JPS63243324A - Heat bonding fiber and nonwoven fabric thereof - Google Patents
Heat bonding fiber and nonwoven fabric thereofInfo
- Publication number
- JPS63243324A JPS63243324A JP62072719A JP7271987A JPS63243324A JP S63243324 A JPS63243324 A JP S63243324A JP 62072719 A JP62072719 A JP 62072719A JP 7271987 A JP7271987 A JP 7271987A JP S63243324 A JPS63243324 A JP S63243324A
- Authority
- JP
- Japan
- Prior art keywords
- spinning
- octene
- weight
- nonwoven fabric
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 64
- 239000004745 nonwoven fabric Substances 0.000 title claims abstract description 30
- 239000004743 Polypropylene Substances 0.000 claims abstract description 34
- 239000000306 component Substances 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 26
- 239000000203 mixture Substances 0.000 claims abstract description 17
- 239000008358 core component Substances 0.000 claims abstract description 14
- -1 polypropylene Polymers 0.000 claims abstract description 14
- 229920000092 linear low density polyethylene Polymers 0.000 claims abstract description 12
- 239000004707 linear low-density polyethylene Substances 0.000 claims abstract description 12
- 229920001155 polypropylene Polymers 0.000 claims abstract description 11
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000005977 Ethylene Substances 0.000 claims abstract description 8
- 229920001577 copolymer Polymers 0.000 claims abstract description 7
- 239000000853 adhesive Substances 0.000 claims description 13
- 230000001070 adhesive effect Effects 0.000 claims description 11
- 239000000155 melt Substances 0.000 claims description 10
- 230000004927 fusion Effects 0.000 claims description 8
- 238000009987 spinning Methods 0.000 abstract description 48
- 238000002844 melting Methods 0.000 abstract description 8
- 230000008018 melting Effects 0.000 abstract description 8
- 230000000704 physical effect Effects 0.000 abstract description 4
- 238000007796 conventional method Methods 0.000 abstract description 2
- 206010016322 Feeling abnormal Diseases 0.000 abstract 1
- 208000012886 Vertigo Diseases 0.000 description 47
- 239000002131 composite material Substances 0.000 description 20
- 239000005020 polyethylene terephthalate Substances 0.000 description 11
- 229920000139 polyethylene terephthalate Polymers 0.000 description 11
- 238000002156 mixing Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- 239000011230 binding agent Substances 0.000 description 7
- 238000002074 melt spinning Methods 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 6
- 239000004698 Polyethylene Substances 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229920001684 low density polyethylene Polymers 0.000 description 3
- 239000004702 low-density polyethylene Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 2
- 230000002745 absorbent Effects 0.000 description 2
- 239000002250 absorbent Substances 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000002788 crimping Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000004049 embossing Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 229920001903 high density polyethylene Polymers 0.000 description 2
- 239000004700 high-density polyethylene Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000003490 calendering Methods 0.000 description 1
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229920006253 high performance fiber Polymers 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920002959 polymer blend Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 239000004711 α-olefin Substances 0.000 description 1
Landscapes
- Multicomponent Fibers (AREA)
- Nonwoven Fabrics (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、熱接着繊維及びその不織布に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to thermal adhesive fibers and nonwoven fabrics thereof.
(従来の技術)
不織布の製造において繊維と繊維を接着させる方法とし
てはニードルパンチ法のような繊維間の交絡による方法
や種々の接着剤をバインダーとして使用する方法がある
。(Prior Art) In the production of nonwoven fabrics, methods for adhering fibers to each other include a method of entangling fibers such as a needle punch method, and a method of using various adhesives as a binder.
近年急激に需要量が増大している使い捨ておむつや生理
用吸収体の被覆紙等の用途においては肌ざわりのよいソ
フトな風合や目付が軽いこと及び高引張強力である等の
諸物性が要求される。これらの要求をできるかぎり満足
させるため、主としてバインダー法による不織布の生産
方式が採用されている。バインダー法としては、接着剤
溶液をウェブに付着させる方法が主として採用されてい
たが、接着剤溶液の溶媒を取り除くためにエネルギーが
必要なこと及び作業環境が悪いこと等の問題がある。In applications such as disposable diapers and covering paper for sanitary absorbent materials, the demand for which has increased rapidly in recent years, various physical properties such as a soft texture that feels good on the skin, a light basis weight, and high tensile strength are required. Ru. In order to satisfy these requirements as much as possible, a nonwoven fabric production method using a binder method is mainly adopted. As the binder method, a method in which an adhesive solution is attached to a web has been mainly adopted, but there are problems such as the need for energy to remove the solvent of the adhesive solution and the poor working environment.
これらの問題点を解決するためにウェブを構成する繊維
よりも融点の低い繊維をバインダーとしてウェブに混合
し、熱処理することによりウェブを構成する繊維と繊維
を接着させる方法が提案されている。例えば1強度が高
く、かつ風合のよい不織布のバインダーとして特公昭6
1−10583号公報には融点を異にする繊維形成重合
体を複合成分とする複合繊維が開示されている。また1
通常複合成分に用いられているポリエチレン繊維は低密
度ポリエチレン(LDPE)や高密度ポリエチレン(H
DPE)であるが、これらのポリエチレンを使用すると
、得られた不織布の風合は硬くソフトな感触が得られな
い欠点がある。この欠点を補う目的で最近では特開昭6
0−209010号公報や特開昭60−194113号
公報に開示されているようにエチレンとオクテン−1を
共重合して得られる線状低密度ポリエチレン(以下。In order to solve these problems, a method has been proposed in which fibers having a lower melting point than the fibers constituting the web are mixed into the web as a binder, and the fibers constituting the web are bonded together by heat treatment. For example, as a binder for non-woven fabrics with high strength and good texture,
No. 1-10583 discloses a composite fiber whose composite components are fiber-forming polymers having different melting points. Also 1
The polyethylene fibers normally used in composite components are low-density polyethylene (LDPE) and high-density polyethylene (H
DPE), but when these polyethylenes are used, the resulting nonwoven fabric has a hard texture and cannot provide a soft feel. In order to compensate for this drawback, recently, Japanese Patent Application Publication No. 6
Linear low-density polyethylene (hereinafter referred to as "linear low density polyethylene") obtained by copolymerizing ethylene and octene-1 as disclosed in JP-A No. 0-209010 and JP-A No. 60-194113.
L−LDPEと呼称する。)は、風合がソフトで低融点
である性能を有することから不織布バインダーとして用
いられるようになってきた。It is called L-LDPE. ) has come to be used as a nonwoven fabric binder due to its soft texture and low melting point.
(発明が解決しようとする問題点)
本発明者らは、先に特願昭61−23623号において
。(Problems to be Solved by the Invention) The present inventors previously proposed Japanese Patent Application No. 61-23623.
密度、メルトインデックス、融解熱を限定したL−LD
PEを鞘成分、ポリエチレンテレフタレートを芯成分と
する熱接着繊維からなる不織布を提案した。L-LD with limited density, melt index, and heat of fusion
We proposed a nonwoven fabric made of thermally bonded fibers with PE as a sheath component and polyethylene terephthalate as a core component.
得られた不織布は、風合がソフトで低目付であり。The obtained nonwoven fabric has a soft texture and a low basis weight.
しかも高強力なものであったが、 L−LDPEとポリ
エチレンテレフタレートとの境界面で一部剥離現象が見
られ、耐久性に乏しいこと及び紡糸速度を高くすること
ができない等の問題があった。Moreover, although it was highly strong, peeling phenomenon was observed in some areas at the interface between L-LDPE and polyethylene terephthalate, resulting in problems such as poor durability and the inability to increase the spinning speed.
本発明の目的は、繊維及び不織布の性能が良好でかつ製
糸性が良好な熱接着繊維及びその不織布を提供すること
にある。An object of the present invention is to provide thermally bonded fibers and nonwoven fabrics thereof that have good fiber and nonwoven fabric properties and good spinnability.
(問題点を解決するための手段)
本発明者らは、上記問題点を解決するため鋭意研究を行
った結果9本発明に到達したものである。(Means for Solving the Problems) The present inventors have conducted intensive research to solve the above problems, and as a result, have arrived at the present invention.
すなわち1本発明は、エチレンとオクテン−1との低密
度コポリマーで、オクテン−1の含有量が1〜15重量
%、密度が0.900〜0.940g/ cd 、メル
トインデックスがASTM D−1238(E)の方法
で測定して5〜100g/10分、融解熱が25cal
/g以上からなる線状低密度ポリエチレン(A)が99
〜50重量%、メルトフローレートがASTM D−1
238(L)の方法で測定して20g710分より小さ
い結晶性ポリプロピレン(B)が1〜50重量%、上記
(A)と(B)とからなるブレンド構造体(C)を芯成
分、上記線状低密度ポリエチレン(A)を鞘成分として
構成された断面形状を有することを特徴とする熱接着繊
維及び該熱接着繊維からなる不織布を要旨とするもので
ある。That is, the present invention is a low-density copolymer of ethylene and octene-1, which has an octene-1 content of 1 to 15% by weight, a density of 0.900 to 0.940 g/cd, and a melt index of ASTM D-1238. Measured by method (E): 5 to 100 g/10 minutes, heat of fusion is 25 cal
Linear low density polyethylene (A) consisting of /g or more is 99
~50% by weight, melt flow rate is ASTM D-1
A blend structure (C) consisting of 1 to 50% by weight of crystalline polypropylene (B) smaller than 20 g 710 min as measured by the method of 238 (L) and the above (A) and (B) as a core component, and the above line The gist of the present invention is to provide a thermally adhesive fiber characterized by having a cross-sectional shape composed of low-density polyethylene (A) as a sheath component, and a nonwoven fabric made of the thermally adhesive fiber.
先ず1本発明の熱接着繊維の芯成分のブレンド構造体(
C)及び鞘成分を構成するL−LDPEは、エチレンと
オクテン−1との線状低密度コポリマーからなり、オク
テン−1の含有量が1〜15重量%であることが重要で
ある。オクテン−1の含有量が1重量%未満の場合、得
られる熱接着繊維は硬くなり、不織布等の製品での風合
が悪くなる。また、オクテン−1の含有量が15重量%
を超えると紡糸が難しく。First, a blend structure of the core components of the thermal adhesive fiber of the present invention (
L-LDPE constituting C) and the sheath component consists of a linear low-density copolymer of ethylene and octene-1, and it is important that the content of octene-1 is 1 to 15% by weight. When the content of octene-1 is less than 1% by weight, the resulting thermally bonded fiber becomes hard, resulting in poor feel in products such as nonwoven fabrics. In addition, the content of octene-1 is 15% by weight.
If it exceeds, spinning becomes difficult.
8デニール以下の細い繊度の繊維を得ることが難しい。It is difficult to obtain fibers with a fineness of 8 denier or less.
なお、 L−LDPRは、エチレンとオクテン−1との
コポリマーが特に好ましいものであるが、他のα−オレ
フィン例えばブテン−1,ヘキセン−1又はオクテン−
1とヘキセン−1との混合物等も上記オクテン−1の含
有量の範囲で用いることができる。Note that L-LDPR is particularly preferably a copolymer of ethylene and octene-1, but other α-olefins such as butene-1, hexene-1 or octene-1 are also preferred.
A mixture of octene-1 and hexene-1 can also be used within the above range of octene-1 content.
次ニ、 L−LDPH+7)密度ニツイテハ0.940
g/CIaを超えると結晶化度が高くなり、得られた繊
維の風合が硬くなるので好ましくない。一方、 0.9
00g/c/未満では糸質性能面で高性能の繊維を得る
ことが難しく、糸質性能及び風合の点から特に0.92
0〜0.940g/cjが好ましい。Next, L-LDPH+7) Density is 0.940
If it exceeds g/CIa, the degree of crystallinity will increase and the texture of the obtained fiber will become hard, which is not preferable. On the other hand, 0.9
If it is less than 0.92g/c/, it is difficult to obtain high-performance fibers in terms of yarn quality performance, and in particular from the viewpoint of yarn quality performance and texture.
0 to 0.940 g/cj is preferred.
本発明では上記L−LDPEとポリプロピレン(以下。In the present invention, the above L-LDPE and polypropylene (hereinafter referred to as "polypropylene") are used.
PPと呼称する。)とのブレンド物を用いるが9両者の
ブレンド状態の流動特性が特に本発明熱接着繊維の性能
に影響を与えるためL−LDPRのメルトインデックス
(以下、MI値と呼称する。)がASTM D−123
8(E)の方法で測定して5〜100g/10分の範囲
にあることが必要となる。MI値が5 g/10分未満
では溶融紡糸における吐出糸条の変形がスムーズにいか
ず、メルトフラクチャアーやバラス効果等の影響を受は
易く、その結果高速紡糸が難しいことになる。また、M
I値が100g/10分を超えると粘性があまりにも小
さいので繊径環が発生し、得られた繊維の性能が劣るこ
とになる。さらに、PPとの溶融粘性があまりに開きす
ぎると吐出糸条が紡糸口金直下で断糸する重大な欠点と
なる。このため上記L−LDPEのMI値は、5〜10
0g/10分が必要であり、より好ましいMI値として
は40〜70g/10分の範囲のものが望ましい。It is called PP. ), but the melt index (hereinafter referred to as MI value) of L-LDPR is lower than the ASTM D- 123
8(E), it is necessary to be in the range of 5 to 100 g/10 minutes. If the MI value is less than 5 g/10 minutes, the deformation of the discharged yarn during melt spinning will not be smooth, and it will be susceptible to melt fracture, ballast effect, etc., and as a result, high-speed spinning will be difficult. Also, M
If the I value exceeds 100 g/10 minutes, the viscosity will be so low that a diameter ring will occur and the performance of the obtained fiber will be poor. Furthermore, if the melt viscosity with PP is too wide, the discharged yarn will break just below the spinneret, resulting in a serious drawback. Therefore, the MI value of the above L-LDPE is 5 to 10.
0 g/10 minutes is required, and a more preferable MI value is in the range of 40 to 70 g/10 minutes.
L−LDPf!の結晶性の一つの尺度である融解熱が2
5cal/g未満の場合製糸性が劣り、高速紡糸をする
ことができない。ここで、融解熱は1次の方法にて測定
したものである。パーキンエルマー社製品osc−2C
型を用い、試料5mgを採取し、昇温速度20℃/分に
て測定し、室温より昇温しで得られるDSC曲線ついて
同装置マニュアルに従って求める。L-LDPf! The heat of fusion, which is a measure of the crystallinity of
If it is less than 5 cal/g, the spinning properties will be poor and high speed spinning will not be possible. Here, the heat of fusion was measured by the first-order method. PerkinElmer product osc-2C
Using a mold, 5 mg of a sample is taken and measured at a heating rate of 20° C./min, and the DSC curve obtained by raising the temperature from room temperature is determined according to the device manual.
次に、上記L−LDPEとブレンドするPPは、イソタ
クチックポリプロピレンであり、そのメルトフローレー
ト(以下、MF値と呼称する。)は、ASTM D−1
238(L)の方法で測定して20g/10分以下であ
ることが必要である。すなわち、MF値が20g/10
分を超えると、 L−LDPEとのブレンドがスムーズ
にいかず、均一な構造体を形成しない、何故ならば、ポ
リプロピレンセグメントがL−LD邦酸成分中フローし
すぎ、繊維軸方向に線状に配列することになり、このた
め紡出糸条の溶融弾性が極端に高くなるので紡糸時の断
糸を低減するためには紡糸速度を低く抑える必要がある
。また、 L−LDPE、!: P Pとのブレンド比
率も製糸性に影響を与える。 L−LDPEとPPとの
比率をそれぞれ99〜50重量%と1〜50重量%にす
ることで、L−LDPEとPPとのブレンドがスムーズ
に行うことができ、適当な溶融弾性を与える。Next, the PP to be blended with the L-LDPE is isotactic polypropylene, and its melt flow rate (hereinafter referred to as MF value) is ASTM D-1.
238(L), it is necessary that the amount is 20 g/10 minutes or less. That is, the MF value is 20g/10
If it exceeds 10 minutes, the blending with L-LDPE will not be smooth and a uniform structure will not be formed, because the polypropylene segments flow too much in the L-LD Japanese acid component and form a linear shape in the fiber axis direction. As a result, the melt elasticity of the spun yarn becomes extremely high, so in order to reduce yarn breakage during spinning, it is necessary to keep the spinning speed low. Also, L-LDPE! : PP The blending ratio with PP also affects the spinning properties. By setting the ratios of L-LDPE and PP to 99 to 50% by weight and 1 to 50% by weight, respectively, L-LDPE and PP can be blended smoothly and appropriate melt elasticity can be obtained.
L−LDPti中のPPの量が1%未満の場合、ブレン
ドによる製糸性の向上が認められず、 L−LDPt!
単独の製糸性と同じになる。一方、50重量%を超える
とPPリッチとなり、やはりブレンドによる流動特性の
改良が難しく、細い繊維を得ることが難しい。When the amount of PP in L-LDPti is less than 1%, no improvement in yarn-spinning properties is observed due to blending, and L-LDPt!
It will be the same as the individual spinning performance. On the other hand, if it exceeds 50% by weight, it will become rich in PP, making it difficult to improve flow characteristics through blending and making it difficult to obtain thin fibers.
このように上記(A)と(B)とからなるブレンド構造
体(C)を芯成分に用い、上記(A)からなるL−LD
PEを鞘成分に用いて熱接着繊維を製造するが、従来か
ら公知の複合紡糸用溶融紡糸装置を利用することができ
る。紡糸温度においては、 L−LDPED独及びPP
単独の紡糸温度のほぼ中間の温度が適しており、好まし
い温度は210〜250℃であり、さらに好ましくは2
20℃〜240℃である0次に、芯鞘成分の割合として
は、芯成分を構成するブレンド構造体(C)が10〜9
0重量%、鞘成分を構成するL−LDPRが90〜10
重量%からなるものが好ましい、 L−LDPI!成分
が10重量%未満の場合、複合繊維断面の安定性が悪(
、かつ得られた繊維の風合が硬(好ましくない。一方、
L−LDPED分が90重景%を超えると、風合はソフ
トで熱接着性も良好になるが、製糸性が悪く高速紡糸が
できない、なお9本発明における芯鞘構造の複合繊維の
断面は1円形のみではなく三角形や四角形等の異形断面
或いは中空断面であってもよい、また、芯鞘構造の断面
を有する繊維が好ましいが、芯成分が一つだけでなくい
わゆる多芯構造のものであってもよい、ただし、 L−
LDPRの特徴であるソフトさ、低融点、バインダーと
しての機能面を熱接着繊維に生かすため繊維の表面層に
L−LDPRが存在することが必要である。また、この
熱接着繊維に別の付帯性能を与える目的で複合紡糸時に
吸湿剤、湿潤剤、顔料、染料、安定剤、難燃剤等の添加
剤を加えてもよい。In this way, by using the blend structure (C) consisting of the above (A) and (B) as a core component, the L-LD consisting of the above (A)
A thermally bonded fiber is produced using PE as a sheath component, and a conventionally known melt spinning device for composite spinning can be used. At spinning temperature, L-LDPED and PP
A temperature approximately midway between the single spinning temperatures is suitable, and the preferred temperature is 210 to 250°C, more preferably 2
When the temperature is 20°C to 240°C, the ratio of the core/sheath component is 10 to 9.
0% by weight, L-LDPR constituting the sheath component is 90-10
Preferably, it consists of % by weight, L-LDPI! If the content of the component is less than 10% by weight, the stability of the composite fiber cross section will be poor (
, and the texture of the obtained fiber is hard (unfavorable).
If the L-LDPED content exceeds 90%, the texture will be soft and the thermal adhesion will be good, but the spinning properties will be poor and high-speed spinning will not be possible. Fibers may have a cross section of irregular shapes such as a triangle or a square, or a hollow cross section instead of just a single circle, and fibers with a core-sheath structure are preferable, but fibers with a so-called multi-core structure instead of just one core component are preferable. May exist, but L-
In order to take advantage of the characteristics of LDPR, such as softness, low melting point, and functionality as a binder, in thermally bonded fibers, it is necessary that L-LDPR be present in the surface layer of the fibers. In addition, additives such as a moisture absorbent, a wetting agent, a pigment, a dye, a stabilizer, a flame retardant, etc. may be added during composite spinning for the purpose of imparting additional performance to the heat-adhesive fiber.
次に1本発明における不織布を得るためには複合紡糸用
溶融紡糸装置を用いてフィラメントまたはトウを製造し
、短繊維にカットした後カード機械を通しウェブを作成
し、カレンダーロールによりL−LDPEの融点より低
い温度で熱圧着にて不織布を製造することができる。ま
た、生産性を考慮すると、スパンボンド法による不織布
が好ましく、その製造方法としては、高速吸引ガンによ
りノズルより出た繊維を吸引開繊し、移動するコンベア
状金網に衝突させ、ウェブを形成し9次いでエンボスロ
ールにて圧縮加熱処理を施すことにより得られるもので
ある。なお、不織布用繊維を短繊維状にカントし、水中
に分散させ、抄紙を行う従来の抄紙法によっても本発明
の不織布を製造することもできる。Next, in order to obtain the nonwoven fabric of the present invention, filaments or tows are manufactured using a melt spinning device for composite spinning, cut into short fibers, passed through a card machine to create a web, and then processed using a calendar roll to create a web of L-LDPE. A nonwoven fabric can be produced by thermocompression bonding at a temperature lower than the melting point. In addition, considering productivity, it is preferable to use a nonwoven fabric produced by the spunbond method, and the manufacturing method involves sucking and opening the fibers coming out of a nozzle using a high-speed suction gun, and colliding them against a moving conveyor-like wire gauze to form a web. 9. It is obtained by subsequently performing a compression heat treatment using an embossing roll. The nonwoven fabric of the present invention can also be produced by a conventional papermaking method in which nonwoven fabric fibers are canted into short fibers, dispersed in water, and then paper is made.
(作用)
本発明における熱接着繊維は、L−LDPEとPPとの
ブレンド物を芯成分にL−LDPE単独成分を鞘成分に
用いた複合繊維で、特に不織布用途に適した熱接着繊維
が得られるものであり、従来の欠点であった製糸性の改
良と耐久性の向上したものが得られる。この理由につい
て本発明者らは次のように推察している。(Function) The thermal adhesive fiber in the present invention is a composite fiber in which a blend of L-LDPE and PP is used as a core component and L-LDPE alone is used as a sheath component, and the thermal adhesive fiber is particularly suitable for nonwoven fabric applications. Therefore, it is possible to obtain a product with improved spinnability and durability, which were drawbacks of the conventional method. The inventors of the present invention speculate as to the reason for this as follows.
先ず1本発明で用いられるポリマーは、 L−LDPR
とPPであり、繊維形態を維持するにはPPとL−LD
PRとのブレンド構造物(C)が、一方、風合のソフト
さ及び繊維と繊維を熱接着するにはL−LDPBがそれ
ぞれ役割を分担しており、特定ポリマーによるブレンド
機構及び複合繊維とすることで初めて本発明の目的が達
成できるものである。ブレンド機構としてはL−LDP
Hの海成分中にPPが島成分として存在しており、製糸
性に影響を与えるのが溶融状態でのこの島成分の大きさ
と形状と考えられる。First, the polymer used in the present invention is L-LDPR.
and PP, and PP and L-LD to maintain the fiber morphology.
In the blended structure (C) with PR, on the other hand, L-LDPB plays a role in providing a soft texture and thermally adhering fibers to each other, and the blending mechanism and composite fibers are based on a specific polymer. Only then can the object of the present invention be achieved. L-LDP as a blending mechanism
PP exists as an island component in the sea component of H, and it is thought that the size and shape of this island component in the molten state affects the silk-spinning properties.
すなわち、 L−LDPEとPPとの溶融粘性が近過ぎ
るとかなり小さな島成分となり、さらにその島の形状が
線状に近いため両分子の相互作用が太き(なり、ブレン
ド状態での溶融弾性が大きくなり製糸性が悪くなる。In other words, if the melt viscosities of L-LDPE and PP are too close, the island components will be quite small, and since the shape of the islands is close to linear, the interaction between both molecules will be thick (and the melt elasticity in the blended state will be The size increases and the spinning properties deteriorate.
一方、 L−LDPEとPPとの溶融粘性が大きく異な
ると、逆に島成分が太き(なり過ぎ、流動変形性が劣る
ことになる。On the other hand, if the melt viscosities of L-LDPE and PP are significantly different, the island components will become too thick (too much) and the flow deformability will be poor.
また、上記溶融粘性を有するL−LDPBとPPとの混
合比率をL−LDPEを99〜50重量%、PPを1〜
50重量%とすることで海成分であるL−LDPEの中
に紡錘状の形態でPPの成分を存在させることができ。In addition, the mixing ratio of L-LDPB having the above melt viscosity and PP is 99 to 50% by weight for L-LDPE and 1 to 1% by weight for PP.
By setting the amount to 50% by weight, the PP component can be present in a spindle-shaped form in the sea component L-LDPE.
高速紡糸性に適した溶融粘弾性を示すことになる。It exhibits melt viscoelasticity suitable for high-speed spinning.
すなわち、 L−LDPE単独に比べてL−LDPEの
マトリックス中にPPを紡錘状に分散させることで溶融
弾性が抑えられ、高速変形に追従できる紡出糸条が得ら
れるものである。分散状態が線状になれば島成分の溶融
弾性への寄与が太き(、L−LDPRやPET単独の場
合と大差なくブレンド効果が認められず。That is, compared to L-LDPE alone, by dispersing PP in a spindle shape in the matrix of L-LDPE, melt elasticity is suppressed and a spun yarn that can follow high-speed deformation can be obtained. If the dispersion state becomes linear, the contribution of the island component to the melt elasticity is large (no blending effect is observed, much different from the case of L-LDPR or PET alone).
高速変形への追従ができないものである。It cannot follow high-speed deformation.
このように、溶融状態のポリマーの分散状態に関し、特
別に限定した本発明ポリマーブレンド物を用いることで
初めて高速紡糸に最適の溶融状態となり紡糸性が向上す
ると考えられる。さらに。As described above, it is thought that the dispersion state of the polymer in the molten state becomes the optimal molten state for high-speed spinning and improves spinnability only by using a specially limited polymer blend of the present invention. moreover.
PETとL−LDPf!との芯鞘構造からなる複合紡糸
とL−LDPEとPPとのブレンド構造物を芯部にL−
LDPRを鞘部に用いた本発明品とを比較すると、溶融
紡糸時の溶融温度は、PETを使用しないので溶融紡糸
温度を低く設定することが可能であり、そのため今まで
のようにL−LDPBとして濾過ぎる溶融温度が原因で
観察されたノズル口金の汚れ、ニーリング(ノズル曲が
り)、断糸というトラブルが極端に少なくなることが認
められる。PET and L-LDPf! Composite spinning consisting of a core-sheath structure and a blend structure of L-LDPE and PP in the core.
Comparing the product of the present invention in which LDPR is used in the sheath part, the melt spinning temperature can be set lower because PET is not used, and therefore L-LDPB is used as before. It has been found that problems such as fouling of the nozzle cap, kneeling (nozzle bending), and yarn breakage, which were observed due to the excessive melting temperature, are significantly reduced.
以上述べたように1本発明は、上記構成からなるもので
L−LDPHの特徴であるソフトな風合、怒触、低温熱
接着性を有し、ブレンド構造物がPP及びL−LDPE
単独に比べ高速紡糸性が良好で、しかも紡糸温度を従来
のPETとの複合紡糸に比べ低くすることが可能で製糸
時のトラブルが少ないものである。As described above, one aspect of the present invention has the above-mentioned structure, has the soft texture, dry touch, and low-temperature heat adhesive properties characteristic of L-LDPH, and has a blended structure made of PP and L-LDPE.
It has better high-speed spinning properties than spinning alone, and the spinning temperature can be lowered compared to conventional composite spinning with PET, causing fewer troubles during spinning.
(実施例) 以下1本発明の具体例を実施例により説明する。(Example) Hereinafter, a specific example of the present invention will be explained with reference to Examples.
なお、実施例で測定される物性は、下記に述べる方法に
より評価した。The physical properties measured in Examples were evaluated by the methods described below.
(11引張強力
JIS L−1096ストリツプ法に準じて巾30m5
.長さ100鰭の試験片の最大引張強力を測定する。(11 tensile strength JIS L-1096 strip method width 30m5
.. The maximum tensile strength of a test piece with a length of 100 fins is measured.
(2)トータルハンド
JIS L−1096ハンド・オ・メータ法に準じてス
リット巾10龍にて測定する。数値の小さい方が柔軟で
あることを示す。(2) Measure with a slit width of 10 mm according to the total hand JIS L-1096 hand-o-meter method. A smaller number indicates more flexibility.
(3)圧縮硬軟度
50龍×100鰭の試験片を取り、この試験片を高′さ
50鰭1円周1001mの円筒状として平板式ロードセ
ル上に置き、50mm/分の速度で円筒状試験片を圧縮
させ、その時の最大荷重を測定する。荷重の小さい方が
柔軟であることを示す。(3) Take a test piece with compression hardness and softness of 50 dragons x 100 fins, place this test piece in a cylindrical shape with a height of 50 fins and a circumference of 1001 m, and place it on a flat plate type load cell, and perform a cylindrical test at a speed of 50 mm/min. Compress the piece and measure the maximum load at that time. The smaller the load, the more flexible it is.
実施例1.比較例1〜2
線状低密度ポリエチレン(A) (L−LDPE) (
オクテン−15重量%、密度0.935g/aJ、M
I値(メルトインデックス)43g/10分、融解熱3
6cal/g)とイソタクチックポリプロピレン(B)
(PP)(密度0.905g/cm3,MF値(メルト
フローレー))15g/10分〕を重量比75 : 2
5の割合でブレンドしたブレンド構造体(C)を芯成分
、線状低密度ポリエチレン(A)を鞘成分として複合紡
糸用溶融紡糸装置を用いて重量比 芯部/鞘部=50:
50の割合にてブレンド構造体(C)の紡糸温度230
℃、L−LDPII!(A)の紡糸温度220℃、紡糸
口金0.4mφ×36孔数、吐出量54g/分。Example 1. Comparative Examples 1-2 Linear low density polyethylene (A) (L-LDPE) (
Octene-15% by weight, density 0.935g/aJ, M
I value (melt index) 43g/10min, heat of fusion 3
6cal/g) and isotactic polypropylene (B)
(PP) (density 0.905 g/cm3, MF value (melt flow rate)) 15 g/10 min] at a weight ratio of 75:2
Using a melt spinning device for composite spinning, a blend structure (C) blended at a ratio of 5:5 as a core component and linear low-density polyethylene (A) as a sheath component was prepared using a melt spinning device for composite spinning.The weight ratio was core/sheath = 50:
The spinning temperature of the blend structure (C) at a ratio of 230
°C, L-LDPII! (A) Spinning temperature: 220°C, spinneret: 0.4 mφ x 36 holes, discharge rate: 54 g/min.
吸引速度8700m/分の条件にて複合繊維を製造した
。得られた繊維の糸質性能を第1表に示す。次に、紡糸
口金の汚れ及び操業性(製糸性)を観察した。結果を第
1表に示す0表より明らかなように。Composite fibers were produced at a suction speed of 8,700 m/min. Table 1 shows the yarn properties of the obtained fibers. Next, contamination of the spinneret and operability (silk-spinning performance) were observed. As is clear from Table 0, the results are shown in Table 1.
本発明の芯鞘複合繊維の場合、紡糸の高速引取りが可能
で、しかも紡糸口金の汚れも少なく、製糸性も良好であ
った。In the case of the core-sheath composite fiber of the present invention, high-speed spinning was possible, the spinneret was less contaminated, and the spinning performance was good.
第1表
×・・−m−・イ)艮
次に1本発明の熱接着繊碑と比較するためL−LDPH
100%及びL−LDPRとPETとの芯鞘構造の熱接
着繊維とを作成した。実施例1で使用した線状低密度ポ
リエチレン(A)を単独で通常の溶融紡糸機にて紡糸温
度250℃、紡糸口金0 、4 mmφ×36孔数、吐
出量54g/分、吸引速度8500m/分の条件で気流
引取り法にて熱接着繊維を製造した。得られた繊維の糸
質性能を第1表に示す1次に、実施例1と同様、紡糸口
金の汚れと操業性の観察を行い、結果を第1表に示す0
表より明らかなように、高速引取りを行うため紡糸温度
をかなり高温で行うことが必要で、そのため糸曲がりが
発生し易(、紡糸口金の汚れが多く1製糸性についても
やや不良であっった。(比較例1)
実施例1で使用した線状低密度ポリエチレン(A)を鞘
成分、PET((η)−0,70フエノール/テトラク
ロルエタン1:1.20℃測定)を芯成分としてPET
の紡糸温度285℃、 L−LDPII!の紡糸温度2
20℃、吸引速度を8650m/分に変更する以外実施
例1に準じて芯鞘構造の複合繊維を製造した。得られた
繊維の糸質性能を第1表に示す0次に、紡糸口金の汚れ
と操業性の観察を行い、結果を第1表に示す0表より明
らかなように、 L−LDPI!の紡糸温度が実施例1
より高く、糸曲がりが発生し易いことから紡糸口金の汚
れが多く発生し、製糸性についてもやや不良であった。Table 1 ×...-m-・a) Next: L-LDPH
A heat-bonded fiber having a core-sheath structure of 100% L-LDPR and PET was created. The linear low density polyethylene (A) used in Example 1 was spun alone in a normal melt spinning machine at a temperature of 250°C, a spinneret of 0, 4 mmφ x 36 holes, a discharge rate of 54 g/min, and a suction speed of 8500 m/min. Thermal bonding fibers were produced by the air flow drawing method under conditions of 10 minutes. The yarn quality performance of the obtained fibers is shown in Table 1.Next, as in Example 1, staining of the spinneret and operability were observed, and the results are shown in Table 1.
As is clear from the table, it is necessary to perform the spinning at a fairly high temperature in order to perform high-speed take-up, and as a result, yarn bending is likely to occur (the spinning nozzle is often contaminated, and the spinning performance is also somewhat poor). (Comparative Example 1) The linear low density polyethylene (A) used in Example 1 was used as a sheath component, and PET ((η)-0,70 phenol/tetrachloroethane 1: measured at 1.20°C) was used as a core component. as PET
Spinning temperature 285℃, L-LDPII! spinning temperature 2
A composite fiber having a core-sheath structure was produced according to Example 1 except that the temperature was 20° C. and the suction speed was changed to 8650 m/min. The yarn quality performance of the obtained fibers is shown in Table 1.Next, the staining of the spinneret and the operability were observed, and the results were shown in Table 1.As is clear from Table 1, L-LDPI! The spinning temperature of Example 1 is
Since the yarn was more likely to bend, the spinneret was often contaminated, and the spinning properties were also somewhat poor.
(比較例2)
実施例2.比較例3〜4
実施例1のブレンド構造体(C)を芯成分にL−LDP
Hを鞘成分に用いてスパンボンド法にて不織布を製造し
た。なお、紡糸条件は実施例1に準じて行った。すなわ
ち、吸引開繊し、移動する金網状物に衝突させ、目付1
0g/m”のウェブを作成し9次いでエンボスロールに
て圧縮加熱処理を行い、不織布を製造した。その性能結
果を第2表に示す。(Comparative Example 2) Example 2. Comparative Examples 3 to 4 L-LDP using the blend structure (C) of Example 1 as a core component
A nonwoven fabric was produced by a spunbond method using H as a sheath component. In addition, the spinning conditions were performed according to Example 1. In other words, the fibers are opened by suction, collided with a moving wire mesh, and the fabric weight is 1.
A web of 0 g/m" was prepared and then subjected to compression heat treatment using an embossing roll to produce a nonwoven fabric. The performance results are shown in Table 2.
第2表 次に、比較例1及び比較例2のポリマーを用い。Table 2 Next, the polymers of Comparative Example 1 and Comparative Example 2 were used.
紡糸条件はそれぞれ比較例1及び比較例2に準じて行う
以外スパンボンド法にて実施例2に準じて不織布の製造
を行った。その性能結果を第2表に示す。得られた不織
布の風合及び引張強力を調べると1本発明実施例2のト
ータルハンド値は、L−LDPE単独の不織布に近い風
合を示し9強力面ではPETとL−LDPEとの芯鞘複
合繊維と同程度まで向上しているのがわかる。この結果
から本発明が実用面の風合9強力は勿論操業性の面から
も優れているのが明らかとなった。Nonwoven fabrics were produced using the spunbond method in accordance with Example 2, except that the spinning conditions were the same as in Comparative Examples 1 and 2, respectively. The performance results are shown in Table 2. When examining the texture and tensile strength of the obtained nonwoven fabric, 1. The total hand value of Example 2 of the present invention showed a texture similar to that of a nonwoven fabric made of L-LDPE alone.9 In terms of strength, the core-sheath value of PET and L-LDPE was It can be seen that the improvement is comparable to that of composite fibers. From these results, it is clear that the present invention is superior not only in terms of practical feel and strength but also in terms of operability.
実施例3.比較例5
実施例1にて使用したブレンド構造体(C)を芯成分、
L−LDPRを鞘成分に用い、複合比50:50.紡
糸温度L−LDPE 220℃、ブレンド構造体230
℃、紡糸口金0.4酊φ×200孔数、吐出量400g
/分、紡糸速度1600m/分にて未延伸繊維を製造し
1次いで延伸温度100℃、延伸倍率3.1倍にて延伸
し、スタッフインボックスにて捲縮を付与し、繊維長5
1酊にカットした。Example 3. Comparative Example 5 The blend structure (C) used in Example 1 was added as a core component,
L-LDPR was used as the sheath component, and the composite ratio was 50:50. Spinning temperature L-LDPE 220°C, blend structure 230
°C, spinneret 0.4mmφ x 200 holes, discharge amount 400g
undrawn fibers were produced at a spinning speed of 1,600 m/min, then stretched at a drawing temperature of 100°C and a draw ratio of 3.1 times, and crimped in a stuff-in box to obtain a fiber length of 5.
I cut it into one piece.
得られた短繊維の糸質性能は、単糸繊度3.5den、
+繊維長51曹會1強度3.6g/d、伸度33%、捲
縮数24ケ/吋。The yarn properties of the obtained short fibers were as follows: single yarn fineness: 3.5 den;
+Fiber length: 51 Soft strength: 3.6 g/d, elongation: 33%, number of crimps: 24 crimps/inch.
捲縮率11%、捲縮弾性率60%、捲縮伸長率12.5
%で優れたステープル特性を示し、さらに紡糸、延伸。Crimping rate: 11%, crimp elasticity: 60%, crimp elongation rate: 12.5
%, exhibits excellent stapling properties, and can be further spun and drawn.
捲縮加工の操業性も良好であった。The operability of the crimping process was also good.
次に、得たステープルをカード機に供給し、目付10g
/ m ”のウェブとし1次いでL−LDPHの融点以
下の温度でカレンダー加工機による加圧熱接着を行い、
不織布を製造した。得られた不織布の物性を調べたとこ
ろ、引張強力1 、0 kg / 3 cm 、圧縮硬
軟度10gの性能を有していた。Next, feed the obtained staple to a card machine and
/ m ” web, and then pressure-thermal bonding was performed using a calendering machine at a temperature below the melting point of L-LDPH.
A nonwoven fabric was produced. When the physical properties of the obtained nonwoven fabric were examined, it was found to have a tensile strength of 1.0 kg/3 cm and a compression hardness/softness of 10 g.
本発明と比較する目的で実施例3のブレンド構造物のか
わりに高密度ポリエチレン0IDPE) (密度0.9
61g/aJ、 M I値35g/10分、融解熱67
cal/g)とイソタクチックポリプロピレン(P P
)(実施例1と同一ポリマー、密度0.905g/ c
d 、 M F値15g/10分)を用い、ブレンド比
率75:25.芯鞘比50:50にて複合繊維を製造し
たが、紡糸段階でブレンド斑を引き起こし糸切れが多発
し、未延伸繊維を得ることすらできなかった。For the purpose of comparison with the present invention, the blend structure of Example 3 was replaced with high density polyethylene 0IDPE) (density 0.9
61g/aJ, M I value 35g/10min, heat of fusion 67
cal/g) and isotactic polypropylene (P P
) (same polymer as Example 1, density 0.905 g/c
d, M F value of 15 g/10 min) and a blend ratio of 75:25. Composite fibers were produced with a core/sheath ratio of 50:50, but uneven blending occurred during the spinning stage, resulting in frequent yarn breakage, and it was not even possible to obtain undrawn fibers.
(発明の効果)
本発明の熱接着繊維は、ソフトな風合で強力面でも優れ
ていることから使い捨ておむつの内側の部分に最適であ
る。また、従来のL−LDPR単独又はL−LDPEと
PETとの複合繊維とは異なり、紡糸時のノズル汚れが
少ないことから回帰時間の短縮。(Effects of the Invention) The heat-adhesive fiber of the present invention has a soft feel and is excellent in strength, so it is ideal for the inner part of disposable diapers. Additionally, unlike conventional L-LDPR alone or composite fibers of L-LDPE and PET, there is less nozzle contamination during spinning, which shortens return time.
ノズル取りつけ期間の延長ができ操業面で優れているた
め熱接着を必要とする不織布、織物1編物等の分野で広
く用いられるものである。It is widely used in the fields of nonwoven fabrics, woven fabrics, and knitted fabrics that require thermal bonding because the nozzle installation period can be extended and it is excellent in terms of operation.
Claims (3)
,オクテン−1の含有量が1〜15重量%,密度が0.
900〜0.940g/cm^3,メルトインデックス
がASTMD−1238(E)の方法で測定して5〜1
00g/10分,融解熱が25cal/g以上からなる
線状低密度ポリエチレン(A)が99〜50重量%,メ
ルトフローレートがASTMD−1238(L)の方法
で測定して20g/10分より小さい結晶性ポリプロピ
レン(B)が1〜50重量%,上記(A)と(B)とか
らなるブレンド構造体(C)を芯成分,上記線状低密度
ポリエチレン(A)を鞘成分として構成された断面形状
を有することを特徴とする熱接着繊維。(1) A low-density copolymer of ethylene and octene-1, with an octene-1 content of 1 to 15% by weight and a density of 0.
900-0.940g/cm^3, melt index is 5-1 as measured by the method of ASTM D-1238 (E)
00 g/10 minutes, linear low density polyethylene (A) having a heat of fusion of 25 cal/g or more is 99 to 50% by weight, and the melt flow rate is 20 g/10 minutes as measured by the method of ASTM D-1238 (L). It is composed of 1 to 50% by weight of small crystalline polypropylene (B), a blend structure (C) consisting of the above (A) and (B) as a core component, and the above linear low density polyethylene (A) as a sheath component. A thermal adhesive fiber characterized by having a cross-sectional shape.
求の範囲第1項記載の熱接着繊維。(2) The heat-adhesive fiber according to claim 1, wherein the fiber has a single filament fineness of 8 denier or less.
,オクテン−1の含有量が1〜15重量%,密度が0.
900〜0.940g/cm^3,メルトインデックス
がASTMD−1238(E)の方法で測定して5〜1
00g/10分,融解熱が25cal/g以上からなる
線状低密度ポリエチレン(A)が99〜50重量%,メ
ルトフローレートがASTMD−1238(L)の方法
で測定して20g/10分より小さい結晶性ポリプロピ
レン(B)が1〜50重量%,上記(A)と(B)とか
らなるブレンド構造体(C)を芯成分,上記線状低密度
ポリエチレン(A)を鞘成分として構成された断面形状
を有することを特徴とする熱接着繊維からなる不織布。(3) A low-density copolymer of ethylene and octene-1, with an octene-1 content of 1 to 15% by weight and a density of 0.
900-0.940g/cm^3, melt index is 5-1 as measured by the method of ASTM D-1238 (E)
00 g/10 minutes, linear low density polyethylene (A) having a heat of fusion of 25 cal/g or more is 99 to 50% by weight, and the melt flow rate is 20 g/10 minutes as measured by the method of ASTM D-1238 (L). It is composed of 1 to 50% by weight of small crystalline polypropylene (B), a blend structure (C) consisting of the above (A) and (B) as a core component, and the above linear low density polyethylene (A) as a sheath component. A nonwoven fabric made of thermally bonded fibers having a cross-sectional shape.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62072719A JPS63243324A (en) | 1987-03-25 | 1987-03-25 | Heat bonding fiber and nonwoven fabric thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62072719A JPS63243324A (en) | 1987-03-25 | 1987-03-25 | Heat bonding fiber and nonwoven fabric thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63243324A true JPS63243324A (en) | 1988-10-11 |
Family
ID=13497442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62072719A Pending JPS63243324A (en) | 1987-03-25 | 1987-03-25 | Heat bonding fiber and nonwoven fabric thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63243324A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02127520A (en) * | 1988-10-31 | 1990-05-16 | Unitika Ltd | Heat bonding fiber and nonwoven fabric thereof |
JPH02216251A (en) * | 1989-02-10 | 1990-08-29 | Unitika Ltd | Nonwoven fabric composed of heat-bonding conjugate fiber |
EP0522995A2 (en) * | 1991-07-05 | 1993-01-13 | Danaklon A/S | Polyethylene bicomponent fibres |
US5607798A (en) * | 1994-08-25 | 1997-03-04 | Kimberly-Clark Corporation | Soft and strong thermoplastic polymer and nonwoven fabric laminates |
US5985193A (en) * | 1996-03-29 | 1999-11-16 | Fiberco., Inc. | Process of making polypropylene fibers |
US6207602B1 (en) | 1994-11-23 | 2001-03-27 | Bba Nonwovens Simpsonville, Inc. | Nonwoven fabrics and fabric laminates from multiconstituent polyolefin fibers |
US6417122B1 (en) | 1994-11-23 | 2002-07-09 | Bba Nonwovens Simpsonville, Inc. | Multicomponent fibers and fabrics made using the same |
US6417121B1 (en) | 1994-11-23 | 2002-07-09 | Bba Nonwovens Simpsonville, Inc. | Multicomponent fibers and fabrics made using the same |
US6420285B1 (en) | 1994-11-23 | 2002-07-16 | Bba Nonwovens Simpsonville, Inc. | Multicomponent fibers and fabrics made using the same |
US6458726B1 (en) | 1996-03-29 | 2002-10-01 | Fiberco, Inc. | Polypropylene fibers and items made therefrom |
-
1987
- 1987-03-25 JP JP62072719A patent/JPS63243324A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02127520A (en) * | 1988-10-31 | 1990-05-16 | Unitika Ltd | Heat bonding fiber and nonwoven fabric thereof |
JPH02216251A (en) * | 1989-02-10 | 1990-08-29 | Unitika Ltd | Nonwoven fabric composed of heat-bonding conjugate fiber |
US5540992A (en) * | 1991-05-07 | 1996-07-30 | Danaklon A/S | Polyethylene bicomponent fibers |
EP0522995A2 (en) * | 1991-07-05 | 1993-01-13 | Danaklon A/S | Polyethylene bicomponent fibres |
US5607798A (en) * | 1994-08-25 | 1997-03-04 | Kimberly-Clark Corporation | Soft and strong thermoplastic polymer and nonwoven fabric laminates |
US6417121B1 (en) | 1994-11-23 | 2002-07-09 | Bba Nonwovens Simpsonville, Inc. | Multicomponent fibers and fabrics made using the same |
US6207602B1 (en) | 1994-11-23 | 2001-03-27 | Bba Nonwovens Simpsonville, Inc. | Nonwoven fabrics and fabric laminates from multiconstituent polyolefin fibers |
US6417122B1 (en) | 1994-11-23 | 2002-07-09 | Bba Nonwovens Simpsonville, Inc. | Multicomponent fibers and fabrics made using the same |
US6420285B1 (en) | 1994-11-23 | 2002-07-16 | Bba Nonwovens Simpsonville, Inc. | Multicomponent fibers and fabrics made using the same |
US6448194B2 (en) | 1994-11-23 | 2002-09-10 | Bba Nonwovens Simpsonville, Inc. | Nonwoven fabrics and fabric laminates from multiconstituent polyolefin fibers |
US6465378B2 (en) | 1994-11-23 | 2002-10-15 | Bba Nonwovens Simpsonville, Inc. | Nonwoven fabrics and fabric laminates from multiconstituent polyolefin fibers |
US6516472B2 (en) | 1994-11-23 | 2003-02-11 | Bba Nonwovens Simpsonville, Inc. | Nonwoven fabrics and fabric laminates from multiconstituent polyolefin fibers |
US5985193A (en) * | 1996-03-29 | 1999-11-16 | Fiberco., Inc. | Process of making polypropylene fibers |
US6458726B1 (en) | 1996-03-29 | 2002-10-01 | Fiberco, Inc. | Polypropylene fibers and items made therefrom |
JP2003519295A (en) * | 1999-12-30 | 2003-06-17 | ビービーエイ・ノンウォーヴンズ・シンプソンヴィル,インコーポレイテッド | Multicomponent fibers and fabrics made therefrom |
JP2006176948A (en) * | 1999-12-30 | 2006-07-06 | Bba Nonwovens Simpsonville Inc | Multicomponent fiber and fabric made using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4874666A (en) | Polyolefinic biconstituent fiber and nonwove fabric produced therefrom | |
JP2000507654A (en) | Polypropylene fibers and products made therefrom | |
JPS58191215A (en) | Polyethylene hot-melt fiber | |
US5277974A (en) | Heat-bondable filament and nonwoven fabric made of said filament | |
KR100510952B1 (en) | A polypropylene fibre and a product made therefrom | |
EP0311860B1 (en) | Nonwoven fabric made of heat bondable fibers | |
JPS63243324A (en) | Heat bonding fiber and nonwoven fabric thereof | |
TWI428484B (en) | Split-type composite fiber containing polyacetal, fiber formed body using the same, and product | |
JP3741886B2 (en) | Ultrafine fiber generation possible fiber, ultrafine fiber generated from this, and fiber sheet using this ultrafine fiber | |
JPS6392722A (en) | Heat-weldable fiber and nonwoven cloth made thereof | |
JP3725716B2 (en) | Ultrafine fiber generation possible fiber, ultrafine fiber generated from this, and fiber sheet using this ultrafine fiber | |
JP2872543B2 (en) | Thermally bonded nonwoven fabric and method for producing the same | |
JPH10331063A (en) | Composite nonwoven fabric and its production | |
JPH02139469A (en) | Nonwoven fabric consisting of thermally bonded filament | |
JP3790460B2 (en) | Thermal adhesive composite fiber, method for producing the same, and nonwoven fabric using the same | |
JPH05500394A (en) | Bicomponent fiber manufacturing method | |
JP2001159026A (en) | Polypropylene-containing fiber and fiber sheet | |
JP2768461B2 (en) | Fiber comprising a blend structure of polyethylene and polypropylene and nonwoven fabric using the fiber | |
JPH01111016A (en) | Polyethylene composite fiber and production thereof | |
JPS63227814A (en) | Heat bonding fiber and nonwoven fabric thereof | |
JPH03249217A (en) | Light-weight sheath-core conjugate hollow polyester fiber | |
JPS6392723A (en) | Wettable composite fiber and nonwoven cloth made thereof | |
JP3790459B2 (en) | Thermal adhesive composite fiber and method for producing the same, and nonwoven fabric and synthetic paper using the same | |
JPS6139409B2 (en) | ||
JPH0261156A (en) | Nonwoven fabric comprising hot adhesive filaments |