist of the present invention is that the joint surface between the sea part and 10 or more and 20 or less island parts has a continuous sea-island structure in the fiber length direction, and heat storage and heat retention satisfying the following (a) to ( d ). It is a sex fiber.
( A) Polypropylene resin containing 2% by mass or more and 15% by mass or less of an infrared absorber in the island component ( b ) Thermoplastic resin in which the sea component can be dyed ( c ) The area ratio of the sea part in the cross section of the fiber is 30% or more. , 70% or less ( d ) Even if the minimum thickness of the sea portion in the fiber cross section is 1 μm or more, the dyeable thermoplastic resin is preferably a polyester resin or a polyamide resin. Further, it is preferable that the fibers are not fused or fused after the dry heat treatment in a dry heat atmosphere of 170 ° C. Further, it is preferable that the single yarn fineness of the fiber is 1 dtex or more and the density is 1.25 g / cm 3 or less.
The present invention is also a fiber structure made of the above fibers.

本発明の蓄熱保温性繊維は、繊維の重量感を改良し、防寒衣料として十分な機能を有する蓄熱保温性と染色性に優れた繊維を提供できる。また本発明の蓄熱保温性繊維は、ポリエステル繊維やポリアミド繊維等の熱可塑性樹脂繊維との併用ができる。 The heat storage heat retention fiber of the present invention can improve the weight feeling of the fiber and can provide a fiber having a sufficient function as a winter clothing and having excellent heat storage heat retention and dyeability. Further, the heat storage heat retaining fiber of the present invention can be used in combination with a thermoplastic resin fiber such as a polyester fiber or a polyamide fiber.

図1は、本発明の蓄熱保温性繊維の横断面形状の例を示す。FIG. 1 shows an example of the cross-sectional shape of the heat storage heat insulating fiber of the present invention. 図2は、本発明の範囲外の蓄熱保温性繊維の横断面形状の例を示す。FIG. 2 shows an example of a cross-sectional shape of a heat storage heat insulating fiber outside the scope of the present invention.

本発明の蓄熱保温性繊維は、海成分からなる海部と島成分からなる島部とから構成される。 The heat storage and heat retaining fiber of the present invention is composed of a sea portion composed of a sea component and an island portion composed of an island component.

本発明の蓄熱保温性繊維は、海成分が染色可能な熱可塑性樹脂、島成分がポリプロピレン樹脂から構成され、島成分は赤外線吸収剤を含有する。 The heat storage and heat retaining fiber of the present invention is composed of a thermoplastic resin in which the sea component can be dyed and a polypropylene resin in the island component, and the island component contains an infrared absorber.

赤外線吸収剤としては、例えば、アンチモンドープ酸化スズ(ATO)やスズドープ酸化インジウム(ITO)等が挙げられる。ATOの場合、ポリプロピレン樹脂に対し、2質量%以上、15質量%以下含有することが好ましい。含有量が2質量%未満であると十分な蓄熱保温性を得ることができず、15質量%をえると紡糸時の曳糸性が極端に悪化する。あるいは、紡糸できても延伸工程での糸切れが生じ、さらには、延伸後の品質も満足できないものとなりい。より好ましくは、3質量%以上、12質量%以下である。ITOの場合も、ATOと同様の割合で、ポリプロピレン樹脂に含有することが好ましい。 Examples of the infrared absorber include antimony-doped tin oxide (ATO) and tin-doped indium oxide (ITO). In the case of ATO , it is preferable to contain 2% by mass or more and 15% by mass or less with respect to the polypropylene resin. If the content is less than 2% by mass, sufficient heat storage and heat retention cannot be obtained, and if it exceeds 15% by mass, the spinnability at the time of spinning is extremely deteriorated. Alternatively, even if spinning is possible, yarn breakage occurs in the drawing process, and the quality after drawing tends to be unsatisfactory. More preferably, it is 3% by mass or more and 12% by mass or less. In the case of ITO , it is preferable that it is contained in the polypropylene resin in the same proportion as ATO .

赤外線吸収剤の粒子径としては、例えば、平均粒子径10μm以下であることが好ましい。平均粒子径が10μmを超えると紡糸フィルターの目詰まり、断糸等が生じくなる。より好ましくは、10nm以上、5μm以下であり、さらに好ましくは、10nm以上、3μm以下である。 The particle size of the infrared absorber is preferably, for example, an average particle size of 10 μm or less. If the average particle size exceeds 10 μm, the spinning filter is likely to be clogged, yarn breakage, or the like is likely to occur . It is more preferably 10 nm or more and 5 μm or less, and further preferably 10 nm or more and 3 μm or less.

本発明の蓄熱保温性繊維において、島成分のポリプロピレン樹脂とは、ポリプロピレン(PP)が主成分である樹脂をいう。プロピレン単独重合体であっても、他の成分を繰り返し単位として含む共重合体であってもよい。共重合体としては、プロピレンに、例えば、エチレン、ブテン-1、ヘキセン-1等を1種以上共重合したものが挙げられる。 In the heat storage and heat retention fiber of the present invention, the polypropylene resin of the island component means a resin containing polypropylene (PP) as a main component. It may be a propylene homopolymer or a copolymer containing another component as a repeating unit. Examples of the copolymer include those obtained by copolymerizing one or more of ethylene, butene-1, hexene-1, and the like with propylene.

本発明において、樹脂の融点とは、示差走査熱量計(DSC)を用いて、窒素雰囲気下、10℃/minで300℃まで昇温した時の吸熱ピークのピークトップが示す値のことをいう。 In the present invention, the melting point of the resin refers to the value indicated by the peak top of the endothermic peak when the temperature is raised to 300 ° C. at 10 ° C./min under a nitrogen atmosphere using a differential scanning calorimeter (DSC). ..

ポリプロピレン樹脂の融点は145℃以上、200℃以下が好ましい。融点が145℃より低いと、十分な耐熱性が得られない傾向がある。融点が200℃より高いと、溶融紡糸において、海成分の熱可塑性樹脂との複合が困難となる傾向がある。また、上記の範囲であると、ポリエステル樹脂やポリアミド樹脂等の熱可塑性樹脂からなる繊維を混用して繊維構造物とした際、通常実施する、プレセットやファイナルセット等の後加工における乾熱処理(例えば、120~190℃の乾熱処理)や染色処理(例えば、100~135℃の湿熱処理)を行うのに、十分良好な耐熱性を備えるものを得られ易い。より好ましいポリプロピレン樹脂の融点は、160℃以上、200℃以下である。 The melting point of the polypropylene resin is preferably 145 ° C. or higher and 200 ° C. or lower. If the melting point is lower than 145 ° C., sufficient heat resistance tends not to be obtained. If the melting point is higher than 200 ° C., it tends to be difficult to combine the sea component with the thermoplastic resin in melt spinning. Further, within the above range, when a fiber made of a thermoplastic resin such as a polyester resin or a polyamide resin is mixed to form a fiber structure, a dry heat treatment (dry heat treatment) in post-processing such as a preset or a final set, which is usually performed, is performed. For example, it is easy to obtain a material having sufficiently good heat resistance for performing a dry heat treatment at 120 to 190 ° C. or a dyeing treatment (for example, a wet heat treatment at 100 to 135 ° C.). More preferably, the melting point of the polypropylene resin is 160 ° C. or higher and 200 ° C. or lower.

ポリプロピレン樹脂の230℃、荷重2.16kgにおけるメルトフレート(MFR)は、9g/10min以上、30g/10min以下が好ましい。すなわち、MFRが9g/10min以上であれば、島部同士の融合による凝集塊が生じ難い傾向があるため、海部と島部の剥離が生じ難くなる。この結果、紡糸工程や延撚工程での製糸安定性は良好となり、染色した後に白化現象等の染色斑も生じ難い傾向がある。また繊維の機械的強度を良好に保つ点からは、MFRが30g/10min以下であることが好ましい。よって、MFRが上記の範囲内であると、島部同士の融合が生じ難く、海部と島部の剥離がなく、機械的強度の良好な繊維を得られ易い。中でも、MFRは9g/10min以上が好ましく、20g/10min以下が好ましい。より好ましくは9g/10min以上、15g/10min以下である。 The melt frate (MFR) of the polypropylene resin at 230 ° C. and a load of 2.16 kg is preferably 9 g / 10 min or more and 30 g / 10 min or less. That is, when the MFR is 9 g / 10 min or more, there is a tendency that agglomerates are unlikely to occur due to fusion between the islands, so that detachment between the sea and the islands is unlikely to occur. As a result, the spinning stability in the spinning process and the twisting process is good, and there is a tendency that dyeing spots such as a whitening phenomenon are less likely to occur after dyeing. Further, from the viewpoint of maintaining good mechanical strength of the fiber, the MFR is preferably 30 g / 10 min or less. Therefore, when the MFR is within the above range, fusion between the islands is unlikely to occur, there is no separation between the sea and the islands, and it is easy to obtain fibers having good mechanical strength. Above all, the MFR is preferably 9 g / 10 min or more, and preferably 20 g / 10 min or less. More preferably, it is 9 g / 10 min or more and 15 g / 10 min or less.

本発明の蓄熱保温性繊維において、海成分は、染色可能な熱可塑性樹脂であれば特に限定されることはない。具体例として、例えば、ポリエステル樹脂、ポリアミド樹脂、ポリビニルアルコール樹脂が挙げられる。これらの中でも、耐熱性や機械的特性の観点からポリエステル樹脂、ポリアミド樹脂が好ましい。 In the heat storage and heat retaining fiber of the present invention, the sea component is not particularly limited as long as it is a dyeable thermoplastic resin. Specific examples include polyester resin, polyamide resin, and polyvinyl alcohol resin. Among these, polyester resin and polyamide resin are preferable from the viewpoint of heat resistance and mechanical properties.

海成分の熱可塑性樹脂は、融点は180℃以上、280℃以下が好ましい。
本発明において島部は、海部の海成分に覆われており、通常のプレセットやファイナルセット等の後加工における乾熱処理でも問題のない良好な耐熱性を備えている。海成分の融点が低すぎると、乾熱処理により、海部の融解が生じ、風合いが硬くなる傾向がある。 また高すぎると、海成分との複合紡糸が難しくなる傾向がある。よって、耐熱性、安定した製糸性や海部と島部との剥離を抑制し易い点から、上記の範囲が好ましい。より好ましい海成分の熱可塑性樹脂の融点は、210℃以上、270℃以下であり、さらに好ましくは220℃以上、265℃以下である。
The sea component thermoplastic resin preferably has a melting point of 180 ° C. or higher and 280 ° C. or lower.
In the present invention, the island portion is covered with the sea component of the sea portion, and has good heat resistance that does not cause any problem even in dry heat treatment in post-processing such as a normal preset or final set. If the melting point of the sea component is too low, the dry heat treatment tends to cause melting of the sea part and harden the texture. If it is too high, compound spinning with sea components tends to be difficult. Therefore, the above range is preferable from the viewpoint of heat resistance, stable silk reeling property, and easy suppression of peeling between the sea part and the island part. The melting point of the thermoplastic resin having a more preferable sea component is 210 ° C. or higher and 270 ° C. or lower, and more preferably 220 ° C. or higher and 265 ° C. or lower.

海成分のポリエステル樹脂としては、ジカルボン酸類またはそのエステル形成誘導体とジオールまたはそのエステル形成誘導体を原料として重縮合反応によって製造される線状飽和ポリエステルであればよく、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸等が挙げられるが、これらに限定されるものではない。特に、ポリエチレンテレフタレートを主体とするものが好ましく、またホモポリエステルであってもコポリエステルであってもよい。共重合成分としてはアジピン酸、セバシン酸、フタル酸、イソフタル酸、ナフタレン-2,6-ジカルボン酸、ジフェニルジカルボン酸、5-ナトリウムスルホイソフタル酸、ジフェニルスルホンジカルボン酸、p-オキシエトキシ安息香酸等のジカルボン酸類またはそのエステル形成誘導体成分、またはポリエチレングリコール、ポリテトラメチレングリコール、ポリヘキサンメチレングリコールなどのポリアルキレングリコール成分を含んでいるものが挙げられる。これらの共重合成分は互いに1種ずつ用いてもよいし、2種以上用いることもできる。 The sea component polyester resin may be a linear saturated polyester produced by a polycondensation reaction using dicarboxylic acids or an ester-forming derivative thereof and a diol or an ester-forming derivative thereof as raw materials, and may be polyethylene terephthalate, polytrimethylene terephthalate, or poly. Examples thereof include butylene terephthalate, polyethylene naphthalate, polylactic acid and the like, but the present invention is not limited thereto. In particular, those mainly composed of polyethylene terephthalate are preferable, and homopolyester or copolyester may be used. Examples of the copolymerization component include adipic acid, sebacic acid, phthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, diphenyldicarboxylic acid, 5-sodiumsulfoisophthalic acid, diphenylsulfonicdicarboxylic acid, p-oxyethoxybenzoic acid and the like. Examples thereof include those containing a dicarboxylic acid or an ester-forming derivative component thereof, or a polyalkylene glycol component such as polyethylene glycol, polytetramethylene glycol, or polyhexanemethylene glycol. These copolymerization components may be used one by one, or two or more of them may be used.

海成分のポリアミド樹脂としては、ポリアミド6、ポリアミド10、ポリアミド12、ポリアミド66などの単独の重合体または共重合体が挙げられ、これらに限定されるものではない。 Examples of the polyamide resin having a sea component include, but are not limited to, a single polymer such as polyamide 6, polyamide 10, polyamide 12, and polyamide 66, or a copolymer.

海成分と島成分は、本発明の効果を損なわない範囲内で、添加物を添加することにより改質が行われたものであっても良い。添加物としては相溶化剤、熱安定化剤、酸化防止剤、蛍光増白剤等が挙げられる。また、添加物は単独で用いても良いし併用しても良い。 The sea component and the island component may be modified by adding an additive within a range that does not impair the effect of the present invention. Examples of the additive include a compatibilizer, a heat stabilizer, an antioxidant, a fluorescent whitening agent and the like. In addition, the additive may be used alone or in combination.

本発明の蓄熱保温性繊維の断面形状について、以下説明する。 The cross-sectional shape of the heat storage heat insulating fiber of the present invention will be described below.

本発明の蓄熱保温性繊維は、1つ以上の海部と、2つ以上の島部とを、長さ方向に連続して形成された海島構造を有する複合繊維である。また海部と島部との接合面は、繊維長さ方向に途切れずに連続してなる海島構造を有することが好ましい。 The heat storage heat insulating fiber of the present invention is a composite fiber having a sea-island structure in which one or more sea parts and two or more island parts are continuously formed in the length direction. Further, it is preferable that the joint surface between the sea portion and the island portion has a sea-island structure which is continuous without interruption in the fiber length direction.

本発明の蓄熱保温性繊維は、繊維表面に海成分が露出している。すなわち、繊維横断面(繊維長さ方向に垂直な繊維断面)においては、外周に海部が露出している。 In the heat storage and heat retaining fiber of the present invention, the sea component is exposed on the fiber surface. That is, in the fiber cross section (fiber cross section perpendicular to the fiber length direction), the sea portion is exposed on the outer circumference.

図1は、本発明の蓄熱保温性繊維の繊維横断面の断面形状の一例を示す図である。この例では、丸断面の繊維の海部aに、丸断面の19個の島部bが繊維中央に寄り合う形で配置されている。島部bの19個は、繊維中央に丸断面が1個、繊維中央の周囲に略等間隔に第1の円周上に配置された丸断面が6個、第1の円周上の外周に略等間隔に配置された丸断面の12個から構成される。このように島部は、繊維中央に1個、その周りに、二重円上に島部が配置されている。また、海部の最小厚みは1μm以上で構成される。ここで、海部の最小厚みとは、繊維外周と島部外周との最短距離であり、繊維外周の法線(繊維外周の一点を通り、この点における接線に垂直な直線)をひいたときに最も近い島部の外周までの距離を示す。例えば、図1の蓄熱保温性繊維において、繊維外周上の点pから法線をひき、島部bの外周との交点をqとする。繊維横断面中で、この点pと点qを結ぶ線分p-qの最も短い長さXが海部の最小厚みとなる。
海部の最小厚みが1μm未満の場合、島部の赤外線吸収剤が繊維表面へ露出することを抑制し難くなる。赤外線吸収剤が繊維表面に露出すると、紡糸工程、延伸工程、製織編工程でガイドやローラーを激しく摩耗し易くなる。また、延伸工程、製織編工程、染色工程において、海成分と島成分との剥離が生じ易くなる。このため、製糸安定性や製織編安定性の悪化、白化現象等の染色斑が生じ易い。また、乾熱処理による、島部の融解が生じ、風合いが硬くなり易い。
より好ましい海部の最小厚みは、1.2μm以上である。海部の最小厚みの上限は、後述するが、島部の密集度を上げない観点から、4.0μm以下であることが好ましい。
FIG. 1 is a diagram showing an example of the cross-sectional shape of the fiber cross section of the heat storage heat insulating fiber of the present invention. In this example, 19 islands b having a round cross section are arranged in a sea portion a of a fiber having a round cross section so as to be close to the center of the fiber. The 19 islands b have one round cross section in the center of the fiber, six round cross sections arranged on the first circumference at approximately equal intervals around the center of the fiber, and the outer circumference on the first circumference. It is composed of 12 round cross sections arranged at approximately equal intervals. In this way, one island part is arranged in the center of the fiber, and the island part is arranged on a double circle around the island part. The minimum thickness of the sea part is 1 μm or more. Here, the minimum thickness of the sea portion is the shortest distance between the outer circumference of the fiber and the outer circumference of the island, and when the normal line of the outer circumference of the fiber (a straight line passing through one point on the outer circumference of the fiber and perpendicular to the tangent line at this point) is drawn. Shows the distance to the outer circumference of the nearest island. For example, in the heat storage and heat retaining fiber of FIG. 1, a normal line is drawn from the point p on the outer circumference of the fiber, and the intersection with the outer circumference of the island portion b is defined as q. In the cross section of the fiber, the shortest length X of the line segment pq connecting the points p and q is the minimum thickness of the sea portion.
When the minimum thickness of the sea portion is less than 1 μm, it becomes difficult to suppress the exposure of the infrared absorber on the island portion to the fiber surface. When the infrared absorber is exposed on the fiber surface, the guides and rollers are likely to be severely worn in the spinning process, the drawing process, and the weaving and knitting process. Further, in the stretching step, the weaving and knitting step, and the dyeing step, peeling between the sea component and the island component is likely to occur. For this reason, dyeing spots such as deterioration of silk reeling stability, weaving and knitting stability, and whitening phenomenon are likely to occur. In addition, the islands are melted by the dry heat treatment, and the texture tends to be hard.
A more preferable minimum thickness of the sea portion is 1.2 μm or more. The upper limit of the minimum thickness of the sea part will be described later, but it is preferably 4.0 μm or less from the viewpoint of not increasing the density of the island part.

本発明の蓄熱保温性繊維の繊維横断面において、島部の個数を40個以下にすることが好ましい。島部の個数が40個以下であれば、適度な強度を備えた海部と島部の剥離が生じ難い蓄熱保温性繊維が安定的に得られ易くなる。一方、島部の個数が40個を超える場合は繊維中の島部の密集度が大きくなり、紡糸過程で互いの島部同士が融合し凝集塊が発生し易くなり、海部と島部の剥離が生じ易くなる傾向がある。また、より安定した繊維横断面の形成を確保する点から、配置される島部の個数は20個以下がより好ましい。島部をこのような個数とすることにより島部同士の凝集を抑制することがさらに容易になる。加えて、海部と島部の接合面積を大きくしつつ剥離を防ぐ点から、配置される島部の個数は3個以上が好ましく、より好ましくは10個以上である。 In the fiber cross section of the heat storage heat retaining fiber of the present invention, the number of islands is preferably 40 or less. When the number of islands is 40 or less, it becomes easy to stably obtain heat storage and heat insulating fibers having appropriate strength and which are unlikely to be separated from the sea and islands. On the other hand, when the number of islands exceeds 40, the density of the islands in the fiber becomes large, and the islands are fused with each other in the spinning process to easily generate agglomerates, resulting in separation of the sea and the islands. It tends to be easier. Further, from the viewpoint of ensuring the formation of a more stable fiber cross section, the number of islands to be arranged is more preferably 20 or less. By setting the number of islands to such a number, it becomes easier to suppress aggregation between the islands. In addition, the number of islands to be arranged is preferably 3 or more, more preferably 10 or more, from the viewpoint of preventing peeling while increasing the joint area between the sea and the islands.

本発明の蓄熱保温性繊維の繊維横断面において、海部と島部の剥離を抑制する点からは、応力が分散し易いように、島部が繊維の中心と同心円の円周上に略等間隔に配置されることが好ましい。ここで、島部が配置される円は一重円でも、二重円以上でもよいが、二重円以上であることが好ましい。二重円以上であると、後工程で熱処理した際に、収縮応力をより分散し易くなり、海部と島部の剥離をより効率的に抑制できる。 In the fiber cross section of the heat storage heat retaining fiber of the present invention, the islands are approximately evenly spaced on the circumference of the concentric circle with the center of the fiber so that stress can be easily dispersed from the viewpoint of suppressing the separation between the sea and the island. It is preferable to be arranged in. Here, the circle on which the island portion is arranged may be a single circle or a double circle or more, but is preferably a double circle or more. When it is a double circle or more, it becomes easier to disperse the shrinkage stress when the heat treatment is performed in the subsequent step, and the separation between the sea part and the island part can be suppressed more efficiently.

本発明の蓄熱保温性繊維の繊維横断面において、繊維横断面全体に対する海部の面積比率が30%以上で構成される。すなわち、繊維横断面において、海部の面積比率が30%未満であると、島部と島部の間の海部の間隔が狭くなり、島部同士が融合し、海部と島部の剥離が生じ易くなる。また、染色後に淡色となる傾向があるため、好ましくは面積比率が35%以上であり、より好ましくは、40%以上である。 In the fiber cross section of the heat storage heat retaining fiber of the present invention, the area ratio of the sea portion to the entire fiber cross section is composed of 30% or more. That is, when the area ratio of the sea part is less than 30% in the fiber cross section, the distance between the island parts is narrowed, the islands are fused with each other, and the sea part and the island part are likely to be separated. Become. Further, since the color tends to be light after dyeing, the area ratio is preferably 35% or more, more preferably 40% or more.

本発明の蓄熱保温性繊維の繊維横断面において、繊維横断面全体に対する島部の面積比率は、70%以下が好ましい。島部の面積比率は、軽量性、染色性とのバランスを考慮して、適宜設定するとよい。 In the fiber cross section of the heat storage heat retaining fiber of the present invention, the area ratio of the island portion to the entire fiber cross section is preferably 70% or less. The area ratio of the islands may be appropriately set in consideration of the balance between lightness and dyeability.

本発明の蓄熱保温性繊維の繊維横断面において、島部は、島部同士が融合しない範囲で、中心部に配置することが好ましい。例えば、繊維横断面において、繊維半径をrとした場合、繊維中心点から[半径r×0.90]以下の範囲に島部を配置することが好ましく、より好ましくは[半径r×0.85]以下の範囲に島部を配置することである。これにより、海部の最小厚みを1μm以上にし易く、製糸安定性や製織編安定性の悪化、白化現象等の染色斑を抑制し易い傾向がある。 In the fiber cross section of the heat storage heat retaining fiber of the present invention, it is preferable that the island portion is arranged in the central portion within a range in which the island portions do not fuse with each other. For example, when the fiber radius is r in the fiber cross section, it is preferable to arrange the island portion in a range of [radius r × 0.90] or less from the fiber center point, and more preferably [radius r × 0.85]. ] The islands should be placed in the following areas. As a result, the minimum thickness of the sea portion is likely to be 1 μm or more, and there is a tendency that the stability of silk reeling, deterioration of weaving and knitting stability, and dyeing spots such as whitening phenomenon are easily suppressed.

本発明の蓄熱保温性繊維において、総繊度は、製糸安定性の点から、40dtex以上、200dtex以下が好ましい。より好ましくは40dtex以上、150dtex以下、さらに好ましくは40dtex以上、100dtex以下である。 In the heat storage and heat retaining fiber of the present invention, the total fineness is preferably 40 dtex or more and 200 dtex or less from the viewpoint of silk reeling stability. It is more preferably 40 dtex or more and 150 dtex or less, and further preferably 40 dtex or more and 100 dtex or less.

また、本発明の蓄熱保温性繊維において、単糸繊度は1dtex以上で構成されることが好ましい。単糸繊度が1dtex未満では海部の最小厚みを1μm以上に維持することが難しい傾向があり、製糸安定性や製織編安定性の悪化、白化現象等の染色斑が起こり易くなる。また、布帛にした時の風合いの点から、単糸繊度は5dtex以下が好ましい。5dtexを超えると布帛にした時に風合いが硬いものとなり易い。より好ましくは4dtex以下、さらに好ましくは3dtex以下である。 Further, in the heat storage and heat retaining fiber of the present invention, it is preferable that the single yarn fineness is 1 dtex or more. If the single yarn fineness is less than 1 dtex, it tends to be difficult to maintain the minimum thickness of the sea portion to 1 μm or more, and dyeing spots such as deterioration of silk reeling stability and weaving and knitting stability, and whitening phenomenon are likely to occur. Further, from the viewpoint of the texture when made into a woven fabric, the single yarn fineness is preferably 5 dtex or less. If it exceeds 5 dtex, the texture tends to be hard when it is made into a woven fabric. It is more preferably 4 dtex or less, still more preferably 3 dtex or less.

本発明の蓄熱保温性繊維において、強度は、後加工の点から、2.0cN/dtex以上、5.5cN/dtex以下が好ましい。さらに好ましくは2.5cN/dtex以上、5.0cN/dtex以下である。 In the heat storage heat insulating fiber of the present invention, the strength is preferably 2.0 cN / dtex or more and 5.5 cN / dtex or less from the viewpoint of post-processing. More preferably, it is 2.5 cN / dtex or more and 5.0 cN / dtex or less.

本発明の蓄熱保温性繊維において、伸度は、後加工の点から、20%以上、45%以下が好ましい。さらに好ましくは25%以上、40%以下である。 In the heat storage and heat retaining fiber of the present invention, the elongation is preferably 20% or more and 45% or less from the viewpoint of post-processing. More preferably, it is 25% or more and 40% or less.

本発明の蓄熱保温性繊維の密度について説明する。島成分のポリプロピレンは密度が0.91g/cm程度と軽量性に優れている。一方、本発明において、海成分は、染色可能な熱可塑性樹脂からなる。そのため、本発明の蓄熱保温性繊維の密度は、繊維横断面における島部の面積比率に応じて変化する。軽量性の点から密度の小さいポリプロピレン樹脂からなる島成分の面積比率が大きい程良いが、染色性の点からポリプロピレンより密度の大きい熱可塑性樹脂からなる島成分の面積比率が大きい方が好ましい。これらのバランスを考慮すると、繊維横断面における海部の面積比率の下限は30%であり、好ましくは35%、より好ましくは40%である。海部の面積比率の上限は70%であり、好ましくは65%、より好ましくは60%である。このような範囲であれば軽量性と染色性の両方に優れた蓄熱保温性繊維を得ることが容易となる。 The density of the heat storage heat retaining fiber of the present invention will be described. Polypropylene, which is an island component, has a density of about 0.91 g / cm 3 and is excellent in lightness. On the other hand, in the present invention, the sea component is made of a dyeable thermoplastic resin. Therefore, the density of the heat storage heat insulating fiber of the present invention changes according to the area ratio of the island portion in the cross section of the fiber. From the viewpoint of lightness, it is better that the area ratio of the island component made of polypropylene resin having a low density is large, but from the viewpoint of dyeability, it is preferable that the area ratio of the island component made of a thermoplastic resin having a higher density than polypropylene is large. Considering these balances, the lower limit of the area ratio of the sea portion in the fiber cross section is 30%, preferably 35%, and more preferably 40%. The upper limit of the area ratio of the sea part is 70%, preferably 65%, and more preferably 60%. Within such a range, it becomes easy to obtain a heat storage heat retaining fiber having excellent both light weight and dyeability.

本発明において、耐熱性について説明する。本発明の蓄熱保温性繊維は、170℃の乾熱処理で溶融および融着が発生しないものであることが好ましい。通常、製織、製編された生地は、プレセットやファイナルセット等の乾熱処理を行う必要がある。ポリエステル繊維やポリアミド繊維を用いた生地の場合、通常120℃~190℃で熱処理が行われる。その際に耐熱性が低い繊維を併用すると、乾熱処理時に繊維の融着または溶断が発生し、風合いの硬い生地や穴が開いた生地となってしまい、衣料用途や産業資材用途等に用いることができなくなる。この点から、耐熱性は高いほど良く、170℃の乾熱処理で融着および溶断が発生しないことが好ましい。 In the present invention, heat resistance will be described. It is preferable that the heat storage heat retaining fiber of the present invention is one in which melting and fusion do not occur by dry heat treatment at 170 ° C. Normally, weaving and knitting fabrics need to be subjected to dry heat treatment such as presets and final sets. In the case of a fabric using polyester fiber or polyamide fiber, heat treatment is usually performed at 120 ° C to 190 ° C. If fibers with low heat resistance are used together at that time, the fibers will be fused or fusing during the dry heat treatment, resulting in a fabric with a hard texture or a fabric with holes, which should be used for clothing and industrial materials. Cannot be done. From this point of view, the higher the heat resistance, the better, and it is preferable that fusion and fusing do not occur in the dry heat treatment at 170 ° C.

本発明の蓄熱保温性繊維は、ステープル、紡績糸、フィラメント等の形態で用いることができる。また、海部と島部の剥離が生じ難く、白化現象を抑制することができる。さらに、十分な強度や伸度を有しているため、長繊維としても、好適に使用できる。 The heat storage heat insulating fiber of the present invention can be used in the form of staples, spun yarns, filaments and the like. In addition, peeling between the sea part and the island part is unlikely to occur, and the bleaching phenomenon can be suppressed. Further, since it has sufficient strength and elongation, it can be suitably used as a long fiber.

本発明の蓄熱保温性繊維を用いて、種々の繊維構造物を得ることができる。繊維構造物としては、例えば、撚糸、組紐などの糸束、仮撚糸やタスラン加工糸などの加工糸、紡績糸、各種混繊糸、織編物や不織布等の布帛、詰め綿等の形態をとることができる。
特に、ポリエステル繊維やポリアミド繊維等の熱可塑性樹脂からなる繊維と混繊や交織や交編した織編物・不織布等の布帛とした繊維構造物であれば、染色性、耐熱性、軽量性などの特徴を、適宜、活用して用いることができる点で好ましい。
Various fiber structures can be obtained by using the heat storage heat insulating fiber of the present invention. The fiber structure takes the form of, for example, a bundle of yarns such as twisted yarns and braids, processed yarns such as false twisted yarns and Taslan processed yarns, spun yarns, various mixed yarns, fabrics such as woven and knitted fabrics and non-woven fabrics, and stuffed cotton. be able to.
In particular, if it is a fiber structure made of a fiber made of a thermoplastic resin such as a polyester fiber or a polyamide fiber and a fabric such as a mixed fiber, a mixed weave, a mixed knitted knitted fabric, or a non-woven fabric, the dyeability, heat resistance, lightness, etc. It is preferable in that the features can be appropriately utilized and used.

次に、本発明の蓄熱保温性繊維を製造する方法の好適な例について説明する。 Next, a preferred example of the method for producing the heat storage heat insulating fiber of the present invention will be described.

まず、上記島成分のポリプロピレン樹脂および上記海成分の熱可塑性樹脂を準備する。
準備した海成分と島成分を別々に溶融して、上記断面形状となるように、紡糸口金より吐出し、冷却した後、延伸して、本発明の蓄熱保温性繊維を得ることができる。
ここで赤外線吸収剤を島成分に添加する方法としては特に限定はないが、均一分散させるという点から二軸押出機を用いて島成分のポリプロピレン樹脂に赤外線吸収剤を予め混練し、マスターチップ化することが好ましい。
First, the polypropylene resin of the island component and the thermoplastic resin of the sea component are prepared.
The prepared sea component and island component are separately melted, discharged from a spinneret so as to have the above cross-sectional shape, cooled, and then stretched to obtain the heat storage heat retaining fiber of the present invention.
Here, the method of adding the infrared absorber to the island component is not particularly limited, but from the viewpoint of uniform dispersion, the infrared absorber is kneaded in advance with the polypropylene resin of the island component using a twin-screw extruder to form a master chip. It is preferable to do so.

紡糸温度は、ポリプロピレン樹脂と熱可塑性樹脂の耐熱性や紡糸性の点から220℃以上、300℃以下が好ましく、250℃以上、290℃以下がより好ましい。紡糸速度は800m/min以上、4500m/min以下が好ましく、1000m/min以上、3800m/min以下がより好ましい。 The spinning temperature is preferably 220 ° C. or higher and 300 ° C. or lower, more preferably 250 ° C. or higher and 290 ° C. or lower, from the viewpoint of heat resistance and spinnability of the polypropylene resin and the thermoplastic resin. The spinning speed is preferably 800 m / min or more and 4500 m / min or less, and more preferably 1000 m / min or more and 3800 m / min or less.

本発明の蓄熱保温性繊維は、海部と島部が繊維の長さ方向に連続した状態で途切れずに互いに接合していることが好ましい。この場合、延伸工程、製織編工程及び染色工程等で海部と島部の剥離が生じ難く、製糸安定性の悪化、白化現象を抑制し易い。一方、繊維の長さ方向において、島部の樹脂が途切れると、製糸安定性の悪化、白化現象等の染色斑を抑制することは困難となる傾向があるため好ましくない。 In the heat storage and heat retaining fiber of the present invention, it is preferable that the sea portion and the island portion are continuously bonded to each other in a continuous state in the length direction of the fiber. In this case, peeling between the sea part and the island part is unlikely to occur in the stretching step, the weaving and knitting step, the dyeing step, and the like, and it is easy to suppress the deterioration of the yarn-making stability and the whitening phenomenon. On the other hand, if the resin in the island portion is interrupted in the length direction of the fiber, it tends to be difficult to suppress dyeing spots such as deterioration of silk reeling stability and whitening phenomenon, which is not preferable.

延伸温度は、製糸安定性の点から90℃以上、120℃以下が好ましく、95℃以上、110℃以下がより好ましい。延伸倍率は、安定的に蓄熱保温性繊維の断面形状を得る点から2.0倍以上、3.5倍以下程度が好ましい。 The stretching temperature is preferably 90 ° C. or higher and 120 ° C. or lower, more preferably 95 ° C. or higher and 110 ° C. or lower, from the viewpoint of silk reeling stability. The draw ratio is preferably about 2.0 times or more and 3.5 times or less from the viewpoint of stably obtaining the cross-sectional shape of the heat storage heat retaining fiber.

なお、本発明の蓄熱保温性繊維を製造する際には、溶融紡糸した後に一旦巻き取り延伸する方法や、溶融紡糸した後、一旦巻き取ることなく延伸する直接紡糸延伸法など任意の方法を採用することができる。 When producing the heat storage heat insulating fiber of the present invention, an arbitrary method such as a method of melt-spinning and then winding and stretching once, or a direct spinning and stretching method of melt-spinning and then stretching without winding once is adopted. can do.

このようにして得られた本発明の蓄熱保温性繊維は、海部と島部の剥離がなく、製糸安定性が良好で、耐熱性が良好なため、延伸工程、仮撚工程、製編織工程、精練工程、染色工程等の各工程でも、剥離しにくく、各工程での取り扱い性に優れる。特に、染色の際に、白化現象等の染色斑が生じたりしないため、濃色に染色ができる。 The heat storage heat-retaining fiber of the present invention thus obtained has no peeling between the sea part and the island part, has good yarn-making stability, and has good heat resistance. It is difficult to peel off in each process such as scouring process and dyeing process, and it is excellent in handleability in each process. In particular, since dyeing spots such as a whitening phenomenon do not occur during dyeing, it is possible to dye in a dark color.

以下、本発明の実施例を示して具体的に説明するが、下記実施例は本発明を例示するものであって、本発明を限定するものではない。なお、各種物性の測定及び評価の方法は下記のように行った。 Hereinafter, examples of the present invention will be specifically described, but the following examples are examples of the present invention and do not limit the present invention. The methods for measuring and evaluating various physical properties were as follows.

(1)融点
示差走査熱量計(DSC)(リガク製 「DSC 8230」)を用いて、窒素雰囲気中、昇温速度10℃/minで300℃まで昇温し、吸熱ピークのピークトップを熱可塑性樹脂の融点とした。
(1) Melting point Using a differential scanning calorimeter (DSC) (“DSC 8230” manufactured by Rigaku), the temperature is raised to 300 ° C at a heating rate of 10 ° C / min in a nitrogen atmosphere, and the peak top of the heat absorption peak is thermoplastic. The melting point of the resin was used.

(2)製糸安定性
10kgの糸を生産した際の平均糸切れ回数で製糸安定性を評価し、下記の基準でB以上を合格とした。
A:糸切れ回数が1回未満の場合
B:糸切れ回数が1回以上、3回未満の場合
C:糸切れ回数が3回以上の場合
(2) Silk reeling stability The silk reeling stability was evaluated by the average number of yarn breaks when 10 kg of yarn was produced, and B or higher was judged as acceptable according to the following criteria.
A: When the number of thread breaks is less than 1 B: When the number of thread breaks is 1 or more and less than 3 C: When the number of thread breaks is 3 or more

(3)島部状況(融合・剥離)の確認、及び海部の最小厚み
得られた蓄熱保温性繊維の任意の2箇所を長さ方向に垂直に切断し、切断面を電子顕微鏡により1500倍で観察し、島部の融合および剥離の発生状況を確認した。これらの欠点が未発生のものは「良好」とした。また、同様の切断面にて海部の最小厚みを測定した。
(3) Confirmation of island part condition (fusion / peeling) and minimum thickness of sea part Any two points of the obtained heat storage heat insulating fiber are cut vertically in the length direction, and the cut surface is cut at 1500 times with an electron microscope. By observing, the occurrence of fusion and detachment of the islands was confirmed. Those without these defects were regarded as "good". In addition, the minimum thickness of the sea part was measured on the same cut surface.

(4)繊維の強度・伸度
JIS L1013に準じて、島津製作所製オートグラフAGSを用いた引張試験を行い、測定長:200mm、引張り速度:200mm/minの条件下にて、繊維が破断したときの破断強度、および破断伸度をそれぞれ5回測定し、その平均値を求めた。
(4) Strength and Elongation of Fiber A tensile test was conducted using an autograph AGS manufactured by Shimadzu Corporation in accordance with JIS L1013, and the fiber broke under the conditions of measurement length: 200 mm and tensile speed: 200 mm / min. The breaking strength and the breaking elongation at that time were measured 5 times each, and the average value was obtained.

(5)密度、軽量性の評価
得られた蓄熱保温性繊維はJIS K7112 D法に準じた密度勾配管法により密度を算出した。密度勾配管に重液として塩化亜鉛水溶液、軽液としてエタノールを用いて調整した浸漬液を用意し、23℃の恒温槽24時間静置した。試料を密度勾配管にいれ1時間静置した後、浮沈状態を確認した。軽量性は下記の基準に基づいて評価した。
○:密度が1.25g/cm以下
×:密度が1.25g/cmを超える
(5) Evaluation of Density and Lightness The density of the obtained heat storage heat insulating fiber was calculated by the density gradient tube method according to the JIS K7112 D method. An immersion liquid prepared by using an aqueous solution of zinc chloride as a heavy liquid and ethanol as a light liquid was prepared in a density gradient tube, and allowed to stand in a constant temperature bath at 23 ° C. for 24 hours. The sample was placed in a density gradient tube and allowed to stand for 1 hour, and then the floating and sinking states were confirmed. Lightness was evaluated based on the following criteria.
◯: Density is 1.25 g / cm 3 or less ×: Density exceeds 1.25 g / cm 3

(6)耐熱性評価
得られた蓄熱保温性繊維で作製した筒編地を開反した後、20cm×25cmの枠で固定し、170℃の熱風にて1分間乾熱処理を行った。糸の状態は乾熱処理後の布帛を電子顕微鏡により1000倍で観察した。また、手触りで風合いを確認し、下記の基準により評価した。
○:糸融着および溶断がなく、風合いが硬くならない場合
×:糸融着または溶断があり、風合いが硬くなる場合
(6) Heat resistance evaluation After opening the tubular knitted fabric made of the obtained heat storage and heat retention fiber, it was fixed in a frame of 20 cm × 25 cm and subjected to dry heat treatment with hot air at 170 ° C. for 1 minute. The state of the yarn was observed at 1000 times with an electron microscope on the fabric after the dry heat treatment. In addition, the texture was confirmed by touch and evaluated according to the following criteria.
◯: When there is no yarn fusion or fusing and the texture does not become hard ×: When there is yarn fusion or fusing and the texture becomes hard

(7)染色性評価
得られた蓄熱保温性繊維で作製した筒編地を、70℃で20分間の精練を行い、水洗、風乾し、分散染料(ダイアニックス(登録商標) ブルー ACE)2.0%o.w.f、浴比1:50、130℃で1時間の高圧染色後、還元洗浄を常法で行い、下記の基準により評価した。
○:白化現象がない場合
△:白化現象がないが、染色斑がある場合
×:白化現象がある場合
(7) Evaluation of dyeability The tubular knitted fabric made of the obtained heat storage and heat retention fibers was scoured at 70 ° C. for 20 minutes, washed with water, air-dried, and disperse dye (Dianix (registered trademark) Blue ACE). 0% o. w. f, bath ratio 1:50, high pressure dyeing at 130 ° C. for 1 hour, reduction washing was performed by a conventional method, and evaluation was performed according to the following criteria.
◯: When there is no bleaching phenomenon △: When there is no bleaching phenomenon but there is stain spots ×: When there is bleaching phenomenon

(8)蓄熱保温性評価
得られた蓄熱保温性繊維で作製した筒編地と基準とした繊維の筒編地(基準生地)の裏面に5mmの空間を設け、黒紙を配置し、黒紙中央部に熱電対温度センサーを取り付け、試料表面より50cm上部から500Wのレフランプを10分間照射した。基準とした繊維の筒編地との温度差の測定を行い、下記の基準により評価した。
○:照射10分後に温度差が+3℃以上、かつ消灯1分後に温度差が+2℃以上ある場合
×:照射10分後に温度差が+3℃未満、または消灯1分後に温度差が+2℃未満の場合
(8) Evaluation of heat storage and heat retention properties A 5 mm space is provided on the back surface of the tubular knitted fabric made of the obtained heat storage and heat retention fibers and the tubular knitted fabric (reference fabric) of the reference fibers, and black paper is placed on the black paper. A thermocouple temperature sensor was attached to the central part, and a 500 W reflex lamp was irradiated for 10 minutes from 50 cm above the sample surface. The temperature difference from the standard fiber tube knitted fabric was measured and evaluated according to the following criteria.
◯: When the temperature difference is + 3 ° C or more 10 minutes after irradiation and the temperature difference is + 2 ° C or more 1 minute after the light is turned off. in the case of

〔実施例1〕
ポリプロピレン樹脂(日本ポリプロ製「SA01A」、MFR9g/10min、融点164℃)に対して、赤外線吸収剤のアンチモンドープ酸化スズ(ATO)を4質量%添加したポリプロピレン樹脂を島成分に、ポリエチレンテレフタレート(融点258℃)を海成分に用い、海部:島部の面積比率が40:60となるように供給し、図1のように19個の島成分が繊維中央に配置される口金から288℃で紡出し、延伸倍率2.7倍で延伸し、3000m/minの速度で巻取り、67dtex/24fの蓄熱保温性繊維を得た。得られた蓄熱保温性繊維の繊維横断面における海部の最小厚みは1.2μmであり、海部と島部の界面での剥離は認められず、製糸安定性は良好であった。170℃で1分間の乾熱処理後も融着および溶断はなく耐熱性に優れたものであった。染色性は白化現象の発生がなく、密度も1.115g/cmと軽量性に優れていた。また、蓄熱保温性評価ではATOを添加していないポリプロピレン樹脂を島成分に用い以外は実施例1と同様の方法で作製した複合繊維を用いて得られた基準生地と比較して、照射10分後に+5.5℃、消灯1分後に+5.2℃と蓄熱保温性に優れていた。得られた結果を表1に示す。
[Example 1]
Polyethylene terephthalate (melting point) is made of polypropylene resin containing 4% by mass of antimony-doped tin oxide (ATO), which is an infrared absorber, to polypropylene resin ("SA01A" manufactured by Japan Polypropylene, MFR 9g / 10min, melting point 164 ° C.). 258 ° C) is used as the sea component and supplied so that the area ratio of the sea part: island part is 40:60, and 19 island components are spun at 288 ° C from the base placed in the center of the fiber as shown in Fig. 1. It was taken out, stretched at a draw ratio of 2.7 times, and wound at a rate of 3000 m / min to obtain a heat-storing heat-retaining fiber of 67 dtex / 24 f. The minimum thickness of the sea portion in the fiber cross section of the obtained heat storage and heat retaining fiber was 1.2 μm, no peeling was observed at the interface between the sea portion and the island portion, and the silk reeling stability was good. Even after a dry heat treatment at 170 ° C. for 1 minute, there was no fusion or fusing, and the heat resistance was excellent. The dyeability was excellent in lightness with no whitening phenomenon and a density of 1.115 g / cm 3 . Further, in the heat storage heat retention evaluation, the irradiation 10 was compared with the reference cloth obtained by using the composite fiber produced by the same method as in Example 1 except that the polypropylene resin to which ATO was not added was used as the island component. After 1 minute, the temperature was + 5.5 ° C, and after 1 minute, the temperature was + 5.2 ° C, indicating excellent heat storage and heat retention. The results obtained are shown in Table 1.

〔実施例2〕
海部:島部の面積比率を60:40とした以外は実施例1と同様の方法で蓄熱保温性繊維を作製した。得られた蓄熱保温性繊維の繊維横断面における海部の最小厚みは1.5μmであり、海部と島部の界面での剥離は認められず、製糸安定性や耐熱性、染色性は良好であった。密度も1.210g/cmと軽量性に優れていた。また、蓄熱保温性評価では、照射10分後に+3.5℃、消灯1分後に+3.6℃と蓄熱保温性に優れていた。得られた結果を表1に示す。
[Example 2]
The heat storage and heat retaining fibers were produced by the same method as in Example 1 except that the area ratio of the sea part: the island part was 60:40. The minimum thickness of the sea part in the fiber cross section of the obtained heat storage and heat retention fiber was 1.5 μm, no peeling was observed at the interface between the sea part and the island part, and the yarn-making stability, heat resistance, and dyeability were good. rice field. The density was 1.210 g / cm 3 , which was excellent in lightness. Further, in the evaluation of heat storage and heat retention, the heat storage and heat retention was excellent at + 3.5 ° C. 10 minutes after irradiation and + 3.6 ° C. 1 minute after extinguishing. The results obtained are shown in Table 1.

参考例3〕
島成分が7個配置される口金を用いた以外は実施例1と同様の方法で蓄熱保温性繊維を作製した。得られた蓄熱保温性繊維は、繊維横断面が繊維中心に1個とその同心円の円周上に同一間隔で6個の合計7個の丸断面であった。また繊維横断面における海部の最小厚みは1.2μmであり、海部と島部の界面での剥離は認められず、製糸安定性や耐熱性は良好であった。染色性は白化が生じなかったが、染色斑となった。密度も1.120g/cmと軽量性に優れていた。また、蓄熱保温性評価では、照射10分後に+5.3℃、消灯1分後に+4.8℃と蓄熱保温性に優れていた。得られた結果を表1に示す。
[ Reference Example 3]
A heat storage heat insulating fiber was produced by the same method as in Example 1 except that a base having seven island components was used. The obtained heat storage heat-retaining fiber had a total of seven round cross sections, one in the center of the fiber and six in the circumference of the concentric circles at the same interval. The minimum thickness of the sea portion in the cross section of the fiber was 1.2 μm, no peeling was observed at the interface between the sea portion and the island portion, and the spinning stability and heat resistance were good. The stainability did not cause whitening, but stain spots were formed. The density was 1.120 g / cm 3 , which was excellent in lightness. Further, in the evaluation of heat storage and heat retention, the heat storage and heat retention was excellent at + 5.3 ° C. 10 minutes after irradiation and + 4.8 ° C. 1 minute after extinguishing. The results obtained are shown in Table 1.

〔比較例1〕
ポリエチレンテレフタレート樹脂に対して、ATOを6.5質量%添加したポリエチレンテレフタレート樹脂を島成分に用いた以外は実施例1と同様の方法で蓄熱保温性繊維を作製した。製糸安定性や耐熱性、染色性は良好だが、密度は1.417g/cmと重量感のある繊維となった。また、蓄熱保温性評価では、照射10分後に+3.6℃、消灯1分後に+4.1℃と蓄熱保温性に優れていた。得られた結果を表1に示す。
[Comparative Example 1]
A heat storage heat retaining fiber was produced by the same method as in Example 1 except that the polyethylene terephthalate resin in which 6.5% by mass of ATO was added to the polyethylene terephthalate resin was used as the island component. Although the silk reeling stability, heat resistance, and dyeability are good, the density is 1.417 g / cm 3 , which is a heavy fiber. Further, in the evaluation of heat storage and heat retention, the heat storage and heat retention was excellent at + 3.6 ° C. 10 minutes after irradiation and + 4.1 ° C. 1 minute after extinguishing. The results obtained are shown in Table 1.

〔比較例2〕
図1の海部の海部の最小厚みXが0μmとなるように19個の島成分が配置される口金を用いた以外は実施例1と同様の方法で蓄熱保温性繊維を作製した。得られた蓄熱保温性繊維の一部の島部は表面へ露出していた。また、海部と島部との界面で剥離がみられ、製糸安定性は不良であり、染色後は白化現象が生じた。170℃で1分間の乾熱処理で融着および溶断が発生し、耐熱性は良くなかった。密度は1.121g/cmと軽量性に優れていた。蓄熱保温性評価では、照射10分後に+3.2℃、消灯1分後に+3.4℃と蓄熱保温性に優れていた。得られた結果を表1に示す。
[Comparative Example 2]
The heat storage and heat insulating fibers were produced by the same method as in Example 1 except that a mouthpiece in which 19 island components were arranged so that the minimum thickness X of the sea portion of the sea portion in FIG. 1 was 0 μm was used. Some of the islands of the obtained heat storage and heat insulating fibers were exposed to the surface. In addition, peeling was observed at the interface between the sea part and the island part, the silk reeling stability was poor, and a whitening phenomenon occurred after dyeing. Fusing and fusing occurred in the dry heat treatment at 170 ° C. for 1 minute, and the heat resistance was not good. The density was 1.121 g / cm 3 , which was excellent in lightness. In the evaluation of heat storage and heat retention, the heat storage and heat retention was excellent at + 3.2 ° C. 10 minutes after irradiation and + 3.4 ° C. 1 minute after extinguishing. The results obtained are shown in Table 1.

〔比較例3〕
海部:島部の面積比率を25:75とした以外は実施例1と同様の方法で蓄熱保温性繊維を作製した。得られた蓄熱保温性繊維は島成分が融合し、1つの芯を有する芯鞘となっていた。染色後は白化現象が生じた。密度は1.048g/cmと軽量性に優れていた。蓄熱保温性評価では、照射10分後に+5.0℃、消灯1分後に+5.1℃と蓄熱保温性に優れていた。得られた結果を表1に示す。
[Comparative Example 3]
The heat storage and heat retaining fibers were produced by the same method as in Example 1 except that the area ratio of the sea part: the island part was 25:75. The obtained heat storage and heat insulating fibers were fused with island components to form a core sheath having one core. After staining, a whitening phenomenon occurred. The density was 1.048 g / cm 3 , which was excellent in lightness. In the evaluation of heat storage and heat retention, the heat storage and heat retention was excellent at + 5.0 ° C. 10 minutes after irradiation and + 5.1 ° C. 1 minute after extinguishing. The results obtained are shown in Table 1.

Figure 0007038481000001
Figure 0007038481000001

実施例1~3で得られた蓄熱保温性繊維は、耐剥離性、耐熱性、軽量性、蓄熱保温性が良好で染色可能であったが、比較例から得られた蓄熱保温性繊維は耐剥離性、染色性、耐熱性、軽量性、蓄熱保温性の少なくとも一つが不良であった。 The heat storage heat insulating fibers obtained in Examples 1 to 3 had good peel resistance, heat resistance, light weight, and heat storage heat retention and could be dyed, but the heat storage heat retention fibers obtained from Comparative Examples had good heat storage resistance. At least one of peelability, dyeability, heat resistance, light weight, and heat storage and heat retention was poor.

本発明の蓄熱保温性繊維は、防寒衣料として十分な保温性を有し、かつ軽量で可染性を有していることから、種々の繊維構造体とすることができ、防寒衣料用品等に好適に用いることができる。 Since the heat storage heat-retaining fiber of the present invention has sufficient heat-retaining property as winter clothing, is lightweight and dyeable, it can be used as various fiber structures, and can be used for winter clothing and the like. It can be suitably used.

a 海部
b 島部
p 繊維外周の接点
q 繊維外周の法線と島部外周の交点
X 海部の最小厚み
a Sea part b Island part p Contact point on the outer circumference of the fiber q Intersection point between the normal on the outer circumference of the fiber and the outer circumference of the island part X Minimum thickness of the sea part

Claims (6)

海部と10個以上、20個以下の島部とからなり、海部と島部との接合面が繊維長さ方向に連続した海島構造を有し、以下の(a)~()を満たす蓄熱保温性繊維。
(a)島成分が赤外線吸収剤を2質量%以上、15質量%以下含有するポリプロピレン樹脂
(b)海成分が染色可能な熱可塑性樹脂
(c)繊維横断面における海部の面積比率が30%以上、70%以下
(d)繊維横断面における海部の最小厚みが1μm以上
(e)島成分に230℃、荷重2.16kgにおけるメルトフローレートが、9g/10min以上、30g/10min以下のポリプロピレン樹脂を用いる
It consists of a sea part and 10 or more and 20 or less island parts, and the joint surface between the sea part and the island part has a continuous sea island structure in the fiber length direction, and heat storage satisfying the following (a) to ( e ). Heat retention fiber.
(A) Polypropylene resin containing 2% by mass or more and 15% by mass or less of an infrared absorber in the island component (b) Thermoplastic resin in which the sea component can be dyed (c) The area ratio of the sea part in the fiber cross section is 30% or more. 70% or less (d) The minimum thickness of the sea part in the fiber cross section is 1 μm or more.
(E) A polypropylene resin having a melt flow rate of 9 g / 10 min or more and 30 g / 10 min or less at 230 ° C. and a load of 2.16 kg is used as the island component.
染色可能な熱可塑性樹脂が、ポリエステル樹脂またはポリアミド樹脂である請求項1記載の蓄熱保温性繊維。 The heat storage and heat retaining fiber according to claim 1, wherein the dyeable thermoplastic resin is a polyester resin or a polyamide resin. 170℃の乾熱雰囲気下の乾熱処理後に融着および溶断のない請求項1または2に記載の蓄熱保温性繊維。 The heat storage heat retaining fiber according to claim 1 or 2, which is not fused or fused after dry heat treatment in a dry heat atmosphere at 170 ° C. 密度が、1.25g/cm以下である請求項1~3いずれか一項に記載の蓄熱保温性繊維。 The heat storage heat insulating fiber according to any one of claims 1 to 3, wherein the density is 1.25 g / cm 3 or less. 単糸繊度が、1dtex以上である請求項1~4いずれか一項に記載の蓄熱保温性繊維。 The heat storage heat insulating fiber according to any one of claims 1 to 4, wherein the single yarn fineness is 1 dtex or more. 請求項1~5いずれか一項に記載の蓄熱保温性繊維から構成される繊維構造物。 A fiber structure composed of the heat storage heat retaining fiber according to any one of claims 1 to 5.
JP2017069379A 2017-03-30 2017-03-30 Heat storage and heat retention fiber Active JP7038481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017069379A JP7038481B2 (en) 2017-03-30 2017-03-30 Heat storage and heat retention fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017069379A JP7038481B2 (en) 2017-03-30 2017-03-30 Heat storage and heat retention fiber

Publications (3)

Publication Number Publication Date
JP2018168518A JP2018168518A (en) 2018-11-01
JP2018168518A5 JP2018168518A5 (en) 2019-03-07
JP7038481B2 true JP7038481B2 (en) 2022-03-18

Family

ID=64019313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017069379A Active JP7038481B2 (en) 2017-03-30 2017-03-30 Heat storage and heat retention fiber

Country Status (1)

Country Link
JP (1) JP7038481B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7380572B2 (en) 2018-09-10 2023-11-15 Agc株式会社 glass, laminated glass
WO2022050291A1 (en) * 2020-09-07 2022-03-10 東レ株式会社 Sea-island-type composite fiber, and fiber product including sea-island-type composite fiber

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294520A (en) 2001-03-29 2002-10-09 Kanebo Ltd Luminous conjugated fiber
JP2003027337A (en) 2001-07-18 2003-01-29 Nippon Ester Co Ltd Conjugate fiber having heat-storing and heat-retaining property
JP2008240182A (en) 2007-03-27 2008-10-09 Toray Ind Inc Pile fabric and method for producing the same
JP2011208329A (en) 2010-03-30 2011-10-20 Nippon Ester Co Ltd Core-sheath composite fiber yarn and woven or knitted fabric
JP2014043659A (en) 2012-08-27 2014-03-13 Toray Ind Inc Sea-island type composite cross-section fiber and method for manufacturing the same
JP2016069785A (en) 2014-09-30 2016-05-09 Kbセーレン株式会社 Core and sheath type composite fiber

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60110920A (en) * 1983-11-14 1985-06-17 Kanebo Ltd Electrically conductive composite fiber
JPH01314716A (en) * 1988-06-10 1989-12-19 Unitika Ltd White fabric having heat insulating property
JP2824130B2 (en) * 1989-07-25 1998-11-11 株式会社クラレ Thermochromic composite fiber
JPH03234819A (en) * 1990-02-02 1991-10-18 Toray Ind Inc Lightweight sea-island conjugate type polyester yarn

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002294520A (en) 2001-03-29 2002-10-09 Kanebo Ltd Luminous conjugated fiber
JP2003027337A (en) 2001-07-18 2003-01-29 Nippon Ester Co Ltd Conjugate fiber having heat-storing and heat-retaining property
JP2008240182A (en) 2007-03-27 2008-10-09 Toray Ind Inc Pile fabric and method for producing the same
JP2011208329A (en) 2010-03-30 2011-10-20 Nippon Ester Co Ltd Core-sheath composite fiber yarn and woven or knitted fabric
JP2014043659A (en) 2012-08-27 2014-03-13 Toray Ind Inc Sea-island type composite cross-section fiber and method for manufacturing the same
JP2016069785A (en) 2014-09-30 2016-05-09 Kbセーレン株式会社 Core and sheath type composite fiber

Also Published As

Publication number Publication date
JP2018168518A (en) 2018-11-01

Similar Documents

Publication Publication Date Title
WO2013141033A1 (en) Polymethylpentene conjugate fiber or porous polymethylpentene fiber and fiber structure comprising same
KR20160143634A (en) Composite fiber, false twisted yarn formed from same, method for producing said false twisted yarn, and fabric
JP2007308830A (en) Dyeable polypropylene fiber
JP7038481B2 (en) Heat storage and heat retention fiber
JP6356976B2 (en) Sea-island type composite fiber
JP2014101613A (en) Ultra fine fiber
JP6672641B2 (en) Extra fine polyester fiber with uneven surface
JP6697972B2 (en) Sea-island type composite fiber
JP2016194169A (en) Core-sheath type composite fiber
JP4602856B2 (en) Latent crimped polyester composite fiber
JP4581428B2 (en) Light-weight blended fiber with excellent light-shielding properties, and fiber products made of the same
JP2005133250A (en) Core-sheath conjugate fiber
JP5774820B2 (en) Variety of different sizes
JP5495286B2 (en) Method for producing hair knitted fabric, hair knitted fabric and textile product
JP2002105796A (en) Light-shielding woven fabric
JP6998818B2 (en) Olefin-based composite fiber and method for producing olefin-based composite fiber
JP6308127B2 (en) Spun yarn containing polymethylpentene fiber and fiber structure comprising the same
JP6192581B2 (en) False twisted yarn
JP4292893B2 (en) Polymer alloy crimped yarn
JP2017095827A (en) Double-sided knitted fabric
JP2007327147A (en) Long and short conjugate spun yarn and cloth by using the same
JP2007154343A (en) Core-sheath conjugate type partially oriented fiber of polyester and method for producing the same
JPH10168663A (en) Divided type conjugate fiber comprising polyester and polyamide and its production
JP2007154374A (en) Polyester core-sheath conjugate fiber
JP2019026991A (en) Black spun-dyed polyester fiber

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20201109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220308

R150 Certificate of patent or registration of utility model

Ref document number: 7038481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150