JPH03234819A - Lightweight sea-island conjugate type polyester yarn - Google Patents

Lightweight sea-island conjugate type polyester yarn

Info

Publication number
JPH03234819A
JPH03234819A JP2476990A JP2476990A JPH03234819A JP H03234819 A JPH03234819 A JP H03234819A JP 2476990 A JP2476990 A JP 2476990A JP 2476990 A JP2476990 A JP 2476990A JP H03234819 A JPH03234819 A JP H03234819A
Authority
JP
Japan
Prior art keywords
sea
polyester
weight
polyolefin
lightweight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2476990A
Other languages
Japanese (ja)
Inventor
Yoshihiro Konno
近野 吉宏
Hiroshi Takahashi
洋 高橋
Sueo Ito
伊藤 末男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2476990A priority Critical patent/JPH03234819A/en
Publication of JPH03234819A publication Critical patent/JPH03234819A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

PURPOSE:To obtain the title lightweight polyester yarn having small flexural rigidity and soft handle by dispersing a polyolefin having a specific density as an island component into a polyester. CONSTITUTION:A polyolefin (e.g. polypropylene) having 1.1g/cm<3> density and <=5.0mu dispersion diameter as an island component is dispersed into a polyester as a sea component in a ratio of (96:4)-(80:20) to give the objective polyester yarn having >=5% void content after treatment at 160 deg.C for 5 minutes.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は軽量ポリエステル繊維に関し、更に詳しくはポ
リエステルにポリオレフィンを島状に分散して軽量化し
た軽量海島複合型ポリエステル繊維に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to lightweight polyester fibers, and more particularly to lightweight sea-island composite polyester fibers that are lightweight by dispersing polyolefins in polyester in the form of islands.

[従来の技術] ポリエステル繊維は機能性に優れ、製造コストも安価で
あることから衣料用、繊維資材、産業用途を中心に広く
利用されている。
[Prior Art] Polyester fibers have excellent functionality and are inexpensive to manufacture, so they are widely used for clothing, textile materials, and industrial applications.

しかしながら、ポリエステル、とりわけポリエチレンテ
レフタレー1〜はポリマ自身の密度が高く、更には高度
の結晶性を有しているために、繊維の密度が高く剛性が
大きいため、特に軽量、およびソフト風合いが要求され
る分野に使用する素材としては適当ではなかった。
However, polyester, especially polyethylene terephthalate 1~, has a high density of the polymer itself and also has a high degree of crystallinity, so the fibers have high density and high rigidity, so they are particularly required to be lightweight and have a soft texture. It was not suitable as a material to be used in the field where it is used.

これらの問題を解決するために従来多くの検問が行われ
ている。例えば、特開昭52−77228号公報には繊
維を中空化して、児かけ密度を低くすることが開示され
ている。しかしながら、この繊維は通常の繊維に1つま
たは数個程度の中空部を付与したものであるため、同一
繊度で比較した場合には通常のポリエステル繊維に比較
して剛性が強く、そのために織物、編物、不織布にした
ときには粗硬感が強く、一方、軽量化のために中空率を
大きくすると中空部がつぶれる欠点があった。そのため
、中空による技術では軽量化とソフト風合いを満足した
ポリエステル繊維は得られなかった。また、特開昭59
−76971号公報にはポリエチレンテレフタレートと
異なる物質をスジ状に分散配合してポリエステル繊維と
なし、その後に例えばアルカリ減M処理などして配合し
た物質の一部を溶出させて軽量化する方法が開示されて
いる。
In order to solve these problems, many inspections have been carried out in the past. For example, JP-A-52-77228 discloses that the fibers are made hollow to lower the fiber density. However, since this fiber is made by adding one or several hollow parts to a normal fiber, it has higher rigidity than normal polyester fiber when compared at the same fineness, and therefore, it is difficult to fabricate. When made into knitted or nonwoven fabrics, they have a strong rough and hard feel, and on the other hand, when the hollowness ratio is increased to reduce weight, the hollow parts have the disadvantage of being crushed. Therefore, it has not been possible to obtain polyester fibers that are lightweight and have a soft texture using hollow technology. In addition, JP-A-59
Publication No. 76971 discloses a method of dispersing and blending a substance different from polyethylene terephthalate in the form of streaks to make polyester fibers, and then eluting out a part of the blended substances through alkali M reduction treatment, etc., to reduce the weight. has been done.

この繊維はm紐輪方向に長い空隙、および配合している
物質が存在しているために、わずかな摩擦でも繊維表面
がフィブリル化する欠点を有していた。さらには、特開
昭55−137208@公報には、比較的ポリマ間の親
和性が低いポリマ同士をブレンドした微空孔性繊維、及
びその方法が記載されている。この繊維では確かに微空
孔を有しているために軽量ではあるが、フィルター用途
を目的としているために衣料用途等に要求される腰、張
りとソフト性に代表される風合いや染色性、引っ張り強
度に代表される物理特性を兼ね備えているとはいえない
This fiber had the disadvantage that the fiber surface would become fibrillated even with slight friction because of the presence of long voids in the direction of the m-ring ring and the presence of the compounded substance. Furthermore, JP-A-55-137208@ describes microporous fibers made by blending polymers with relatively low affinity between the polymers, and a method thereof. This fiber does have micropores and is therefore lightweight, but since it is intended for filter use, it has the stiffness, firmness and softness required for clothing, as well as texture and dyeability. It cannot be said that it has physical properties such as tensile strength.

本発明の主たる用途は衣料用途であり、その場合軽量で
あることと同時に、上記のような川合いや物理特性も不
可欠の要求特性である。更に、衣料用途においては繊維
形成後ヒートセット、染色に代表される種々の熱処理が
施されるために、基質となるポリマは200′C以下の
熱処理に十分耐えることの出来るものでなければならな
い。更に配合するポリマの物理特性も重要で必る。
The main application of the present invention is for clothing, in which case light weight as well as the above-mentioned balance and physical properties are essential requirements. Furthermore, in clothing applications, various heat treatments such as heat setting and dyeing are performed after fiber formation, so the substrate polymer must be able to sufficiently withstand heat treatments at temperatures below 200'C. Furthermore, the physical properties of the polymer to be blended are also important.

また、特開昭57−47912号公報にはポリエステル
の紡糸生産性の向上を目的にポリエステルにポリオレフ
ィンをブレンドする発明が提案されている。しかしなが
ら該発明には繊維中にボイドを形成させ軽量化力ること
は記載されていない。
Furthermore, Japanese Patent Application Laid-Open No. 57-47912 proposes an invention in which polyester is blended with polyolefin for the purpose of improving the spinning productivity of polyester. However, the invention does not describe the formation of voids in the fibers to reduce weight.

[本発明が解決しようとする課題] 本発明は上記のような欠点を排除し、軽量化を図ること
を目的に鋭意検討した結果本発明に到達したものである
[Problems to be Solved by the Present Invention] The present invention was achieved as a result of intensive studies aimed at eliminating the above-mentioned drawbacks and achieving weight reduction.

[課題を解決する手段] 前記した本発明の目的は海成分と島成分からなる海鳥複
合型ポリエステル繊維において、(A)島成分は密度1
.19/cm以下のポリオレフィンからなり、海成分は
ポリエステルでかつ島の分散径5.0!i以下であり、
(B)海島接合の海と島の成分のM量比は96:4〜8
0:20であり、 160℃で、5分間熱処理後のボイド含有率が5%以上
である軽量海島複合型ポリエステル繊維によって達成で
きる。
[Means for Solving the Problems] The object of the present invention is to provide a seabird composite polyester fiber consisting of a sea component and an island component, in which (A) the island component has a density of 1;
.. It is made of polyolefin with a diameter of 19/cm or less, the sea component is polyester, and the dispersion diameter of the islands is 5.0! is less than or equal to i,
(B) The M ratio of sea and island components in the sea-island junction is 96:4-8
This can be achieved by using lightweight sea-island composite polyester fibers having a void content of 5% or more after heat treatment at 160° C. for 5 minutes.

ポリエステルの軽量化を達成する場合、配合するポリマ
の密度は小さい方が有利であり、がつ、ベースポリマで
あるポリエステルとのなしみが低い方か延伸時のボイド
発生による軽量化が図れるので好ましい。配合するポリ
オレフィンの密度は1.19/cffl以下であること
が必要である。好ましくは1.09/cm以下、特に好
ましくは0.99/cd以下である。
In order to reduce the weight of polyester, it is advantageous to have a lower density of the polymer to be blended, and it is preferable to reduce the amount of staining with the base polymer polyester or to reduce the weight by creating voids during stretching. . It is necessary that the density of the polyolefin blended is 1.19/cffl or less. It is preferably 1.09/cm or less, particularly preferably 0.99/cd or less.

これらの要求を満足する物質としてはポリオレフィンで
あることが必要である。ポリオレフインとしては例えば
ポリエチレン、ポリプロピレン、ポリスチレン、ポリメ
チルペンテンなどがあるが、ポリエステルのなかでも特
に有用なポリエチレンテレフタレート(PE丁)との相
溶性が乏しいこと、融点が比較的高いこと、密度が小さ
いことからポリプロピレン、ポリメチルペンテンが好ま
しい。ポリエステルの衣料用途では一般的に160℃程
度の熱処理を行うため、この熱処理によって発生したボ
イドが太きく減少しないことが重要である。ポリオレフ
ィンの融点は200 ℃以上が好ましく、更に好ましく
は220℃以上である。特に、ポリメチルペンテンはP
「丁との親和性が小さいこと、融点が高いことから好ま
しい。
A polyolefin is required as a material that satisfies these requirements. Examples of polyolefins include polyethylene, polypropylene, polystyrene, and polymethylpentene, but they have poor compatibility with polyethylene terephthalate (PE), which is particularly useful among polyesters, have a relatively high melting point, and have a low density. Of these, polypropylene and polymethylpentene are preferred. When polyester is used for clothing, it is generally heat treated at about 160° C., so it is important that the voids generated by this heat treatment do not become too large. The melting point of the polyolefin is preferably 200°C or higher, more preferably 220°C or higher. In particular, polymethylpentene is P
``It is preferable because it has a low affinity with Ding and has a high melting point.

繊維の軽量化を達成するためには配合するポリオレフィ
ンの密度が低いことと同時に繊維中に如何にボイドを多
く含有するかにある。ボイド含有率は5%以上は必要で
あり、好ましくは10%以上、更に好ましくは20%以
上、特に好ましくは30%以上である。軽量化のために
はボイド含有率は高い方が好ましいが製糸性やmrrt
tの物理特性面から50%以上のボイドを含有する繊維
は好ましくない。
In order to reduce the weight of the fibers, it is necessary to have a low density of the polyolefin blended and at the same time to contain as many voids as possible in the fibers. The void content is required to be 5% or more, preferably 10% or more, more preferably 20% or more, particularly preferably 30% or more. In order to reduce weight, it is preferable to have a high void content, but
In terms of physical properties of t, fibers containing 50% or more of voids are not preferred.

また、ポリオレフィンと、更にポリオレフィン以外の物
質を併用配合しても軽量化を阻害するものでなければ構
わない。むしろ軽量化を促進するものであれば併用が好
ましい。例えばPETとの相溶性が乏しい物質である炭
酸カルシウムの配合は繊維のボイド生成を助けるので配
合することが好ましい。しかし、配合量が多すぎると製
糸性か不良になるのでポリオレフィン以外の配合量は1
0重量%以下にするのが好ましい。
Moreover, it is not a problem even if polyolefin and substances other than polyolefin are combined together, as long as they do not impede weight reduction. Rather, it is preferable to use them in combination as long as they promote weight reduction. For example, it is preferable to include calcium carbonate, which is a substance with poor compatibility with PET, because it helps to form voids in the fibers. However, if the blending amount is too large, the spinning properties will be poor, so the blending amount of other than polyolefin is 1.
The content is preferably 0% by weight or less.

配合するポリオレフィンの量は目標とする繊維の軽量化
の度合によって変わるが、十分な軽量感を付与するため
には4重量%以上が必要である。好ましくは8重量%以
上、特に好ましくは11重量%以上でおる。ポリオレフ
ィンの配合量が多ずぎると製糸性が悪化すること、PE
T本来の機能性が失われることから20重量%以下にす
べきである。好ましくは15重量%以下である。
The amount of polyolefin to be blended varies depending on the target degree of weight reduction of the fiber, but it is required to be 4% by weight or more in order to impart a sufficiently lightweight feel. The content is preferably 8% by weight or more, particularly preferably 11% by weight or more. If the blending amount of polyolefin is too large, the spinning property will deteriorate, and PE
Since T's original functionality is lost, it should be kept at 20% by weight or less. Preferably it is 15% by weight or less.

ポリエステルの本来の特徴を損わないようにするために
は、繊維断面におけるポリオレフィンの分散状態はポリ
エステルの海の中に島状に分散していることが必要であ
る。ここで、海とは任意の断面を観察したとき、繊維全
体に連続的に広がって存在している部分でおり、また、
島とはポリエステルの海にほぼ独立して存在している部
分である。島が連続している場合には両者の境界面積が
小さくなり、ボイド発生が減少して、好ましくない。
In order not to impair the original characteristics of polyester, it is necessary that the polyolefin is dispersed in the fiber cross section in the form of islands in the sea of polyester. Here, the sea is a part that extends continuously throughout the fiber when observing an arbitrary cross section, and
An island is a part that exists almost independently in the polyester sea. When the islands are continuous, the boundary area between the two becomes small, which reduces the occurrence of voids, which is not preferable.

ポリオレフィンの分散サイズはポリエステルとポリオレ
フィンの境界に生じる微細孔の間に影響するので重要で
ある。分散のサイズが小さすぎる場合には比表面積は増
大するがボイド量は減少して好ましくない。一方、大き
すぎると製糸性が不良となるばかりでなく、染色斑に代
表されるような各種の斑が発生するので好ましくない。
The dispersion size of the polyolefin is important because it affects the size of the micropores that occur at the interface between the polyester and the polyolefin. If the size of the dispersion is too small, the specific surface area will increase, but the amount of voids will decrease, which is not preferable. On the other hand, if it is too large, it is not preferable because not only the spinning properties become poor, but also various kinds of irregularities such as dyeing irregularities occur.

ポリオレフィンの島のサイズは5.0μm以下であるこ
とが必要である。好ましくは2μm以下、0.1μm以
上である。
It is necessary that the size of the polyolefin islands is 5.0 μm or less. Preferably it is 2 μm or less and 0.1 μm or more.

島のポリオレフィンの好ましいサイズを保つために、ポ
リオレフィンの溶融粘度はポリエステルの溶融粘度より
も高いことが好ましく、ポリエステルの溶融粘度の2倍
以上の溶融粘度であることが特に好ましい。
In order to maintain the desired size of the polyolefin islands, the melt viscosity of the polyolefin is preferably higher than the melt viscosity of the polyester, particularly preferably at least twice the melt viscosity of the polyester.

本発明の繊維は主として衣料用に適しているが、料用途
では寸法安定性を付与する目的から200 ℃以下の熱
処理を施すのが一般的であり、少なくとも160°Cの
温度に十分耐えられる繊維であることが必要であり、好
ましくは200°C以上に耐えられる繊維である。この
ためには繊維の融点は240°C以上が好ましく、更に
好ましくは250℃以上である。
The fibers of the present invention are mainly suitable for clothing, but in textile applications, they are generally heat treated at 200°C or less for the purpose of imparting dimensional stability, and fibers that can withstand temperatures of at least 160°C are Preferably, the fibers can withstand temperatures of 200°C or higher. For this purpose, the melting point of the fiber is preferably 240°C or higher, more preferably 250°C or higher.

本発明でいう融点とはPFRKIN−ELMAR社製D
SC−4で昇温速度16°C/m i nで測定した値
である。この時複数」ズ上の融解ピークかおる時は融解
熱量の多い方のピーク温度を指す。この意味から本発明
のポリエステルはポリエチレンテレフタレートが好まし
いが、上記融点を満足する範囲で一般的に使用されてい
る共重合組成物、あるいは配合物が含まれていてもよく
、その量は配合するポリオレフィン以外の組成物に対し
て12重量%以下であれば含有していても差し支えない
In the present invention, the melting point refers to PFRKIN-ELMAR D
This is a value measured using SC-4 at a heating rate of 16°C/min. At this time, when melting peaks occur on multiple layers, it refers to the peak temperature of the one with the greater heat of fusion. In this sense, the polyester of the present invention is preferably polyethylene terephthalate, but it may also contain a commonly used copolymer composition or blend as long as it satisfies the above-mentioned melting point, and the amount of the polyester to be blended with the polyolefin It may be contained in an amount of 12% by weight or less based on other compositions.

本発明の繊維は衣料用途であり、風合いも重要であるた
めに、繊度は0.5デニ一ル以上、5デニール以下の範
囲が好ましい。本発明の繊維はボイドを含有しているた
めに通常のポリエチレンテレフタレー1〜の同一断面積
の繊維に比較して軽量であり、曲げ剛性が小さく、柔ら
かな風合いを有している。
Since the fiber of the present invention is used for clothing, and texture is also important, the fineness is preferably in the range of 0.5 denier or more and 5 denier or less. Since the fibers of the present invention contain voids, they are lighter than ordinary polyethylene terephthalate fibers with the same cross-sectional area, have low bending rigidity, and have a soft texture.

本発明の繊維断面形状は特に限定されることはなく、一
般に利用されている形状のものに適用できる。また、中
空断面形状にすることによって本発明の効果を一層高め
ることが出来る。
The fiber cross-sectional shape of the present invention is not particularly limited, and can be applied to commonly used shapes. Further, by forming the cross section into a hollow shape, the effects of the present invention can be further enhanced.

本発明の繊維は例えば次のようにして製造することが出
来る。
The fiber of the present invention can be produced, for example, as follows.

溶融状態のPETに溶融状態の溶融粘度がP0 E丁よりも高いポリメチレンペンテンをPETに対して
4〜20重量%配合して十分攪拌した後、このブレンド
ポリマを粒状に形成する。このブレンドポリマを160
°Cに減圧乾燥した後、溶融紡糸するがこの場合、口金
孔から吐出する場合のズリ応力を10×106以下とす
ることがポリメチルペンテンの粒径を必要以上に分散し
ないために好ましい。更に、同様の意味から吐出後の変
形比(未延伸糸引き取り速度を口金孔内流速度で徐した
値)は200以下、好ましくは80以下が更に好ましい
4 to 20% by weight of polymethylene pentene, which has a melt viscosity higher than that of PET, is blended into PET in a molten state and stirred thoroughly, and then the blended polymer is formed into particles. 160% of this blend polymer
After drying under reduced pressure at °C, it is melt-spun. In this case, it is preferable that the shear stress at the time of discharge from the spinneret hole be 10 x 106 or less in order to prevent the particle size of the polymethylpentene from being dispersed more than necessary. Furthermore, from the same point of view, the deformation ratio after discharge (the value obtained by dividing the undrawn yarn take-off speed by the flow speed in the die hole) is more preferably 200 or less, preferably 80 or less.

得られた未延伸糸はボイドを生成するために80℃未満
の低温の延伸温度を採用して、伸度50%以下になるよ
うに延伸し、次いで寸法安定性を向上するための熱処理
を行なう。
The obtained undrawn yarn is drawn to an elongation of 50% or less by employing a low drawing temperature of less than 80°C to generate voids, and then heat-treated to improve dimensional stability. .

[実施例] 以下に実施例で本発明を更に詳細に説明するなあ、実施
例に用いた測定方法は次のとおりである。
[Example] The present invention will be explained in more detail with reference to Examples below. The measurement method used in the Examples is as follows.

分散サイズ:l維新面を透過型電子顕微鏡で1 観察したときにポリエステルの海に点在するポリオレフ
ィンの島の平均直径を求めた値で必る。
Dispersion size: This value is determined by the average diameter of polyolefin islands scattered in a sea of polyester when the Ishin surface is observed with a transmission electron microscope.

ボイド含有率:繊維を160℃5分間常圧で熱処理した
後、繊維の任意の断面と任意の側断面を各々20箇所透
過型電子顕微鏡で観察し、繊維全体の面積に対するボイ
ドの面積の比の平均で表わす。但し、繊維軸方向に実質
的に無限に連続した空隙、いわゆる中空部分は繊維全体
の面積、およびボイドの何れにも含めない。
Void content: After heat-treating the fibers at 160°C for 5 minutes at normal pressure, 20 arbitrary cross-sections and 20 arbitrary side cross-sections of the fibers were observed using a transmission electron microscope, and the ratio of the void area to the entire fiber area was calculated. Expressed as an average. However, substantially infinitely continuous voids in the fiber axis direction, so-called hollow portions, are not included in either the area of the entire fiber or the voids.

実施例1 実質的にポリエチレンテレフタレー1へからなるポリエ
ステル86重量%にポリメチルペンテン14重量%を溶
融ブレンドして平均分散径を35μmにした。このポリ
マを円断面中空用口金から吐出して未延伸糸とし、次い
で延伸を行った。この時の延伸温度は30℃であり、延
伸に引き続いて125°Cの熱処理を実施した。残留伸
度は23%とした。この実験で得られた延伸糸の特性は
第1表のとおりでおる。該繊維からなる布帛は柔らかく
、その柔らかさは1602 °C熱処理後もほと/υど変化がなかった。なあ、熱処
理後の中空率は15.6%であった。
Example 1 86% by weight of a polyester consisting essentially of polyethylene terephthalate 1 was melt-blended with 14% by weight of polymethylpentene to give an average dispersion diameter of 35 μm. This polymer was discharged from a circular cross-section hollow nozzle to form an undrawn yarn, and then stretched. The stretching temperature at this time was 30°C, and subsequent to the stretching, a heat treatment at 125°C was performed. The residual elongation was 23%. The properties of the drawn yarn obtained in this experiment are shown in Table 1. The fabric made of the fibers was soft, and its softness remained almost unchanged even after heat treatment at 1602°C. Incidentally, the hollowness ratio after heat treatment was 15.6%.

実施例2 実質的にポリエチレンテレフタレートからなるポリエス
テル86重量%にポリメチルペンテン14重量%を溶融
ブレンドして平均分散径を35μmにした。このポリマ
を円断面中空用口金から吐出して未延伸糸とし、次いで
延伸を行った。この時の延伸温度は30℃てあり、残留
伸度は23%とした。この実検で得られた延伸糸の特性
は第1表のとおりで市る。該繊維からなる布帛は柔らか
く、その柔らかさは160℃の熱処理後もほとんど変化
がなかった。
Example 2 86% by weight of a polyester consisting essentially of polyethylene terephthalate was melt blended with 14% by weight of polymethylpentene to give an average dispersion diameter of 35 μm. This polymer was discharged from a circular cross-section hollow nozzle to form an undrawn yarn, and then stretched. The stretching temperature at this time was 30°C, and the residual elongation was 23%. The properties of the drawn yarn obtained in this actual test are shown in Table 1. The fabric made of the fibers was soft, and its softness remained almost unchanged even after heat treatment at 160°C.

実施例3 繰り返し単位の98モル%がポリエチレンテレフタレー
1〜からなるポリエステル86重量%にポリメチルペン
テン18重量%を溶融ブレンドして、平均分散径を35
μmにした。このポリマを芯成分とし、一方、98モル
%がポリエチレンテレフタレ−1〜からなるポリマを鞘
成分3 とした芯鞘複合糸(芯/鞘−90/10)の未延伸糸と
し、次いで延伸を行なった。この時の延 伸温度は30℃でおり、残留伸度は23%とした。この
繊維を製造するときの製糸性は紡糸、延伸を通じて糸切
れなどは全くなく、製糸性はきわめて良好であった。こ
の実験で得られた延伸糸の特性は第1表のとおりでおる
。繊維の特性は第1表に示すとおりでおり、該繊維から
なる布帛は柔らかく、その柔らかさは160℃熱処理後
もほとんど変化がなかった。
Example 3 18% by weight of polymethylpentene was melt-blended with 86% by weight of a polyester in which 98% by mole of repeating units consisted of polyethylene terephthalate 1 to 1 to give an average dispersion diameter of 35% by weight.
It was set to μm. This polymer was used as the core component, while the sheath component 3 was a polymer consisting of polyethylene terephthalate 1 to 98 mol%, which was used as an undrawn core-sheath composite yarn (core/sheath-90/10), and then stretched. I did it. The stretching temperature at this time was 30°C, and the residual elongation was 23%. During the production of this fiber, there was no yarn breakage at all during spinning and drawing, and the spinning performance was extremely good. The properties of the drawn yarn obtained in this experiment are shown in Table 1. The properties of the fibers are as shown in Table 1, and the fabric made of the fibers was soft, and its softness remained almost unchanged even after heat treatment at 160°C.

実施例4 ポリメチルペンテンの配合量を8重量%に変更した以外
実施例1と同様に製糸を行い、延伸糸を得た。繊維特性
は第1表のとおりでおるが実施例]の繊維に比較して柔
らかさが若干劣るものでおった。
Example 4 A drawn yarn was obtained by spinning yarn in the same manner as in Example 1 except that the amount of polymethylpentene was changed to 8% by weight. The fiber properties were as shown in Table 1, but the softness was slightly inferior to that of the fiber of Example.

実施例5 実質的にポリエチレンテレフタレートからなるチップ8
6重量%とポリメチレンペンテンチ4 ツブ14重量%をチップブレンドして溶融紡糸した。こ
の紡糸では分散性を向上する目的で吐出孔直前にスタテ
ィクミキザーを組み込んだものを使用した。チップブレ
ンドとスタティックミキサーを使用した以外実施例1と
同様であった。
Example 5 Chip 8 consisting essentially of polyethylene terephthalate
6% by weight and 4% by weight of polymethylene pentene were chip blended and melt spun. In this spinning, a static mixer was used immediately before the discharge hole in order to improve dispersibility. It was the same as Example 1 except that a chip blend and static mixer were used.

この実験で得られた延伸糸の特性は第1表のとおりで市
るがボイド含有率が低いことと製糸性が若干不良であっ
た。
The properties of the drawn yarn obtained in this experiment were as shown in Table 1, but the void content was low and the yarn spinnability was slightly poor.

実施例6 配合ポリマとしてポリエチレンを使用した以外実施例1
と同様の実験を行った。製糸する過程では特に問題はな
かったが繊維特性は第1表のとおりであり、繊維のボイ
ド率は熱処理前は18%と高かったが、布帛にした後の
熱処理でボイド含有率が低下してしまい、軽量化の効果
があまり大きくなかった。
Example 6 Example 1 except that polyethylene was used as the blended polymer
A similar experiment was conducted. There were no particular problems during the spinning process, but the fiber properties are as shown in Table 1. The void content of the fiber was as high as 18% before heat treatment, but the void content decreased after heat treatment after making it into a fabric. Therefore, the effect of weight reduction was not very large.

比較実施例1 ポリメチルペンテンを3重量%に変更した以外は実施例
1と同様に実験を行なった。ポリメ5 チルペンテンの分散も良好であったがボイド率が低く、
本発明の目的を満足することは出来なかった。
Comparative Example 1 An experiment was carried out in the same manner as in Example 1 except that polymethylpentene was changed to 3% by weight. Although the dispersion of Polyme5-Tylpentene was also good, the void rate was low;
The object of the present invention could not be satisfied.

比較実施例2 スタティックミキサーを使用しないこと以外は実施例3
と同様に実験した。しかしながら、溶融紡糸の時に糸切
れが頻発して製糸できなかった。
Comparative Example 2 Example 3 except that no static mixer was used
I conducted the same experiment. However, yarn breakage occurred frequently during melt spinning, and yarn production could not be completed.

(以下余白) 6 [発明の効果] 本発明による軽屯繊維はボイド含有率が5%以上のポリ
エチレンテレフタレートであるために、曲げ剛性が小さ
く、柔らかな風合いを有し、また軽量であると共に、微
空孔を有しているために、一般衣料用途として適した風
合いを有している。更に、不動の空気層を有しているた
めに、保温性が向上しており、特に、秋・多用途に適し
たソフ(〜な衣料用素材となる。
(The following is a blank space) 6 [Effects of the Invention] Since the light weight fiber according to the present invention is made of polyethylene terephthalate with a void content of 5% or more, it has low bending rigidity, has a soft texture, and is lightweight. Because it has micropores, it has a texture suitable for general clothing use. Furthermore, since it has an immovable air layer, its heat retention properties are improved, making it a material for soft clothing that is especially suitable for autumn and for multiple uses.

Claims (1)

【特許請求の範囲】 海成分と島成分からなる海島複合型ポリエステル繊維に
おいて、 (A)島成分は密度1.1g/cm^3以下のポリオレ
フィンからなり、海成分はポリエステル でかつ島の分散径5.0μ以下であり、 (B)海島複合の海と島の成分の重量比は96:4〜8
0:20であり、 160℃で、5分間熱処理後のボイド含有率が5%以上
である軽量海島複合型ポリエステル繊維。
[Claims] In a sea-island composite polyester fiber consisting of a sea component and an island component, (A) the island component is made of polyolefin with a density of 1.1 g/cm^3 or less, the sea component is polyester, and the dispersed diameter of the islands is (B) The weight ratio of the sea and island components of the sea-island composite is 96:4 to 8.
A lightweight sea-island composite polyester fiber having a ratio of 0:20 and a void content of 5% or more after heat treatment at 160°C for 5 minutes.
JP2476990A 1990-02-02 1990-02-02 Lightweight sea-island conjugate type polyester yarn Pending JPH03234819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2476990A JPH03234819A (en) 1990-02-02 1990-02-02 Lightweight sea-island conjugate type polyester yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2476990A JPH03234819A (en) 1990-02-02 1990-02-02 Lightweight sea-island conjugate type polyester yarn

Publications (1)

Publication Number Publication Date
JPH03234819A true JPH03234819A (en) 1991-10-18

Family

ID=12147370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2476990A Pending JPH03234819A (en) 1990-02-02 1990-02-02 Lightweight sea-island conjugate type polyester yarn

Country Status (1)

Country Link
JP (1) JPH03234819A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104204313A (en) * 2012-03-23 2014-12-10 东丽株式会社 Polymethylpentene composite fiber or porous polymethylpentene fiber and fiber structure comprising same
JP2015196914A (en) * 2014-03-31 2015-11-09 Kbセーレン株式会社 False twisted yarn
JP2018168518A (en) * 2017-03-30 2018-11-01 Kbセーレン株式会社 Heat storage thermal insulation fiber
CN112981722A (en) * 2021-01-26 2021-06-18 广东蒙泰高新纤维股份有限公司 Method for preparing lithium ion battery diaphragm by sea island COPET-PP composite negative pressure spinning

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104204313A (en) * 2012-03-23 2014-12-10 东丽株式会社 Polymethylpentene composite fiber or porous polymethylpentene fiber and fiber structure comprising same
JPWO2013141033A1 (en) * 2012-03-23 2015-08-03 東レ株式会社 Polymethylpentene composite fiber or polymethylpentene porous fiber and fiber structure comprising the same
JP2015196914A (en) * 2014-03-31 2015-11-09 Kbセーレン株式会社 False twisted yarn
JP2018168518A (en) * 2017-03-30 2018-11-01 Kbセーレン株式会社 Heat storage thermal insulation fiber
CN112981722A (en) * 2021-01-26 2021-06-18 广东蒙泰高新纤维股份有限公司 Method for preparing lithium ion battery diaphragm by sea island COPET-PP composite negative pressure spinning

Similar Documents

Publication Publication Date Title
US6458726B1 (en) Polypropylene fibers and items made therefrom
US5985193A (en) Process of making polypropylene fibers
US20090029165A1 (en) Thermoadhesive conjugate fiber and manufacturing method of the same
WO2007091665A1 (en) Process for production of polyester fiber for air-laid nonwoven fabrics
JP2004285538A (en) Method for producing polymer alloy filament and method for producing nano fiber
JP4028965B2 (en) Split type composite fiber, method for producing the same, and ultrafine fiber nonwoven fabric using the same
JPH03234819A (en) Lightweight sea-island conjugate type polyester yarn
JPS63243324A (en) Heat bonding fiber and nonwoven fabric thereof
JPH03249217A (en) Light-weight sheath-core conjugate hollow polyester fiber
JP2005226171A (en) Blended yarn and fiber product comprising the same
JPH08188923A (en) Sheath-core type conjugate fiber having projecting part on the surface
JP2925441B2 (en) Core-sheath type composite short fiber and method for producing the same
JP3849809B2 (en) Novel polymer blend fiber and process for producing the same
JP4914794B2 (en) Method for producing core-sheath type composite fiber containing polycarbonate
JP2019108651A (en) Composite fiber having latent crimpability
JP5774820B2 (en) Variety of different sizes
JP2005200593A (en) Pellet
JPH1161620A (en) Continuous fiber nonwoven fabric for molding and its production, container-shaped product using the same and its production
JPH0770899A (en) Heat-bonded nonwoven cloth and its production
JPH03249216A (en) Light-weight polyester fiber
JP4226144B2 (en) Polyester composite fiber for stretch woven and knitted fabric
JPS59216915A (en) Ultrafine fiber structure and production thereof
JP2000096417A (en) Filament nonwoven fabric for forming, its production and container-shaped article using the nonwoven fabric
JPS63165511A (en) Production of polyethylene fiber
JP4081338B2 (en) Polypropylene-based fluid disturbed fiber and method for producing the same