JPH10331063A - Composite nonwoven fabric and its production - Google Patents

Composite nonwoven fabric and its production

Info

Publication number
JPH10331063A
JPH10331063A JP9139702A JP13970297A JPH10331063A JP H10331063 A JPH10331063 A JP H10331063A JP 9139702 A JP9139702 A JP 9139702A JP 13970297 A JP13970297 A JP 13970297A JP H10331063 A JPH10331063 A JP H10331063A
Authority
JP
Japan
Prior art keywords
fiber
web
short
fiber web
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9139702A
Other languages
Japanese (ja)
Inventor
Koichi Nagaoka
孝一 長岡
Keiko Sakota
恵子 迫田
Takeshi Senzuka
健史 千塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP9139702A priority Critical patent/JPH10331063A/en
Publication of JPH10331063A publication Critical patent/JPH10331063A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain the subject composite nonwoven fabric resistant to delamination, having excellent mechanical properties and water-absorptivity and suitable for underwear, disposable wiper, etc., by laminating a filament web to a specific stable fiber web and three-dimensionally interlocking the constituent fibers with each other. SOLUTION: A filament web A is laminated to a stable fiber web B composed of a mixture of water-absorbing staple fibers and ultrafine split staple fibers produced by splitting one or both polymers of a splittable bicomponent conjugate staple fiber consisting of two kinds of mutually incompatible fiber- forming polymers. The produced laminate is subjected to the three-dimensional interlocking of the constituent fibers of the web A, the constituent fibers of the web A and web B and the constituent fibers of the web B.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、複合不織布および
その製造方法に関する。
[0001] The present invention relates to a composite nonwoven fabric and a method for producing the same.

【0002】[0002]

【従来の技術】従来より、基布上に短繊維ウエブを積層
した種々の複合不織布が開示されている。例えば、特開
平1−97257号公報に開示されているような長繊維
不織布と短繊維ウエブとが積層され、両ウエブの構成繊
維同士が交絡した積層不織布がある。しかし、この複合
不織布は、両ウエブの構成繊維同士の交絡は十分でな
く、層間剥離しやすいものである。
2. Description of the Related Art Conventionally, various composite nonwoven fabrics in which short fiber webs are laminated on a base fabric have been disclosed. For example, there is a laminated nonwoven fabric in which a long-fiber nonwoven fabric and a short-fiber web are laminated as disclosed in JP-A-1-97257 and the constituent fibers of both webs are entangled. However, in the composite nonwoven fabric, the constituent fibers of both webs are not sufficiently entangled with each other and are easily delaminated.

【0003】また、特開昭63−211354号公報に
は、長繊維不織布を基布として、この基布の片面あるい
は両面に存在する長繊維を部分的に切断して繊維端を形
成させた長繊維不織布に短繊維ウエブを積層して、両層
の構成繊維同士を交絡させた積層不織布が開示されてい
る。しかし、この積層不織布は、長繊維を部分的に切断
するために機械的特性が低下し、長繊維不織布特有の表
面平滑性が損なわれるという問題がある。
Japanese Patent Application Laid-Open No. 63-213354 discloses a long fiber in which a long fiber non-woven fabric is used as a base fabric, and a long fiber present on one side or both sides of the base fabric is partially cut to form a fiber end. A laminated nonwoven fabric in which a short fiber web is laminated on a fibrous nonwoven fabric and the constituent fibers of both layers are entangled with each other is disclosed. However, this laminated nonwoven fabric has a problem that mechanical properties are deteriorated due to partial cutting of long fibers, and surface smoothness peculiar to long fiber nonwoven fabrics is impaired.

【0004】さらには、特開昭53−114975号公
報や特開昭53−124601号公報には、織編物等の
基布上に分割型二成分系複合短繊維からなる不織ウエブ
を積層した複合不織布や織編物等の基布上にメルトブロ
ーン法により得られる極細繊維ウエブを積層した複合不
織布が開示されている。しかし、これらは、その用途が
合成皮革に限定され、しかもコストが極めて高価であ
り、また吸水性は備わっていないので、直接肌に触れる
衣類や使い捨てのワイパー等の用途には適さないもので
ある。
Further, in Japanese Patent Application Laid-Open Nos. 53-114975 and 53-124601, a nonwoven web composed of split type bicomponent conjugate short fibers is laminated on a base fabric such as a woven or knitted fabric. A composite nonwoven fabric is disclosed in which an ultrafine fiber web obtained by a melt blown method is laminated on a base cloth such as a composite nonwoven fabric or a woven or knitted fabric. However, their use is limited to synthetic leather, the cost is extremely high, and they do not have water absorption, so they are not suitable for applications such as clothing that directly touches the skin and disposable wipers. .

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、上記
複合不織布が有する問題点を解決し、広い用途に用いる
ことができる複合不織布であり、層間剥離することな
く、機械的特性に優れ、吸水性を兼ね備えた複合不織布
を提供することにある。
An object of the present invention is to solve the problems of the above-mentioned composite nonwoven fabric, and to provide a composite nonwoven fabric which can be used for a wide range of applications. An object of the present invention is to provide a composite nonwoven fabric having water absorbency.

【0006】[0006]

【課題を解決するための手段】本発明者らは、前記課題
を解決すべく鋭意研究の結果、本発明に到達したもので
ある。すなわち、本発明は、繊維形成性重合体からなる
長繊維ウエブと、下記(1)を満足する短繊維ウエブと
が積層されてなり、かつ長繊維ウエブの構成繊維同士、
長繊維ウエブと短繊維ウエブの構成繊維同士および短繊
維ウエブの構成繊維同士の三次元交絡により一体化して
なることを特徴とする複合不織布を要旨とするものであ
る。
Means for Solving the Problems The present inventors have accomplished the present invention as a result of intensive studies to solve the above-mentioned problems. That is, the present invention provides a laminate of a long fiber web made of a fiber-forming polymer and a short fiber web satisfying the following (1), and constituting fibers of the long fiber web:
The gist of the present invention is a composite nonwoven fabric characterized in that the constituent fibers of the long fiber web and the short fiber web and the constituent fibers of the short fiber web are integrated by three-dimensional entanglement.

【0007】記 (1)互いに非相溶性である繊維形成性重合体Aと繊維
形成性重合体Bからなる分割型二成分系複合短繊維の分
割により発現した前記重合体Aおよび/または前記重合
体Bからなる極細割繊短繊維と吸水性を有する短繊維が
混綿されてなる短繊維ウエブ。
[0007] (1) The polymer A and / or the weight expressed by splitting a splittable bicomponent conjugate short fiber composed of a fiber-forming polymer A and a fiber-forming polymer B, which are incompatible with each other. A short fiber web comprising a mixture of ultrafine splitting short fibers made of the union B and short fibers having water absorbency.

【0008】また、本発明は、繊維形成性重合体からな
る長繊維群を溶融紡糸し、前記長繊維群をエアーサツカ
ーを用いて引取り、スクリーンコンベア等の移動式捕集
面上に開繊堆積させて長繊維ウエブとし、前記長繊維ウ
エブを部分熱圧着装置を用いて長繊維ウエブを構成する
繊維の最も表面に位置する重合体の少なくとも融点また
は軟化点より低い温度で部分熱圧着処理を行った後、長
繊維ウエブの少なくとも片面に、互いに非相溶性である
繊維形成性重合体Aと繊維形成性重合体Bからなる分割
型二成分系複合短繊維と吸水性を有する短繊維とを混綿
した短繊維ウエブを積層し、次いで、前記積層体に高圧
液体流処理を施し、長繊維ウエブの構成繊維同士、長繊
維ウエブと短繊維ウエブとの構成繊維同士および短繊維
ウエブの構成繊維同士を三次元的に交絡させることによ
り、積層体を全体として一体化させることを特徴とする
複合不織布の製造方法を要旨とするものである。
[0008] The present invention also provides a method of melt-spinning a group of long fibers made of a fiber-forming polymer, taking up the group of long fibers using an air sacker, and opening the fiber on a movable collecting surface such as a screen conveyor. Deposited into a long fiber web, the long fiber web is subjected to partial thermocompression treatment at a temperature lower than at least the melting point or softening point of the polymer located on the outermost surface of the fiber constituting the long fiber web using a partial thermocompression device. After performing, on at least one side of the long fiber web, a splittable bicomponent conjugate short fiber composed of the fiber-forming polymer A and the fiber-forming polymer B, which are incompatible with each other, and a short fiber having a water absorbing property. The mixed short fiber webs are laminated, and then the high pressure liquid flow treatment is applied to the laminate to form fibers of the long fiber web, fibers of the long fiber web and the short fiber web, and fibers of the short fiber web. By three-dimensionally entangled, and is to a method for producing a composite nonwoven fabric, characterized in that to integrate the laminate as a whole and gist.

【0009】[0009]

【発明の実施の形態】本発明に用いる長繊維ウエブは、
繊維形成性重合体からなるものである。繊維形成性重合
体としては、ポリオレフイン系重合体、ポリアミド系重
合体、ポリエステル系重合体等が挙げられる。
DETAILED DESCRIPTION OF THE INVENTION The long fiber web used in the present invention is:
It is composed of a fiber-forming polymer. Examples of the fiber-forming polymer include a polyolefin-based polymer, a polyamide-based polymer, and a polyester-based polymer.

【0010】ポリオレフイン系重合体としては、炭素原
子数が2〜16個の脂肪族α−モノオレフイン、例えば
エチレン、プロピレン、1−ブテン、1−ペンテン,3
−メチル1−ブテン、1−ヘキセン、1−オクテン、1
−ドデセン、1−オクタデセンのホモポリオレフイン又
は共重合ポリオレフインがある。脂肪族α−モノオレフ
インは他のオレフインおよび/または少量(重合体重量
の約10重量%まで)の他のエチレン系不飽和モノマ
ー、例えばブタジエン、イソプレン、ペンタジエン−
1,3、スチレン、α−メチルスチレンの如き類似のエ
チレン系不飽和モノマ−と共重合されていてもよい。特
にポリエチレンの場合、重合体重量の約10重量%まで
のプロピレン、ブテン−1、ヘキセン−1、オクテン−
1または類似の高級α−オレフインと共重合させたもの
が製糸性がよくなるため好ましい。
As the polyolefin polymer, aliphatic α-monoolefins having 2 to 16 carbon atoms, for example, ethylene, propylene, 1-butene, 1-pentene, 3
-Methyl 1-butene, 1-hexene, 1-octene, 1
-Homopolyolefins of 1-octadecene and 1-octadecene or copolymerized polyolefins. Aliphatic α-monoolefins may comprise other olefins and / or small amounts (up to about 10% by weight of polymer weight) of other ethylenically unsaturated monomers such as butadiene, isoprene, pentadiene-
It may be copolymerized with similar ethylenically unsaturated monomers such as 1,3, styrene and α-methylstyrene. Particularly in the case of polyethylene, propylene, butene-1, hexene-1, octene-1 can be used up to about 10% by weight of the polymer.
Those copolymerized with one or similar higher α-olefins are preferred because of improved spinning properties.

【0011】ポリアミド系重合体としては、ナイロン−
4、ナイロン−46、ナイロン−6、ナイロン−66、
ナイロン−610、ナイロン−11、ナイロン−12や
ポリメタキシレンアジパミド(MXD−6)、ポリパラ
キシレンデカンアミド(PXD−12)、ポリビスシク
ロヘキシルメタンデカンアミド(PCM−12)又はこ
れらのモノマーを構成単位とする共重合ポリアミドがあ
る。ポリエステル系重合体としては、酸成分としてテレ
フタル酸、イソフタル酸、フタル酸、2,6−ナフタレ
ンジカルボン酸等の芳香族ジカルボン酸もしくはアジピ
ン酸、セバシン酸などの脂肪族ジカルボン酸またはこれ
らのエステル類と、アルコール成分としてエチレングリ
コール、ジエチレングリコール、1,4−ブタンジオー
ル、ネオペンチルグリコール、1,4−シクロヘキサン
ジメタノール等のジオール化合物とから合成されるホモ
ポリエステルないしは共重合ポリエステルであり、上記
ポリエステルにパラオキシ安息香酸、5−ナトリウムス
ルフオイソフタール酸、ポリアルキレングリコール、ペ
ンタエリスリトール、ビスフエノールA等が添加あるい
は共重合されていてもよい。
As the polyamide polymer, nylon-
4, nylon-46, nylon-6, nylon-66,
Nylon-610, Nylon-11, Nylon-12, polymetaxylene adipamide (MXD-6), polyparaxylenedecaneamide (PXD-12), polybiscyclohexylmethanedecaneamide (PCM-12), or a monomer thereof There is a copolymerized polyamide having as a structural unit. As the polyester polymer, as an acid component, terephthalic acid, isophthalic acid, phthalic acid, aromatic dicarboxylic acid such as 2,6-naphthalenedicarboxylic acid or adipic acid, aliphatic dicarboxylic acid such as sebacic acid or esters thereof. A homopolyester or a copolyester synthesized from a diol compound such as ethylene glycol, diethylene glycol, 1,4-butanediol, neopentyl glycol, or 1,4-cyclohexanedimethanol as an alcohol component. An acid, 5-sodium sulfoisophthalic acid, polyalkylene glycol, pentaerythritol, bisphenol A or the like may be added or copolymerized.

【0012】上記以外の繊維形成性重合体としては、例
えばビニル系重合体が用いられ、具体的にはポリビニー
ルアルコール、ポリ酢酸ビニル、ポリアクリル酸エステ
ル、エチレン酢酸ビニル共重合体、ポリ塩化ビニル、ポ
リ塩化ビニリデンン、または、これらの共重合体が挙げ
られる。さらに、ポリフエニレン系重合体またはその共
重合体を使用することもできる。
As the fiber-forming polymer other than the above, for example, a vinyl polymer is used. Specifically, polyvinyl alcohol, polyvinyl acetate, polyacrylate, ethylene-vinyl acetate copolymer, polyvinyl chloride , Polyvinylidene chloride, or a copolymer thereof. Further, a polyphenylene-based polymer or a copolymer thereof can also be used.

【0013】なお、繊維形成性重合体には、本発明の目
的を達成しうる範囲内で、艶消し剤、顔料、防炎剤、消
臭剤、帯電防止剤、酸化防止剤、紫外線吸収剤等の任意
の添加物が添加されていてもよい。
The fiber-forming polymer includes a matting agent, a pigment, a flame retardant, a deodorant, an antistatic agent, an antioxidant, and an ultraviolet absorber as long as the object of the present invention can be achieved. And other additives may be added.

【0014】本発明に用いる長繊維ウエブを構成する長
繊維の形態は、上記重合体単独からなる単層型のもので
あっても、複数の重合体からなる芯鞘複合型、サイドバ
イサイド型等の複合繊維であってもよい。本発明におい
て、後の部分熱圧着処理や複合不織布の熱加工性を考慮
し、繊維形成性低融点重合体を鞘部に、前記重合体の融
点より30〜180℃高い融点を有する繊維形成性高融
点重合体を芯部に位置せしめた芯鞘型複合長繊維からな
る長繊維ウエブを用いることが好ましい。鞘部の重合体
の融点より30℃以上融点の高い重合体を芯部とするこ
とで、後の部分熱圧着処理や本発明の複合不織布をヒー
トシール等の熱加工処理する場合に、少なくとも鞘部の
重合体のみを溶融させ、芯部の重合体は熱劣化させず繊
維構造を保たせることが可能となるので、柔軟性に富
み、機械的強力に優れた複合不織布を得ることができ
る。また、両者の融点差が180℃を超えると、両重合
体を溶融複合紡糸する際に低融点重合体が熱劣化を起こ
しやすく、現実的に複合長繊維を製造しにくくなるた
め、好ましくない。
[0014] The form of long fibers constituting the long fiber web used in the present invention may be a single layer type consisting of the above-mentioned polymer alone, a core-sheath composite type comprising a plurality of polymers, a side-by-side type or the like. It may be a conjugate fiber. In the present invention, in consideration of the subsequent partial thermocompression treatment and the thermal workability of the composite nonwoven fabric, the fiber-forming low-melting polymer is used as the sheath, and the fiber-forming material having a melting point higher by 30 to 180 ° C. than the melting point of the polymer is used. It is preferable to use a long fiber web made of a core-sheath composite long fiber having a high melting point polymer positioned at the core. By using a core having a polymer having a melting point of 30 ° C. or more higher than the melting point of the polymer of the sheath, at least a sheath is required in the subsequent partial thermocompression treatment or the heat treatment such as heat sealing of the composite nonwoven fabric of the present invention. Since only the polymer in the core portion is melted and the polymer in the core portion can be maintained in a fibrous structure without being thermally degraded, a composite nonwoven fabric having high flexibility and excellent mechanical strength can be obtained. On the other hand, if the difference between the melting points of both polymers exceeds 180 ° C., it is not preferable because the low-melting polymer easily undergoes thermal deterioration when the both polymers are melt-spun, and it becomes practically difficult to produce a composite filament.

【0015】芯鞘型複合長繊維を構成する低融点重合体
と高融点重合体との組合わせとしては、ポリオレフイン
/ポリアミド、ポリオレフイン/ポリエステル、ポリア
ミド/ポリエステル等や、同種の重合体のホモポリマー
とコポリマーが挙げられる。
Examples of the combination of the low-melting polymer and the high-melting polymer constituting the core-sheath composite long fiber include polyolefin / polyamide, polyolefin / polyester, polyamide / polyester and the like, and homopolymers of the same type of polymer. And copolymers.

【0016】長繊維ウェブを構成する長繊維の単糸維度
は、特に限定されないが、1.5〜8.0デニールであ
ることが好ましく、さらには2.0〜5.0デニールで
あるのが好ましい。単糸繊度が1.5デニール未満であ
ると、得られた複合不織布の機械的特性が低下したり、
溶融紡糸工程において製糸性が低下する傾向となる。一
方、単糸繊度が8.0デニールを超えると、得られたウ
エブの風合が硬くなって、柔軟性に富む複合不織布を得
にくくなる。
The single fiber degree of the long fibers constituting the long fiber web is not particularly limited, but is preferably 1.5 to 8.0 denier, and more preferably 2.0 to 5.0 denier. preferable. If the single yarn fineness is less than 1.5 denier, the mechanical properties of the obtained composite nonwoven fabric are reduced,
In the melt spinning step, the spinning property tends to decrease. On the other hand, if the single yarn fineness exceeds 8.0 denier, the feeling of the obtained web becomes hard, and it becomes difficult to obtain a highly flexible composite nonwoven fabric.

【0017】本発明で用いる長繊維ウエブは、一般に以
下の如き方法で製造される。すなわち、従来公知の溶融
複合紡糸法で紡糸され、横吹付や環状吹付等の従来公知
の冷却装置を用いて、吹付風により冷却された後、一般
的にエアーサツカーを用いて、目標繊度となるように牽
引細化されて引き取られる。牽引速度は3000m/分
以上、特に、4000m/分以上が不織布の寸法安定性
が向上するため更に好適である。エアーサツカーから排
出される長繊維は、一般的には、高圧電場中のコロナ放
電域か、または、摩擦衝突帯域を通過せしめて帯電開繊
させた後、スクリーンからなるコンベアーの如き移動堆
積装置上に開繊集積させて長繊維ウエブを得ることがで
きる。
The long fiber web used in the present invention is generally produced by the following method. That is, the fiber is spun by a conventionally known melt composite spinning method, is cooled by a blowing wind using a conventionally known cooling device such as a horizontal spraying or an annular spraying, and then reaches a target fineness generally using an air sucker. As if towed and taken off. A traction speed of 3000 m / min or more, especially 4000 m / min or more is more preferable because the dimensional stability of the nonwoven fabric is improved. In general, the long fibers discharged from the air sacker are passed through a corona discharge area in a high-voltage field, or after passing through a frictional collision zone to be charged and spread, and then placed on a moving deposition device such as a screen conveyor. To obtain a long fiber web.

【0018】次に、該長繊維ウエブを部分熱圧着装置を
用いて処理し部分的に熱圧着する。部分熱圧着処理と
は、例えば長繊維を構成する重合体の表面に位置する重
合体の融点または軟化点以下の温度で加熱され表面に彫
刻模様が刻印された金属ロールすなわちエンボスロール
と、加熱され表面が平滑な金属ロールとの間に、長繊維
ウエブを通すことによって、いわゆる熱エンボスロール
を用いて、また超音波融着機を用いて、前記彫刻模様に
当接する長繊維ウエブ同士を熱的に圧着せしめることを
いう。
Next, the long fiber web is processed using a partial thermocompression bonding apparatus and partially thermocompression bonded. Partial thermocompression treatment is, for example, a metal roll or embossing roll, which is heated at a temperature equal to or lower than the melting point or softening point of the polymer located on the surface of the polymer constituting the long fiber and has an engraved pattern engraved on the surface, and heated. By passing a long fiber web between a metal roll having a smooth surface and using a so-called hot embossing roll, or using an ultrasonic welding machine, the long fiber webs abutting on the engraved pattern are thermally bonded to each other. It means that it is crimped on.

【0019】個々の熱圧着形状は、円形である必要は無
く、菱形、三角形、T形等任意の形状を適宜選択すれば
よい。個々の熱圧着部の面積は、0.1〜1.0mm2
の範囲で、その密度すなわち圧接点密度が4〜80点/
cm2 のものであるのがよい。また、長繊維ウエブの全
表面積に対する全圧接領域の面積の比すなわち圧接面積
率は5〜30%が好ましく、さらには5〜20%が好ま
しい。圧接面積率が5%未満であると、複合不織布の機
械的特性及び寸法安定性が劣る傾向にある。逆に30%
を超えると、短繊維ウエブを積層し高圧液体流処理にて
交絡処理を施す際に、交絡部分の減少により両ウエブ間
の剥離強力が低下する傾向にある。
Each thermocompression bonding shape does not need to be circular, and any shape such as a rhombus, a triangle, and a T shape may be appropriately selected. The area of each thermocompression bonding part is 0.1 to 1.0 mm 2
In the range of 4 to 80 points /
cm 2 is good. Further, the ratio of the area of the entire press contact area to the total surface area of the long fiber web, that is, the press contact area ratio is preferably 5 to 30%, and more preferably 5 to 20%. If the pressed area ratio is less than 5%, the mechanical properties and dimensional stability of the composite nonwoven fabric tend to be poor. 30% conversely
When it exceeds, when laminating short fiber webs and performing entanglement treatment by high-pressure liquid flow treatment, the peel strength between the two webs tends to decrease due to a decrease in entangled portions.

【0020】熱圧着処理における熱圧着温度(エンボス
ロール温度)は、長繊維を構成する重合体の表面に位置
する重合体の融点または軟化点以下の温度、好ましくは
前記重合体の融点または軟化点より5〜30℃低い温度
とする。例えば、融点または軟化点より高い温度で処理
を行うと、熱圧着装置に長繊維ウエブが固着し著しく操
業性を悪化させることとなる。熱圧着温度が前記重合体
の融点または軟化点に近い温度であると、熱圧着は強固
なものとなるため、長繊維ウエブの寸法安定性は優れ、
また、後の高圧液体流処理において、部分的熱圧着部は
残存し、非熱圧着部に存在する長繊維群が短繊維と三次
元的に交絡する。よって、得られる複合不織布は、縦・
横の破断伸度が高く寸法安定性に優れ、機械的強力が高
いものとなる。一方、熱圧着温度が前記重合体の融点ま
たは軟化点に遠い温度であると、部分熱圧着部は繊維形
態を残した仮熱圧着の状態となり、後の高圧液体流処理
において、部分熱圧着部は剥離されて繊維状となり、長
繊維群は自由に運動することができ、よりランダムに三
次元的に交絡する。よって、得られる複合不織布は、柔
軟性に優れ、層間剥離強力の高いものとなる。
The thermocompression bonding temperature (embossing roll temperature) in the thermocompression bonding treatment is not higher than the melting point or softening point of the polymer located on the surface of the polymer constituting the long fiber, preferably the melting point or softening point of the polymer. The temperature is 5 to 30C lower than that. For example, if the treatment is performed at a temperature higher than the melting point or the softening point, the long fiber web sticks to the thermocompression bonding apparatus and the operability is remarkably deteriorated. When the thermocompression bonding temperature is a temperature close to the melting point or softening point of the polymer, the thermocompression bonding becomes strong, and the dimensional stability of the long fiber web is excellent,
In the subsequent high-pressure liquid flow treatment, the partial thermocompression bonding portion remains, and the long fibers existing in the non-thermocompression bonding portion are three-dimensionally entangled with the short fibers. Therefore, the obtained composite nonwoven fabric is
High lateral elongation at break, excellent dimensional stability, and high mechanical strength. On the other hand, when the thermocompression bonding temperature is a temperature far from the melting point or the softening point of the polymer, the partial thermocompression bonding section is in a state of temporary thermocompression bonding in which the fiber form is left. Is exfoliated into a fibrous form, and the long fiber group can freely move and three-dimensionally entangle more randomly. Therefore, the obtained composite nonwoven fabric is excellent in flexibility and has high delamination strength.

【0021】長繊維ウエブの目付は100g/m2 程度
以下が好ましい。目付が100g/m2 を超えると、高
圧液体流処理の際に、長繊維ウエブの厚みの中心部まで
十分に三次元的に交絡しにくい傾向となる。しかし、こ
のような場合であっても、本発明の実施態様の一つであ
ることには変わりない。長繊維ウエブの目付の下限につ
いては、特に限定されないが、得られる複合不織布の地
合い等を考慮すると10g/m2 程度までが好ましい。
The basis weight of the long fiber web is preferably about 100 g / m 2 or less. If the basis weight exceeds 100 g / m 2 , it tends to be difficult to sufficiently entangle three-dimensionally up to the center of the thickness of the long fiber web during high-pressure liquid flow treatment. However, even in such a case, it is still one of the embodiments of the present invention. The lower limit of the basis weight of the long fiber web is not particularly limited, but is preferably up to about 10 g / m 2 in consideration of the formation of the obtained composite nonwoven fabric.

【0022】次に、本発明に使用する短繊維ウエブにつ
いて説明する。本発明に用いる短繊維ウエブは、分割型
二成分系複合短繊維の分割により発現した極細割繊短繊
維を有するものであり、この極細割繊短繊維は、長繊維
ウエブとの複合一体化の際に、長繊維ウエブ構成繊維と
の交絡性及び短繊維ウエブ構成繊維同士の交絡性に優れ
その交絡は解舒しにくいため安定し、層間剥離強力に優
れた複合不織布となる。
Next, the short fiber web used in the present invention will be described. The short fiber web used in the present invention has an ultrafine split short fiber developed by splitting a splittable bicomponent conjugate short fiber, and the ultrafine split short fiber is a composite integrated with a long fiber web. In this case, the composite nonwoven fabric is excellent in the entanglement with the fibers constituting the long fiber web and the entanglement between the fibers constituting the short fiber web.

【0023】本発明に用いられる分割型二成分系複合短
繊維は、本発明に用いる長繊維と同様の繊維形成性重合
体が用いられ、前述した重合体の中から、互いに非相溶
性である重合体を採用する。例えばその組み合わせとし
ては、ポリオレフイン/ポリアミド、ポリオレフイン/
ポリエステル、ポリアミド/ポリエステル等が挙げられ
る。分割型二成分系複合短繊維を構成する重合体が互い
に非相溶性であるのは、複合短繊維に衝撃を与えたとき
に分割しやすいようにするためである。分割型二成分系
複合短繊維は、カードウエブを作成する際にカード機に
かけるときの衝撃により分割割繊する、または長繊維ウ
エブと積層し、高圧液体流の作用により交絡一体化する
際、高圧液体流の衝撃により分割割繊させ極細割繊短繊
維を発現するものである。
As the splittable bicomponent conjugate short fibers used in the present invention, the same fiber-forming polymer as the long fibers used in the present invention is used, and among the above-mentioned polymers, they are incompatible with each other. Adopt a polymer. For example, as the combination, polyolefin / polyamide, polyolefin /
Polyester, polyamide / polyester and the like. The reason why the polymers constituting the splittable bicomponent conjugate short fibers are incompatible with each other is to facilitate splitting when an impact is applied to the conjugate short fibers. When split type bicomponent conjugate short fibers are split and split by an impact when applied to a card machine when making a card web, or when laminated with a long fiber web and entangled and integrated by the action of a high-pressure liquid flow, It splits and splits by the impact of a high-pressure liquid flow to develop ultrafine split short fibers.

【0024】分割型二成分系複合短繊維の具体例として
は、図1〜図4に示した如き横断面を持つものが好まし
い。これらは、複合短繊維を構成する両成分が共に繊維
の表面に露出しており、かつ繊維の断面内において、一
方の成分が他方の成分により分割割繊可能な形に仕切ら
れているものである。
As a specific example of the splittable bicomponent conjugate short fibers, those having a cross section as shown in FIGS. 1 to 4 are preferable. In these, both components constituting the composite staple fiber are both exposed on the surface of the fiber, and in the cross section of the fiber, one component is partitioned by the other component so as to be split and split. is there.

【0025】分割型二成分系複合短繊維の分割により少
なくとも発現した極細割繊短繊維の単糸繊度が0.5デ
ニール以下であることが好ましい。この分割により少な
くとも発現する極細割繊短繊維の単糸繊度が0.5デニ
ールを超えると、他の構成繊維との交絡性に劣る傾向と
なり、複合不織布の層間剥離強力に劣るものとなる。
The fineness of the ultrafine split short fibers, which is at least developed by splitting the splittable bicomponent conjugate short fibers, is preferably 0.5 denier or less. If the single-fiber fineness of the ultrafine split short fibers which is at least expressed by this division exceeds 0.5 denier, the entanglement with other constituent fibers tends to be inferior, and the delamination strength of the composite nonwoven fabric is inferior.

【0026】本発明で用いる短繊維は、一般に以下の如
き方法で製造される。すなわち、従来公知の溶融複合紡
糸法で紡糸され、横吹付や環状吹付等の従来公知の冷却
装置を用いて、吹付風により冷却された後、油剤を付与
し引き取りローラーを介して未延伸糸として巻取機に巻
取られる。引き取りローラー速度は500m/分〜20
00m/分である。巻取られた未延伸糸を複数本引き揃
え、公知の延伸機にて周速の異なるローラー群間で延伸
される。次いで、前記延伸トウを押し込み式捲縮付与装
置にて捲縮を付与した後、所定の繊維長に切断して短繊
維を得ることができる。尚、要求される用途により延伸
トウを素材の融点以下の温度で熱セットを行ってもよ
い。
The short fibers used in the present invention are generally produced by the following method. That is, spun by a conventionally known melt composite spinning method, using a conventionally known cooling device such as horizontal spraying or annular spraying, and cooled by spraying wind, applying an oil agent, and as an undrawn yarn through a take-off roller. It is wound on a winder. Pickup roller speed is 500m / min ~ 20
00 m / min. A plurality of wound undrawn yarns are aligned and drawn between a group of rollers having different peripheral speeds by a known drawing machine. Next, the drawn tow is crimped by a press-type crimping device, and then cut into a predetermined fiber length to obtain short fibers. The stretch tow may be heat-set at a temperature equal to or lower than the melting point of the material depending on the required use.

【0027】本発明に用いる吸水性を有する短繊維とし
ては、特に公定水分率が5%以上の繊維を用いることが
好ましい。公定水分率が5%以上の繊維としては、天然
繊維としてコツトン、麻、羊毛、短繊維状に裁断された
シルク繊維、再生繊維としてビスコースレーヨン、銅ア
ンモニアレーヨン、溶剤紡糸されたレーヨン等が有効に
用いられる。また、公定水分が5%以上のビニロン繊
維、アクリル繊維等の合成繊維を用いることも可能であ
る。本発明の不織布は、吸水性を有する短繊維として、
前述したものが1種または2種以上混綿されたものであ
ってもよい。
As the water-absorbing short fibers used in the present invention, it is particularly preferable to use fibers having an official moisture content of 5% or more. Effective fibers having an official moisture content of 5% or more include cotton, hemp, wool, silk fibers cut into short fibers as natural fibers, and viscose rayon, copper ammonia rayon, and solvent spun rayon as regenerated fibers. Used for It is also possible to use synthetic fibers such as vinylon fibers and acrylic fibers having an official moisture of 5% or more. Nonwoven fabric of the present invention, as short fibers having water absorption,
One or more of the above may be mixed.

【0028】本発明の複合不織布は、短繊維ウエブ中に
吸水性を有する短繊維が10〜70重量%の割合で混綿
されていることが好ましい。吸水性を有する短繊維が1
0重量%未満では、得られる複合不織布に吸水性を期待
することが困難となる。このような不織布を、例えば、
衣服等に用いた際、吸湿性が乏しいため、吸汗性のない
衣服となり、またワイパー等に用いた際、水分の拭き取
り性に劣る傾向のものとなる。一方、吸水性を有する短
繊維が70重量%を超えると、吸水性は十分であるが、
極細割繊短繊維の量が少なくなり、構成繊維同士の緻密
な交絡が期待できにくく、得られる複合不織布は層間剥
離しやすいものとなる。
In the composite nonwoven fabric of the present invention, it is preferable that short fibers having water absorbency are mixed in the short fiber web at a ratio of 10 to 70% by weight. 1 water-absorbing short fiber
If the amount is less than 0% by weight, it is difficult to expect water absorbency in the obtained composite nonwoven fabric. Such a nonwoven fabric, for example,
When used for clothes, etc., it has poor hygroscopicity, resulting in clothes that do not absorb sweat, and when used for wipers, etc., tend to have poor moisture wiping properties. On the other hand, when the short fiber having water absorption exceeds 70% by weight, water absorption is sufficient,
The amount of ultrafine split short fibers is reduced, and it is difficult to expect dense entanglement between constituent fibers, and the resulting composite nonwoven fabric is easily delaminated.

【0029】短繊維ウエブの目付は100g/m2 程度
以下が好ましい。目付が100g/m2 を超えると、長
繊維ウエブと短繊維ウエブとの交絡処理において大きな
高圧液体流エネルギーを要する。また、得られる複合不
織布の用途が限定されることとなる。目付の下限につい
ては特に限定されないが10g/m2 程度であればよ
い。
The basis weight of the short fiber web is preferably about 100 g / m 2 or less. If the basis weight exceeds 100 g / m 2 , a large amount of high-pressure liquid flow energy is required in the entanglement treatment of the long fiber web and the short fiber web. Further, the use of the obtained composite nonwoven fabric is limited. The lower limit of the basis weight is not particularly limited, but may be about 10 g / m 2 .

【0030】短繊維ウエブは、カード法やエアレイ法等
を用いて所定の目付のウエブを作製することができる。
カード法ではカード機を用いて、構成繊維の配列度合を
複合不織布の用途等に合わせて種々選択することができ
る。例えば、短繊維ウエブの構成繊維の配列パターンと
しては、構成繊維が一方向に配列したパラレルウエブ、
パラレルウエブがクロスレイドされたウエブ、構成繊維
がランダムに配列したランダムウエブあるいは両者の中
程度に配列したセミランダムウエブ等が挙げられる。
As the short fiber web, a web having a predetermined basis weight can be prepared by using a card method, an air lay method, or the like.
In the card method, the degree of arrangement of the constituent fibers can be variously selected according to the use of the composite nonwoven fabric by using a card machine. For example, as an arrangement pattern of the constituent fibers of the short fiber web, a parallel web in which the constituent fibers are arranged in one direction,
Examples of the web include a web in which parallel webs are cross-laid, a random web in which constituent fibers are randomly arranged, and a semi-random web in which both are moderately arranged.

【0031】本発明の複合不織布は、前記長繊維ウエブ
の少なくとも片面に前記短繊維ウエブを積層した積層体
に高圧液体流処理を施し、長繊維ウエブの構成繊維同士
および長繊維ウエブと短繊維ウエブの構成繊維同士およ
び短繊維ウエブの構成繊維同士を三次元的に交絡一体化
させることによって得られる。
The composite nonwoven fabric according to the present invention is characterized in that a laminate obtained by laminating the short fiber web on at least one surface of the long fiber web is subjected to a high-pressure liquid flow treatment so that the constituent fibers of the long fiber web and the long fiber web and the short fiber web are processed. Are obtained by three-dimensionally entanglement-integrating the constituent fibers of each other and the constituent fibers of the short fiber web.

【0032】この積層体は、長繊維ウエブの少なくとも
片面に短繊維ウエブが積層されたものであり、長繊維ウ
エブの両面に短繊維ウエブを積層したものや、短繊維ウ
エブの両面に長繊維ウエブを積層したものであってもよ
く、複合不織布を用いる用途、性能に応じて適宜選択す
ればよい。
This laminate is obtained by laminating a short fiber web on at least one side of a long fiber web, and laminating a short fiber web on both sides of a long fiber web, or a long fiber web on both sides of a short fiber web. May be appropriately selected according to the use and performance of the composite nonwoven fabric.

【0033】次に、高圧液体流処理について説明する。
高圧液体流処理に用いる高圧液体流装置としては、例え
ば、孔径が0.05〜1.5mm、特に0.1〜0.4
mmの噴射孔を孔間隔0.05〜5mmで一列あるいは
複数列に多数配列した装置を用いる。噴射孔から高圧力
で噴射させて得られる水流すなわち高圧液体流を噴射
し、多孔性支持部材上に載置した前記積層体に衝突させ
る。未分割の分割型二成分系複合短繊維は、高圧液体流
による衝撃によって、極細割繊短繊維を発現する。高圧
液体流の作用により、長繊維ウエブの構成繊維同士、長
繊維ウエブと短繊維ウエブとの構成繊維同士および短繊
維ウエブの構成繊維同士が交絡する。この時、極細割繊
短繊維は、高圧液体流の作用による易動性が高いため、
主として長繊維ウエブ内に入り込み長繊維と三次元的に
交絡し積層体を一体化させる。
Next, the high-pressure liquid flow processing will be described.
As the high-pressure liquid flow device used for the high-pressure liquid flow treatment, for example, a hole diameter of 0.05 to 1.5 mm, particularly 0.1 to 0.4
A device is used in which a large number of injection holes having a diameter of 0.05 mm are arranged in a line or in a plurality of lines with a hole interval of 0.05 to 5 mm. A water stream, ie, a high-pressure liquid stream, obtained by jetting at a high pressure from the jet holes is jetted, and collides with the laminate placed on the porous support member. The undivided splittable bicomponent conjugate short fibers develop ultrafine split short fibers by the impact of the high-pressure liquid flow. The constituent fibers of the long fiber web, the constituent fibers of the long fiber web and the short fiber web, and the constituent fibers of the short fiber web are entangled by the action of the high-pressure liquid flow. At this time, the ultrafine split short fibers have high mobility due to the action of the high-pressure liquid flow,
The fibers mainly enter the long fiber web and are three-dimensionally entangled with the long fibers to integrate the laminate.

【0034】噴射孔の配列は、前記積層体の進行方向と
直行する方向に列状に配列する。高圧液体流としては、
常温あるいは温水を用いることができる。噴射孔と前記
積層体との間の距離は、10〜150mmとするのが良
い。この距離が10mm未満であると、この処理により
得られる複合不織布の地合が乱れ、一方、この距離が1
50mmを超えると液体流が前記積層体に衝突したとき
の衝撃力が低下して分割割繊及び交絡一体化が十分に施
されない傾向にある。
The arrangement of the injection holes is arranged in a row in a direction perpendicular to the traveling direction of the laminate. As a high pressure liquid flow,
Room temperature or hot water can be used. The distance between the injection hole and the laminate is preferably 10 to 150 mm. If this distance is less than 10 mm, the formation of the composite nonwoven fabric obtained by this treatment is disturbed, while the distance is 1 mm.
If it exceeds 50 mm, the impact force when the liquid stream collides with the laminate tends to be low, so that split splitting and entanglement integration tend not to be sufficiently performed.

【0035】この高圧液体流の処理圧力は、製造方法及
び不織布の要求性能によって制御されるが、一般的に
は、20〜200kg/cm2 Gの高圧液体流を噴出す
るのが良い。なお、処理するウエブの目付等にも左右さ
れるが、前記処理圧力の範囲内において、処理圧力が低
いと嵩高で柔軟性に優れた複合不織布を得ることがで
き、処理圧力が高いと構成繊維同士の交絡が緻密で層間
剥離のないフイルター性能に優れた複合不織布を得るこ
とができる。高圧液体流の圧力が20kg/cm2G未
満であると、分割割繊及び交絡一体化が十分に施され
ず、得られる複合不織布は層間剥離強力に劣るものとな
り、本発明が目的とする複合不織布を得ることができな
い。逆に、高圧液体流の圧力が200kg/cm2 Gを
超えると水圧による打撃により、ひどい場合には、構成
繊維が切断されて得られる不織布は表面に毛羽を有する
ものとなる傾向にあり好ましくない。
The processing pressure of the high-pressure liquid flow is controlled by the manufacturing method and the required performance of the nonwoven fabric, but generally, a high-pressure liquid flow of 20 to 200 kg / cm 2 G is preferably ejected. In addition, depending on the basis weight of the web to be processed, etc., within the range of the above-mentioned processing pressure, if the processing pressure is low, a composite nonwoven fabric which is bulky and excellent in flexibility can be obtained. It is possible to obtain a composite nonwoven fabric which is densely entangled and has excellent filter performance without delamination. When the pressure of the high-pressure liquid flow is less than 20 kg / cm 2 G, split splitting and entanglement unification are not sufficiently performed, and the obtained composite nonwoven fabric has poor delamination strength. Non-woven fabric cannot be obtained. Conversely, if the pressure of the high-pressure liquid stream exceeds 200 kg / cm 2 G, the non-woven fabric obtained by cutting the constituent fibers tends to have fluff on the surface in a severe case due to impact by water pressure, which is not preferable. .

【0036】高圧液体流処理を施すに際して用いる前記
積層体を担持する多孔性支持部材としては、例えば、2
0〜200メツシユの金網製あるいは合成樹脂製等のメ
ツシユスクリーンや有孔板など、高圧液体流が前記積層
体を貫通するものであれば特に限定されない。
As the porous support member for supporting the laminate used for performing the high-pressure liquid flow treatment, for example, 2
There is no particular limitation as long as the high-pressure liquid flow penetrates the laminate, such as a mesh screen or a perforated plate made of a wire mesh or synthetic resin of 0 to 200 mesh.

【0037】なお、積層体の片面より高圧液体流処理を
施した後、引き続き交絡の施された積層体を反転して高
圧液体流処理を施すことにより、表裏共に緻密に交絡一
体化した複合不織布を得ることができるので、複合不織
布の用途に応じて、また、積層数の多いもの及び積層体
の目付の大きいもの等に適用すればよい。
After the high-pressure liquid flow treatment is performed from one side of the laminate, the entangled laminate is reversed and subjected to the high-pressure liquid flow treatment, so that the composite nonwoven fabric is densely entangled and integrated on both sides. Can be obtained depending on the use of the composite nonwoven fabric, and may be applied to those having a large number of laminations and those having a large basis weight of the laminate.

【0038】高圧液体流処理を施した後、処理後の前記
積層体から過剰水分を除去する。この過剰水分を除去す
るに際しては、公知の方法を採用することができる。例
えば、マングルロール等の絞り装置を用いて過剰水分を
ある程度機械的に除去し、引き続きサクシヨンバンド方
式の熱風循環式乾燥機等の乾燥装置を用いて残余の水分
を除去して本発明の複合不織布を得ることができる。
After the high-pressure liquid flow treatment, excess moisture is removed from the laminated body after the treatment. When removing the excess moisture, a known method can be adopted. For example, the excess moisture is mechanically removed to some extent using a squeezing device such as a mangle roll, and then the remaining moisture is removed using a drying device such as a suction band type hot-air circulation dryer to obtain the composite of the present invention. A non-woven fabric can be obtained.

【0039】以上に詳述したように、本発明の複合不織
布は、長繊維ウエブと二成分系複合短繊維と吸水性を有
する短繊維が混綿してなる短繊維ウエブとを積層し、高
圧液体流処理装置を用い両ウエブを緻密に交絡一体化し
た複合不織布である。二成分系複合短繊維は、分割して
極細割繊短繊維を発現するので、短繊維ウエブは、くさ
び状や薄片等の異形断面や繊度の極めて小さい繊維を有
することとなる。この極細割繊短繊維の存在により、長
繊維ウエブとの高圧液体流処理での交絡性に優れ、その
交絡は解舒しにくく安定した複合不織布となり、また長
繊維ウエブとの層間剥離強力に優れたものとなる。
As described in detail above, the composite nonwoven fabric of the present invention is obtained by laminating a long fiber web, a bicomponent conjugate short fiber, and a short fiber web obtained by blending water-absorbing short fibers with a high-pressure liquid. This is a composite nonwoven fabric in which both webs are densely entangled and integrated using a flow treatment device. Since the bicomponent conjugate short fibers are divided into ultrafine split short fibers, the short fiber web has fibers with a modified cross section such as wedges or flakes and extremely small fineness. Due to the presence of these ultrafine splitting short fibers, they have excellent entanglement with high-pressure liquid flow treatment with long-fiber webs, and the entanglement becomes a stable composite nonwoven fabric that is difficult to unwind, and has excellent delamination strength with long-fiber webs. It will be.

【0040】すなわち、本発明の複合不織布は、短繊維
ウエブが単糸繊度の小さい極細割繊短繊維を有し、これ
らの極細割繊繊維は曲げ剛性が小さく易動性に優れるた
め、高圧液体流処理による水流の衝撃により、かかる易
動性の良い極細割繊短繊維が長繊維ウエブ中に入り込
み、構成繊維同士を緻密に交絡一体化させ、その結果層
間剥離強力に優れるものとなる。しかも、この複合不織
布を製造するに際しては、層間剥離強力に優れた複合不
織布を得るための交絡一体化の高圧液体流処理に要する
エネルギーを小さくすることができる。
That is, in the composite nonwoven fabric of the present invention, the short fiber web has ultrafine split short fibers having a small single-filament fineness, and these ultrafine split fibers have low flexural rigidity and excellent mobility. Due to the impact of the water flow due to the flow treatment, the ultrafine split short fibers having good mobility enter the long fiber web, and the constituent fibers are densely entangled and integrated. As a result, the delamination strength is excellent. In addition, when producing this composite nonwoven fabric, the energy required for the high-pressure liquid flow treatment of entanglement integration to obtain a composite nonwoven fabric having excellent delamination strength can be reduced.

【0041】本発明の複合不織布は、医療・衛生材用、
衣料用、生活関連資材用、産業資材用等様々な分野にお
いて好適なものである。例えば、その一例として、ワイ
パー等の拭き取り用として使用するのに好適である。す
なわち、複合不織布の短繊維ウエブ面で拭き取り、汚れ
等は極細割繊短繊維の異形断面におけるシヤープなエツ
ジ部分で拭き取り、水分等は毛細管現象によりすばやく
吸い上げ、その水分は吸水性を有する短繊維が本来有す
る保水性により複合不織布内に内包されることとなる。
また、長繊維ウエブ側は疎水性であるため、拭き取った
水分が長繊維ウエブ側に移行して手を汚すことはない。
The composite nonwoven fabric of the present invention is used for medical and hygiene materials,
It is suitable for various fields such as clothing, living related materials, industrial materials and the like. For example, as an example, it is suitable to be used for wiping with a wiper or the like. That is, the short fiber web surface of the composite nonwoven fabric is wiped off, dirt and the like are wiped off by a sharp edge portion in the irregular cross section of the ultrafine split short fiber, and moisture and the like are quickly sucked up by capillary action, and the water is absorbed by the short fiber having water absorption. Due to the inherent water retention, it is included in the composite nonwoven fabric.
In addition, since the long fiber web side is hydrophobic, the wiped water does not migrate to the long fiber web side to stain the hands.

【0042】また、高圧液体流処理において、液体流の
圧力を適宜選択し、構成繊維同士が強固に緻密に絡み合
った本発明の複合不織布は、フイルター性能に優れるた
め、例えば、食品工業における濾過布、ケイ藻土濾過の
フイルター、井戸水等から除粒子、除鉄の際の濾過布等
の用途に好適に用いられる。また、繊維間空隙の比較的
大きい長繊維ウエブ側にて大きな粒子を捕集し、繊維間
空隙の比較的小さい短繊維ウエブ側にて微粒子を捕集す
ることが可能となり、濾過対象物の大きさや種類に応じ
た分別収集をも可能となるため、本発明の複合不織布は
一枚の不織布でありながら、優れたフイルター性能を長
期に亘って維持でき、フイルター寿命の長い濾過布とし
て用いることができる。
In the high-pressure liquid flow treatment, the pressure of the liquid flow is appropriately selected, and the composite nonwoven fabric of the present invention in which the constituent fibers are tightly and tightly entangled has excellent filter performance. It is suitable for use as a filter for diatomaceous earth filtration, for removing particles from well water, and for filtering cloth for iron removal. In addition, it is possible to collect large particles on the long fiber web side having a relatively large inter-fiber gap, and to collect fine particles on the short fiber web side having a relatively small inter-fiber gap. Since it is also possible to separate and collect according to pods, the composite nonwoven fabric of the present invention can maintain excellent filter performance over a long period of time while being a single nonwoven fabric, and can be used as a filter cloth having a long filter life. it can.

【0043】[0043]

【実施例】次に、実施例に基づき本発明を具体的に説明
するが、本発明は、これらの実施例のみに限定されるも
のではない。以下の実施例における各種特性値の測定
は、次の方法により実施した。
Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. The measurement of various characteristic values in the following examples was performed by the following method.

【0044】(1)融 点(℃):パーキンエルマ社製
示差走査型熱量計DSC−2型を用い、昇温速度20℃
/分の条件で測定し、得られた融解吸熱曲線において融
解吸熱ピークの最大値を与える温度を融点とした。
(1) Melting point (° C.): Using a differential scanning calorimeter DSC-2 manufactured by PerkinElmer Co., Ltd., the temperature was raised at a rate of 20 ° C.
/ Min, and the temperature giving the maximum value of the melting endothermic peak in the obtained melting endothermic curve was defined as the melting point.

【0045】(2)メルトインデツクス(g/10
分):ASTM−D−1238(E)に記載の方法に準
じて測定した。
(2) Melt index (g / 10
Min): Measured according to the method described in ASTM-D-1238 (E).

【0046】(3)相対粘度:ポリエチレンテレフタレ
ートの相対粘度を次の方法によって測定した。すなわ
ち、フエノールと四塩化エタンの等重量混合液を溶媒と
して、この溶媒100ccに試料0.5gを溶解し、温度
20℃の条件で常法により測定した。
(3) Relative viscosity: The relative viscosity of polyethylene terephthalate was measured by the following method. That is, 0.5 g of a sample was dissolved in 100 cc of the solvent using an equal weight mixture of phenol and ethane tetrachloride as a solvent, and the measurement was carried out by a conventional method at a temperature of 20 ° C.

【0047】(4)分割型二成分系複合短繊維の分割割
繊後の繊度(デニール):電子顕微鏡写真の形状寸法か
ら断面積を算出して密度補正して求めた。
(4) Fineness (denier) of split type bicomponent conjugate short fibers after splitting: Determined by calculating the cross-sectional area from the shape and dimensions of an electron micrograph and correcting the density.

【0048】(5)分割型二成分系複合短繊維の割繊率
(%):短繊維ウエブの任意の10個所を選び、その断
面を100倍に拡大して断面写真を撮影した。1枚の断
面写真からランダムに30本の繊維を選び、下記式によ
り割繊率を求めた。同様の操作を10枚の断面写真につ
いて行い、得られた値の平均値をその短繊維ウエブの割
繊率とした。 割繊率(%)=(30/X)×100
上式において、Xは完全に割繊されたと仮定したときの
繊維形成性重合体Aからなる極細割繊短繊維および繊維
形成性重合体Bからなる極細割繊短繊維の全極細割繊短
繊維の総数である。
(5) Splitting rate (%) of split type bicomponent conjugate short fiber: An arbitrary 10 portions of the short fiber web were selected, and the cross section was magnified 100 times and a cross-sectional photograph was taken. Thirty fibers were randomly selected from one cross-sectional photograph, and the splitting rate was determined by the following equation. The same operation was performed for ten cross-sectional photographs, and the average of the obtained values was used as the splitting rate of the short fiber web. Splitting rate (%) = (30 / X) × 100
In the above formula, X is an ultrafine split short fiber composed of the fiber-forming polymer A and an ultrafine split short fiber composed of the fiber-forming polymer B, assuming that X is completely split. Is the total number.

【0049】(6)不織布の目付(g/m2):標準状態
の試料から縦10cm×横10cmの試料片計10点を作成
し、平衡水分に到らしめた後、各試料片の重量(g)を
秤量し、得られた値の平均値を単位面積(m2)当たりに
換算して目付(g/m2)とした。
(6) Non-woven fabric weight (g / m 2 ): A total of 10 sample pieces of 10 cm long × 10 cm wide were prepared from the sample in the standard state, and after reaching equilibrium moisture, the weight of each sample piece was obtained. (G) was weighed, and the average of the obtained values was converted per unit area (m 2 ) to obtain the basis weight (g / m 2 ).

【0050】(7)不織布の引張強力(kg/5cm
幅):JIS−L−1096Aに記載の方法に準じて測
定した。すなわち、試料長が15cm,試料幅が5cm
の試料片を不織布の機械方向(MD)に10点作成し、
各試料片ごとに不織布のMD方向について定速伸長型引
張試験機(東洋ボールドウイン社製テンシロンUTM−
4−1−100)を用い、試料の掴み間隔10cmと
し、引張速度10cm/分で伸長した。そして、得られ
た切断時荷重値(kg/5cm幅)の平均値を引張強力
(kg/5cm幅)とした。
(7) Tensile strength of nonwoven fabric (kg / 5cm
Width): Measured according to the method described in JIS-L-1096A. That is, the sample length is 15 cm and the sample width is 5 cm
10 pieces were made in the machine direction (MD) of the nonwoven fabric,
For each sample piece, a constant speed elongation type tensile tester (Tensilon UTM- manufactured by Toyo Baldwin Co., Ltd.) in the MD direction of the nonwoven fabric.
Using 4-1-100), the sample was stretched at a gripping interval of 10 cm and a tensile speed of 10 cm / min. The average value of the obtained load values at cutting (kg / 5 cm width) was defined as tensile strength (kg / 5 cm width).

【0051】(8)不織布の圧縮剛軟度(g):試料長
が10cm,試料幅が5cmの試料片計5点を作成し、
各試料片ごとに横方向に曲げて円筒状物とし、各々その
端部を接合したものを圧縮剛軟度測定試料とした。次い
で、各測定試料ごとにその軸方向について定速伸長型引
張試験機(東洋ボールドウイン社製テンシロンUTM−
4−1−100)を用い、圧縮速度5cm/分で圧縮
し、得られた最大荷重値(g)の平均値を圧縮剛軟度
(g)とした。
(8) Compression stiffness (g) of non-woven fabric: A total of five sample pieces having a sample length of 10 cm and a sample width of 5 cm were prepared.
Each of the test pieces was bent in the lateral direction to form a cylindrical body, and the end portions thereof were joined to obtain a sample for measurement of compression stiffness. Next, a constant-speed elongation type tensile tester (Tensilon UTM- manufactured by Toyo Baldwin Co., Ltd.)
Using 4-1-100), compression was performed at a compression speed of 5 cm / min, and the average value of the obtained maximum load values (g) was defined as compression bristles (g).

【0052】(9)層間剥離強力(g/5cm幅):幅
5cm、長さ10cmの試験片を複合不織布の縦方向に
ついて定速伸張型引張試験機を用いて、長繊維ウエブ層
と短繊維ウエブ層の端部を同試験機のチヤツクに各々把
持させ引張速度10cm/分で剥離した時の荷重値の平
均値を不織布の層間剥離強力とした。
(9) Delamination strength (g / 5 cm width): A test piece having a width of 5 cm and a length of 10 cm was measured in the longitudinal direction of the composite nonwoven fabric using a constant-speed stretching type tensile tester to obtain a long fiber web layer and a short fiber. The average value of the load value when the end of the web layer was gripped by the chuck of the tester and peeled at a pulling speed of 10 cm / min was defined as the delamination strength of the nonwoven fabric.

【0053】(10)吸水性(mm/10分):JIS
−L−1096に記載のバイレツク法により測定した。
(10) Water absorption (mm / 10 minutes): JIS
-Measured by the birec method described in L-1096.

【0054】実施例1 繊維形成性重合体として、ポリエチレンテレフタレート
(融点258℃、相対粘度1.38)を、断面形状が単
相になる紡糸口金を用いて単孔吐出量1.67g/分で
溶融紡出した。紡出糸条を冷却した後、エアーサツカー
により5000m/分の速度で引き取り、開繊器にて開
繊させ、移動する捕集面上に捕集・堆積させて長繊維ウ
エブとし、該長繊維ウエブを熱エンボスロールにて、ポ
イント柄、加工温度230℃、圧接面積率10%の条件
下で部分熱圧着を行い、目付30g/m2 の長繊維不織
布を得た。長繊維の繊度は3デニールであった。
Example 1 Polyethylene terephthalate (melting point: 258 ° C., relative viscosity: 1.38) was used as a fiber-forming polymer at a single-hole discharge rate of 1.67 g / min using a spinneret having a single-phase cross section. It was melt spun. After the spun yarn is cooled, it is taken out at a speed of 5000 m / min by an air sacker, spread by an opener, collected and deposited on a moving collecting surface to form a long fiber web, The web was partially thermocompression-bonded with a hot embossing roll under the conditions of a point pattern, a processing temperature of 230 ° C., and a press contact area ratio of 10%, to obtain a long-fiber nonwoven fabric with a basis weight of 30 g / m 2 . The fineness of the long fiber was 3 denier.

【0055】一方、短繊維ウエブの構成繊維として、単
糸断面が図2に示す複合形態でポリエチレンとポリエチ
レンテレフタレートとからなる分割型二成分系複合短繊
維を準備した。すなわち、ポリエチレン(融点128
℃、メルトインデツクス25g/10分)と長繊維不織
布の製造に用いたポリエチレンテレフタレートとを図2
に示す如く複合形態で全分割数が12個となるような分
割型二成分系複合紡糸口金を用い、複合比を重量比で
1:1とし単孔吐出量0.72g/分で溶融紡出した。
紡出糸条を冷却し、仕上げ油剤を付与した後、引取り速
度1000m/分の引取りロールを介して未延伸糸とし
て捲き取った。次いで、得られた未延伸糸を複数本引き
揃えてトウとなし、公知の延伸機を用いて延伸倍率2.
8倍で延伸を行った後、押し込み式捲縮付与装置にで捲
縮を付与し51mmの繊維長に切断して2.4デニール
の分割型二成分系複合短繊維を得た。
On the other hand, as a constituent fiber of the short fiber web, a splittable bicomponent conjugate short fiber composed of polyethylene and polyethylene terephthalate having a single yarn cross section shown in FIG. 2 was prepared. That is, polyethylene (melting point 128
2 ° C., melt index 25 g / 10 min) and polyethylene terephthalate used for producing a long-fiber nonwoven fabric.
As shown in the above, a split type two-component composite spinneret in which the total number of divisions is 12 in the composite form is used, the composite ratio is 1: 1 by weight, and the melt spinning is performed at a single hole discharge rate of 0.72 g / min. did.
After the spun yarn was cooled and the finishing oil was applied, it was wound up as an undrawn yarn through a take-up roll at a take-up speed of 1000 m / min. Next, a plurality of the obtained undrawn yarns are drawn and aligned to form a tow, and a drawing ratio of 2.
After drawing at 8 times, crimping was performed by a press-type crimping device and cut to a fiber length of 51 mm to obtain a split bicomponent conjugate short fiber of 2.4 denier.

【0056】得られた分割型二成分系複合短繊維70重
量%とコツトン(平均繊維長25mm、平均繊度1.5
デニール)30重量%とを混綿しランダムカード機にて
目付20g/m2 の短繊維ウエブを準備した。
70% by weight of the obtained splittable bicomponent conjugate short fibers and cotton (average fiber length 25 mm, average fineness 1.5
(Denier) 30% by weight, and a random card machine was used to prepare a short fiber web having a basis weight of 20 g / m 2 .

【0057】次いで、長繊維不織布の片面に短繊維ウエ
ブを積層し、50メツシユの金網上に載置して高圧液体
流処理を施した。高圧液体流処理は、孔径0.12mm
の噴射孔が孔間隔0.62mmで配置された高圧液体流
装置を用いて、前記積層体の上方50mmの位置から処
理圧力80kg/cm2 Gの条件下で短繊維ウエブ側よ
り処理を施した。得られた複合不織布より過剰水分の除
去、乾燥処理を施して目付50g/m2 の複合不織布を
得た。
Next, a short fiber web was laminated on one side of the long fiber non-woven fabric, placed on a 50 mesh wire mesh, and subjected to a high-pressure liquid flow treatment. High pressure liquid flow treatment, pore diameter 0.12mm
Was processed from the short fiber web side under a processing pressure of 80 kg / cm 2 G from a position 50 mm above the laminate using a high-pressure liquid flow device in which the injection holes were arranged at a hole interval of 0.62 mm. . Excess moisture was removed from the obtained composite nonwoven fabric and dried to obtain a composite nonwoven fabric having a basis weight of 50 g / m 2 .

【0058】得られた複合不織布を顕微鏡にて観察した
ところ、ポリエチレンからなる極細割繊短繊維とポリエ
チレンテレフタレートからなる極細割繊短繊維との割繊
率は92%であり、ポリエチレンおよびポリエチレンテ
レフタレートからなる極細割繊短繊維の繊度は各々0.
2デニールであった。
When the obtained composite nonwoven fabric was observed with a microscope, the splitting rate between the ultrafine split short fibers made of polyethylene and the ultrafine split short fibers made of polyethylene terephthalate was 92%. The fineness of each of the ultrafine split short fibers is 0.
It was 2 denier.

【0059】実施例2 実施例1において、長繊維ウエブの部分熱圧着処理を施
す際、熱エンボスロールの加工温度を180℃とした以
外は、実施例1と同様にして目付50g/m2の複合不
織布を得た。
Example 2 The procedure of Example 1 was repeated, except that the processing temperature of the hot embossing roll was changed to 180 ° C. when the long-fiber web was subjected to the partial thermocompression bonding, and the basis weight was 50 g / m 2 . A composite nonwoven was obtained.

【0060】実施例3 分割型二成分系複合短繊維として、糸断面が図3に示す
複合形態でポリエチレンとポリエチレンテレフタレート
とからなる分割型二成分系複合短繊維を用いた。すなわ
ち、実施例1と同一のポリエチレンおよびポリエチレン
テレフタレートを用い図3に示す如き複合形態で全分割
数が24個となるような分割型二成分系複合紡糸口金を
用い、複合比を重量比で1:1とし単孔吐出量0.67
g/分で溶融紡出した。紡出糸条を冷却し、仕上げ油剤
を付与した後、引取り速度1000m/分の引取りロー
ルを介して未延伸糸として捲き取った。次いで、得られ
た未延伸糸を複数本引き揃えてトウとなし、公知の延伸
機を用いて延伸倍率2.6倍で延伸を行った後、押し込
み式捲縮付与装置にで捲縮を付与し51mmの繊維長に
切断して2.4デニールの分割型二成分系複合短繊維を
得た。
Example 3 As a splittable bicomponent conjugate short fiber, a splittable bicomponent conjugate short fiber composed of polyethylene and polyethylene terephthalate with a yarn cross section shown in FIG. 3 was used. That is, using the same polyethylene and polyethylene terephthalate as in Example 1, a split type two-component composite spinneret having a total number of divisions of 24 in a composite form as shown in FIG. : 1 and single hole discharge rate 0.67
It was melt spun at g / min. After the spun yarn was cooled and the finishing oil was applied, it was wound up as an undrawn yarn through a take-up roll at a take-up speed of 1000 m / min. Next, a plurality of the obtained undrawn yarns are drawn and aligned to form a tow, drawn using a known drawing machine at a draw ratio of 2.6 times, and then subjected to crimping by a push-in type crimping device. Then, the fiber was cut into a fiber length of 51 mm to obtain a split bicomponent conjugate short fiber of 2.4 denier.

【0061】以降、分割型二成分系複合短繊維として前
記複合短繊維を用いた以外は、実施例1と同様にして目
付50g/m2 の複合不織布を得た。
Thereafter, a composite nonwoven fabric having a basis weight of 50 g / m 2 was obtained in the same manner as in Example 1 except that the above-mentioned conjugate short fiber was used as the splittable bicomponent conjugate short fiber.

【0062】得られた複合不織布を顕微鏡にて観察した
ところ、ポリエチレンからなる極細割繊短繊維とポリエ
チレンテレフタレートからなる極細割繊短繊維との割繊
率は90%であり、ポリエチレンおよびポリエチレンテ
レフタレートからなる極細割繊短繊維の繊度は各々0.
1デニールであった。
When the obtained composite nonwoven fabric was observed with a microscope, the splitting rate between the ultrafine split short fibers made of polyethylene and the ultrafine split short fibers made of polyethylene terephthalate was 90%, and the splitting rate of polyethylene and polyethylene terephthalate was 90%. The fineness of each of the ultrafine split short fibers is 0.
It was 1 denier.

【0063】実施例4 長繊維不織布として、実施例1の分割型二成分系複合短
繊維に用いたものと同一のポリエチレンテレフタレート
とポリエチレンを用い、鞘部にポリエチレン、芯部にポ
リエチレンテレフタレートを配置せしめる芯鞘型複合紡
糸口金を用い、複合比を重量比で1:1とし、単孔吐出
量1.5g/分で溶融紡出した。紡出糸条を冷却した
後、エアーサツカーで4500m/分の速度で引取り、
開繊器にて開繊させ、移動する捕集面上に捕集・堆積さ
せて長繊維ウエブとし、該長繊維ウエブを熱エンボスロ
ールにて、ポイント柄、加工温度120℃、圧接面積率
10%の条件下で部分熱圧着を行い、目付30g/m2
の長繊維不織布を得た。芯鞘型複合長繊維の繊度は3デ
ニールであった。
Example 4 The same polyethylene terephthalate and polyethylene as those used for the splittable bicomponent conjugate short fibers of Example 1 were used as the long-fiber nonwoven fabric, and polyethylene was placed in the sheath and polyethylene terephthalate was placed in the core. Using a core-sheath type composite spinneret, the composite ratio was set to 1: 1 by weight and melt-spun at a single hole discharge rate of 1.5 g / min. After cooling the spun yarn, it is taken up at a speed of 4500 m / min with an air sacker,
The fiber is opened by a fiber opening device, collected and deposited on a moving collecting surface to form a long fiber web, and the long fiber web is processed by a hot embossing roll with a point pattern, a processing temperature of 120 ° C, and a pressed area ratio of 10 % Under a condition of 30% / m 2
Was obtained. The fineness of the core-sheath type composite continuous fiber was 3 denier.

【0064】以降、長繊維不織布として、前記長繊維不
織布を用いた以外は、実施例1と同様にして目付50g
/m2 の複合不織布を得た。
Thereafter, except that the above-mentioned long-fiber nonwoven fabric was used as the long-fiber nonwoven fabric, the basis weight was 50 g in the same manner as in Example 1.
/ M 2 was obtained.

【0065】実施例5 実施例1において、短繊維ウエブとして分割型二成分系
複合短繊維とコツトンとの混綿比を30/70とした以
外は実施例1と同様にして目付50g/m2 の複合不織
布を得た。
Example 5 The same procedure as in Example 1 was carried out except that the mixing ratio of the splittable bicomponent conjugate short fibers and cotton was 30/70 in Example 1, and the basis weight was 50 g / m 2 . A composite nonwoven was obtained.

【0066】実施例6 実施例1において、短繊維ウエブとして分割型二成分系
複合短繊維とコツトンとの混綿比を90/10とした以
外は実施例1と同様にして目付50g/m2 の複合不織
布を得た。
Example 6 The procedure of Example 1 was repeated, except that the blending ratio of the splittable bicomponent conjugate short fibers and the cotton was 90/10, and the basis weight was 50 g / m 2 in the same manner as in Example 1. A composite nonwoven was obtained.

【0067】比較例1 短繊維ウエブとして実施例1と同一のポリエチレンテレ
フタレートを用い、単相型短繊維を準備した。すなわ
ち、糸断面が丸になる単相紡糸口金を用い、単孔吐出量
0.82g/分で溶融紡出した。紡出糸条を冷却し、仕
上げ油剤を付与した後、引取り速度1000m/分の引
取りロールを介して未延伸糸として捲き取った。次い
で、得られた未延伸糸を複数本引き揃えてトウとなし、
公知の延伸機を用いて延伸倍率3.2倍で延伸を行った
後、押し込み式捲縮付与装置にで捲縮を付与し51mm
の繊維長に切断して2.4デニールの短繊維を得た。得
られた短繊維を用いランダムカード機にて目付20g/
2 の短繊維ウエブを得た。
Comparative Example 1 The same polyethylene terephthalate as in Example 1 was used as a short fiber web, and single-phase short fibers were prepared. That is, a single-phase spinneret having a round cross section was melt-spun at a single hole discharge rate of 0.82 g / min. After the spun yarn was cooled and the finishing oil was applied, it was wound up as an undrawn yarn through a take-up roll at a take-up speed of 1000 m / min. Next, a plurality of the obtained undrawn yarns are aligned to form a tow,
After stretching was performed at a stretch ratio of 3.2 times using a known stretching machine, crimping was performed with a press-in type crimping device, and 51 mm was applied.
To obtain 2.4 denier short fibers. Using the obtained short fiber, a basis weight of 20 g /
to obtain a short fiber web m 2.

【0068】以降、短繊維ウエブとして、前記短繊維ウ
エブを用いた以外は、実施例1と同様にして目付50g
/m2 の複合不織布を得た。
Thereafter, except that the short fiber web was used as the short fiber web, the basis weight was 50 g in the same manner as in Example 1.
/ M 2 was obtained.

【0069】比較例2 実施例1において、短繊維ウエブとしてコツトンを混綿
しなかった以外は実施例1と同様にして目付50g/m
2 の複合不織布を得た。
Comparative Example 2 The same procedure as in Example 1 was repeated except that cotton was not used as the short fiber web, and the basis weight was 50 g / m 2.
2 was obtained.

【0070】得られた実施例1〜5の複合不織布および
比較例1〜2の複合不織布の物性を表1に示した。
Table 1 shows the physical properties of the obtained composite nonwoven fabrics of Examples 1 to 5 and Comparative Example 1 and 2.

【0071】[0071]

【表1】 [Table 1]

【0072】表1から明らかなように、実施例1の複合
不織布は、長繊維ウエブと、極細割繊短繊維および吸水
性を有する短繊維とが混綿した短繊維ウエブとが積層さ
れ、両ウエブの構成繊維同士が三次元的に交絡一体化
し、引張強力、層間剥離強力、柔軟性、吸水性に優れる
ものであった。
As is clear from Table 1, the composite nonwoven fabric of Example 1 is formed by laminating a long fiber web and a short fiber web in which ultrafine split short fibers and short fibers having water absorbency are mixed. Are entangled and integrated three-dimensionally, and are excellent in tensile strength, delamination strength, flexibility, and water absorption.

【0073】実施例2の複合不織布は、長繊維不織布を
得る際の部分熱圧着処理において加工温度を低下させた
ため、高圧液体流処理の際に熱圧着部が一部剥離し繊維
状となり、長繊維群は自由に運動し短繊維との交絡性に
優れ、実施例1のものに比べて特に層間剥離強力、柔軟
性に優れるものであった。
The processing temperature of the composite nonwoven fabric of Example 2 was lowered in the partial thermocompression bonding process for obtaining a long-fiber nonwoven fabric. The fiber group moved freely and was excellent in the entanglement with the short fibers, and was particularly superior in the delamination strength and flexibility as compared with the one in Example 1.

【0074】実施例3の複合不織布は、極細割繊短繊維
の繊度を実施例1より小さくしたため構成繊維同士の交
絡性に優れ、実施例1のものに比べて特に層間剥離強力
に優れるものであった。
The composite nonwoven fabric of Example 3 is excellent in the entanglement of the constituent fibers because the fineness of the ultrafine split short fibers is smaller than that of Example 1, and is particularly excellent in the delamination strength as compared with that of Example 1. there were.

【0075】実施例4の複合不織布は、長繊維不織布を
芯鞘型複合長繊維を用いたため、実施例1のものに比べ
て特に柔軟性に優れるものであった。
The composite nonwoven fabric of Example 4 was particularly excellent in flexibility as compared with that of Example 1 because the long-fiber nonwoven fabric used was a core-sheath composite long fiber.

【0076】実施例5の複合不織布は、短繊維ウエブ中
の吸水性を有する繊維の割合が多いため、実施例1のも
のに比べて特に吸水性に優れるものであった。
The composite nonwoven fabric of Example 5 was particularly excellent in water absorption as compared with that of Example 1 because the ratio of the fibers having water absorption in the short fiber web was large.

【0077】実施例6の複合不織布は、短繊維ウエブ中
の極細割繊短繊維の割合が多いため、構成繊維同士の交
絡性に優れ、実施例1のものに比べて特に引張強力、層
間剥離強力、柔軟性に優れるものであった。
The composite nonwoven fabric of Example 6 is excellent in the entanglement of the constituent fibers due to the large proportion of ultrafine split short fibers in the short fiber web, and has a particularly high tensile strength and delamination as compared with those of Example 1. It was strong and flexible.

【0078】単相型短繊維からなる短繊維ウエブを用い
た比較例1の複合不織布は、柔軟性、層間剥離強力に著
しく劣り、実用的でないものであった。
The composite nonwoven fabric of Comparative Example 1 using a short fiber web composed of single-phase short fibers was extremely inferior in flexibility and delamination strength, and was not practical.

【0079】吸水性を有する繊維を混綿しない短繊維ウ
エブを用いた比較例2の複合不織布は、引張強力、層間
剥離強力、柔軟性には優れるが、吸水性がなく、用途が
限定されるものであった。
The composite nonwoven fabric of Comparative Example 2 using a short fiber web not mixed with water-absorbing fibers is excellent in tensile strength, delamination strength, and flexibility, but has no water absorption and its use is limited. Met.

【0080】[0080]

【発明の効果】本発明の複合不織布は、長繊維ウエブ
と、極細割繊短繊維および吸水性を有する短繊維とが混
綿した短繊維ウエブとが交絡一体化したものであり、両
ウエブの構成繊維同士の交絡性に優れ、引張強力、層間
剥離強力、柔軟性に優れるものであり、また、吸水性を
も併せ持つものである。そして、本発明の複合不織布
は、医療・衛生材用、衣料用、生活関連資材用、産業資
材用等様々な分野における様々な用途に利用できるもの
である。
The composite nonwoven fabric of the present invention is obtained by combining a long fiber web and a short fiber web in which ultrafine split short fibers and short fibers having water absorbency are mixed and entangled and integrated. It is excellent in entanglement between fibers, and has excellent tensile strength, delamination strength, and flexibility, and also has water absorbency. The composite nonwoven fabric of the present invention can be used for various applications in various fields such as medical / sanitary materials, clothing, living-related materials, industrial materials, and the like.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に用いられる二成分系複合短繊維の横
断面の一実施模式図である。
FIG. 1 is a schematic diagram of one embodiment of a cross section of a bicomponent conjugate short fiber used in the present invention.

【図2】 本発明に用いられる二成分系複合短繊維の横
断面の一実施模式図である。
FIG. 2 is a schematic diagram showing one embodiment of a cross section of a bicomponent conjugate short fiber used in the present invention.

【図3】 本発明に用いられる二成分系複合短繊維の横
断面の一実施模式図である。
FIG. 3 is a schematic diagram showing one embodiment of a cross section of a bicomponent conjugate short fiber used in the present invention.

【図4】 本発明に用いられる二成分系複合短繊維の横
断面の一実施模式図である。
FIG. 4 is a schematic diagram showing one embodiment of a cross section of a bicomponent conjugate short fiber used in the present invention.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 繊維形成性重合体からなる長繊維ウエブ
と、下記(1)を満足する短繊維ウエブとが積層されて
なり、かつ長繊維ウエブの構成繊維同士、長繊維ウエブ
と短繊維ウエブの構成繊維同士および短繊維ウエブの構
成繊維同士の三次元交絡により一体化してなることを特
徴とする複合不織布。 記 (1)互いに非相溶性である繊維形成性重合体Aと繊維
形成性重合体Bからなる分割型二成分系複合短繊維の分
割により発現した前記重合体Aおよび/または前記重合
体Bからなる極細割繊短繊維と吸水性を有する短繊維が
混綿されてなる短繊維ウエブ。
1. A long-fiber web comprising a fiber-forming polymer and a short-fiber web satisfying the following (1) are laminated, and the constituent fibers of the long-fiber web are combined with each other, the long-fiber web and the short-fiber web. Characterized in that they are integrated by three-dimensional entanglement between the constituent fibers of the above and the constituent fibers of the short fiber web. (1) From the polymer A and / or the polymer B expressed by the division of the splittable two-component conjugate short fibers composed of the fiber-forming polymer A and the fiber-forming polymer B, which are incompatible with each other. A short fiber web comprising a mixture of ultrafine split short fibers and water-absorbing short fibers.
【請求項2】分割型二成分系複合短繊維の分割により少
なくとも発現した極細割繊短繊維の単糸繊度が0.5デ
ニール以下であることを特徴とする請求項1記載の複合
不織布。
2. The composite nonwoven fabric according to claim 1, wherein the single-fiber fineness of the ultrafine split short fibers, which is at least developed by splitting the splittable bicomponent conjugate short fibers, is 0.5 denier or less.
【請求項3】 長繊維ウエブが、繊維形成性低融点重合
体を鞘部に、前記重合体の融点より30〜180℃高い
融点を有する繊維形成性高融点重合体を芯部に位置せし
めた芯鞘型複合長繊維からなることを特徴とする請求項
1または2記載の複合不織布。
3. A long-fiber web having a fiber-forming low-melting polymer in the sheath and a fiber-forming high-melting polymer having a melting point 30 to 180 ° C. higher than the melting point of the polymer in the core. The composite nonwoven fabric according to claim 1, comprising a core-sheath composite long fiber.
【請求項4】 吸水性を有する短繊維が、天然繊維およ
び/または再生繊維であることを特徴とする請求項1〜
3のいずれか1項記載の複合不織布。
4. The short fiber having water absorbency is a natural fiber and / or a regenerated fiber.
4. The composite nonwoven fabric according to any one of 3.
【請求項5】 吸水性を有する短繊維が、短繊維ウエブ
中に10〜70重量%混綿されていることを特徴とする
請求項1〜4のいずれか1項記載の複合不織布。
5. The composite nonwoven fabric according to claim 1, wherein the short fiber web has a water-absorbing short fiber content of 10 to 70% by weight.
【請求項6】 繊維形成性重合体からなる長繊維群を溶
融紡糸し、前記長繊維群をエアーサツカーを用いて引取
り、スクリーンコンベア等の移動式捕集面上に開繊堆積
させて長繊維ウエブとし、前記長繊維ウエブを部分熱圧
着装置を用いて長繊維ウエブを構成する繊維の最も表面
に位置する重合体の少なくとも融点または軟化点より低
い温度で部分熱圧着処理を行った後、長繊維ウエブの少
なくとも片面に、互いに非相溶性である繊維形成性重合
体Aと繊維形成性重合体Bからなる分割型二成分系複合
短繊維と吸水性を有する短繊維とを混綿した短繊維ウエ
ブを積層し、次いで、前記積層体に高圧液体流処理を施
し、長繊維ウエブの構成繊維同士、長繊維ウエブと短繊
維ウエブの構成繊維同士および短繊維ウエブの構成繊維
同士を三次元的に交絡させることにより、積層体を全体
として一体化させることを特徴とする複合不織布の製造
方法。
6. A long fiber group made of a fiber-forming polymer is melt-spun, the long fiber group is taken up using an air sacker, and spread and deposited on a movable collecting surface such as a screen conveyor. With the fiber web, after performing a partial thermocompression treatment at a temperature lower than at least the melting point or softening point of the polymer located on the most surface of the fiber constituting the long fiber web using a partial thermocompression bonding device using the long fiber web, A short fiber obtained by mixing a splittable bicomponent conjugate short fiber comprising a fiber-forming polymer A and a fiber-forming polymer B which are incompatible with each other on at least one surface of a long fiber web, and a short fiber having a water absorbing property. The web is laminated, and then the laminate is subjected to a high-pressure liquid flow treatment, and the constituent fibers of the long fiber web, the constituent fibers of the long fiber web and the short fiber web, and the constituent fibers of the short fiber web are three-dimensionally. Exchange A method for producing a composite nonwoven fabric, wherein the laminate is integrated as a whole by entanglement.
【請求項7】 長繊維ウエブとして、繊維形成性低融点
重合体を鞘部に、前記重合体の融点より30〜180℃
高い融点を有する繊維形成性高融点重合体を芯部に位置
せしめた芯鞘型複合長繊維からなる長繊維ウエブを用い
ることを特徴とする請求項6記載の複合不織布の製造方
法。
7. As a long fiber web, a fiber-forming low melting point polymer is used as a sheath, and the melting point of the polymer is 30 to 180 ° C.
The method for producing a composite nonwoven fabric according to claim 6, wherein a long fiber web composed of a core-sheath type composite long fiber having a fiber-forming high melting point polymer having a high melting point positioned at a core portion is used.
JP9139702A 1997-05-29 1997-05-29 Composite nonwoven fabric and its production Pending JPH10331063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9139702A JPH10331063A (en) 1997-05-29 1997-05-29 Composite nonwoven fabric and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9139702A JPH10331063A (en) 1997-05-29 1997-05-29 Composite nonwoven fabric and its production

Publications (1)

Publication Number Publication Date
JPH10331063A true JPH10331063A (en) 1998-12-15

Family

ID=15251436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9139702A Pending JPH10331063A (en) 1997-05-29 1997-05-29 Composite nonwoven fabric and its production

Country Status (1)

Country Link
JP (1) JPH10331063A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0933459A1 (en) * 1998-01-30 1999-08-04 Unitika Ltd. Staple fiber non-woven fabric and process for producing the same
WO1999039036A3 (en) * 1998-01-28 1999-09-23 Kanebo Ltd Absorbents
EP1188435A1 (en) * 2000-08-31 2002-03-20 Nitto Denko Corporation Intraoral adhesive preparation
US6632501B2 (en) * 2001-06-06 2003-10-14 Jerry M. Brownstein Loose fiber adsorbent
DE10130481B4 (en) * 2000-06-26 2005-11-10 Chisso Corp. Cleavable conjugated polyolefin fiber and fiber structure using the same
WO2013069334A1 (en) 2011-11-11 2013-05-16 電気化学工業株式会社 Self-baking electrode upper-end detection apparatus and self-baking electrode upper-end management method
JP2013198881A (en) * 2012-03-26 2013-10-03 Toyobo Co Ltd Protective mat
US8992334B2 (en) 2012-10-31 2015-03-31 Miki Pulley Co., Ltd. Flexible shaft coupling and method of manufacturing the same
WO2020117884A1 (en) * 2018-12-06 2020-06-11 Berry Global, Inc. Microfiber-containing nonwoven fabrics

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999039036A3 (en) * 1998-01-28 1999-09-23 Kanebo Ltd Absorbents
EP0933459A1 (en) * 1998-01-30 1999-08-04 Unitika Ltd. Staple fiber non-woven fabric and process for producing the same
DE10130481B4 (en) * 2000-06-26 2005-11-10 Chisso Corp. Cleavable conjugated polyolefin fiber and fiber structure using the same
EP1188435A1 (en) * 2000-08-31 2002-03-20 Nitto Denko Corporation Intraoral adhesive preparation
US6676960B2 (en) 2000-08-31 2004-01-13 Nitto Denko Corporation Intraoral adhesive preparation
US6632501B2 (en) * 2001-06-06 2003-10-14 Jerry M. Brownstein Loose fiber adsorbent
WO2013069334A1 (en) 2011-11-11 2013-05-16 電気化学工業株式会社 Self-baking electrode upper-end detection apparatus and self-baking electrode upper-end management method
JP2013198881A (en) * 2012-03-26 2013-10-03 Toyobo Co Ltd Protective mat
US8992334B2 (en) 2012-10-31 2015-03-31 Miki Pulley Co., Ltd. Flexible shaft coupling and method of manufacturing the same
WO2020117884A1 (en) * 2018-12-06 2020-06-11 Berry Global, Inc. Microfiber-containing nonwoven fabrics
US11441252B2 (en) 2018-12-06 2022-09-13 Berry Global, Inc. Microfiber-containing nonwoven fabrics

Similar Documents

Publication Publication Date Title
EP0933459B1 (en) Staple fiber non-woven fabric and process for producing the same
JPH10331063A (en) Composite nonwoven fabric and its production
JPH10219555A (en) Laminated nonwoven fabric and its production
JP3948781B2 (en) Short fiber nonwoven fabric and method for producing the same
JPH10280262A (en) Nonwoven fabric and its production
JP3201671B2 (en) Manufacturing method of composite nonwoven fabric
JP4015831B2 (en) Ultrafine fiber nonwoven fabric and method for producing the same
JP4026279B2 (en) Split type composite fiber and fiber molded body using the same
JP4453179B2 (en) Split fiber and fiber molded body using the same
JP3580626B2 (en) Nonwoven fabric for hook-and-loop fastener and method for producing the same
JP3145067B2 (en) Nonwoven fabric and method for producing the same
JP3305453B2 (en) Laminated non-woven structure
JPH10273870A (en) Composite non-woven fabric and its production
JPH10280258A (en) Nonwoven fabric and its production
JPH10158968A (en) Nonwoven fabric and its production
JPH1121752A (en) Composite nonwoven fabric and its production
JP2000034661A (en) Composite nonwoven fabric and its production
JPH08109567A (en) Laminated nonwoven structure and its production
JPH11100764A (en) Nonwoven fabric and its production
JPH11229256A (en) Composite nonwoven fabric and its production
JPH10273864A (en) Composite nonwoven fabric and its production
JPH10195749A (en) Laminated nonwoven fabric and its production
JPH10195750A (en) Composite nonwoven fabric and its production
JPH07316968A (en) Composite non-woven fabric and its production
JPH0768686A (en) Laminated nonwoven structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004