JP4081338B2 - Polypropylene-based fluid disturbed fiber and method for producing the same - Google Patents

Polypropylene-based fluid disturbed fiber and method for producing the same Download PDF

Info

Publication number
JP4081338B2
JP4081338B2 JP2002295053A JP2002295053A JP4081338B2 JP 4081338 B2 JP4081338 B2 JP 4081338B2 JP 2002295053 A JP2002295053 A JP 2002295053A JP 2002295053 A JP2002295053 A JP 2002295053A JP 4081338 B2 JP4081338 B2 JP 4081338B2
Authority
JP
Japan
Prior art keywords
polypropylene
fiber
yarn
disturbed
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002295053A
Other languages
Japanese (ja)
Other versions
JP2004131858A (en
Inventor
喜茂 清水
喜弘 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP2002295053A priority Critical patent/JP4081338B2/en
Publication of JP2004131858A publication Critical patent/JP2004131858A/en
Application granted granted Critical
Publication of JP4081338B2 publication Critical patent/JP4081338B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Woven Fabrics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軽量でソフト感に優れ、且つ、ストレッチバック性が高いポリプロピレン系流体撹乱加工繊維及びその製造方法並びに織編物に関する。
【0002】
【従来の技術】
従来から合成繊維の流体撹乱加工糸は、エアー撹乱加工法が広く用いられている。この方法においては、疏毛調加工糸及びソフト感のある加工糸が得られるが、反面織編物としてはストレッチバック性が悪いという欠点があり、使用用途は限られている。織物や編物を作成する流体撹乱加工糸の製造方法として、2本以上の繊維を用いたエアー流体撹乱加工法が脚光を浴びている。エアー流体撹乱加工糸としては、種々のタイプのものが考案されている。
例えば、特開平08−170248号公報、特開平11−181642号公報及び特開2000−129548号公報には、ポリエステル系混繊糸からなる潜在捲縮糸を芯成分、他のマルチフィラメントを花成分とする、タスラン加工によるポリエステル混繊糸及びその織編物が記載されている。しかしこれらの公報に記載の技術では、産業資材用途として使用する場合のリサイクル性あるいはメンテナンス性が不十分である。
【0003】
【発明が解決しようとする課題】
本発明は、上記の如き背景の下で、疏毛調でソフト感があり、ストレッチバック性が高く、且つ、産業資材用途としてリサイクル性、メンテナンス性に優れたポリプロピレン系流体撹乱加工繊維を開発することにある。
【0004】
【課題を解決するための手段】
本発明者らは、上記課題を解決するため鋭意研究を進めた結果、特定のポリプロピレン系繊維糸を組み合わせて芯成分及び花成分として流体撹乱加工した繊維を乾熱処理することによって、疏毛調でソフト感を有し、且つ、ストレッチバック性に優れたポリプロピレン系流体撹乱加工繊維の開発に成功した。
すなわち、本発明の第1の要旨は、芯成分が、エチレン共重合量が2〜5モル%、メルトフロレート値が10〜50g/10分であるエチレン−プロピレンランダムコポリマーとポリプロピレンホモポリマーが並列複合されたポリプロピレン系捲縮糸からなり、花成分がポリプロピレン系マルチフィラメント糸からなる流体撹乱加工繊維であって、110℃で5分乾熱処理した後の捲縮率が10%以上のものであることを特徴とするポリプロピレン系流体撹乱加工繊維にある。
また、本発明の第2の要旨は、芯成分となるエチレン共重合量が2〜5モル%、メルトフロレート値が10〜50g/10分であるエチレン−プロピレンランダムコポリマーとポリプロピレンホモポリマーが並列複合されたポリプロピレン捲縮糸と、花成分となるマルチフィラメント糸とを流体撹乱加工した後、得られた加工繊維を110℃以上の温度で乾熱処理することを特徴とする捲縮率が10%以上のポリプロピレン系流体撹乱加工繊維の製造方法にある。
【0005】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明の芯成分を構成する捲縮繊維には、仮撚糸、BCF加工糸あるいは並列型複合紡糸繊維等いずれを用いてもよく特に制限されないが、好ましくは、エアー流体撹乱ノズルに挿入される前は捲縮発現の少ない高収縮性ポリプロピレン系樹脂と低収縮性ポリプロピレン系樹脂とが並列型に配置された複合紡糸繊維を用いる。このような複合紡糸繊維に用いられる高収縮性ポリプロピレン系樹脂としては、メタロセン系の重合触媒を用いて得られたエチレン−プロピレンランダムコポリマーが挙げられる。他方、花成分のポリプロピレンマルチフィラメント用のポリプロピレン樹脂としては、プロピレンホモポリマーの他に、プロピレンと他のα−オレフィンモノマー、例えばエチレン、ブテン−1等とのコポリマーでもよく、その融点が155℃〜170℃の範囲にあり、溶融紡糸可能なポリマーから選択される。
【0006】
上記並列型複合繊維としては、その片方の樹脂が、メタロセン重合触媒を用いて得られるエチレン共重合量が2〜5モル%、MFR値が10〜50g/10分のエチレン−プロピレンランダムコポリマーであり、もう片方の樹脂がポリプロピレンホモポリマーからなることを特徴とする。このエチレン共重合量が2モル%未満では、本発明が目的とする加工繊維を乾熱処理した後の捲縮率を確保することができず捲縮繊維としてのストレッチバック性が低下し、他方エチレン共重合量が5モル%を超えると収縮率が高くなりすぎ、紡糸性及び延伸性が著しく低下する。
なお、MFR値については、同程度のMFR値をもつ樹脂を組み合わせて用いるのが紡糸性の点から好ましい。
【0007】
本発明のストレッチバック性を有するポリプロピレン系流体撹乱加工繊維を構成する芯成分は、複合溶融紡糸方法により溶融紡糸される。この時、複合溶融紡糸時における紡糸性を安定化させるためには、2種の複合成分である低収縮成分のポリプロピレン樹脂と、高収縮成分のポリプロピレン系樹脂について、それぞれの未延伸繊維の最大延伸倍率を同程度となるようにするのが好ましく、また高収縮の成分と低収縮の成分の流動性を同程度となるように選択するのが望ましい。
上述の流動性を同程度とするために、低収縮成分のポリプロピレン樹脂においては、MFR(JIS K−7210に準拠、測定条件;試験温度230℃、試験荷重2.16kg)が、10〜50g/10分の範囲であることが望まく、20〜40g/10分の範囲であればより好ましい。
【0008】
また、高収縮成分のポリプロピレン系樹脂においても、MFR値が10〜50g/10分の範囲であることが望まく、20〜40g/10分の範囲の樹脂がより好ましい。紡糸性を安定化させるためには、高収縮成分及び低収縮成分のMFR値が同程度の樹脂を組み合わせて用いるのが望ましい。両成分のMFR値が10g/10分未満であると、溶融紡糸時の紡糸温度を高く設定する必要があり、他方50g/10分を超えると、得られた捲縮糸の繊維強度が低下し、いずれにおいても紡糸性が悪化して好ましくない。
【0009】
一方、花成分(ポリプロピレン系マルチフィラメント糸)に使用するポリプロピレン樹脂においても、MFR値が、10〜50g/10分の範囲であることが望ましく、20〜40g/10分の範囲であればより好ましい。MFR値が10g/10分未満でも、また、50g/10分を超えても、紡糸性が悪化して好ましくない。
花成分の紡糸温度は通常210〜250℃の範囲である。紡糸温度が210℃より低くなると、MFR値が50g/10分のポリプロピレン樹脂を使用しても低強度の繊維しか得られず、また、250℃より高くなるとポリオレフィン樹脂に添加する着色用顔料や難燃剤等が変質し着色または変色の原因となる。
なお、本発明においては、溶融紡糸された未延伸糸を巻き取ることなく、溶融紡糸した繊維を連続して延伸するSDW等、いわゆる直接紡糸延伸法によっても繊維化が可能である。
【0010】
本発明においては、花成分のポリプロピレンマルチフィラメント糸の糸長が芯成分のポリプロピレン系捲縮糸の糸長より10%以上長くすることがその特性発現の上で重要であり、その上限は80%程度までである。糸長差が80%を超えると糸が硬くなり、風合いが低下しやすい。また、10%未満では、所期の流体撹乱加工繊維としての特性を得ることができない。
本発明のストレッチバック性を有するポリプロピレン系流体撹乱加工糸の芯成分に使用されるポリプロピレン系並列型複合紡糸繊維、及び花成分に使用されるポリプロピレン繊維の繊度については特に限定されるものではなく、任意の繊度であってもよい。
花成分の繊維断面形状は、前記所定のポリプロピレンホモポリマーまたはコポリマー同一成分で用いる限り、円形芯鞘構造であっても、中空芯鞘構造であっても、また三角芯鞘構造等の異形芯鞘構造であってもよい。これら芯鞘構造を採用する場合は、複合紡糸法で製糸する。
また、芯成分と花成分の混繊比率は任意の比率であってよい。糸の形態については、本発明のストレッチバック性を有するポリプロピレン系流体撹乱加工糸は、織編物にしたときの強度や織物のソフト性の点からマルチフィラメント糸であることが好ましい。
【0011】
さらに、ステーブルの紡績糸であっても同等の効果が得られると考えられる。芯成分及び花成分のどちらか一方、及び、両方が原着繊維であることが好ましい。芯成分及び花成分として異なる色の原着糸を用いることにより、更に高級感のある流体撹乱加工繊維を得ることができる。上記の如き特性を有する本発明のポリプロピレン系流体撹乱加工繊維は、芯成分となる捲縮糸と、花成分となるポリプロピレンマルチフィラメント糸とを流体撹乱加工した後、得られた加工繊維を110℃以上の温度で乾熱処理を行なうことより得られる。乾熱処理温度は、好ましくは110℃〜130℃である。また処理時間は5〜10分である。
なお、本発明の繊維には、その特性を損なわない範囲で、酸化防止剤、熱安定剤、光安定剤、紫外線吸収剤、中和剤、分散剤、蛍光増白剤、艶消剤、滑剤、帯電防止剤、抗菌剤、難燃剤等をその目的に応じて適宜配合される。
【0012】
【実施例】
次に、本発明について実施例を挙げてさらに詳細に説明する。
[ポリプロピレン系繊維(A成分糸)の製造]
予め芯成分の原糸として、エチレン共重合量が2.5モル%、MFR値が25g/10分、融点が125℃のメタロセン系重合触媒から得られた日本ポリケム(株)製低融点エチレン−プロピレンランダムコポリマー樹脂ウインティク「XK1183」と、MFR値が31g/10分、融点が163℃のポリプロピレンホモポリマー樹脂とを使用原料として、エチレン−プロピレンランダムコポリマー樹脂の押出機温度が220℃、ポリプロピレンホモポリマー樹脂の押出機温度が225℃、紡糸頭温度が220℃に調整し、溶融複合紡糸機を使用して、孔径0.8mmの円形30ホールの紡糸口金から紡出し、引取速度500m/分で巻取った。さらに、この未延伸繊維を延伸倍率4.25倍、延伸温度80℃で延伸した後、温度110℃で熱処理して100T30fのポリプロピレン系並列型複合紡糸繊維(以下、A成分糸と略記する)を得た。
【0013】
[ポリプロピレン系繊維(B成分糸)の製造]
また、花成分として、MFR値が31g/10分、融点が163℃のポリプロピレンホモポリマーを原料として、押出機温度が225℃、紡糸頭温度が220℃に調整し、溶融複合紡糸機を使用して、孔径0.8mmの円形30ホールの紡糸口金から紡出し、引取速度500m/分で巻取った。さらに、この未延伸繊維を延伸倍率3.30倍、延伸温度80℃で延伸し、温度120℃で熱処理して190T60fのポリプロピレン繊維(以下、B成分糸と略記する)を得た。
【0014】
<繊維のストレッチバック性試験法>
[測定法]
各実施例及び比較例で得た流体撹乱加工繊維を束ねカセ状とし、これを110℃で5分間乾熱処理をした後、10分以上放置してサンプル糸とする。
イ)サンプル糸の一端に測定荷重Aを掛け1分後に糸長(L1)を測定する。
測定荷重A=dtex×1/10×(2×巻き回数)
測定後、測定荷重Aを取り除き2分間放置する。
ロ)次に、サンプル糸の一端に測定荷重Bを掛け1分後に糸長(L2)を測定
する。
測定荷重B=dtex×1/1000×(2×巻き回数)
上記イ)及びロ)の測定値(L1、L2)から、下記計算式により算出した数値をストレッチバック率とした。
捲縮率(%)=〔(L1−L2)/L1〕×100
【0015】
[実施例1〜3]
エアー流体撹乱ノズル(ヘバライン社製:ヘマジェットLB−12L+ジェットコアS345K)を使用し、上記の予め得たエチレンランダムコポリマーとポリプロピレンホモポリマーからなる並列型複合紡糸繊維(A成分糸)を芯成分とし、ポリプロピレンマルチフィラメント繊維(B成分糸)を花成分として、速度200m/分、エアー圧0.53MPaの条件下で、芯成分を花成分より15%、20%、30%過剰供給しながらそれぞれエアー流体撹乱加工した。得られた流体撹乱加工繊維の繊維繊度、及び乾熱温度110℃及び120℃の雰囲気下で5分間熱処理した後、上記測定法によりストレッチバック率を求めた。その結果を表1に示す。120℃熱処理後のストレッチバック率はいずれも25%以上の高い値を示した。
【0016】
[実施例4]
流体撹乱加工速度を400m/分に変更した以外は実施例1と同一条件で流体撹乱加工繊維を得た。得られた流体撹乱加工繊維の繊維繊度、及び乾熱温度110℃及び120℃の雰囲気下で5分間熱処理した後、上記測定法によりストレッチバック率を求めた。その結果を表1に示す。本例の繊維も120℃熱処理後のストレッチバック率は25%と高い値であった。
【0017】
[比較例1〜3]
芯成分をB成分糸に変更した以外は、実施例1〜3と同一条件で流体撹乱加工繊維を得た。得られた流体撹乱加工繊維の繊維繊度、及び乾熱温度110℃及び120℃の雰囲気下で5分間熱処理した後、同様にしてストレッチバック率を求めた。その結果を表1に示す。本比較例の繊維のストレッチバック率はいずれも1.2%以下であった。
【0018】
【表1】

Figure 0004081338
【0019】
【発明の効果】
以上説明したように、本発明によれば、芯糸成分としてポリプロピレン捲縮糸と、花糸成分としてポリプロピレンマルチフィラメント糸とを流体撹乱加工した後、乾熱処理を施すことによって、捲縮率が10%以上の繊維が提供される。かかる繊維は、軽量でソフト感に優れ、且つ、ストレッチバック性が高いという従来の繊維を超える特性を備えている。また、当該繊維を、2色以上の原着繊維とすることで更に高級感のあるストレッチバック性を有する繊維が得られる。さらに、当該繊維はリサイクル性、メンテナンス性にも優れている。したがって、本発明の流体撹乱加工繊維は特に産業資材用途に向けた繊維として極めて有用なものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polypropylene-based fluid-disturbed processed fiber, a method for producing the same, and a woven or knitted fabric that are lightweight, excellent in softness, and high in stretch back property.
[0002]
[Prior art]
Conventionally, the air disturbance processing method is widely used for the fluid disturbance processing thread | yarn of a synthetic fiber. In this method, it is possible to obtain an eyelash-finished processed yarn and a processed yarn having a soft feeling, but on the other hand, there is a drawback that the stretch back property is poor as a woven knitted fabric, and its usage is limited. As a method for producing a fluid disturbed yarn for producing a woven fabric or a knitted fabric, an air fluid disturbing processing method using two or more fibers is in the spotlight. Various types of air fluid disturbed yarn have been devised.
For example, in Japanese Patent Application Laid-Open Nos. 08-170248, 11-181642 and 2000-129548, a latent crimped yarn made of a polyester-based mixed yarn is used as a core component, and another multifilament is used as a flower component. And polyester blended yarn by taslan processing and woven or knitted fabric thereof. However, the technologies described in these publications are insufficient in recyclability or maintainability when used as industrial materials.
[0003]
[Problems to be solved by the invention]
Under the background as described above, the present invention develops a polypropylene-based fluid-disturbed processed fiber that has an eyelash tone and a soft feeling, has a high stretch back property, and is excellent in recyclability and maintainability as an industrial material application. There is.
[0004]
[Means for Solving the Problems]
As a result of advancing earnest research to solve the above-mentioned problems, the inventors of the present invention performed dry heat treatment on a fiber that has been subjected to fluid disturbance processing as a core component and a flower component in combination with a specific polypropylene-based fiber yarn. We have succeeded in developing a polypropylene-based fluid-disturbed processed fiber that has a soft feeling and excellent stretch back property.
That is, the first gist of the present invention is that an ethylene-propylene random copolymer having a core component having an ethylene copolymerization amount of 2 to 5 mol% and a melt flow rate value of 10 to 50 g / 10 min is parallel to a polypropylene homopolymer. A fluid-disturbed processed fiber composed of a composite polypropylene-based crimped yarn and a flower component composed of a polypropylene-based multifilament yarn, and having a crimp rate of 10% or more after dry heat treatment at 110 ° C. for 5 minutes. The present invention is a polypropylene-based fluid-disturbed processed fiber.
The second gist of the present invention is that an ethylene-propylene random copolymer having a copolymerization amount of 2 to 5 mol% as a core component and a melt flow rate value of 10 to 50 g / 10 min is parallel to a polypropylene homopolymer. After the composite polypropylene crimped yarn and the multifilament yarn serving as a flower component are subjected to fluid disturbance processing, the obtained processed fiber is subjected to a dry heat treatment at a temperature of 110 ° C. or more, and the crimp rate is 10%. It exists in the manufacturing method of the above polypropylene-type fluid disturbance processed fiber.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The crimped fiber constituting the core component of the present invention may be any of false twisted yarn, BCF processed yarn, parallel type composite spun fiber, etc., and is not particularly limited, but preferably before being inserted into the air fluid disturbance nozzle. Uses a composite spun fiber in which a high-shrinkage polypropylene-based resin and a low-shrinkage polypropylene-based resin with little occurrence of crimp are arranged in parallel. Examples of the highly shrinkable polypropylene resin used for such a composite spun fiber include an ethylene-propylene random copolymer obtained using a metallocene polymerization catalyst. On the other hand, as a polypropylene resin for a polypropylene multifilament of a flower component, in addition to a propylene homopolymer, a copolymer of propylene and another α-olefin monomer such as ethylene, butene-1, etc. may be used, and its melting point is 155 ° C. to It is in the range of 170 ° C. and is selected from polymers that can be melt-spun.
[0006]
As the above-mentioned parallel type composite fiber, one of the resins is an ethylene-propylene random copolymer having an ethylene copolymerization amount of 2 to 5 mol% and an MFR value of 10 to 50 g / 10 min obtained using a metallocene polymerization catalyst. The other resin is made of a polypropylene homopolymer. If the ethylene copolymerization amount is less than 2 mol%, the crimped rate after dry heat-treating the processed fiber intended by the present invention cannot be ensured, and the stretch-back property as the crimped fiber is lowered. When the copolymerization amount exceeds 5 mol%, the shrinkage rate becomes too high, and the spinnability and stretchability are remarkably lowered.
As for the MFR value, it is preferable from the viewpoint of spinnability to use a combination of resins having similar MFR values.
[0007]
The core component constituting the polypropylene-based fluid disturbed fiber having stretch back properties of the present invention is melt-spun by a composite melt spinning method. At this time, in order to stabilize the spinnability at the time of composite melt spinning, the maximum stretch of each unstretched fiber of the low shrinkage component polypropylene resin and the high shrinkage component polypropylene resin which are two kinds of composite components It is preferable to make the magnifications comparable, and it is desirable to select the fluidity of the high-shrinkage component and the low-shrinkage component to be comparable.
In order to make the above-mentioned fluidity comparable, in the low shrinkage component polypropylene resin, MFR (based on JIS K-7210, measurement conditions; test temperature 230 ° C., test load 2.16 kg) is 10 to 50 g / The range is preferably 10 minutes, and more preferably 20 to 40 g / 10 minutes.
[0008]
Further, in the high shrinkage component polypropylene-based resin, it is desirable that the MFR value is in the range of 10 to 50 g / 10 min, and the resin in the range of 20 to 40 g / 10 min is more preferable. In order to stabilize the spinnability, it is desirable to use a combination of resins having the same MFR value for the high shrinkage component and the low shrinkage component. If the MFR value of both components is less than 10 g / 10 min, it is necessary to set the spinning temperature at the time of melt spinning high. On the other hand, if it exceeds 50 g / 10 min, the fiber strength of the obtained crimped yarn will decrease. In any case, the spinnability deteriorates, which is not preferable.
[0009]
On the other hand, in the polypropylene resin used for the flower component (polypropylene-based multifilament yarn), the MFR value is preferably in the range of 10 to 50 g / 10 minutes, and more preferably in the range of 20 to 40 g / 10 minutes. . Even if the MFR value is less than 10 g / 10 min or exceeds 50 g / 10 min, the spinnability is deteriorated, which is not preferable.
The spinning temperature of the flower component is usually in the range of 210 to 250 ° C. When the spinning temperature is lower than 210 ° C., only low-strength fibers can be obtained even when a polypropylene resin having an MFR value of 50 g / 10 min is used, and when the spinning temperature is higher than 250 ° C., coloring pigments added to the polyolefin resin are difficult. The flame retardant changes and causes coloring or discoloration.
In the present invention, the fiber can be formed by a so-called direct spinning drawing method such as SDW for continuously drawing the melt-spun fiber without winding the melt-spun undrawn yarn.
[0010]
In the present invention, it is important to make the length of the polypropylene multifilament yarn of the flower component 10% or more longer than the length of the polypropylene-based crimped yarn of the core component, and the upper limit is 80%. To the extent. If the yarn length difference exceeds 80%, the yarn becomes hard and the texture tends to be lowered. If it is less than 10%, the desired properties of the fluid-disturbed processed fiber cannot be obtained.
The fineness of the polypropylene-based parallel-type composite spun fiber used for the core component of the polypropylene-based fluid-disturbed processed yarn having stretch-back properties of the present invention and the polypropylene fiber used for the flower component is not particularly limited, Any fineness may be used.
The fiber cross-sectional shape of the flower component may be a circular core-sheath structure, a hollow core-sheath structure, or a deformed core-sheath structure such as a triangular core-sheath structure, as long as the predetermined polypropylene homopolymer or copolymer is the same component. It may be a structure. When these core-sheath structures are adopted, yarns are produced by a composite spinning method.
Further, the mixing ratio of the core component and the flower component may be an arbitrary ratio. Regarding the form of the yarn, the polypropylene-based fluid disturbed yarn having stretch-back property according to the present invention is preferably a multifilament yarn from the viewpoint of strength when woven or knitted and softness of the fabric.
[0011]
Furthermore, it is considered that the same effect can be obtained even with a spun yarn of a stable. It is preferable that one or both of the core component and the flower component are original fibers. By using original yarns of different colors as the core component and the flower component, a fluid disturbed processed fiber having a higher quality can be obtained. The polypropylene-based fluid disturbed fiber of the present invention having the above-described properties is obtained by subjecting a crimped yarn as a core component and a polypropylene multifilament yarn as a flower component to fluid disturb processing, and then obtaining the processed fiber at 110 ° C. It can be obtained by performing a dry heat treatment at the above temperature. The dry heat treatment temperature is preferably 110 ° C to 130 ° C. The processing time is 5 to 10 minutes.
In the fiber of the present invention, an antioxidant, a heat stabilizer, a light stabilizer, an ultraviolet absorber, a neutralizer, a dispersant, a fluorescent whitening agent, a matting agent, and a lubricant are used as long as the characteristics are not impaired. An antistatic agent, an antibacterial agent, a flame retardant and the like are appropriately blended depending on the purpose.
[0012]
【Example】
Next, the present invention will be described in more detail with reference to examples.
[Production of polypropylene fiber (component A yarn)]
Low melting point ethylene-manufactured by Nippon Polychem Co., Ltd. obtained from a metallocene polymerization catalyst having an ethylene copolymerization amount of 2.5 mol%, an MFR value of 25 g / 10 min, and a melting point of 125 ° C. Propylene random copolymer resin winch “XK1183” and polypropylene homopolymer resin having an MFR value of 31 g / 10 min and a melting point of 163 ° C., and an ethylene-propylene random copolymer resin extruder temperature of 220 ° C., polypropylene homopolymer The resin extruder temperature was adjusted to 225 ° C and the spinning head temperature was adjusted to 220 ° C. Using a melt compound spinning machine, spinning was performed from a spinneret of a circular 30 hole with a hole diameter of 0.8 mm and wound at a take-up speed of 500 m / min. I took it. Further, the unstretched fiber was stretched at a stretch ratio of 4.25 times and a stretching temperature of 80 ° C., and then heat-treated at a temperature of 110 ° C. to produce a 100T30f polypropylene-based parallel composite spun fiber (hereinafter abbreviated as A component yarn). Obtained.
[0013]
[Production of polypropylene fiber (component B yarn)]
In addition, as a flower component, a polypropylene homopolymer having an MFR value of 31 g / 10 min and a melting point of 163 ° C. is used as a raw material, an extruder temperature is adjusted to 225 ° C., a spinning head temperature is adjusted to 220 ° C., and a melt compound spinning machine is used. Then, it was spun from a spinneret of a circular 30 hole having a hole diameter of 0.8 mm and wound at a take-up speed of 500 m / min. Further, this unstretched fiber was stretched at a stretching ratio of 3.30 times and a stretching temperature of 80 ° C., and heat treated at a temperature of 120 ° C. to obtain 190T60f polypropylene fiber (hereinafter abbreviated as B component yarn).
[0014]
<Stretchback test method for fibers>
[Measurement method]
The fluid-disturbed processed fibers obtained in each of the examples and comparative examples are bundled into a husk shape, which is subjected to a dry heat treatment at 110 ° C. for 5 minutes, and then left for 10 minutes or more to obtain a sample yarn.
A) A measurement load A is applied to one end of the sample yarn, and the yarn length (L1) is measured after 1 minute.
Measurement load A = dtex × 1/10 × (2 × number of windings)
After the measurement, the measurement load A is removed and left for 2 minutes.
B) Next, the measurement load B is applied to one end of the sample yarn, and the yarn length (L2) is measured after 1 minute.
Measurement load B = dtex × 1/1000 × (2 × number of windings)
The numerical value calculated by the following formula from the measured values (L1, L2) of the above a) and b) was taken as the stretch back rate.
Crimp rate (%) = [(L1-L2) / L1] × 100
[0015]
[Examples 1 to 3]
Using an air fluid disturbance nozzle (Hebaline Inc .: Hemajet LB-12L + Jetcore S345K), the above-mentioned parallel-type composite spun fiber (A component yarn) composed of an ethylene random copolymer and a polypropylene homopolymer as a core component, While using polypropylene multifilament fiber (component B yarn) as a flower component, air fluid is supplied while the core component is supplied in excess of 15%, 20%, and 30% from the flower component under conditions of a speed of 200 m / min and an air pressure of 0.53 MPa. Disturbed. After heat treating for 5 minutes in the atmosphere of the fiber fineness of the obtained fluid-disturbed processed fiber and dry heat temperatures of 110 ° C. and 120 ° C., the stretch-back rate was determined by the above measurement method. The results are shown in Table 1. The stretch back rate after heat treatment at 120 ° C. showed a high value of 25% or more.
[0016]
[Example 4]
A fluid disturbed fiber was obtained under the same conditions as in Example 1 except that the fluid disturbing speed was changed to 400 m / min. After heat treating for 5 minutes in the atmosphere of the fiber fineness of the obtained fluid disturbance processed fiber and dry heat temperature 110 degreeC and 120 degreeC, the stretch-back rate was calculated | required by the said measuring method. The results are shown in Table 1. The stretch back rate after heat treatment at 120 ° C. was a high value of 25% for the fiber of this example.
[0017]
[Comparative Examples 1-3]
Fluid disturbed fibers were obtained under the same conditions as in Examples 1 to 3, except that the core component was changed to the B component yarn. The fiber fineness of the obtained fluid-disturbed processed fiber, and heat treatment for 5 minutes in an atmosphere of a dry heat temperature of 110 ° C. and 120 ° C., and then a stretch back rate was obtained in the same manner. The results are shown in Table 1. The stretch back rate of the fibers of this comparative example was 1.2% or less.
[0018]
[Table 1]
Figure 0004081338
[0019]
【The invention's effect】
As described above, according to the present invention, a polypropylene crimped yarn as a core yarn component and a polypropylene multifilament yarn as a flower yarn component are subjected to fluid disturbance processing and then subjected to a dry heat treatment, whereby a crimp rate of 10 is achieved. % Fiber is provided. Such a fiber is light and excellent in soft feeling, and has characteristics exceeding conventional fibers such as high stretch back property. Moreover, the fiber which has a stretch back property with a further high-class feeling is obtained by making the said fiber into the original fiber of 2 or more colors. Furthermore, the fiber is excellent in recyclability and maintainability. Therefore, the fluid-disturbed processed fiber of the present invention is extremely useful as a fiber particularly for industrial materials.

Claims (5)

芯成分が、エチレン共重合量が2〜5モル%、メルトフロレート値が10〜50g/10分であるエチレン−プロピレンランダムコポリマーとポリプロピレンホモポリマーが並列複合されたポリプロピレン捲縮糸からなり、花成分がポリプロピレン系マルチフィラメント糸からなる流体撹乱加工繊維であって、110℃、5分の乾熱処理後の捲縮率が10%以上であることを特徴とするポリプロピレン系流体撹乱加工繊維。The core component consists of a polypropylene crimped yarn in which an ethylene-propylene random copolymer having an ethylene copolymerization amount of 2 to 5 mol% and a melt flow rate value of 10 to 50 g / 10 min and a polypropylene homopolymer are combined in parallel. A polypropylene-based fluid-disturbed processed fiber, wherein the component is a fluid-disturbed processed fiber composed of a polypropylene-based multifilament yarn, and the crimp rate after dry heat treatment at 110 ° C. for 5 minutes is 10% or more. 花成分のポリプロピレン系マルチフィラメント糸の糸長が、芯成分のポリプロピレン捲縮糸の糸長より10%以上長い請求項1に記載のポリプロピレン系流体撹乱加工繊維。The polypropylene-based fluid disturbed fiber according to claim 1, wherein the length of the polypropylene multifilament yarn of the flower component is 10% or more longer than the length of the polypropylene crimped yarn of the core component. 花成分のポリプロピレン系マルチフィラメント糸が、メルトフロレート値が10〜50g/10分を有するポリプロピレン系繊維からなる請求項1又は2に記載のポリプロピレン系流体撹乱加工繊維。The polypropylene-based fluid-disturbed processed fiber according to claim 1 or 2, wherein the polypropylene-based multifilament yarn of the flower component comprises a polypropylene-based fiber having a melt flow rate value of 10 to 50 g / 10 min. 芯成分となるエチレン共重合量が2〜5モル%、メルトフロレート値が10〜50g/10分であるエチレン−プロピレンランダムコポリマーとポリプロピレンホモポリマーが並列複合されたポリプロピレン捲縮糸と、花成分となるマルチフィラメント糸とを流体撹乱加工した後、得られた加工繊維を110℃以上の温度で乾熱処理することを特徴とする捲縮率が10%以上のポリプロピレン系流体撹乱加工繊維の製造方法。A polypropylene crimped yarn in which an ethylene-propylene random copolymer and a polypropylene homopolymer having an ethylene copolymerization amount of 2 to 5 mol% as a core component and a melt flow rate value of 10 to 50 g / 10 min are combined in parallel, and a flower component A process for producing a polypropylene-based fluid-disturbed processed fiber having a crimp rate of 10% or more, characterized by subjecting the multifilament yarn to be fluid-disturbed to a dry heat treatment at a temperature of 110 ° C. or higher. . 請求項1〜3のいずれかに記載のポリプロピレン系流体撹乱加工繊維を用いた織編物。A woven or knitted fabric using the polypropylene-based fluid disturbed fiber according to any one of claims 1 to 3.
JP2002295053A 2002-10-08 2002-10-08 Polypropylene-based fluid disturbed fiber and method for producing the same Expired - Lifetime JP4081338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002295053A JP4081338B2 (en) 2002-10-08 2002-10-08 Polypropylene-based fluid disturbed fiber and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002295053A JP4081338B2 (en) 2002-10-08 2002-10-08 Polypropylene-based fluid disturbed fiber and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004131858A JP2004131858A (en) 2004-04-30
JP4081338B2 true JP4081338B2 (en) 2008-04-23

Family

ID=32285427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002295053A Expired - Lifetime JP4081338B2 (en) 2002-10-08 2002-10-08 Polypropylene-based fluid disturbed fiber and method for producing the same

Country Status (1)

Country Link
JP (1) JP4081338B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5094555B2 (en) * 2008-05-23 2012-12-12 キヤノン株式会社 Ink tank
CN108411415B (en) * 2018-04-27 2024-03-22 浙江知多多网络科技有限公司 Deformation hot box for POY polyester filament yarn processing

Also Published As

Publication number Publication date
JP2004131858A (en) 2004-04-30

Similar Documents

Publication Publication Date Title
EP1485527B1 (en) Reversible, heat-set, elastic fibers, and method of making and articles made from same
JP4081338B2 (en) Polypropylene-based fluid disturbed fiber and method for producing the same
KR101866688B1 (en) Rayon-like polyester composite yarn having excellent melange effect, drapability and high elasticity and manufacturing method thereof
JP2007023417A (en) Moisture-absorbing bulky elastic yarn and method for producing the same
JP3997613B2 (en) High-strength polypropylene fiber and method for producing the same
KR100476471B1 (en) Di-shrink blended yarn and its manufacturing method.
JP3895190B2 (en) Polyester composite false twisted yarn for cut pile knitted fabric and method for producing the same
JP2007154343A (en) Core-sheath conjugate type partially oriented fiber of polyester and method for producing the same
KR100883286B1 (en) Filament machine sewing yarn
KR102219084B1 (en) Interlace composite yarn with high strength and elongation and method for producing the same
KR101555098B1 (en) Manufacturing mathod of polyester composite yarn having excellent shrinkage property and manufacturing using thereof
JPH07216653A (en) Highly crimping polypropylene filament yarn and its production
JP4351893B2 (en) Polypropylene mixed fiber crimped yarn, method for producing the same, and carpet
JP2005179815A (en) Polyamide multifilament yarn and polyamide combined filament-textured yarn
JPS6245326B2 (en)
KR102144201B1 (en) Polypropylene filament elastic yarns, fabric thereof and manufacture method
JP2936304B2 (en) Polypropylene different shrinkage mixed fiber yarn and method for producing the same
JPS61152810A (en) Production of improved polypropylene monofilament
JPH03279428A (en) Combined polyester filament yarn
JPS61201034A (en) Silky polyester yarn
KR101850628B1 (en) Rayon-like polyester composite yarn having excellent drapability and high elasticity and manufacturing method thereof
JPH0327140A (en) Mixed yarn having different fineness and shrinkage
JP2005200795A (en) Heat-bonding conjugate fiber, method for producing the same and fiber molded product using the conjugate fiber
KR20160080528A (en) Polyester blended filament yarn with natural thin and thick effect to improve the flexibility of the fabric and method for manufacturing thereof
JP2003336137A (en) Polyester combined filament yarn of different shrinkage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4081338

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term