JP6356976B2 - Sea-island type composite fiber - Google Patents

Sea-island type composite fiber Download PDF

Info

Publication number
JP6356976B2
JP6356976B2 JP2014022901A JP2014022901A JP6356976B2 JP 6356976 B2 JP6356976 B2 JP 6356976B2 JP 2014022901 A JP2014022901 A JP 2014022901A JP 2014022901 A JP2014022901 A JP 2014022901A JP 6356976 B2 JP6356976 B2 JP 6356976B2
Authority
JP
Japan
Prior art keywords
sea
island
fiber
composite fiber
type composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014022901A
Other languages
Japanese (ja)
Other versions
JP2015148032A5 (en
JP2015148032A (en
Inventor
小原 正之
正之 小原
宏泰 清水
宏泰 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KB Seiren Ltd
Original Assignee
KB Seiren Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KB Seiren Ltd filed Critical KB Seiren Ltd
Priority to JP2014022901A priority Critical patent/JP6356976B2/en
Publication of JP2015148032A publication Critical patent/JP2015148032A/en
Publication of JP2015148032A5 publication Critical patent/JP2015148032A5/ja
Application granted granted Critical
Publication of JP6356976B2 publication Critical patent/JP6356976B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Multicomponent Fibers (AREA)

Description

本発明は、ポリメチルペンテン系樹脂と熱可塑性樹脂を用いた染色性、撥水性、耐熱性に優れる海島型複合繊維に関する。   The present invention relates to a sea-island type composite fiber using a polymethylpentene resin and a thermoplastic resin and having excellent dyeability, water repellency, and heat resistance.

ポリオレフィン繊維は軽量性や撥水性等に優れているため、産業用途に幅広く用いられている。その中でもポリプロピレン繊維が多く用いられているが、ポリプロピレン繊維は染料により染色されにくいため、衣料用途に適用することは困難であった。
染色性を改善するために、特許文献1では、芯成分に分散染料で染色することが可能なポリエステル樹脂、鞘成分にポリプロピレン樹脂を配置したポリプロピレン複合繊維が提案されている。このような構成とすることにより繊維を濃色に染色できるうえ、耐光・耐塩素堅牢度も良好なポリプロピレン繊維が得られることが記載されている。
一方、ポリオレフィン樹脂とポリエステル樹脂やポリアミド樹脂等の熱可塑性樹脂とからなる繊維は、相溶性が低いため、樹脂の接合面で剥離し易く、製糸安定性や染色性の悪化が生じ、取り扱いが難しいという問題があった。
そこで、特許文献2では、芯成分にポリプロピレン樹脂、鞘成分にポリエステル樹脂を配置し、ポリプロピレン樹脂のメルトフローレート(MFR)が28g/minを超えて60g/min未満の芯鞘型複合繊維とすることで、糸切れがなく安定して紡糸でき、染色性も良好な芯鞘型複合繊維が得られることが記載されている。また、この文献には、比較的低温の温水浴中で湿熱延伸するなど、穏やかな延伸条件により芯成分と鞘成分の剥離を起こさないようにすることが記載されている。
また、製織、製編された生地は、通常、プレセットやファイナルセット等の乾熱処理を行う。ポリプロピレン樹脂を用いた繊維は、ポリエステル樹脂やポリアミド樹脂を用いた繊維と比べて融点が低く、乾熱処理の際、融着が生じる。このため、ポリプロピレン繊維は、ポリエステル繊維やナイロン繊維等との併用が困難であった。
そこで、特許文献3は、優れた耐熱性と耐薬品性を有する極細繊維を得るために、ポリメチルペンテンを一成分に用いた分割型複合繊維が記載されている。
Polyolefin fibers are widely used in industrial applications because they are excellent in light weight and water repellency. Among them, polypropylene fibers are often used. However, since polypropylene fibers are difficult to be dyed with dyes, it is difficult to apply them to clothing applications.
In order to improve dyeability, Patent Document 1 proposes a polyester composite fiber that can be dyed with a disperse dye as a core component and a polypropylene composite fiber in which a polypropylene resin is arranged as a sheath component. It is described that by using such a structure, the fiber can be dyed in a dark color, and a polypropylene fiber having good light fastness and chlorine fastness can be obtained.
On the other hand, fibers made of polyolefin resins and thermoplastic resins such as polyester resins and polyamide resins have low compatibility, so that they are easy to peel off at the resin bonding surface, resulting in poor yarn-making stability and dyeability and difficult to handle. There was a problem.
Therefore, in Patent Document 2, a polypropylene resin is disposed as the core component, and a polyester resin is disposed as the sheath component, so that the melt flow rate (MFR) of the polypropylene resin exceeds 28 g / min and is less than 60 g / min. Therefore, it is described that a core-sheath type composite fiber that can be stably spun without yarn breakage and has good dyeability can be obtained. Further, this document describes that the core component and the sheath component are prevented from being peeled off under a mild stretching condition such as wet heat stretching in a relatively low temperature hot water bath.
In addition, the woven or knitted fabric is usually subjected to a dry heat treatment such as a preset or final set. Fibers using polypropylene resin have a lower melting point than fibers using polyester resin or polyamide resin, and fusion occurs during dry heat treatment. For this reason, it has been difficult to use polypropylene fiber in combination with polyester fiber, nylon fiber, or the like.
Therefore, Patent Document 3 describes a split type composite fiber using polymethylpentene as one component in order to obtain an ultrafine fiber having excellent heat resistance and chemical resistance.

特開2008−261070号公報JP 2008-261070 A 特開2012−193483号公報JP 2012-193484 A 特開2000−017524号公報JP 2000-017524 A

しかしながら、特許文献1記載の繊維は、染色できるものの、芯鞘剥離が生じ易いため、製糸安定性に問題があり、色斑が生じ易いものとなる。
また、特許文献2は、低温での湿熱処理を行うなどの穏やかな延伸条件とすることによって、繊維の芯鞘剥離を生じにくくすることが記載されているものの、このような条件では生産性が低く、コスト高となる。
一方、特許文献3では、融点が220℃以上の優れた耐熱性を有している繊維が得られることが記載されているものの、この繊維は、主な用途が工業用のフィルターである分割型複合繊維であり、衣料用途に用いる際に重要となる染色性や耐剥離性については記載されていない。
したがって、本発明は、ポリオレフィン樹脂と可染性の熱可塑性樹脂とからなる複合繊維において、特別な延伸方法を採らなくとも、耐剥離性、製糸安定性及び耐熱性が良好で染色斑の少ない、ポリオレフィン複合繊維を得ることを目的としたものである。
However, although the fiber described in Patent Document 1 can be dyed, core-sheath peeling is likely to occur, so that there is a problem in the yarn production stability and color spots are likely to occur.
Moreover, although patent document 2 describes that it is made hard to produce core-sheath peeling of a fiber by setting it as mild extending | stretching conditions, such as performing wet heat processing at low temperature, productivity is high on such conditions. Low and high cost.
On the other hand, although Patent Document 3 describes that a fiber having excellent heat resistance with a melting point of 220 ° C. or higher is obtained, this fiber is a split type whose main use is an industrial filter. It is a composite fiber and does not describe dyeability and peel resistance, which are important when used for clothing.
Therefore, the present invention is a composite fiber composed of a polyolefin resin and a dyeable thermoplastic resin, and without taking a special stretching method, the peel resistance, the yarn production stability and the heat resistance are good and there are few dyeing spots. The object is to obtain a polyolefin composite fiber.

すなわち、本発明の要旨は、海部と、3個以上20個以下の島部とからなり、海部と島部との接合面が繊維長さ方向に連続した海島構造を有し、以下の(a)〜()の要件を満たす海島型複合繊維にある。
(a)海成分がポリメチルペンテンを主成分とするポリメチルペンテン系樹脂
(b)島成分がポリエチレンテレフタレート
(c)繊維横断面における海部の面積比率が50%を超える
(d)繊維横断面における海部の最小厚みが1μm以上
(e)185℃の乾熱雰囲気下の乾熱処理後に融着および溶断がない
また、その中でも海島型複合繊維の水滴の接触角は、135°以上であることが好ましいまた、海島型複合繊維の密度は1.10g/cm以下であることが好ましく、単糸繊度は1dtex以上であることが好ましい。
That is, the gist of the present invention consists of a sea part and 3 or more and 20 or less island parts, and has a sea-island structure in which the joint surface between the sea part and the island part is continuous in the fiber length direction. ) To ( e ) are sea-island type composite fibers that satisfy the requirements.
(A) Polymethylpentene-based resin in which sea component is polymethylpentene as a main component (b) Island component is polyethylene terephthalate (c) Area ratio of sea part in fiber cross section exceeds 50% (d) In fiber cross section Minimum thickness of sea part is 1μm or more
(E) The absence fused and blown after dry heat treatment under dry heat atmosphere of 185 ° C., among them, the contact angle of a water droplet of the sea-island composite fiber is preferably 135 ° or more. The density of the sea-island type composite fiber is preferably 1.10 g / cm 3 or less, and the single yarn fineness is preferably 1 dtex or more.

本発明の海島型複合繊維によれば、低温の湿熱条件での延伸を行うなどの特別な工夫をせずとも剥離なく延伸することができ、分散染料による染色性が良好で、ポリエステル繊維やポリアミド繊維等の熱可塑性樹脂繊維との併用ができる耐熱性の良好なポリオレフィン繊維を得ることができる。また、ポリオレフィン繊維の特徴である撥水性に優れるという効果も奏する。   According to the sea-island type composite fiber of the present invention, it can be stretched without peeling without special measures such as stretching under low-temperature wet heat conditions, has good dyeability with disperse dyes, polyester fiber and polyamide A polyolefin fiber having good heat resistance that can be used in combination with a thermoplastic resin fiber such as a fiber can be obtained. Moreover, the effect of being excellent in the water repellency which is the characteristic of polyolefin fiber is also show | played.

図1は、本発明の海島型複合繊維の横断面形状の例である。FIG. 1 is an example of the cross-sectional shape of the sea-island composite fiber of the present invention. 図2は、本発明の範囲外の海島型複合繊維の横断面形状の例である。FIG. 2 is an example of a cross-sectional shape of a sea-island type composite fiber outside the scope of the present invention. 図3は、本発明の範囲外の海島型複合繊維の横断面形状の例である。FIG. 3 is an example of the cross-sectional shape of a sea-island composite fiber outside the scope of the present invention.

本発明において、海島型複合繊維とは、海成分からなる海部と島成分からなる島部とから構成される海島型複合繊維のことをいう。   In the present invention, the sea-island type composite fiber refers to a sea-island type composite fiber composed of a sea part composed of a sea component and an island part composed of an island component.

本発明の海島型複合繊維は、海成分がポリメチルペンテン系樹脂、島成分が分散染料で染色可能な熱可塑性樹脂から構成される。   The sea-island composite fiber of the present invention is composed of a polymethylpentene resin as a sea component and a thermoplastic resin that can be dyed with a disperse dye as an island component.

本発明の海島型複合繊維において、海成分のポリメチルペンテン系樹脂とは、ポリメチルペンテンが主成分である樹脂をいう。このポリメチルペンテンは、例えば、繰り返し単位が4−メチルペンテン−1であるものが挙げられる。この成分単体を繰り返し単位として用いた単独重合体であっても、他の成分を繰り返し単位として含む共重合体であってもよい。共重合体としては、4−メチルペンテン−1に、例えば、エチレン、プロピレン、ブテン−1、ヘキセン−1、オクテン−1、デセン−1、テトラデセン−1、オクタデセン−1等を1種以上共重合したものが挙げられる。   In the sea-island composite fiber of the present invention, the sea component polymethylpentene resin refers to a resin mainly composed of polymethylpentene. Examples of the polymethylpentene include those having a repeating unit of 4-methylpentene-1. It may be a homopolymer using a single component as a repeating unit or a copolymer containing another component as a repeating unit. As a copolymer, 4-methylpentene-1, for example, ethylene, propylene, butene-1, hexene-1, octene-1, decene-1, tetradecene-1, octadecene-1, and the like are copolymerized. The thing which was done is mentioned.

本発明において、樹脂の融点とは、示差走査熱量計(DSC)を用いて、窒素雰囲気下、10℃/minで300℃まで昇温した時の吸熱ピークのピークトップが示す値のことをいう。   In the present invention, the melting point of the resin means a value indicated by the peak top of the endothermic peak when the temperature is raised to 300 ° C. at 10 ° C./min in a nitrogen atmosphere using a differential scanning calorimeter (DSC). .

上記ポリメチルペンテンの融点は200℃以上、250℃以下が好ましい。融点が200℃より低いと、十分な耐熱性が得られない傾向がある。融点が250℃より高いと、溶融紡糸において、島成分の熱可塑性樹脂との複合が困難となる傾向があり、海島型複合繊維を得難い傾向がある。すなわち、上記の範囲であると、ポリエステル樹脂やポリアミド樹脂等の熱可塑性樹脂からなる繊維を混用して繊維構造物とした際、通常実施する、プレセットやファイナルセット等の後加工における乾熱処理(例えば、120〜190℃の乾熱処理)や染色処理(例えば、100〜135℃の湿熱処理)を行うのに、十分良好な耐熱性を備えるものを得られ易い。より好ましいポリメチルペンテンの融点は、210℃以上、235℃以下である。   The melting point of the polymethylpentene is preferably 200 ° C. or higher and 250 ° C. or lower. When the melting point is lower than 200 ° C., sufficient heat resistance tends not to be obtained. When the melting point is higher than 250 ° C., in melt spinning, it tends to be difficult to combine the island component with the thermoplastic resin, and it is difficult to obtain sea-island type composite fibers. That is, in the above range, when a fiber structure is formed by mixing fibers made of a thermoplastic resin such as a polyester resin or a polyamide resin, a dry heat treatment in post-processing such as a preset or final set is usually performed ( For example, it is easy to obtain one having sufficiently good heat resistance for performing a heat treatment at 120 to 190 ° C. and a dyeing treatment (for example, a wet heat treatment at 100 to 135 ° C.). The melting point of polymethylpentene is more preferably 210 ° C. or higher and 235 ° C. or lower.

上記ポリメチルペンテンの260℃、荷重5.0kgにおけるメルトフレート(MFR)は、100g/10min以上、300g/10min以下が好ましい。すなわち、MFRが100g/10min以上であれば、島部同士の融合による凝集塊が生じ難い傾向があるため、海部と島部の剥離が生じ難くなる。この結果、紡糸工程や延撚工程での製糸安定性は良好となり、染色した後の白化現象や染色斑も生じ難い傾向がある。また繊維の機械的強度を良好に保つ点からは、MFRが300g/10min以下であることが好ましい。よって、MFRが上記の範囲内であると、島部同士の融合が生じ難く、海部と島部の剥離がなく、機械的強度の良好な繊維を得られ易い。なかでも、MFRは150g/10min以上が好ましく、250g/10min以下が好ましい。より好ましくは150g/10min以上、200g/10min以下である。   The melt freight (MFR) at 260 ° C. and a load of 5.0 kg of the polymethylpentene is preferably 100 g / 10 min or more and 300 g / 10 min or less. That is, when the MFR is 100 g / 10 min or more, there is a tendency that an agglomeration due to the fusion of the islands is less likely to occur, and thus the sea and the islands are less likely to be separated. As a result, the spinning stability in the spinning process and the drawing process becomes good, and there is a tendency that whitening phenomenon and dyeing spots after dyeing hardly occur. Moreover, it is preferable that MFR is 300 g / 10min or less from the point which maintains the mechanical strength of a fiber favorably. Therefore, when the MFR is within the above range, the island portions hardly merge with each other, the sea portion and the island portion do not peel off, and a fiber having good mechanical strength can be easily obtained. Especially, MFR is preferably 150 g / 10 min or more, and preferably 250 g / 10 min or less. More preferably, it is 150 g / 10min or more and 200 g / 10min or less.

上記ポリメチルペンテン系樹脂は、耐熱性を損なわない範囲内において、ポリエチレン樹脂、ポリプロピレン樹脂等のオレフィン樹脂やポリスチレン樹脂等のポリメチルペンテン以外の樹脂をブレンドしても良い。具体例として、ポリプロピレン樹脂をブレンドする場合、40質量%以下とすることが好ましい。40質量%を超えてブレンドすると、通常ポリエステルやポリアミドの後処理で行われる185℃程度の乾熱処理を行った際に、糸が融着し易く、布帛の風合いが硬くなる傾向がある。より好ましいブレンド比率は、30質量%以下であり、さらに好ましくは25質量%以下である。   The polymethylpentene-based resin may be blended with a resin other than polymethylpentene, such as an olefin resin such as a polyethylene resin or a polypropylene resin, or a polystyrene resin, as long as the heat resistance is not impaired. As a specific example, when blending polypropylene resin, it is preferable to make it 40 mass% or less. When blending in excess of 40% by mass, the yarn tends to be fused and the texture of the fabric tends to be hard when a dry heat treatment of about 185 ° C., which is usually performed as a post-treatment of polyester or polyamide, is performed. A more preferable blend ratio is 30% by mass or less, and further preferably 25% by mass or less.

上記ポリメチルペンテン系樹脂は、本発明の効果を損なわない範囲内で、添加物を添加することにより改質が行われたものであっても良い。添加物としては、相溶化剤、熱安定化剤、酸化防止剤、蛍光増白剤、赤外線反射剤または赤外線吸収剤等が挙げられる。また、添加物は単独で用いても良いし併用しても良い。   The polymethylpentene resin may be modified by adding an additive within a range not impairing the effects of the present invention. Examples of the additive include a compatibilizer, a heat stabilizer, an antioxidant, a fluorescent whitening agent, an infrared reflector, and an infrared absorber. Moreover, an additive may be used independently and may be used together.

本発明の海島型複合繊維において、島成分は、分散染料で染色可能な熱可塑性樹脂であれば特に限定されることはない。具体例として、例えば、ポリエステル樹脂、ポリアミド樹脂、ポリビニルアルコール樹脂が挙げられる。これらの中でも、耐熱性や機械的特性の観点からポリエステル樹脂、ポリアミド樹脂が好ましく、さらに濃染化の観点から、ポリエステル樹脂がより好ましい。   In the sea-island type composite fiber of the present invention, the island component is not particularly limited as long as it is a thermoplastic resin that can be dyed with a disperse dye. Specific examples include polyester resin, polyamide resin, and polyvinyl alcohol resin. Among these, a polyester resin and a polyamide resin are preferable from the viewpoint of heat resistance and mechanical characteristics, and a polyester resin is more preferable from the viewpoint of deep dyeing.

上記熱可塑性樹脂の融点は180℃以上、280℃以下が好ましい。
本発明において、島部は、海部の海成分に覆われており、通常のプレセットやファイナルセット等の後加工における乾熱処理でも問題のない良好な耐熱性を備えている。島成分の融点が低すぎると、乾熱処理により、島部の融解が生じ易くなる傾向がある。また高過ぎると、海成分との複合紡糸が難しくなる傾向がある。よって、耐熱性、安定した製糸性や海部と島部との剥離を抑制し易い点から、上記の範囲が好ましい。より好ましい上記熱可塑性樹脂の融点は、210℃以上、270℃以下であり、さらに好ましくは220℃以上、265℃以下である。
The melting point of the thermoplastic resin is preferably 180 ° C. or higher and 280 ° C. or lower.
In the present invention, the island part is covered with sea components of the sea part, and has good heat resistance without any problem even in the dry heat treatment in post-processing such as a normal preset or final set. When the melting point of the island component is too excessive low, the dry-heat treatment tends to melt easily occurs of islands. Moreover, when too high, there exists a tendency for the composite spinning with a sea component to become difficult. Therefore, the above range is preferable from the viewpoints of heat resistance, stable yarn production, and easy suppression of peeling between the sea and the island. The melting point of the thermoplastic resin is more preferably 210 ° C. or higher and 270 ° C. or lower, and further preferably 220 ° C. or higher and 265 ° C. or lower.

上記熱可塑性樹脂は、本発明の効果を損なわない範囲内で、添加物を添加することにより改質が行われたものであっても良い。添加物としては相溶化剤、熱安定化剤、酸化防止剤、蛍光増白剤、赤外線反射剤、赤外線吸収剤等が挙げられる。また、添加物は単独で用いても良いし併用しても良い。   The thermoplastic resin may be modified by adding an additive within a range not impairing the effects of the present invention. Examples of the additive include a compatibilizer, a heat stabilizer, an antioxidant, a fluorescent brightener, an infrared reflector, and an infrared absorber. Moreover, an additive may be used independently and may be used together.

上記ポリエステル樹脂としては、ジカルボン酸類またはそのエステル形成誘導体とジオールまたはそのエステル形成誘導体を原料として重縮合反応によって製造される線状飽和ポリエステルであればよく、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸等が挙げられるが、これらに限定されるものではない。特に、ポリエチレンテレフタレートを主体とするものが好ましく、また、ホモポリエステルであってもコポリエステルであってもよい。共重合成分としてはアジピン酸、セバシン酸、フタル酸、イソフタル酸、ナフタレン−2,6−ジカルボン酸、ジフェニルジカルボン酸、5−ナトリウムスルホイソフタル酸、ジフェニルスルホンジカルボン酸、p−オキシエトキシ安息香酸等のジカルボン酸類またはそのエステル形成誘導体成分、またはポリエチレングリコール、ポリテトラメチレングリコール、ポリヘキサンメチレングリコールなどのポリアルキレングリコール成分を含んでいるものが好ましい。ポリアルキレングリコールには、ジエチレングリコール、プロピレングリコール、ネオペンチルグリコール、ポリオキシアルキレングリコール、p−キシレングリコール、1,4−シクロヘキサンジメタノール等のジオールまたはそのエステル形成誘導体成分を含んでいてもよい。これらの共重合成分は互いに1種ずつ用いてもよいし、2種以上用いることもできる。   The polyester resin may be a linear saturated polyester produced by a polycondensation reaction using a dicarboxylic acid or its ester-forming derivative and a diol or its ester-forming derivative as raw materials. , Polyethylene naphthalate, polylactic acid and the like, but are not limited thereto. In particular, those mainly composed of polyethylene terephthalate are preferable, and may be a homopolyester or a copolyester. Examples of copolymer components include adipic acid, sebacic acid, phthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, diphenyldicarboxylic acid, 5-sodium sulfoisophthalic acid, diphenylsulfone dicarboxylic acid, p-oxyethoxybenzoic acid, etc. Those containing dicarboxylic acids or ester-forming derivative components thereof, or polyalkylene glycol components such as polyethylene glycol, polytetramethylene glycol, polyhexanemethylene glycol and the like are preferable. The polyalkylene glycol may contain a diol such as diethylene glycol, propylene glycol, neopentyl glycol, polyoxyalkylene glycol, p-xylene glycol, 1,4-cyclohexanedimethanol, or an ester-forming derivative component thereof. These copolymerization components may be used one by one, or two or more types may be used.

上記ポリアミド樹脂としては、ナイロン6、ナイロン10、ナイロン12、ナイロン66などの単独の重合体または共重合体が挙げられ、これらに限定されるものではない。   Examples of the polyamide resin include, but are not limited to, single polymers or copolymers such as nylon 6, nylon 10, nylon 12, nylon 66, and the like.

本発明の海島型複合繊維の断面形状について、以下説明する。   The cross-sectional shape of the sea-island composite fiber of the present invention will be described below.

本発明の海島型複合繊維は、1つ以上の海部と、2つ以上の島部とを、長さ方向に連続して形成された海島構造を有する複合繊維である。   The sea-island type composite fiber of the present invention is a composite fiber having a sea-island structure in which one or more sea parts and two or more island parts are continuously formed in the length direction.

本発明の海島型複合繊維は、繊維表面に海成分が露出している。すなわち、繊維横断面(繊維長さ方向に垂直な繊維断面)においては、外周に海部が露出している。   In the sea-island type composite fiber of the present invention, sea components are exposed on the fiber surface. That is, in the fiber cross section (fiber cross section perpendicular to the fiber length direction), the sea is exposed on the outer periphery.

図1は、本発明の海島型複合繊維の繊維横断面の断面形状の一例を示す図である。この例では、丸断面の繊維の海部aに、丸断面の19個の島部bが繊維中央に寄り合う形で配置されている。また、海部の最小厚みは1μm以上で構成される。ここで、海部の最小厚みとは、繊維外周と島部外周との最短距離であり、繊維外周の法線(繊維外周の一点を通り、この点における接線に垂直な直線)をひいたときに最も近い島部の外周までの距離を示す。例えば、図1の海島型複合繊維において、繊維外周上の点pから法線をひき、島部bの外周との交点をqとする。繊維横断面中で、この点pと点qを結ぶ線分p−qの最も短い長さXが海部の最小厚みとなる。
海部の最小厚みが1μm未満の場合、延伸工程、製織編工程、染色工程において、海成分と島成分との剥離が生じ易くなる。このため、製糸安定性の悪化、染色斑の発生、染色後の白化現象が生じ易い。
FIG. 1 is a diagram showing an example of a cross-sectional shape of a fiber cross section of a sea-island type composite fiber of the present invention. In this example, 19 islands b having a round cross section are arranged in the sea part a of the fiber having a round cross section so as to be close to the center of the fiber. Further, the minimum thickness of the sea portion is 1 μm or more. Here, the minimum thickness of the sea is the shortest distance between the outer periphery of the fiber and the outer periphery of the island, and when the normal of the outer periphery of the fiber (a straight line passing through one point of the outer periphery of the fiber and perpendicular to the tangent at this point) is drawn. Indicates the distance to the outer periphery of the nearest island. For example, in the sea-island type composite fiber of FIG. 1, the normal line is drawn from the point p on the outer periphery of the fiber, and the intersection point with the outer periphery of the island part b is defined as q. In the fiber cross section, the shortest length X of the line segment p-q connecting the points p and q is the minimum thickness of the sea part.
When the minimum thickness of the sea part is less than 1 μm, the sea component and the island component are easily separated in the stretching process, the weaving and knitting process, and the dyeing process. For this reason, deterioration of the yarn production stability, generation of dyeing spots, and whitening after dyeing are likely to occur.

本発明の海島型複合繊維の繊維横断面において、島部の個数を40個以下にすることが好ましい。島部の個数が40個以内であれば、適度な強度を備えた海部と島部の剥離が生じ難い海島型複合繊維が安定的に得られ易くなる。一方、島部の個数が40個を超える場合は繊維中の島部の密集度が大きくなり、紡糸過程で互いの島部同士が融合し凝集塊が発生し易くなり、海部と島部の剥離が生じ易くなる。また、より安定した繊維横断面の形成を確保する点から、配置される島部の個数は20個以下がより好ましい。島部をこのような個数とすることにより島部同士の凝集を抑制することがさらに容易になる。加えて、海部と島部の接合面積を大きくしつつ剥離を防ぐ点から、配置される島部の個数は3個以上が好ましく、より好ましくは10個以上である。   In the fiber cross section of the sea-island composite fiber of the present invention, the number of island portions is preferably 40 or less. If the number of islands is within 40, it is easy to stably obtain sea-island type composite fibers that are less likely to cause separation between the sea part and the island part with appropriate strength. On the other hand, when the number of islands exceeds 40, the density of the islands in the fiber increases, and the islands are easily fused to form an agglomerate during the spinning process, causing separation between the sea and the islands. It becomes easy. Further, the number of island portions to be arranged is more preferably 20 or less from the viewpoint of ensuring the formation of a more stable fiber cross section. By controlling the number of island portions to such a number, it becomes easier to suppress aggregation between the island portions. In addition, the number of island portions to be arranged is preferably 3 or more, more preferably 10 or more, from the viewpoint of preventing separation while increasing the joint area between the sea portion and the island portion.

本発明の海島型複合繊維の繊維横断面において、繊維横断面全体に対する海部の面積比率は、50%を超えて構成される。すなわち、繊維横断面において、海部の面積比率が50%以下であると、島部と島部の間の海部の厚さが薄くなり、島部同士が融合し、海部と島部の剥離が生じ易くなる。また、海部の面積比率が大きいと染色後に淡色となる傾向があるため、好ましくは面積比率が50%より大きく90%以下であり、より好ましくは、50%より大きく75%以下であり、さらに好ましくは50%より大きく65%以下である。   In the fiber cross section of the sea-island composite fiber of the present invention, the area ratio of the sea part to the entire fiber cross section is configured to exceed 50%. That is, in the fiber cross section, when the area ratio of the sea part is 50% or less, the thickness of the sea part between the island part and the island part becomes thin, the island parts are fused, and the sea part and the island part are separated. It becomes easy. Also, since the area ratio of the sea part tends to be light after dyeing, the area ratio is preferably more than 50% and not more than 90%, more preferably more than 50% and not more than 75%, more preferably Is greater than 50% and less than or equal to 65%.

本発明の海島型複合繊維の繊維横断面において、繊維横断面全体に対する島部の面積比率は、50%以下が好ましい。島部の面積比率は、軽量性、染色性とのバランスを考慮して、適宜設定するとよい。   In the fiber cross section of the sea-island type composite fiber of the present invention, the area ratio of the island part to the entire fiber cross section is preferably 50% or less. The area ratio of the islands may be appropriately set in consideration of the balance between lightness and dyeability.

本発明の海島型複合繊維の繊維横断面において、島部は、島部同士が融合しない範囲で、中心部に配置することが好ましい。例えば、繊維横断面において、繊維半径をrとした場合、繊維中心点から[半径r×0.90]以下の範囲に島部を配置することが好ましく、より好ましくは[半径r×0.85]以下の範囲に島部を配置することである。これにより、海部の最小厚みを1μm以上とし易く、製糸安定性の悪化、染色斑の発生、染色後の白化現象を抑制し易い傾向がある。   In the fiber cross section of the sea-island type composite fiber of the present invention, it is preferable that the island portion is disposed in the center portion in such a range that the island portions do not merge. For example, in the fiber cross section, when the fiber radius is r, it is preferable to arrange the island portion in a range of [radius r × 0.90] or less from the fiber center point, more preferably [radius r × 0.85]. It is to arrange the island part in the following range. Thereby, the minimum thickness of the sea part is easily set to 1 μm or more, and there is a tendency to suppress the deterioration of the yarn production stability, the occurrence of dyeing spots, and the whitening phenomenon after dyeing.

本発明の海島型複合繊維において、総繊度は、製糸安定性の点から、40dtex以上、200dtex以下が好ましい。より好ましくは40dtex以上、150dtex以下、さらに好ましくは40dtex以上、100dtex以下である。   In the sea-island type composite fiber of the present invention, the total fineness is preferably 40 dtex or more and 200 dtex or less from the viewpoint of yarn production stability. More preferably, it is 40 dtex or more and 150 dtex or less, More preferably, it is 40 dtex or more and 100 dtex or less.

また、本発明の海島型複合繊維において、単糸繊度は1dtex以上で構成されることが好ましい。単糸繊度が1dtex未満では海部の最小厚みを1μm以上に維持することが難しい傾向があり、製糸安定性の悪化、染色斑の発生、染色後の白化現象が起こり易くなる。また、布帛にした時の風合いの点から、単糸繊度は5dtex以下が好ましい。5dtexを超えると布帛にした時に風合いが硬いものとなり易い。より好ましくは4dtex以下、さらに好ましくは3dtex以下である。   In the sea-island composite fiber of the present invention, the single yarn fineness is preferably 1 dtex or more. If the single yarn fineness is less than 1 dtex, it tends to be difficult to maintain the minimum thickness of the sea at 1 μm or more, and the yarn-making stability is deteriorated, the occurrence of dyeing spots, and the whitening phenomenon after dyeing are likely to occur. Moreover, the single yarn fineness is preferably 5 dtex or less from the viewpoint of the texture when it is made into a fabric. If it exceeds 5 dtex, the texture tends to be hard when it is made into a fabric. More preferably, it is 4 dtex or less, More preferably, it is 3 dtex or less.

本発明の海島型複合繊維の密度について説明する。海成分のポリメチルペンテンは密度が0.83g/cm程度と軽量性に優れている。一方、本発明において、島成分は、分散染料で染色可能な熱可塑性樹脂からなる。そのため、本発明の海島型複合繊維の密度は、繊維横断面における海部の面積比率に応じて変化する。軽量性の点から密度の小さいポリメチルペンテン系樹脂からなる海成分の面積比率が大きい程良いが、染色性の点からポリメチルペンテンより密度の大きい熱可塑性樹脂からなる島成分の面積比率が大きい方が好ましい。これらのバランスを考慮すると、本発明の海島型複合繊維の密度は、1.10g/cm以下とすることが好ましい。下限は、0.90g/cm程度であることが好ましい。本発明の海島型複合繊維の密度が、このような範囲であれば軽量性と染色性の両方に優れた海島型複合繊維を得ることが容易となる。この点からは、繊維断面における海部の面積比率は50%より大きく、85%以下が好ましく、より好ましくは50%より大きく65%以下である。 The density of the sea-island type composite fiber of the present invention will be described. The polymethylpentene, a sea component, is excellent in lightness with a density of about 0.83 g / cm 3 . On the other hand, in this invention, an island component consists of a thermoplastic resin which can be dye | stained with a disperse dye. Therefore, the density of the sea-island composite fiber of the present invention changes according to the area ratio of the sea part in the fiber cross section. The larger the area ratio of the sea component made of a polymethylpentene resin having a low density from the viewpoint of light weight, the better, but the area ratio of the island component made of a thermoplastic resin having a density higher than that of polymethylpentene is larger from the viewpoint of dyeability. Is preferred. Considering these balances, the density of the sea-island type composite fiber of the present invention is preferably 1.10 g / cm 3 or less. The lower limit is preferably about 0.90 g / cm 3 . When the density of the sea-island type composite fiber of the present invention is in such a range, it is easy to obtain a sea-island type composite fiber excellent in both lightness and dyeability. From this point, the area ratio of the sea part in the fiber cross section is more than 50%, preferably 85% or less, more preferably more than 50% and 65% or less.

本発明の海島型複合繊維の撥水性について説明する。本発明に用いる海成分のポリメチルペンテンは表面張力が24mN/m程度と非常に小さいため、ポリオレフィン樹脂のなかでも撥水性に優れている。本発明の海島型複合繊維において、島部が繊維表面に露出していると島部により撥水性が阻害されるため好ましくない。また、他のポリオレフィン樹脂とのブレンドでは表面張力が上昇し、撥水性が低下する。撥水性は後述する方法で水滴の接触角として表すことができる。水滴の接触角は135°以上が好ましく、種々の繊維構造体であっても良好な撥水性を維持できる。   The water repellency of the sea-island composite fiber of the present invention will be described. The polymethylpentene, which is a sea component used in the present invention, has a very low surface tension of about 24 mN / m, and therefore has excellent water repellency among polyolefin resins. In the sea-island type composite fiber of the present invention, if the island part is exposed on the fiber surface, the water repellency is inhibited by the island part, which is not preferable. In addition, blending with other polyolefin resins increases surface tension and decreases water repellency. Water repellency can be expressed as a contact angle of a water droplet by a method described later. The contact angle of water droplets is preferably 135 ° or more, and good water repellency can be maintained even with various fiber structures.

本発明において、耐熱性について説明する。本発明の海島繊維は、185℃の乾熱処理で溶融および溶断が発生しないものであることが好ましい。通常、製織、製編された生地は、プレセットやファイナルセット等の乾熱処理を行う必要がある。ポリエステル繊維やポリアミド繊維を用いた生地の場合、通常120℃〜190℃で熱処理が行われる。その際に耐熱性が低い繊維を併用すると、乾熱処理時に繊維の融着や溶断が発生し、風合いの硬い生地や穴が開いた生地となってしまい、衣料用途や産業資材用途等に用いることができなくなる。この点から、耐熱性は高いほど良く、上記の状態であることが好ましい。   In the present invention, heat resistance will be described. The sea-island fiber of the present invention is preferably one that does not melt or melt during a dry heat treatment at 185 ° C. Usually, a woven or knitted fabric needs to be subjected to a dry heat treatment such as a preset or final set. In the case of a fabric using polyester fiber or polyamide fiber, heat treatment is usually performed at 120 ° C to 190 ° C. If fibers with low heat resistance are used at that time, fiber fusion or fusing will occur during dry heat treatment, resulting in a fabric with a hard texture or a hole, and used for clothing and industrial materials Can not be. From this point, the higher the heat resistance, the better, and the above state is preferable.

本発明の海島型複合繊維を用いて、種々の繊維構造物を得ることができる。繊維構造物としては、例えば、撚糸、組紐などの糸束、仮撚糸やタスラン加工糸などの加工糸、紡績糸、各種混繊糸、織編物や不織布等の布帛、詰め綿等の形態をとることができる。
特に好ましくは、ポリエステル繊維やポリアミド繊維等の熱可塑性樹脂からなる繊維と、混繊や交編織等により混用した繊維構造物であり、これらは、染色性、耐熱性、軽量性、撥水性などの特徴を、適宜、有効に活用しながら、目的とする繊維構造物を得ることができる。
Various fiber structures can be obtained by using the sea-island composite fiber of the present invention. Examples of the fiber structure include yarn bundles such as twisted yarns and braids, processed yarns such as false twisted yarns and taslan processed yarns, spun yarns, various mixed yarns, fabrics such as woven and knitted fabrics and nonwoven fabrics, and stuffed cotton. be able to.
Particularly preferred is a fiber structure mixed with fibers made of a thermoplastic resin such as polyester fiber or polyamide fiber and mixed fiber or knitted or knitted fabric, and these include dyeing property, heat resistance, light weight, water repellency, etc. The target fiber structure can be obtained while effectively utilizing the features as appropriate.

次に、本発明の海島型複合繊維を製造する方法の好適な例について説明する。   Next, the suitable example of the method of manufacturing the sea-island type composite fiber of this invention is demonstrated.

まず、上記海成分のポリメチルペンテン系樹脂および上記島成分の熱可塑性樹脂を準備する。
準備した海成分と島成分を別々に溶融して、上記断面形状となるように、紡糸口金より吐出し、冷却した後、延伸して、本発明の海島型複合繊維を得ることができる。
First, the sea component polymethylpentene resin and the island component thermoplastic resin are prepared.
The prepared sea component and island component are separately melted, discharged from the spinneret so as to have the above-mentioned cross-sectional shape, cooled, and then stretched to obtain the sea-island composite fiber of the present invention.

紡糸温度は、ポリメチルペンテン系樹脂と熱可塑性樹脂の耐熱性や紡糸性の点から220℃以上、300℃以下が好ましく、250℃以上、290℃以下がより好ましい。紡糸速度は800m/min以上、4500m/min以下が好ましく、1000m/min以上、3800m/min以下がより好ましい。   The spinning temperature is preferably 220 ° C. or higher and 300 ° C. or lower, more preferably 250 ° C. or higher and 290 ° C. or lower, from the viewpoints of heat resistance and spinnability of the polymethylpentene resin and the thermoplastic resin. The spinning speed is preferably 800 m / min or more and 4500 m / min or less, and more preferably 1000 m / min or more and 3800 m / min or less.

なお、本発明の海島型複合繊維は、海部と島部が繊維の長さ方向に途切れずに連続した状態で互いに接合していることが好ましい。この場合、延伸工程、製織編工程及び染色工程等で海部と島部の剥離が生じ難く、製糸安定性の悪化、白化現象を抑制し易い。一方、繊維の長さ方向において、島部の樹脂が途切れると、製糸安定性の悪化、染色後の白化現象を抑制することは困難となる傾向があるため好ましくない。   In addition, it is preferable that the sea-island type composite fiber of the present invention is joined to each other in a state where the sea part and the island part are continuous without being interrupted in the fiber length direction. In this case, the sea part and the island part are hardly separated in the drawing process, the weaving and knitting process, the dyeing process, and the like, and it is easy to suppress the deterioration of the yarn production stability and the whitening phenomenon. On the other hand, if the resin in the island portion is interrupted in the length direction of the fiber, it is not preferable because it tends to be difficult to suppress the deterioration of the yarn production stability and the whitening phenomenon after dyeing.

延伸温度は、製糸安定性の点から90℃以上、120℃以下が好ましく、95℃以上、110℃以下がより好ましい。延伸倍率は、安定的に海島型複合繊維の断面形状を得る点から2.0倍以上、3.5倍以下程度が好ましい。   The drawing temperature is preferably 90 ° C. or higher and 120 ° C. or lower, more preferably 95 ° C. or higher and 110 ° C. or lower, from the viewpoint of yarn production stability. The draw ratio is preferably about 2.0 times or more and 3.5 times or less from the viewpoint of stably obtaining the cross-sectional shape of the sea-island composite fiber.

なお、本発明の海島型複合繊維を製造する際には、溶融紡糸した後に一旦巻き取り、その後に延伸する方法や溶融紡糸した後、一旦巻き取ることなく延伸する直接紡糸延伸法など任意の方法を採用することができる。   When producing the sea-island type composite fiber of the present invention, any method such as a method of winding once after melt spinning and then stretching, or a direct spinning stretching method of stretching without melt winding and then winding once Can be adopted.

このようにして、海部と島部の剥離がなく、製糸安定性が良好な本発明の海島型複合繊維を得ることができる。   In this manner, the sea-island type composite fiber of the present invention can be obtained which has no peeling between the sea part and the island part and has good yarn-making stability.

また、このようにして得られた本発明の海島型複合繊維は、分散染料によって好適に染色できる。すなわち、分散染料による染色では染料が島成分まで浸透するため濃色に染色することができる。一方、カチオン染料や酸性染料を用いた染色の場合、ポリメチルペンテン系樹脂が高い撥水性を示すため、島成分の熱可塑性樹脂まで染料が浸透しないので染色され難く、好ましくない。   Moreover, the sea-island type composite fiber of the present invention thus obtained can be suitably dyed with a disperse dye. That is, in dyeing with a disperse dye, since the dye penetrates to the island components, it can be dyed in a dark color. On the other hand, in the case of dyeing using a cationic dye or an acid dye, since the polymethylpentene resin exhibits high water repellency, the dye does not penetrate to the thermoplastic resin of the island component and is not preferred because it is difficult to dye.

このようにして得られた本発明の海島型複合繊維は、製糸安定性が良好で、耐熱性も良好なため、延伸工程、仮撚工程、製編織工程、精工程、染色工程等の各工程でも、剥離しにくく、各工程での取り扱い性に優れる。特に、染色の際に、色斑が生じて染色性が悪化したり、白化現象が生じたりしないため、色斑がなく濃色に染色ができる。また、適宜、調整することにより、目的に応じて、良好な軽量性や撥水性を容易に得ることができる。 Islands-in-sea type composite fiber of the present invention obtained in this way, reeling stability is good, because heat resistance good, stretching step, false twisting process, knitting weaving process, spinning kneading step, each such dyeing process Even in the process, it is difficult to peel off, and the handleability in each process is excellent. In particular, during the dyeing, color spots are not generated and the dyeability is not deteriorated, and the whitening phenomenon does not occur. Moreover, by adjusting suitably, favorable lightweight property and water repellency can be obtained easily according to the objective.

以下、本発明の実施例を示して具体的に説明するが、下記実施例は本発明を例示するものであって、本発明を限定するものではない。なお、各種物性の測定及び評価の方法は下記のように行った。   EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the following examples illustrate the present invention and do not limit the present invention. Various physical properties were measured and evaluated as follows.

(1)融点
示差走査熱量計(DSC)(リガク製 「DSC 8230」)を用いて、窒素雰囲気中、昇温速度10℃/minで300℃まで昇温し、吸熱ピークのピークトップを熱可塑性樹脂の融点とした。
(1) Melting point Using a differential scanning calorimeter (DSC) (“DSC 8230” manufactured by Rigaku), the temperature is raised to 300 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere, and the peak top of the endothermic peak is thermoplastic. The melting point of the resin.

(2)製糸安定性
10kgの糸を生産した際の平均糸切れ回数で製糸安定性を評価し、下記の基準でB以上を合格とした。
A:糸切れ回数が1回未満の場合
B:糸切れ回数が1回以上、3回未満の場合
C:糸切れ回数が3回以上の場合
(2) Yarn Stability The yarn making stability was evaluated based on the average number of yarn breakage when a 10 kg yarn was produced, and B or higher was determined to be acceptable according to the following criteria.
A: When thread breakage is less than 1 B: When thread breakage is 1 or more and less than 3 C: When thread breakage is 3 or more

(3)島部状況(融合・剥離)の確認、繊維直径及び海部の最小厚み
得られた海島型複合繊維の任意の2箇所を長さ方向に垂直に切断し、切断面を電子顕微鏡により1500倍で観察し、島部の融合・剥離の発生状況を確認した。これらの欠点が発生していないものは「良好」とした。また、同様の切断面にて繊維直径、海部の最小厚みを測定した。
(3) Confirmation of island state (fusion / peeling), fiber diameter and minimum thickness of sea part Arbitrary two parts of the obtained sea-island type composite fiber were cut perpendicular to the length direction, and the cut surface was 1500 using an electron microscope. Magnification was observed to confirm the occurrence of island fusion / peeling. Those in which these defects did not occur were evaluated as “good”. Moreover, the fiber diameter and the minimum thickness of the sea part were measured on the same cut surface.

(4)繊維の強度・伸度
JIS L1013に準じて、島津製作所製オートグラフAGSを用いた引張試験を行い、測定長:200mm、引張り速度:200mm/分の条件下にて、繊維が破断したときの破断強度、および破断伸度をそれぞれ5回測定し、その平均値を求めた。
(4) Strength / Elongation of Fiber According to JIS L1013, a tensile test using an autograph AGS manufactured by Shimadzu Corporation was performed, and the fiber was broken under the conditions of a measurement length: 200 mm and a tensile speed: 200 mm / min. The breaking strength and the breaking elongation were measured 5 times, and the average value was obtained.

(5)軽量性
得られた海島型複合繊維はJIS K7112 D法に準じた密度勾配管法により密度を算出した。密度勾配管に重液として塩化亜鉛水溶液、軽液としてエタノールを用いて調整した浸漬液を用意し、23℃の恒温槽24時間静置した。試料を密度勾配管にいれ1時間静置した後、浮沈状態を確認した。軽量性は下記の基準に基づいて評価した。
A:比重が1.0g/cm未満の優れた軽量性を有する。
B:比重が1.0g/cm以上、1.1g/cm未満の良好な軽量性を有する。
C:比重が1.1g/cm以上で軽量性を有していない。
(5) Lightness The density of the obtained sea-island type composite fiber was calculated by the density gradient tube method according to JIS K7112 D method. An immersion liquid prepared using a zinc chloride aqueous solution as a heavy liquid and ethanol as a light liquid was prepared in a density gradient tube, and allowed to stand for 24 hours at a constant temperature bath at 23 ° C. The sample was placed in a density gradient tube and allowed to stand for 1 hour, and then the floating state was confirmed. The lightness was evaluated based on the following criteria.
A: It has excellent light weight with a specific gravity of less than 1.0 g / cm 3 .
B: It has good light weight with a specific gravity of 1.0 g / cm 3 or more and less than 1.1 g / cm 3 .
C: The specific gravity is 1.1 g / cm 3 or more and does not have light weight.

(6)撥水性評価
得られた海島型複合繊維を用いて筒編地を作製し、水平に置いた筒編地表面に2.5μLの水を落とし、水滴の接触角を計測した。撥水性は下記の基準に基づいて評価した。
○:真球に近い水滴で、135°以上の接触角を有する。
×:真球から少しくずれた水滴で、135°未満の接触角を有する。
(6) Evaluation of water repellency A cylindrical knitted fabric was prepared using the obtained sea-island type composite fiber, and 2.5 μL of water was dropped on the surface of the cylindrical knitted fabric placed horizontally, and the contact angle of water droplets was measured. The water repellency was evaluated based on the following criteria.
○: A water droplet close to a true sphere and having a contact angle of 135 ° or more.
X: A water droplet slightly deviated from the true sphere and having a contact angle of less than 135 °.

(7)耐熱性評価
得られた海島型複合繊維で作製した筒編地を開反した後、20cm×25cmの枠で固定し、185℃の熱風にて2分間乾熱処理を行った。乾熱処理後の布帛を電子顕微鏡により1000倍で観察し、下記の基準により評価した。
○:糸融着や溶断がなく、風合いが硬くならない場合
×:糸融着や溶断があり、風合いが硬くなる場合
(7) Evaluation of heat resistance After the tubular knitted fabric made of the obtained sea-island type composite fiber was opened, it was fixed with a frame of 20 cm x 25 cm and subjected to dry heat treatment with hot air at 185 ° C for 2 minutes. The fabric after the dry heat treatment was observed at 1000 times with an electron microscope and evaluated according to the following criteria.
○: When there is no yarn fusion or fusing and the texture is not hard ×: When there is yarn fusion or fusing and the texture is hard

(8)染色性評価
得られた海島型複合繊維で作製した筒編地を、70℃で20分間の精を行い、水洗、風乾し、分散染料(ダイアニックス(登録商標) ブルー ACE)2.0%o.w.f、浴比1:50、130℃で1時間の高圧染色後、還元洗浄を常法で行い、下記の基準により評価した。
○:色斑や白化現象がない場合
△:色斑はあるが白化現象がない場合
×:白化現象がある場合
(8) a tubular knitted fabric produced in dyeability evaluation obtained sea-island type composite fiber, performs a fine mixing for 20 minutes at 70 ° C., washed with water, air dried disperse dye (Dianix ® Blue ACE) 2 0.0% o. w. f, bath ratio 1:50, after high-pressure dyeing at 130 ° C. for 1 hour, reduction washing was carried out by a conventional method and evaluated according to the following criteria.
○: When there is no color spot or whitening phenomenon △: When there is color spot but no whitening phenomenon ×: When there is whitening phenomenon

上記染色した筒編地のLをJIS Z8729に準じて測定した。測定には測色色差計(日本電色工業製「ZE 2000」)を用いた。ここで、L値は色の明度を0〜100で表し、0に近いほど暗く、100に近いほど明るい。a値は赤緑色を表し、正の数値は赤寄りの色、負の数値は緑寄りの色となる。bは黄青色を表し、正の数値は黄寄りの色、負の数値は青寄りの色となる。 L * a * b * of the dyed tubular knitted fabric was measured according to JIS Z8729. A colorimetric color difference meter (“ZE 2000” manufactured by Nippon Denshoku Industries Co., Ltd.) was used for the measurement. Here, the L * value represents the lightness of the color from 0 to 100. The closer to 0, the darker the color, and the closer to 100, the brighter. The a * value represents reddish green, with positive numbers being reddish colors and negative numbers being greenish colors. b * represents yellowish blue, with positive numbers being yellowish colors and negative numbers being blueish colors.

〔実施例1〕
海成分にポリメチルペンテン(三井化学製「TPX(登録商標) DX820」、MFR180g/10min、融点233℃)、島成分にポリエチレンテレフタレート(融点258℃)を用い、海:島の面積比率が56:44となるように供給し、図1のように19個の島成分が繊維中央に配置される口金から285℃で紡出し、1500m/minで未延伸糸を巻き取った。次いで、得られた未延伸糸を延伸速度800m/min、延伸倍率2.4倍で延伸し、66dtex/24fの海島型複合繊維を得た。得られた海島型複合繊維の繊維横断面における海部の最小厚みは1.8μmであり、海部と島部の界面での剥離は認められず、製糸安定性は良好であった。185℃で2分間の乾熱処理後も融着や溶断はなく耐熱性に優れたものであった。また色斑なく濃青色に染色され、染色性は良好であった。撥水性評価で計測した接触角は136.8°で良好な撥水性を有し、軽量性も良好であった。得られた結果を表1に示す。
[Example 1]
Polymethylpentene (“TPX (registered trademark) DX820” manufactured by Mitsui Chemicals, MFR 180 g / 10 min, melting point 233 ° C.) is used as the sea component, polyethylene terephthalate (melting point 258 ° C.) is used as the island component, and the sea: island area ratio is 56: As shown in FIG. 1, 19 island components were spun at 285 ° C. from the die arranged at the center of the fiber as shown in FIG. 1, and the undrawn yarn was wound up at 1500 m / min. Subsequently, the obtained undrawn yarn was drawn at a drawing speed of 800 m / min and a draw ratio of 2.4 times to obtain a sea-island type composite fiber of 66 dtex / 24f. The minimum thickness of the sea part in the fiber cross section of the obtained sea-island type composite fiber was 1.8 μm, and no peeling at the interface between the sea part and the island part was observed, and the yarn-making stability was good. Even after 2 minutes of dry heat treatment at 185 ° C., there was no fusion or fusing, and the heat resistance was excellent. Moreover, it dye | stained dark blue without a color spot, and the dyeability was favorable. The contact angle measured by the water repellency evaluation was 136.8 ° and had good water repellency and good lightness. The obtained results are shown in Table 1.

〔実施例2〕
44dtex/24fとした以外は実施例1と同様の方法で海島型複合繊維を作製した。得られた海島型複合繊維の繊維横断面における海部の最小厚みは1.1μmであり、海部と島部の界面での剥離は認められず、製糸安定性は良好であった。185℃で2分間の乾熱処理後も融着や溶断はなく耐熱性に優れたものであった。また色斑なく濃青色に染色され、染色性は良好であった。撥水性評価で計測した接触角は136.2°で良好な撥水性を有し、軽量性も良好であった。得られた結果を表1に示す。
[Example 2]
A sea-island composite fiber was produced in the same manner as in Example 1 except that 44 dtex / 24f. The minimum thickness of the sea part in the fiber cross section of the obtained sea-island type composite fiber was 1.1 μm, and no peeling was observed at the interface between the sea part and the island part, and the yarn-making stability was good. Even after 2 minutes of dry heat treatment at 185 ° C., there was no fusion or fusing, and the heat resistance was excellent. Moreover, it dye | stained dark blue without a color spot, and the dyeability was favorable. The contact angle measured in the water repellency evaluation was 136.2 ° and had good water repellency, and the lightness was also good. The obtained results are shown in Table 1.

〔実施例3〕
島成分が7個配置される口金を用いた以外は実施例1と同様の方法で海島型複合繊維を作製した。得られた海島型複合繊維における海部の最小厚みは1.3μmであり、海部と島部の界面での剥離は認められず、製糸安定性は良好であった。185℃で2分間の乾熱処理後も融着や溶断はなく耐熱性に優れたものであった。また色斑なく濃青色に染色され、染色性は良好であった。撥水性評価で計測した接触角は136.5°で良好な撥水性を有し、軽量性も良好であった。得られた結果を表1に示す。
Example 3
A sea-island type composite fiber was produced in the same manner as in Example 1 except that a base in which seven island components were arranged was used. The minimum thickness of the sea part in the obtained sea-island type composite fiber was 1.3 μm, peeling at the interface between the sea part and the island part was not observed, and the spinning stability was good. Even after 2 minutes of dry heat treatment at 185 ° C., there was no fusion or fusing, and the heat resistance was excellent. Moreover, it dye | stained dark blue without a color spot, and the dyeability was favorable. The contact angle measured in the water repellency evaluation was 136.5 °, had good water repellency, and had good lightness. The obtained results are shown in Table 1.

〔実施例4〕
ポリメチルペンテン系樹脂とポリプロピレン(日本ポリプロ製「SA01A」)を80:20の質量比率でブレンドした樹脂を海成分に用いること以外は実施例1と同様の方法で海島型複合繊維を作製した。得られた海島型複合繊維における海部の最小厚みは1.6μmであり、海部と島部の界面での剥離は認められず、製糸安定性は良好であった。185℃で2分間の乾熱処理後も融着や溶断はなく耐熱性に優れたものであった。また色斑なく濃青色に染色され、染色性は良好であった。撥水性評価で計測した接触角は136.1°で良好な撥水性を有し、軽量性も良好であった。得られた結果を表1に示す。
Example 4
A sea-island composite fiber was produced in the same manner as in Example 1 except that a resin obtained by blending polymethylpentene resin and polypropylene (“SA01A” manufactured by Nippon Polypro Co., Ltd.) at a mass ratio of 80:20 was used as the sea component. The minimum thickness of the sea part in the obtained sea-island type composite fiber was 1.6 μm, and no peeling at the interface between the sea part and the island part was observed, and the yarn-making stability was good. Even after 2 minutes of dry heat treatment at 185 ° C., there was no fusion or fusing, and the heat resistance was excellent. Moreover, it dye | stained dark blue without a color spot, and the dyeability was favorable. The contact angle measured in the water repellency evaluation was 136.1 ° and had good water repellency and good lightness. The obtained results are shown in Table 1.

Figure 0006356976
Figure 0006356976

〔比較例1〕
通常の芯鞘糸(単芯)となる口金を用いた以外は実施例1と同様の方法で海島型複合繊維を作製した。得られた海島繊維は芯成分と鞘成分の界面で剥離がみられた。また、染色性評価では色斑が発生したが、白化現象は生じなかった。撥水性評価で計測した接触角は136.9°と撥水性は良好であった。得られた結果を表2に示す。
[Comparative Example 1]
A sea-island type composite fiber was produced in the same manner as in Example 1 except that a base serving as a normal core-sheath thread (single core) was used. The obtained sea-island fiber was peeled off at the interface between the core component and the sheath component. In the dyeability evaluation, color spots occurred, but no whitening phenomenon occurred. The contact angle measured by water repellency evaluation was 136.9 ° and the water repellency was good. The obtained results are shown in Table 2.

〔比較例2〕
図2のように19個の島成分が繊維全体に均一に配置される口金を用いた以外は実施例1と同様の方法で海島型複合繊維を作製した。得られた海島型複合繊維における海部の最小厚みは0.3μm以下であり、一部の島部は表面へ露出していた。また、海部と島部との界面で剥離がみられ、製糸安定性は不良であり、染色性評価では白化現象が生じた。島部の露出もあり、撥水性評価で計測した接触角は132.1°と撥水性が低いものであった。得られた結果を表2に示す。
[Comparative Example 2]
A sea-island composite fiber was produced in the same manner as in Example 1 except that a base in which 19 island components were uniformly arranged over the entire fiber as shown in FIG. 2 was used. The minimum thickness of the sea part in the obtained sea-island type composite fiber was 0.3 μm or less, and a part of the island part was exposed to the surface. Further, peeling was observed at the interface between the sea part and the island part, the spinning stability was poor, and a whitening phenomenon occurred in the dyeability evaluation. There was also exposure of islands, and the contact angle measured by water repellency evaluation was 132.1 °, which was low in water repellency. The obtained results are shown in Table 2.

〔比較例3〕
図3のように花弁型で、島成分が繊維表面に露出するように配置される口金を用いた以外は実施例1と同様の方法で海島型複合繊維を作製した。熱可塑性樹脂が繊維表面に露出しているため、製糸安定性が悪く、複合繊維を得ることはできなかった。得られた結果を表2に示す。
[Comparative Example 3]
A sea-island type composite fiber was produced in the same manner as in Example 1 except that a base having a petal shape as shown in FIG. 3 and an island component exposed to the fiber surface was used. Since the thermoplastic resin is exposed on the fiber surface, the yarn-making stability is poor, and composite fibers could not be obtained. The obtained results are shown in Table 2.

〔比較例4〕
海:島の面積比率を50:50とした以外は実施例1と同様の方法で海島型複合繊維を作製した。得られた海島型複合繊維は島成分が融合し、1つの芯を有する芯鞘繊維となっていた。染色性評価では色斑が発生したが、白化現象は生じなかった。撥水性評価で計測した接触角は135.9°と撥水性は良好であった。得られた結果を表2に示す。
[Comparative Example 4]
A sea-island composite fiber was produced in the same manner as in Example 1 except that the sea: island area ratio was 50:50. The obtained sea-island type composite fiber was a core-sheath fiber having a single core in which island components were fused. In the staining evaluation, color spots occurred, but no whitening phenomenon occurred. The contact angle measured by water repellency evaluation was 135.9 ° and the water repellency was good. The obtained results are shown in Table 2.

〔比較例5〕
ポリメチルペンテン系樹脂とポリプロピレンを20:80の質量比率でブレンドした樹脂を海成分に用いた以外は実施例1と同様の方法で海島型複合繊維を作製した。得られた海島型複合繊維における海部の最小厚みは1.6μmであり、海部と島部の界面での剥離は認められず、製糸安定性は良好であった。185℃で2分間の乾熱処理で融着や溶断が発生し耐熱性は良くなかった。また色斑なく濃青色に染色され、染色性は良好であった。表面張力の上昇により、接触角が133.9°となり、撥水性は低いものであった。得られた結果を表2に示す。
[Comparative Example 5]
A sea-island composite fiber was produced in the same manner as in Example 1 except that a resin obtained by blending a polymethylpentene resin and polypropylene at a mass ratio of 20:80 was used as the sea component. The minimum thickness of the sea part in the obtained sea-island type composite fiber was 1.6 μm, and no peeling at the interface between the sea part and the island part was observed, and the yarn-making stability was good. The heat resistance was not good because fusing or fusing occurred during a dry heat treatment at 185 ° C. for 2 minutes. Moreover, it dye | stained dark blue without a color spot, and the dyeability was favorable. Due to the increase in surface tension, the contact angle was 133.9 ° and the water repellency was low. The obtained results are shown in Table 2.

〔比較例6〕
ポリメチルペンテン系樹脂を単独で用い、280℃で口金から紡出し、800m/minで未延伸糸を巻き取った。次いで、得られた未延伸糸を延伸速度600m/min、延伸倍率2.3倍で延伸し、36dtex/24fの海島型複合繊維を得た。185℃で2分間の乾熱処理後も融着や溶断はなく耐熱性に優れたものだったが、ポリメチルペンテン系樹脂は分散染料にて染色できなかったため白色であった。撥水性評価で計測した接触角は137.1°と良好であった。得られた結果を表2に示す。
[Comparative Example 6]
A polymethylpentene resin was used alone, spun from the die at 280 ° C., and the undrawn yarn was wound up at 800 m / min. Next, the obtained undrawn yarn was drawn at a drawing speed of 600 m / min and a draw ratio of 2.3 times to obtain a sea-island type composite fiber of 36 dtex / 24f. Even after 2 minutes of dry heat treatment at 185 ° C., it was excellent in heat resistance without fusing or fusing, but the polymethylpentene resin was white because it could not be dyed with disperse dye. The contact angle measured by water repellency evaluation was as good as 137.1 °. The obtained results are shown in Table 2.

Figure 0006356976
Figure 0006356976

実施例1〜4で得られた海島型複合繊維は、耐剥離性、染色性、耐熱性、撥水性、軽量性ともに良好であったが、比較例から得られた海島型複合繊維は耐剥離性、染色性、耐熱性の少なくとも一つが不良であった。   The sea-island type composite fibers obtained in Examples 1 to 4 had good peel resistance, dyeability, heat resistance, water repellency, and lightness, but the sea-island type composite fibers obtained from Comparative Examples were resistant to peeling. At least one of colorability, dyeability, and heat resistance was poor.

本発明の海島型複合繊維は、種々の繊維構造体とすることができ、インナーやスポーツウェア等の衣料用のみならず、傘地やテント地のアウトドア用品等の産業資材に好適に用いることができる。   The sea-island type composite fiber of the present invention can be made into various fiber structures and can be suitably used not only for clothing such as inner and sportswear, but also for industrial materials such as outdoor goods such as umbrellas and tents. it can.

a 海部
b 島部
p 繊維外周の接点
q 繊維外周の法線と島部外周の交点
X 海部の最小厚み
a Sea part b Island part p Contact point on the outer periphery of the fiber q Intersection of the normal line on the outer periphery of the fiber and the outer periphery of the island part X Minimum thickness of the sea part

Claims (4)

海部と、3個以上20個以下の島部とからなり、海部と島部との接合面が繊維長さ方向に連続した海島構造を有し、以下の(a)〜()の要件を満たす海島型複合繊維。
(a)海成分がポリメチルペンテンを主成分とするポリメチルペンテン系樹脂
(b)島成分がポリエチレンテレフタレート
(c)繊維横断面における海部の面積比率が50%より大きく75%以下
(d)繊維横断面における海部の最小厚みが1μm以上
(e)185℃の乾熱雰囲気下の乾熱処理後に融着および溶断がない
It consists of a sea part and 3 or more and 20 or less island parts, and has a sea-island structure in which the joint surface between the sea part and the island part is continuous in the fiber length direction, and the following requirements (a) to ( e ) are satisfied. The sea-island type composite fiber to be filled.
(A) A polymethylpentene-based resin whose main component is polymethylpentene (b) An island component is polyethylene terephthalate (c) An area ratio of the sea part in the fiber cross section is greater than 50% and 75% or less (d) Fiber Minimum thickness of sea part in cross section is 1μm or more
(E) No fusing or fusing after dry heat treatment in a dry heat atmosphere at 185 ° C.
水滴の接触角が、135°以上である請求項記載の海島型複合繊維。 The contact angle of water droplet, sea-island type composite fiber of claim 1, wherein at 135 ° or more. 密度が、1.10g/cm以下である請求項1または2記載の海島型複合繊維。 The sea-island composite fiber according to claim 1 or 2 , wherein the density is 1.10 g / cm 3 or less. 単糸繊度が、1dtex以上である請求項1〜いずれか一項に記載の海島型複合繊維。 The sea-island type composite fiber according to any one of claims 1 to 3 , wherein the single yarn fineness is 1 dtex or more.
JP2014022901A 2014-02-07 2014-02-07 Sea-island type composite fiber Active JP6356976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014022901A JP6356976B2 (en) 2014-02-07 2014-02-07 Sea-island type composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014022901A JP6356976B2 (en) 2014-02-07 2014-02-07 Sea-island type composite fiber

Publications (3)

Publication Number Publication Date
JP2015148032A JP2015148032A (en) 2015-08-20
JP2015148032A5 JP2015148032A5 (en) 2017-04-27
JP6356976B2 true JP6356976B2 (en) 2018-07-11

Family

ID=53891623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014022901A Active JP6356976B2 (en) 2014-02-07 2014-02-07 Sea-island type composite fiber

Country Status (1)

Country Link
JP (1) JP6356976B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3483312B1 (en) * 2016-07-11 2023-06-07 Toray Industries, Inc. Sea-islands type composite fiber having excellent moisture absorbability, textured yarn, and fiber structure
JP6697972B2 (en) * 2016-07-30 2020-05-27 Kbセーレン株式会社 Sea-island type composite fiber
JP6937719B2 (en) * 2018-03-31 2021-09-22 Kbセーレン株式会社 Composite fibers and fabrics made of them
CN114846181A (en) * 2019-12-17 2022-08-02 株式会社可乐丽 Sea-island composite fiber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005002522A (en) * 2003-06-13 2005-01-06 Toray Ind Inc Multi-island conjugate fiber and spinneret for producing the same
EP2829643B1 (en) * 2012-03-23 2019-07-24 Toray Industries, Inc. Polymethylpentene conjugate fiber and fiber structure comprising same

Also Published As

Publication number Publication date
JP2015148032A (en) 2015-08-20

Similar Documents

Publication Publication Date Title
JP6356976B2 (en) Sea-island type composite fiber
WO2013141033A1 (en) Polymethylpentene conjugate fiber or porous polymethylpentene fiber and fiber structure comprising same
JP2014167185A (en) Spun yarn containing polymethylpentene hollow fiber, and fiber structure comprising the same
TWI746672B (en) Polymer blend fiber and fiber structure containing it
JP2016194169A (en) Core-sheath type composite fiber
JP2007308821A (en) Woven fabric for polishing fabric, method for producing the same, and magnetic disk-polishing fabric
JP7038481B2 (en) Heat storage and heat retention fiber
JP2011157646A (en) Polyester microfiber
JP6697972B2 (en) Sea-island type composite fiber
JP5774820B2 (en) Variety of different sizes
JP6998818B2 (en) Olefin-based composite fiber and method for producing olefin-based composite fiber
JP6308127B2 (en) Spun yarn containing polymethylpentene fiber and fiber structure comprising the same
JP2005248340A (en) Lightweight blend fiber with high shading tendency, and textile product made therefrom
JP2015196914A (en) False twisted yarn
JP4315002B2 (en) High elongation polymer alloy fiber and method for producing the same
JP2015121007A (en) Polymethylpentene-based side-by-side-type composite fiber
JP2014040683A (en) Cation-dyeable split type conjugate fiber
JPH04327214A (en) Conjugate fiber
JP6752757B2 (en) Side-by-side split type composite fiber and method of manufacturing fabric using it
JP2023034421A (en) Highly-modified cross-section polypropylene fiber
JPH1121724A (en) Improved conjugate fiber
JP2022042110A (en) Dyeable polypropylene fiber
JPH09157960A (en) Conjugate fiber
JP2005171394A (en) Hollow blended fiber excellent in lightweight property
JP2006016731A (en) Polyester fiber having excellent lightness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180615

R150 Certificate of patent or registration of utility model

Ref document number: 6356976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150