JP6672641B2 - Extra fine polyester fiber with uneven surface - Google Patents

Extra fine polyester fiber with uneven surface Download PDF

Info

Publication number
JP6672641B2
JP6672641B2 JP2015167715A JP2015167715A JP6672641B2 JP 6672641 B2 JP6672641 B2 JP 6672641B2 JP 2015167715 A JP2015167715 A JP 2015167715A JP 2015167715 A JP2015167715 A JP 2015167715A JP 6672641 B2 JP6672641 B2 JP 6672641B2
Authority
JP
Japan
Prior art keywords
fiber
sea
island
yarn
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015167715A
Other languages
Japanese (ja)
Other versions
JP2016172945A (en
Inventor
則雄 鈴木
則雄 鈴木
久人 齋藤
久人 齋藤
隆之 吉宮
隆之 吉宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2016172945A publication Critical patent/JP2016172945A/en
Application granted granted Critical
Publication of JP6672641B2 publication Critical patent/JP6672641B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Woven Fabrics (AREA)
  • Knitting Of Fabric (AREA)
  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Description

本発明は、無機微粒子を含有した極細繊維に関し、極細繊維の表面に微細な凹凸を有しており、布帛にした際にドライ感、防透け性、マイルドな光沢感を有し、さらには極細繊維特有の不快なぬめり感を打ち消し、従来では得られなかった上質感を有する極細ポリエステル繊維に関するものである。   The present invention relates to an ultrafine fiber containing inorganic fine particles, which has fine irregularities on the surface of the ultrafine fiber, and has a dry feeling, a sheer-proof property, a mild glossiness when formed into a fabric, and an ultrafine fiber. The present invention relates to an ultrafine polyester fiber which cancels an unpleasant slimy feeling peculiar to a fiber and has a high quality feeling which could not be obtained conventionally.

単繊維直径が数マイクロメートルの極細ポリエステル繊維は、布帛にした際に繊細かつソフト感のある風合いを呈するため、スエード調布帛やワイピングクロスとして広く用いられている。特に、マイクロファイバーを容易に製造する手法としては、易溶解性ポリマーからなる海成分中に難溶解性の島成分を含有する海島型複合繊維や、難溶解性のマイクロファイバーが易溶解性ポリマーで仕切られた割繊型複合繊維の利用が広く知られている(特許文献1参照)。これらの手法は複合繊維として一旦巻き取った後、溶解剤に複合繊維もしくは布帛製品を浸漬させることにより易溶解性ポリマーを除去し、難溶解性のマイクロファイバーを得ることが可能となる技術である。   Ultrafine polyester fibers having a single fiber diameter of several micrometers have a delicate and soft feeling when made into a fabric, and are therefore widely used as suede-like fabrics and wiping cloths. In particular, as a method of easily producing microfibers, sea-island composite fibers containing a sparingly soluble island component in a sea component composed of a readily soluble polymer, or a sparingly soluble microfiber is a readily soluble polymer. The use of partitioned split-type composite fibers is widely known (see Patent Document 1). These techniques are techniques that, once wound as a composite fiber, remove the easily soluble polymer by immersing the composite fiber or the fabric product in a dissolving agent, thereby making it possible to obtain a hardly soluble microfiber. .

近年では、さらに繊細な肌触りやソフト感を追求して単繊維直径が1マイクロメートル以下となる極細ポリエステル繊維が提案されている。ナノファイバーは、繊維直径のスケールダウンによる極限のソフト化のほか、単繊維群の比表面積や空隙率が飛躍的に増加することによるナノサイズ特有の効果も認められ、研究開発に拍車が掛かっている。   In recent years, ultrafine polyester fibers having a single fiber diameter of 1 micrometer or less have been proposed in pursuit of more delicate touch and softness. Nanofibers are not only softened by scaling down the fiber diameter, but also have a unique effect of nanosize due to a dramatic increase in the specific surface area and porosity of the single fiber group, which has spurred research and development. I have.

一方、繊維表面に微細な凹凸を付与して、風合い改善、色調改善する技術が開示されている。例えば、特許文献2には合成繊維形成性ポリマーに直径が80ミリミクロン以下の微細粒子を添加し、繊維形成後に繊維表面を溶出処理し、微細で複雑な凹凸形状を有する合成繊維の製造方法が開示されている。これは合成繊維特有のワキシー感、鏡面光沢を改善し、色の深みが得られるとしている。   On the other hand, there is disclosed a technique for improving texture and color by imparting fine irregularities to the fiber surface. For example, Patent Literature 2 discloses a method for producing a synthetic fiber having a fine and complex uneven shape by adding fine particles having a diameter of 80 mm or less to a synthetic fiber-forming polymer and performing elution treatment on the fiber surface after forming the fiber. It has been disclosed. It is said that this improves the waxy feeling and specular gloss peculiar to synthetic fibers, and provides a deeper color.

また、特許文献3は無機微粒子を含有したポリエステルに、該ポリエステルよりも熱アルカリ水溶液に対する溶解速度が大きいポリエステルが混合されたポリエステル繊維であり、アルカリ減量加工することによって繊維表面に微細な凹凸、いわゆるミクロボイドと、筋状溝を形成させることにより、織編物にした際に不透明感に加え、ドライ感、キシミ感、シャリ感、温もり感等の独特な風合い、パステルな光沢感を兼ね備えたポリエステル繊維を提供する技術が開示されている。   Patent Document 3 discloses a polyester fiber obtained by mixing a polyester containing inorganic fine particles with a polyester having a higher dissolution rate in a hot alkali aqueous solution than the polyester. By forming microvoids and streaky grooves, polyester fibers that have a unique texture such as dryness, kissiness, sharpness, warmth, and pastel glossiness in addition to opacity when woven and knitted The technology provided is disclosed.

また、特許文献4には特定の水溶性化合物を含有した繊維を処理して繊維表面に特定の微細孔を有する繊維となすことにより染色における染料吸尽率が高く濃色の発色性に優れ、かつ静電性、工程通過性にも優れたポリエステル繊維に関する技術が開示されている。   Patent Document 4 discloses that a fiber containing a specific water-soluble compound is treated to form a fiber having specific fine pores on the fiber surface, so that the dye exhaustion rate in dyeing is high and the color development of a dark color is excellent. A technique relating to polyester fibers excellent in electrostatic property and process passability is disclosed.

しかしながら、上記の技術はいずれも繊維径が10μm以上で、通常太さの繊維に適用された技術であり、極細繊維でスエード調布帛やワイピングクロス機能、繊細な肌触りやソフト感、ドレープ性を有しながら、ドライ感、防透け性、マイルドな光沢感を付与し、さらには極細繊維特有の不快なぬめり感を打ち消した繊維は得られておらず、開発が待ち望まれていた。   However, all of the above techniques are techniques applied to fibers having a fiber diameter of 10 μm or more and a normal thickness, and have a suede-like fabric or wiping cloth function with ultra-fine fibers, delicate touch, soft feeling, and drape property. On the other hand, there has not been obtained a fiber which imparts a dry feeling, anti-penetration property, mild glossiness, and cancels out the unpleasant slimy feeling peculiar to ultrafine fibers, and development has been awaited.

特開2005−163234号公報JP 2005-163234 A 特開昭54−120728号公報JP-A-54-120728 特開平11−222725号公報JP-A-11-222725 特開2003−166123号公報JP 2003-166123 A

本発明の目的は、上記の課題を解決し、極細繊維でありながら、繊細な肌触りやソフト感、ドレープ性を維持し、ドライ感、防透け性、マイルドな光沢感を付与し、さらには極細繊維特有の不快なぬめり感を打ち消し、極細繊維の高付加価値化を付与することが可能な極細ポリエステル繊維を提供することにある。   The object of the present invention is to solve the above-mentioned problems, and to maintain a delicate touch, soft feeling, and drape property while being an ultra-fine fiber, to impart a dry feeling, a sheer-proof property, a mild glossiness, and an ultra-fine fiber. An object of the present invention is to provide an ultrafine polyester fiber capable of canceling an unpleasant slimy feeling peculiar to the fiber and imparting high added value of the ultrafine fiber.

上記課題は以下の構成により解決できる。
(1)平均粒径が0.10〜0.50μmの酸化チタン、ジルコニア、アルミナから選択される無機微粒子を含有し、繊維径が590〜6000nmである極細繊維であって、繊維の表面に微細な凹凸を有し、かつ微細凹凸は次のA、Bの要件を満足する極細ポリエステル繊維。
A.微細凹凸の数が1〜15個/40μm
B.微細凹凸の大きさがアスペクト比10以下
(2)機微粒子を1.0〜8.0wt%含有することを特徴とする(1)記載の極細ポリエステル繊維
The above problem can be solved by the following configuration.
(1) Ultrafine fibers having an average particle size of 0.10 to 0.50 μm and containing inorganic fine particles selected from titanium oxide, zirconia, and alumina, and having a fiber diameter of 590 to 6000 nm, and having a fine surface An ultra-fine polyester fiber having fine irregularities and satisfying the following requirements A and B:
A. The number of small projections 1-15 pieces / 40 [mu] m 2
B. The size of fine unevenness is characterized in that it contains 1.0 to 8.0 wt% of the aspect ratio of 10 or less (2) No machine microparticles (1) ultrafine polyester fiber as claimed.

本発明によれば、極細繊維のスエード調布帛やワイピングクロス機能、繊細な肌触りやソフト感、ドレープ性を維持し、ドライ感、防透け性、マイルドな光沢感を付与し、さらには極細繊維特有の不快なぬめり感を打ち消すことができるなどの高付加価値を付与することが可能な極細ポリエステル繊維を提供することができる。   According to the present invention, suede-like fabric of ultrafine fiber and wiping cloth function, delicate touch and softness, maintain drapability, dryness, anti-shedding property, mild glossiness, and even extrafine fiber It is possible to provide an ultrafine polyester fiber capable of imparting a high added value, such as being able to cancel the unpleasant slimy feeling of the above.

図1(a)、(b)は、本発明の海島型複合繊維の単糸の断面の一例FIGS. 1A and 1B show an example of a cross section of a single yarn of the sea-island composite fiber of the present invention.

以下、本発明の極細ポリエステル繊維について詳述する。
すなわち、本発明は極細ポリエステル繊維の表面に微細凹凸を有し、その微細凹凸の数は1〜19個/40μmである必要がある。
Hereinafter, the ultrafine polyester fiber of the present invention will be described in detail.
That is, in the present invention, the surface of the ultrafine polyester fiber has fine irregularities, and the number of the fine irregularities needs to be 1 to 19/40 μm 2 .

表面に微細凹凸の数が1個/40μm以上であると繊維表面が平坦でなくなり、またぬめり感や金属的な好ましくない風合いでなく、ドライ感、シャリ感、ハイタッチ感、サラッとした心地よい風合いとなるので好ましい。 When the number of fine irregularities on the surface is 1/40 μm 2 or more, the fiber surface is not flat, and it is not a slimy feeling or an unfavorable metallic feeling, but a dry feeling, a sharp feeling, a high touch feeling, a smooth and comfortable texture. Is preferable.

そして、微細凹凸の数が19個/40μm以下であると、極細繊維の強伸度特性等の物性低下も少なく好ましい。さらに好ましくは2〜15個/40μmで、特に好ましくは5〜10個/40μmである。 When the number of the fine irregularities is 19/40 μm 2 or less, it is preferable that physical properties such as the elongation characteristic of the ultrafine fiber are not reduced. More preferably, it is 2 to 15 pieces / 40 μm 2 , and particularly preferably 5 to 10 pieces / 40 μm 2 .

この微細凹凸とは繊維表面にできた微細な孔と微細な突起を指す。微細な孔および突起とは、電子走査型顕微鏡で繊維表面に観察される凹部や凸部であり、その大きさが0.1μm以上のものを呼ぶ。微細な孔は海成分ポリマーの溶解除去時に、無機微粒子が繊維表面から抜け落ちた孔で、微細な突起は、無機微粒子が抜け落ちないで繊維表面に留まっている状態を指す。   The fine irregularities refer to fine holes and fine protrusions formed on the fiber surface. The fine holes and projections are depressions and projections observed on the fiber surface with an electronic scanning microscope, and those having a size of 0.1 μm or more are called. Fine pores are pores in which inorganic fine particles fall off from the fiber surface when the sea component polymer is dissolved and removed, and fine projections indicate a state in which inorganic fine particles do not fall off and remain on the fiber surface.

この微細凹凸が風合いに好ましい影響を与え、これまでの素材とは全く異なり、ドライ感、シャリ感、ハイタッチ感、すなわちサラッとした感触を発現させる。さらに、極細繊維の特徴である繊細な肌触りやソフト感、ドレープ性を維持しながら、極細繊維独特の不快感であるぬめり感を打ち消すことにより新しい素材とすることができ、心地よい感触で独特の風合いを得ることができるのである。   The fine irregularities have a favorable effect on the texture, and are completely different from the conventional materials, exhibiting a dry feeling, a sharp feeling, a high touch feeling, that is, a smooth feel. In addition, while maintaining the delicate touch, softness and drape characteristic of microfibers, it is possible to create a new material by overcoming the slimy feeling that is unique to microfibers. Can be obtained.

本発明の繊維表面の微細凹凸の大きさはアスペクト比が10以下とする必要がある。ここで云うアスペクト比は次のように定義する。
繊維表面の凹部または溝の形状で、繊維軸方向に対し、平行な方向を長さ(L)、
それに垂直な方向を幅(W)として、形状の幅に対する長さの比(C)をアスペクト比(C=L/W)とする。
アスペクト比が10以下であるとは、繊維表面の微細な孔、すなわち海成分ポリマーの溶解除去時に生成した微細凹凸は、繊維軸方向に沿った筋状の溝では無く、無機微粒子が抜け出た孔であることを意味している。この微細凹凸が、繊維軸方向に沿った筋状の溝、すなわちアスペクト比が10を超えるとぬめり感が発現するため好ましくない。これは、肌に触れたときに筋状の溝により表面積が大きくなり、あたかも繊維径が細くなったごとく作用し、超極細繊維のように振る舞うため、ぬめり感が発現するのである。アスペクト比の好ましい範囲は、8以下であり、さらに好ましくは6以下である。
The size of the fine irregularities on the fiber surface of the present invention needs to have an aspect ratio of 10 or less. The aspect ratio referred to here is defined as follows.
In the shape of a concave or groove on the fiber surface, the direction parallel to the fiber axis direction is length (L),
A direction perpendicular to the width is defined as a width (W), and a ratio of the length to the width of the shape (C) is defined as an aspect ratio (C = L / W).
The aspect ratio of 10 or less means that fine pores on the fiber surface, that is, fine irregularities generated during dissolution and removal of the sea component polymer, are not streaky grooves along the fiber axis direction, but pores from which inorganic fine particles have escaped. It means that If the fine irregularities have streaky grooves along the fiber axis direction, that is, if the aspect ratio exceeds 10, a slimy feeling is exhibited, which is not preferable. This is because the streaky grooves increase the surface area when touching the skin, act as if the fiber diameter is small, and behave like ultra-fine fibers, so that a slimy feeling is exhibited. The preferred range of the aspect ratio is 8 or less, more preferably 6 or less.

本発明の極細ポリエステル繊維の繊維径は50〜6000nmであることが好ましい。
繊維径が50nm以上であることで、十分に極細繊維でありながら、無機微粒子を含有させることが可能となり、防透け性、マイルドな光沢感を有し、アルカリ減量加工で微細凹凸を発現させ、良好な風合いでありながら、強伸度低下が軽減できて好ましい。
また、繊維径は6000nm以下であると、極細繊維の特性である繊細な肌触りやソフトな触感、ドレープ性を生かしたスエード調布帛、比表面積や空隙率の増加によるワイピング性能に加えて、ドライ感の付与、防透け性、マイルドな光沢感が発現できるので好ましい。
The fiber diameter of the ultrafine polyester fiber of the present invention is preferably 50 to 6000 nm.
By having a fiber diameter of 50 nm or more, it is possible to contain inorganic fine particles while being a sufficiently fine fiber, and to have a sheer-proof property, a mild glossiness, and to express fine irregularities by alkali weight reduction processing, It is preferable because the strength and elongation can be reduced while having a good texture.
Further, when the fiber diameter is 6000 nm or less, in addition to the delicate touch and soft touch, which are the characteristics of the ultrafine fiber, the suede-like fabric utilizing the drape property, the wiping performance due to the increase in the specific surface area and the porosity, and the dry feeling. This is preferable since it can impart a low gloss, show-through resistance, and express a mild glossiness.

また、本発明の極細ポリエステル繊維(繊維径50〜6000nm)は通常の太さの繊維に比べ比表面積が大きく、さらに単位面積当たりの微細凹凸が少ないのが特徴であり、微細凹凸の数は通常の繊維(繊維径10〜20μm)の1/5程度の数で良好な風合いが発現可能となり、糸物性の低下も押さえることができるので好ましい。これは極細繊維に単位面積当たりの数をコントロールした微細凹凸を形成させることによる相乗効果が生まれたもので、本発明の特徴の一つである。
なお、本発明の極細ポリエステル繊維の繊維径は、100〜5000nmがさらに好ましく、特に好ましくは、200〜4000nmである。
Further, the ultrafine polyester fiber (fiber diameter 50 to 6000 nm) of the present invention is characterized by having a large specific surface area and a small number of fine irregularities per unit area as compared with a fiber having a normal thickness. About 1/5 of the fibers (fiber diameter of 10 to 20 μm) are preferable because good texture can be exhibited and a decrease in yarn physical properties can be suppressed. This is one of the features of the present invention, in which a synergistic effect is produced by forming fine irregularities in the ultrafine fibers with a controlled number per unit area.
In addition, the fiber diameter of the ultrafine polyester fiber of the present invention is more preferably 100 to 5000 nm, particularly preferably 200 to 4000 nm.

本発明の極細ポリエステル繊維は、無機微粒子を1.0〜8.0wt%含有していることが好ましい。無機微粒子の含有率が1.0wt%以上であると、防透け性が発揮され、マイルドな光沢感となり、さらに微細凹凸の数が良好な風合いとして感じることのできる1個/40μm以上となり好ましい。また、無機微粒子の含有率が8.0wt%以下であれば製糸性の低下を避けることができるとともに繊維物性も実用上問題無い範囲となるので好ましい。さらに好ましくは3.0wt%以上、特に好ましくは5.0〜7.0wt%である。
無機微粒子としては、例えば酸化チタンジルコニア、もしくはアルミナなども用いることができる。中でも酸化チタンは不透明性に優れ、かつ取扱性のし易さ、価格面、太陽光線に対する諸機能等の点でより好ましい。例えば酸化チタンには皮膚に有害な紫外線を吸収・遮蔽、かつ暑さを感じる太陽光の可視および近赤外線領域を効率的に反射するため、日射エネルギーの吸収を抑え、衣服にしたときの衣服内の温度を抑える効果があるので特に好ましく用いることができる。
そして、本発明の無機微粒子の粒径は、平均粒径が0.10〜0.50μmの範囲内のものを好ましく用いることができる。
The ultrafine polyester fiber of the present invention preferably contains inorganic fine particles in an amount of 1.0 to 8.0 wt%. When the content of the inorganic fine particles is 1.0% by weight or more, the antireflection property is exhibited, a mild glossy feeling is obtained, and the number of fine irregularities is 1/40 μm 2 or more which can be felt as a good texture, which is preferable. . Further, when the content of the inorganic fine particles is 8.0 wt% or less, it is preferable because a decrease in the spinning property can be avoided and the physical properties of the fiber are within a range in which there is no practical problem. It is more preferably at least 3.0 wt% , particularly preferably 5.0 to 7.0 wt% .
As the inorganic fine particles, for example, titanium oxide , zirconia, or alumina can be used. Among them, titanium oxide is excellent in opacity, and is more preferable in terms of ease of handling, price, various functions against sunlight, and the like. For example, titanium oxide absorbs and blocks ultraviolet rays that are harmful to the skin and efficiently reflects the visible and near-infrared regions of sunlight that feels hot. Can be particularly preferably used because it has an effect of suppressing the temperature of the above.
The inorganic fine particles of the present invention preferably have an average particle diameter in the range of 0.10 to 0.50 μm.

本発明の極細ポリエステル繊維の断面形状は丸断面、異型断面、扁平断面等特に限定することなく適用できる。   The cross-sectional shape of the ultrafine polyester fiber of the present invention can be applied without any particular limitation, such as a round cross section, an irregular cross section, and a flat cross section.

本発明の極細ポリエステル繊維は海島型複合繊維を極細化することによって得られる。   The ultrafine polyester fiber of the present invention can be obtained by micronizing the sea-island composite fiber.

極細ポリエステル繊維表面の微細凹凸は島成分ポリマーに無機微粒子を含有させ、海成分ポリマーの溶解除去時に繊維表面および表面近傍から無機微粒子が脱落して微細凹凸が生成する。   The fine irregularities on the surface of the ultrafine polyester fiber contain inorganic fine particles in the island component polymer, and the inorganic fine particles fall off from the fiber surface and the vicinity of the surface when the sea component polymer is dissolved and removed, thereby generating fine irregularities.

以下に、本発明の海島型複合繊維について詳しく説明する。
本発明の海島型複合繊維は、易溶解性ポリエステルを海成分、難溶解性ポリエステルを島成分とする必要がある。海または島を形成するポリマーは互いに非相溶であり、繊維形成性の熱可塑性重合体であるポリエステルが用いられる。島成分をポリエステルとすることで海成分ポリマーの溶解除去後の極細繊維としたときにぬめり感のないさらっとした風合いが得られる。また海成分をポリエステルとすることで海島複合繊維を製糸する際の製糸性および海島複合糸を使って織編物を作成する際の工程通過性に優れる。島成分および/または海成分に用いられるポリエステルとしては、例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリプロピレンテレフタレートや、それらにジカルボン酸成分、ジオール成分あるいはオキシカルボン酸成分が共重合されたもの、あるいはそれらポリエステルをブレンドしたものが挙げられる。さらには、生分解性ポリエステルとして知られるポリ乳酸、ポリブチレンサクシネート、ポリε−カプロラクタム等の脂肪族ポリエステルでもよい。これらのポリエステルには、艶消し剤、難燃剤、滑剤、抗酸化剤、着色顔料等として無機微粒子や有機化合物、カーボンブラックを必要に応じて添加することができる。
Hereinafter, the sea-island type conjugate fiber of the present invention will be described in detail.
In the sea-island type composite fiber of the present invention, it is necessary that the easily soluble polyester is a sea component and the hardly soluble polyester is an island component. The polymers forming the sea or islands are incompatible with each other, and polyester which is a fiber-forming thermoplastic polymer is used. When the island component is made of polyester, a soft texture without slimy feeling can be obtained when the ultrafine fibers are obtained by dissolving and removing the sea component polymer. In addition, since the sea component is made of polyester, it is excellent in the spinning property when spinning sea-island composite fibers and in the process passability when forming a woven or knitted fabric using sea-island composite yarns. Examples of the polyester used for the island component and / or the sea component include polyethylene terephthalate, polybutylene terephthalate, and polypropylene terephthalate, and those obtained by copolymerizing a dicarboxylic acid component, a diol component, or an oxycarboxylic acid component, or polyesters thereof. Blended ones can be mentioned. Further, aliphatic polyesters such as polylactic acid, polybutylene succinate, and polyε-caprolactam known as biodegradable polyesters may be used. If necessary, inorganic fine particles, organic compounds and carbon black can be added to these polyesters as matting agents, flame retardants, lubricants, antioxidants, coloring pigments and the like.

本発明に用いる海島型複合繊維のポリマーの組み合わせの一例を以下に列挙する。海成分ポリマー溶解剤がアルカリ水溶液の場合は、海成分ポリマーに共重合ポリエステル樹脂または脂肪族ポリエステル樹脂を、島成分ポリマーにはホモポリエステル樹脂、芳香族ジカルボン酸からなるポリエステル樹脂などを組み合わせる。   Examples of combinations of polymers of sea-island composite fibers used in the present invention are listed below. When the sea component polymer dissolving agent is an aqueous alkali solution, a copolymer polyester resin or an aliphatic polyester resin is combined with the sea component polymer, and a homopolyester resin, a polyester resin made of an aromatic dicarboxylic acid, or the like is combined with the island component polymer.

島成分に含まれる無機微粒子の含有率は1.0〜10.0wt%が必要である。本範囲とすることで海成分ポリマーの溶解除去後の極細繊維の無機微粒子含有率を1.0〜10.0wt%とすることができて好ましい。   The content of the inorganic fine particles contained in the island component needs to be 1.0 to 10.0 wt%. By setting the content in this range, the content of the inorganic fine particles in the ultrafine fibers after dissolving and removing the sea component polymer can be set to 1.0 to 10.0 wt%, which is preferable.

海成分に含まれる無機微粒子の含有率は0.1〜0.8wt%が好ましい。0.1wt%以上とすることで海島型複合繊維を製糸する際、および海島型複合繊維を使って織編物を作成する際の工程通過時に各ガイドやローラーと繊維表面との摩擦が低減し、製糸性、工程通過性が安定し、毛羽等の品位が良好となる。0.8wt%以下とすることで海島型複合繊維を製糸する際、および海島型複合繊維を使って織編物を作成する際の工程通過時に各ガイドの摩耗を抑制して、経時で海島型複合繊維の物性や毛羽等の品位を維持し、製糸性、工程通過性も安定になる。   The content of the inorganic fine particles contained in the sea component is preferably from 0.1 to 0.8 wt%. 0.1% by weight or more reduces the friction between each guide or roller and the fiber surface when the sea-island composite fiber is produced and when the woven or knitted fabric is produced using the sea-island composite fiber. The spinning property and the processability are stable, and the quality of fluff and the like is improved. By adjusting the content to 0.8 wt% or less, the wear of each guide is suppressed during the process of producing the sea-island composite fiber and the process of producing a woven or knitted fabric using the sea-island composite fiber, and the sea-island composite is produced over time. Maintains the physical properties of the fiber and the quality of fluff, etc., and stabilizes the spinning properties and processability.

各単糸の島成分は海成分に完全に覆われている必要がある。島成分には1.0〜10.0wt%の無機微粒子を含有しており、島成分が繊維表面に露出していると海島型複合繊維を製糸する際、および海島型複合繊維を使って織編物を作成する際の工程通過時に各ガイドの摩耗が進行し、経時で海島型複合繊維の物性や毛羽等の品位の悪化、製糸性、工程通過性も不安定になる。島成分を海成分で完全に覆ってあげることで長期間製糸性、工程通過性が安定するのである。   The island component of each single thread must be completely covered by the sea component. The island component contains 1.0 to 10.0% by weight of inorganic fine particles. When the island component is exposed on the fiber surface, the island-in-sea type composite fiber is plied or woven using the island-in-sea type composite fiber. The wear of each guide progresses during the process of producing a knitted fabric, and the physical properties of the sea-island composite fiber and the quality of fluff and the like deteriorate, the spinning properties, and the process passability become unstable over time. By completely covering the island component with the sea component, the spinning property and the process passability are stabilized for a long time.

また、各単糸の島成分は海成分に完全に分離されている必要がある。これにより海成分ポリマーの溶解除去後に均一な極細繊維が得られ、結果上質な風合いの織編物が得られるのである。   Further, the island component of each single yarn needs to be completely separated into the sea component. As a result, uniform ultrafine fibers can be obtained after the dissolution and removal of the sea component polymer, and as a result, a woven or knitted fabric having a good texture can be obtained.

海島型複合繊維の繊度は12〜300dtex、かつ単糸数は5〜400、かつ1単糸当たりの島数は4〜1200とする必要がある。海島型複合繊維の繊度、単糸数、1単糸当たりの島数を本範囲とすることで本発明の好ましい繊維径50nm〜6000nmの極細繊維を製糸性、工程通過性が安定した状態で得ることができ、上質な風合い、外観の織編物を得ることができる。   It is necessary that the fineness of the sea-island composite fiber is 12 to 300 dtex, the number of single yarns is 5 to 400, and the number of islands per single yarn is 4 to 1200. By setting the fineness of the sea-island type composite fiber, the number of single yarns, and the number of islands per single yarn within this range, it is possible to obtain the ultrafine fibers having a preferable fiber diameter of 50 nm to 6000 nm of the present invention in a state in which the spinning property and process passability are stable. And a woven or knitted fabric having a good texture and appearance can be obtained.

海島型複合繊維の繊度が12dtex未満であると製糸性、工程通過性が悪化する。該繊度が300dtexを超えると海成分ポリマーを溶解除去した後の極細繊維の繊径が大きくなり織編物の風合いが低下する。繊維径50nm〜6000nmの極細繊維を得るために単糸数および/または1単糸当たりの島数を増やすと製糸性、工程通過性が悪化する。   When the fineness of the sea-island type composite fiber is less than 12 dtex, the spinning property and the processability deteriorate. When the fineness exceeds 300 dtex, the fineness of the ultrafine fibers after dissolving and removing the sea component polymer increases, and the texture of the woven or knitted fabric decreases. If the number of single yarns and / or the number of islands per single yarn is increased in order to obtain an ultrafine fiber having a fiber diameter of 50 nm to 6000 nm, the spinning property and the process passability deteriorate.

単糸数が5未満であると海成分ポリマーを溶解除去した後の極細繊維の繊径が大きくなり織編物の風合いが低下する。繊維径50〜6000nmの極細繊維を得るために島数を増やすと島成分の面積バラツキが大きくなり、均一な繊維径の極細繊維が得らず、織編物としたときに上質な風合いが得られない。単糸数が400を超えると海島型複合繊維の毛羽の増大による製糸性、工程通過性の悪化やU%ムラの悪化により極細繊維の繊維径が不均一になる。   If the number of single yarns is less than 5, the diameter of the ultrafine fibers after dissolving and removing the sea component polymer becomes large, and the texture of the woven or knitted fabric decreases. When the number of islands is increased to obtain ultrafine fibers having a fiber diameter of 50 to 6000 nm, the area variation of the island components increases, and ultrafine fibers having a uniform fiber diameter cannot be obtained. Absent. When the number of single yarns exceeds 400, the fiber diameter of the ultrafine fibers becomes non-uniform due to the deterioration of the yarn-making properties and process passability due to the increase in the fluff of the sea-island composite fibers, and the deterioration of U% unevenness.

島数が4未満であると海成分ポリマーを溶解除去した後の極細繊維の繊径が大きくなり織編物の風合いが低下する。繊維径50〜6000nmの極細繊維を得るために単糸数を増やすと複合繊維の毛羽の増大による製糸性、工程通過性の悪化やU%ムラの悪化により極細繊維の繊維径が不均一になる傾向がある。島数が1200を超えると島成分の面積バラツキが大きくなり、均一な繊維径の極細繊維が得らず、織編物としたときに上質な風合いが得られない。   If the number of islands is less than 4, the diameter of the ultrafine fibers after dissolving and removing the sea component polymer becomes large, and the texture of the woven or knitted fabric decreases. When the number of single yarns is increased in order to obtain ultrafine fibers having a fiber diameter of 50 to 6000 nm, the fiber diameter of the ultrafine fibers tends to be non-uniform due to the deterioration of the yarn forming property, the processability, and the U% unevenness due to the increase in the fluff of the composite fibers. There is. If the number of islands exceeds 1200, the variation in the area of the island components becomes large, ultrafine fibers having a uniform fiber diameter cannot be obtained, and a fine texture cannot be obtained when a woven or knitted fabric is used.

本発明の海島型複合繊維の強度は2.5〜5.5cN/dtexが好ましい。強度を2.5cN/dtex以上とすることで製糸性、工程通過性に優れる。また海成分ポリマーを溶解除去後の極細繊維の強度を1.5cN/dtex以上とすることができ、比較的使用環境が過酷なスポーツ衣料用途などにも好適に用いることができる。強度を5.5cN/dtex以下とすることで安定した製糸性が得られ、島成分の面積バラツキが小さい海島型複合繊維とすることができる。強度を5.5cN/dtexを超えるには固有粘度の高いポリマーを使用し、もしくは延伸倍率を高く設定する必要があるため、口金での計量性の低下による島成分面積バラツキの増大や延伸倍率過多により製糸性や毛羽品位の悪化、さらには海島成分が剥離する可能性がある。更に好ましくは3.0〜5.0cN/dtexである。   The strength of the sea-island composite fiber of the present invention is preferably 2.5 to 5.5 cN / dtex. When the strength is 2.5 cN / dtex or more, excellent spinning properties and process passability are obtained. In addition, the strength of the ultrafine fibers after dissolving and removing the sea component polymer can be 1.5 cN / dtex or more, and the fibers can be suitably used for sports clothing, which has a relatively severe use environment. By setting the strength to 5.5 cN / dtex or less, stable spinning properties can be obtained, and a sea-island composite fiber having a small area variation of island components can be obtained. In order to exceed a strength of 5.5 cN / dtex, it is necessary to use a polymer having a high intrinsic viscosity or to set a high draw ratio. As a result, the yarn formability and fluff quality may be deteriorated, and the sea-island component may be peeled off. More preferably, it is 3.0 to 5.0 cN / dtex.

伸度は20〜50%が好ましい。伸度を50%以下とすることで織編物を作成した際の寸法安定性に優れる。伸度を20%未満とすると製糸性や毛羽品位の悪化、さらには海成分が剥離する可能性がある。更に好ましくは25〜45%である。   The elongation is preferably 20 to 50%. By setting the elongation to 50% or less, excellent dimensional stability is obtained when a woven or knitted fabric is produced. If the elongation is less than 20%, the spinnability and fluff quality may be deteriorated, and the sea component may be peeled off. More preferably, it is 25 to 45%.

繊維長手方向の太さムラの指標であるU%(N)は2.0%以下が好ましい。2.0%以下とすることで島成分の面積バラツキが小さくなり、海成分ポリマー溶解処理後に繊維径が均一な極細繊維が得られ、上質な風合いの織編物が得られる。更に好ましくは1.8%以下である。   U% (N), which is an index of thickness unevenness in the fiber longitudinal direction, is preferably 2.0% or less. By setting the content to 2.0% or less, the variation in the area of the island component is reduced, ultrafine fibers having a uniform fiber diameter are obtained after the dissolution treatment of the sea component polymer, and a woven or knitted fabric having a good texture is obtained. More preferably, it is at most 1.8%.

本発明の海島型複合繊維の各単糸における島成分の面積バラツキは1〜20%が好ましい。20%以下とすることで海成分ポリマーを溶解除去後に繊維径が均一な極細繊維が得られ、上質な風合いと外観の織編物が得られる。1%以上が実用可能な範囲である。さらに好ましくは1〜16%である。   The area variation of the island component in each single yarn of the sea-island composite fiber of the present invention is preferably 1 to 20%. By adjusting the content to 20% or less, ultrafine fibers having a uniform fiber diameter can be obtained after dissolving and removing the sea component polymer. 1% or more is a practical range. More preferably, it is 1 to 16%.

次に本発明の海島型複合繊維および/または極細ポリエステル繊維の好ましい製造方法について一例を挙げながら更に具体的に説明する。
まず、本発明で用いる溶解剤に対して難溶解性の島成分ポリマーとして、テレフタル酸とエチレングリコールを重合して得られるポリエチレンテレフタレートを70.0モル%以上含むポリエステルを用いる。ポリエステルは無機微粒子を1.0〜10.0wt%含有したものを好ましく用いることができる。
Next, a preferred method for producing the sea-island composite fiber and / or the ultrafine polyester fiber of the present invention will be described more specifically with reference to an example.
First, a polyester containing 70.0 mol% or more of polyethylene terephthalate obtained by polymerizing terephthalic acid and ethylene glycol is used as an island component polymer that is hardly soluble in the dissolving agent used in the present invention. Polyester containing 1.0 to 10.0 wt% of inorganic fine particles can be preferably used.

無機微粒子の含有率により本発明の微細凹凸の数を調整できる。無機微粒子の含有率が1.0wt%以上あると、防透け性が発揮され、マイルドな光沢感となり、さらに海成分ポリマーの溶解除去時に、微細凹凸の数が良好な風合いとして感じることのできる1個/40μm2以上となり好ましい。また、無機微粒子の含有率が10.0wt%以下であれば製糸性の低下を避けることができるとともに繊維物性も実用上問題無い範囲となるので好ましい。さらに好ましくは3.0〜8.0wt%、特に好ましくは5.0〜7.0wt%である。 The number of fine irregularities of the present invention can be adjusted by the content of the inorganic fine particles. When the content of the inorganic fine particles is 1.0% by weight or more, the transparent property is exhibited, a mild gloss is obtained, and the number of fine irregularities can be felt as a good texture when the sea component polymer is dissolved and removed. Pcs / 40 μm 2 or more, which is preferable. Further, when the content of the inorganic fine particles is 10.0% by weight or less, it is preferable because a decrease in the spinning property can be avoided and the physical properties of the fiber are within a range in which there is no practical problem. More preferably, it is 3.0 to 8.0 wt%, particularly preferably 5.0 to 7.0 wt%.

この粒子添加を多くすれば微細凹凸の数も多くなり、添加量を少なくすれば微細凹凸の数も少なくできる。また、海成分ポリマーの溶解除去時に少しの調整は可能であるが、繊維物性との兼ね合いで、良好な風合いを有しつつ、実用的な繊維強伸度となるよう調整することが好ましい。   Increasing the addition of the particles increases the number of fine irregularities, and decreasing the amount of addition reduces the number of fine irregularities. Further, although a slight adjustment is possible at the time of dissolving and removing the sea component polymer, it is preferable to adjust the fiber so as to have a practical hand with a good texture and a good fiber elongation in consideration of fiber properties.

無機微粒子としては、例えば酸化チタン、シリカ、ジルコニア、もしくはアルミナなども用いることもできる。中でも酸化チタンは不透明性に優れ、かつ取扱性のし易さ、価格面、太陽光線に対する諸機能等の点でより好ましい。例えば酸化チタンには皮膚に有害な紫外線を吸収・遮蔽、かつ暑さと感じる太陽光の可視および近赤外線領域を効率的に反射するため、日射エネルギーの吸収を抑え、衣服にしたときの衣服内の温度を抑える効果があるので特に好ましく用いることができる。   As the inorganic fine particles, for example, titanium oxide, silica, zirconia, or alumina can also be used. Among them, titanium oxide is excellent in opacity, and is more preferable in terms of ease of handling, price, various functions against sunlight, and the like. For example, titanium oxide absorbs and blocks ultraviolet rays that are harmful to the skin, and efficiently reflects the visible and near-infrared regions of sunlight that feels hot. Since it has the effect of suppressing the temperature, it can be particularly preferably used.

そして、本発明の無機微粒子の粒径は、平均粒径が0.01〜0.50μmの範囲内のものを好ましく用いることができる。このような平均粒径の無機微粒子であると、海成分ポリマーの溶解除去時に、微細凹凸の大きさがアスペクト比10以下となり好ましい。   The inorganic fine particles of the present invention preferably have an average particle diameter in the range of 0.01 to 0.50 μm. When the inorganic fine particles have such an average particle size, the size of the fine unevenness is preferably 10 or less when the sea component polymer is dissolved and removed, which is preferable.

本発明の海成分に用いる易溶解性のポリエステルは、溶解剤に対する溶解速度は通常のホモポリエステルに対して5倍以上大きい溶解速度を有することが好ましい。
易溶解性のポリエステルは取扱の容易さ、紡糸性の容易さから5−ナトリウムスルホイソフタル酸を共重合した共重合ポリエステルが好ましい。また、好ましい共重合率は、糸物性面の安定化、製糸性の観点より1.5〜10.0モル%が好ましい。
The easily soluble polyester used for the sea component of the present invention preferably has a dissolution rate with respect to a dissolving agent that is at least 5 times greater than that of a normal homopolyester.
The easily soluble polyester is preferably a copolymerized polyester obtained by copolymerizing 5-sodium sulfoisophthalic acid from the viewpoint of easy handling and spinnability. Further, the preferable copolymerization ratio is preferably 1.5 to 10.0 mol% from the viewpoint of stabilization of the yarn physical properties and the spinning properties.

海成分ポリエステルは無機微粒子を1.0〜10.0wt%含有したものを好ましく用いることができる。
無機微粒子としては、例えば酸化チタン、シリカ、ジルコニア、もしくはアルミナなども用いることもできる。中でも酸化チタンは不透明性に優れ、かつ取扱性のし易さ、価格面、太陽光線に対する諸機能等の点でより好ましい。
そして、無機微粒子の粒径は、平均粒径が0.01〜0.50μmの範囲内のものを好ましく用いることができる。平均粒径は0.01μm未満であると粒子活性が高くなり、粒子の凝集による増粘が大きくなり、海島型複合繊維の製糸性が悪化する。0.50μmを超えると海島型複合繊維を製糸する際にパック内のフィルターの目詰まりの発生や製糸性が悪化する。
As the sea component polyester, those containing 1.0 to 10.0 wt% of inorganic fine particles can be preferably used.
As the inorganic fine particles, for example, titanium oxide, silica, zirconia, or alumina can also be used. Among them, titanium oxide is excellent in opacity, and is more preferable in terms of ease of handling, price, various functions against sunlight, and the like.
The inorganic fine particles having an average particle diameter in the range of 0.01 to 0.50 μm can be preferably used. When the average particle size is less than 0.01 μm, the particle activity increases, the viscosity increases due to the aggregation of the particles, and the yarn-making properties of the sea-island composite fiber deteriorate. If the thickness exceeds 0.50 μm, clogging of the filter in the pack and spinnability deteriorate when spinning the sea-island composite fiber.

本発明の海成分ポリマーと島成分ポリマーの好ましい組み合わせは、上述した如く、溶解剤に対し易溶解性ポリマーの海成分と難溶解性ポリマーの島成分からなる。両ポリマーは互いに非相溶であり、海成分ポリマーの溶解除去時の溶解速度差がある範囲内で、可能な限り大きな組み合わせで製糸することが重要である。この溶解速度の範囲としては、海成分ポリマーの溶解速度が島成分ポリマーの溶解速度に対して5倍以上もしくは溶解剤に対して全く溶解しない島成分ポリマーを選択する。溶解速度差を5倍以上とすることで、海成分ポリマーの溶解除去がスムーズに実行され、海島型複合繊維の単繊維の表面/芯部での島成分溶解剤接触時間差が少なくなるため、島繊維径バラツキが小さな極細単糸群を得ることができる。溶解速度差のより好ましい範囲は20倍以上である。   As described above, the preferred combination of the sea component polymer and the island component polymer of the present invention comprises a sea component of a polymer that is easily soluble in a dissolving agent and an island component of a sparingly soluble polymer. Both polymers are incompatible with each other, and it is important that the yarn is formed in the largest possible combination as long as there is a difference in dissolution rate when dissolving and removing the sea component polymer. As the range of the dissolution rate, an island component polymer in which the dissolution rate of the sea component polymer is at least 5 times the dissolution rate of the island component polymer or that is completely insoluble in the dissolving agent is selected. By making the dissolution rate difference 5 times or more, the dissolution and removal of the sea component polymer is smoothly performed, and the contact time difference between the island component solubilizer at the surface / core portion of the single fiber of the sea-island composite fiber is reduced. An ultrafine single yarn group having a small fiber diameter variation can be obtained. A more preferable range of the dissolution rate difference is 20 times or more.

紡糸形態の具体例を以下に記載する。海島成分の溶解速度差が5倍以上となるポリマーを海成分ポリマーに選択し、極細ポリエステル繊維における海成分ポリマー重量割合が5〜45wt%となるように計量する。
また、溶解剤に対して難溶解性の島成分ポリマーは、重量割合が55〜95wt%となるように計量し溶融吐出する。
Specific examples of the spinning mode are described below. A polymer having a dissolution rate difference of 5 times or more of the sea-island component is selected as the sea component polymer and weighed so that the weight ratio of the sea component polymer in the ultrafine polyester fiber is 5 to 45 wt%.
The island component polymer that is hardly soluble in the dissolving agent is measured and melted and discharged so that the weight ratio is 55 to 95 wt%.

紡糸温度はポリマー融点よりも+20〜+50℃高い温度で設定する。ポリマー融点よりも+20℃以上高く設定することで、ポリマーが紡糸機配管内で固化して閉塞することを防ぐことができ、かつ高めに設定する温度を+50℃以下とすることでポリマーの過度な劣化を抑制することができるため好ましい。   The spinning temperature is set at a temperature +20 to + 50 ° C. higher than the melting point of the polymer. By setting the temperature higher than the melting point of the polymer by at least + 20 ° C., it is possible to prevent the polymer from solidifying and clogging in the spinning machine piping. This is preferable because deterioration can be suppressed.

本発明の海島型複合繊維および極細ポリエステル繊維に用いる口金は、既存の海島型極細用口金を好ましく用いることができる。すなわち従来公知のパイプ型の海島複合口金を用いることができる。さらには特開2011−174215号公報に記載されている計量プレート、分配プレート、吐出プレートの大きく3種類の部材が積層された複合口金を用いることで島成分面積バラツキが小さい海島型複合繊維が得られるため好ましい。   As a base used for the sea-island type conjugate fiber and the ultrafine polyester fiber of the present invention, an existing sea-island type ultrafine base can be preferably used. That is, a conventionally known pipe-type sea-island composite base can be used. Furthermore, a sea-island type composite fiber having a small variation in the island component area is obtained by using a composite die in which three types of members, namely, a measuring plate, a distribution plate, and a discharge plate, described in JP-A-2011-174215 are laminated. Is preferred.

本発明の海島型複合繊維および極細ポリエステル繊維は、吐出されたポリマーを未延伸糸として一旦巻き取った後に延伸する二工程法のほか、紡糸および延伸工程を連続して行う直接紡糸延伸法や高速製糸法など、いずれのプロセスにおいても製造できる。また、高速製糸法における紡糸速度の範囲は特に規定しないため、半延伸糸として巻き取った後に延伸する工程でもよい。さらに、必要に応じて仮撚りなどの糸加工を行うこともできる。
二工程法の場合、一旦未延伸糸として巻き取り、得られた未延伸糸をホットロール−ホットロール延伸や熱ピンを用いた延伸のほか、あらゆる公知の延伸方法を用いることができる。
The sea-island type conjugate fiber and the ultrafine polyester fiber of the present invention can be obtained by a two-step method in which the discharged polymer is once wound as an undrawn yarn and then drawn, a direct spin drawing method in which the spinning and drawing steps are continuously performed, and a high-speed drawing method. It can be manufactured in any process such as a spinning method. In addition, since the range of the spinning speed in the high-speed spinning method is not particularly defined, it may be a step of drawing after winding as a semi-drawn yarn. Further, if necessary, yarn processing such as false twisting can be performed.
In the case of the two-step method, any known drawing method can be used in addition to hot roll-hot roll drawing and drawing using a hot pin, and the obtained undrawn yarn is once wound as an undrawn yarn.

直接紡糸延伸法の場合は、一旦巻き取ることなく、ホットロール−ホットロール間を介して延伸を行う。高速製糸法の場合は、巻取速度を適宣調整し延伸糸を巻き取る。 本発明の海島型複合繊維および極細ポリエステル繊維の下記式で表される紡糸ドラフトは50〜300にすることが好ましい。紡糸ドラフトとは以下で計算した値である。
紡糸ドラフト=Vs/V0
Vs:紡糸速度(m/分)
V0:吐出線速度(m/分)
紡糸ドラフトを50以上とすることで、口金孔から吐出されたポリマー流が長時間口金直下に留まることを防止し、口金面汚れを抑制することができることから、製糸性が安定する。また、紡糸ドラフトを250以下とすることで過度な紡糸張力による糸切れを抑制することが可能となり、製糸安定的に極細ポリエステル繊維を得ることができるので好ましい。より好ましくは80〜250である。
In the case of the direct spinning drawing method, drawing is performed via a hot roll between hot rolls without being wound once. In the case of the high-speed spinning method, the winding speed is appropriately adjusted and the drawn yarn is wound. The spinning draft represented by the following formula for the sea-island composite fiber and the ultrafine polyester fiber of the present invention is preferably set to 50 to 300. The spinning draft is a value calculated below.
Spinning draft = Vs / V0
Vs: spinning speed (m / min)
V0: Discharge linear velocity (m / min)
By setting the spinning draft to 50 or more, the polymer flow discharged from the spinneret hole is prevented from staying directly below the spinneret for a long time, and the spinneret can be prevented from being stained. Further, by setting the spinning draft to 250 or less, it is possible to suppress yarn breakage due to excessive spinning tension, and it is possible to stably produce ultrafine polyester fibers, which is preferable. More preferably, it is 80 to 250.

本発明の海島型複合繊維および極細ポリエステル繊維の紡糸応力は0.02〜0.15cN/dtexにするのが好ましい。紡糸応力を0.02cN/dtex以上にすることで紡糸時の糸揺れによる単糸間での糸条干渉がなく、第1ロールである引取りロールに逆巻きすることもないため安定走行が可能となる。また、紡糸応力を0.15cN/dtex以下とすることで、製糸安定的に極細ポリエステル繊維を得られるので好ましい。紡糸応力のより好ましい範囲は0.07〜0.10cN/dtexである。   The spinning stress of the sea-island composite fiber and the ultrafine polyester fiber of the present invention is preferably 0.02 to 0.15 cN / dtex. By setting the spinning stress to 0.02 cN / dtex or more, there is no yarn interference between the single yarns due to yarn sway during spinning, and there is no reverse winding on the take-up roll as the first roll, so that stable running is possible. Become. Further, it is preferable that the spinning stress be 0.15 cN / dtex or less, since the ultrafine polyester fiber can be stably produced. A more preferable range of the spinning stress is 0.07 to 0.10 cN / dtex.

本発明の海島型複合繊維および極細ポリエステル繊維を操業・品質安定的に製糸するにあたり、吐出されたポリマーの冷却固化を適正に制御するのが好ましい。細繊度化に伴い吐出ポリマー量を抑制すると、ポリマーの細化および冷却固化が吐出後すぐに開始されることとなるため、従来技術で想定される冷却方法では長手方向の糸斑の多い複合繊維しか得られない。また、固化した繊維による随伴気流が増大し、紡糸応力が大きくなるため、製糸性を改善する方法が必要となる。   In the operation and quality stabilization of the sea-island composite fiber and ultrafine polyester fiber of the present invention, it is preferable to appropriately control the cooling and solidification of the discharged polymer. If the amount of the discharged polymer is suppressed due to the fineness, fineness of the polymer and cooling and solidification will be started immediately after the discharge. I can't get it. In addition, since the accompanying airflow due to the solidified fibers increases and the spinning stress increases, a method for improving the spinnability is required.

これらを解決する方法として、冷却開始点を口金面から20〜120mmとする必要がある。冷却開始点が20mm以上であれば冷却風による口金の面温度低下を抑制でき、低温糸、口金孔詰まりや複合異常、吐出斑といった諸問題を回避できるので好ましい。また、冷却開始点は120mm以下とすることで、長手方向での糸斑の少ない高品質な極細ポリエステル繊維を得ることができるので好ましい。冷却開始点のより好ましい範囲は25〜100mmである。
また、冷却風による口金面温度低下を抑制するため、必要に応じ、冷却風の温度を管理や、口金周辺部に加熱器を設置してもよい。
In order to solve these problems, it is necessary to set the cooling start point at 20 to 120 mm from the base surface. It is preferable that the cooling start point is 20 mm or more, because it is possible to suppress a decrease in the surface temperature of the die due to the cooling air, and to avoid various problems such as low-temperature yarn, clogging of the die hole, complex abnormality, and uneven discharge. In addition, it is preferable that the cooling start point be 120 mm or less, because a high-quality extra-fine polyester fiber with few thread spots in the longitudinal direction can be obtained. A more preferable range of the cooling start point is 25 to 100 mm.
Further, in order to suppress a decrease in the temperature of the die surface due to the cooling air, the temperature of the cooling air may be controlled or a heater may be installed around the die as necessary.

口金吐出面から給油位置までの距離は1300mm以下にするのが好ましい。口金吐出面から給油位置までの距離を1300mm以下とすることで冷却風による糸条揺れ幅を抑え、繊維長手方向での糸斑を改善できるほか、糸条の収束に至るまでの随伴気流を抑制できるため紡糸張力を低減でき、毛羽や糸切れの少ない安定した製糸性が得やすいので好ましい。海島型複合繊維および極細ポリエステル繊維の紡糸工程における給油位置のより好ましい範囲は1200mm以下である。   It is preferable that the distance from the base discharge surface to the refueling position be 1300 mm or less. By setting the distance from the nozzle discharge surface to the lubrication position to 1300 mm or less, it is possible to suppress the yarn swaying width due to the cooling wind, improve the yarn unevenness in the fiber longitudinal direction, and suppress the accompanying air flow until the yarn converges. Therefore, the spinning tension can be reduced, and stable spinning properties with less fluff and yarn breakage can be easily obtained. A more preferable range of the oil supply position in the spinning process of the sea-island composite fiber and the ultrafine polyester fiber is 1200 mm or less.

本発明の海島型複合繊維の海成分ポリマーを溶解除去することにより、本発明の極細ポリエステル繊維を得ることができる。この海成分ポリマーを除去する方法として、海成分ポリマーがアルカリ可溶性である場合は、ポリエステル繊維で一般的に行われているアルカリ減量処理が好ましい。その一例を示す。アルカリ水溶液は、1〜5wt%水酸化ナトリウム水溶液を好ましく用いることができ、そのアルカリ減量処理温度は常温(25℃)〜98℃の範囲で行うのが好ましい。また、処理時間は、海成分ポリマーの重量割合に応じて適宣調整して行うことができるが、5〜60分程度が好ましい。この減量処理によって繊維表面に微細凹凸を形成させることができ、この微細凹凸形成のために最大約5wt%以内で過剰減量処理を行うこともできる。   The ultrafine polyester fiber of the present invention can be obtained by dissolving and removing the sea component polymer of the sea-island composite fiber of the present invention. As a method for removing the sea component polymer, when the sea component polymer is alkali-soluble, alkali reduction treatment generally performed with polyester fibers is preferable. An example is shown below. As the alkali aqueous solution, an aqueous solution of 1 to 5% by weight of sodium hydroxide can be preferably used, and the alkali reduction treatment temperature is preferably in the range of normal temperature (25 ° C) to 98 ° C. In addition, the treatment time can be appropriately adjusted according to the weight ratio of the sea component polymer, but is preferably about 5 to 60 minutes. By this weight loss treatment, fine irregularities can be formed on the fiber surface, and an excessive weight loss treatment can be performed within a maximum of about 5 wt% for the formation of the fine irregularities.

そして、本発明の海島型複合繊維は通常のアルカリ減量処理を行うが、その減量処理は製編織後において行うのが最も効果的である。これによって、本発明の目的とする極細繊維の特性である繊細な肌触りやソフトな触感、ドレープ性を生かしたスエード調布帛、比表面積や空隙率の増加によるワイピング性能に加えて、ドライ感の付与、防透け性、マイルドな光沢感が発現でき、従来技術では得ることのできなかった上質感を有する極細ポリエステル繊維を用いた、新規な織編物を製造することができるのである。   The sea-island type composite fiber of the present invention is subjected to ordinary alkali weight reduction treatment, and the weight loss treatment is most effective after weaving and weaving. Thereby, in addition to the delicate touch and soft touch, which are the characteristics of the ultrafine fibers aimed at by the present invention, the suede-like fabric utilizing the drape property, the wiping performance by increasing the specific surface area and the porosity, and imparting a dry feeling It is possible to produce a novel woven or knitted fabric using ultra-fine polyester fiber having a high quality that cannot be obtained by the prior art, which can exhibit a sheer-proof property and a mild glossiness.

以下、実施例により本発明を詳細に説明する。なお、実施例における測定方法は次のとおりである。   Hereinafter, the present invention will be described in detail with reference to examples. In addition, the measuring method in an Example is as follows.

(1)固有粘度(IV)
定義式のηrは、純度98%以上のO−クロロフェノール(OCP)10mL中に試料ポリマーを0.8g溶かし、25℃の温度にてオストワルド粘度計を用いて相対粘度ηrを下記の式により求め、固有粘度(IV)を算出した。
ηr=η/η0=(t×d)/(t0×d0)
固有粘度(IV)=0.0242ηr+0.2634
[η:ポリマー溶液の粘度、η0:OCPの粘度、t:溶液の落下時間(秒)、d:溶液の密度(g/cm)、t0:OCPの落下時間(秒)、d0:OCPの密度(g/cm)] 。
(1) Intrinsic viscosity (IV)
Ηr in the definition formula is obtained by dissolving 0.8 g of a sample polymer in 10 mL of O-chlorophenol (OCP) having a purity of 98% or more and using a Ostwald viscometer at a temperature of 25 ° C to obtain a relative viscosity ηr according to the following equation. , Intrinsic viscosity (IV) was calculated.
ηr = η / η0 = (t × d) / (t0 × d0)
Intrinsic viscosity (IV) = 0.0242ηr + 0.2634
[Η: viscosity of polymer solution, η0: viscosity of OCP, t: fall time of solution (sec), d: density of solution (g / cm 3 ), t0: fall time of OCP (sec), d0: OCP Density (g / cm 3 )].

(2)複合繊維の繊度
枠周1.0mの検尺機を用いて100回分のカセを作製し、下記式に従って繊度を測定した。
繊度(dtex)=100回分のカセ重量(g)×100 。
(2) Fineness of composite fiber Using a scale measuring machine with a frame circumference of 1.0 m, 100 sets of scabs were produced, and the fineness was measured according to the following formula.
Fineness (dtex) = Kase weight (g) for 100 times × 100.

(3)複合繊維の各単糸における島成分の露出および海成分による島成分分離
走査型電子顕微鏡(SEM:日立社製S−3000N)にて観察した。得られた複合繊維全単糸を観察し島成分が海成分に完全に覆われているか、すなわち島成分の繊維表面への露出がないか、および島成分が海成分により完全に分離されているか確認した。
(3) Exposure of island components in each single yarn of the composite fiber and separation of island components by sea components Observation was made with a scanning electron microscope (SEM: S-3000N manufactured by Hitachi, Ltd.). Observe all single yarns of the obtained composite fiber and check whether the island component is completely covered by the sea component, that is, whether the island component is exposed to the fiber surface and whether the island component is completely separated by the sea component confirmed.

(4)複合繊維の島成分の面積バラツキ
走査型電子顕微鏡(SEM:日立社製S−3000N)にて観察した。全単糸から無作為に5単糸を選択し、各単糸から無作為に4島を選択。計20島を観察した。画像に1単糸が入る倍率に適宜調整し、撮影した。得られた画像について画像処理ソフト(WINROOF)を用いて面積を計測し、20島の平均値および標準偏差を求めた。これらの結果から下記式に基づき島成分の面積バラツキを算出した。
島成分の面積バラツキ(CV%)=(標準偏差/平均値)×100 。
(4) Area variation of island component of composite fiber Observed with a scanning electron microscope (SEM: S-3000N manufactured by Hitachi, Ltd.). Five single yarns are randomly selected from all single yarns, and four islands are randomly selected from each single yarn. A total of 20 islands were observed. The magnification was adjusted as appropriate so that one single yarn was included in the image, and photographed. The area of the obtained image was measured using image processing software (WINROOF), and the average value and standard deviation of 20 islands were obtained. From these results, the area variation of the island component was calculated based on the following equation.
Area variation of island component (CV%) = (standard deviation / average value) × 100.

(5)島成分単糸群の平均繊維径
海成分溶解除去後の島成分からなる極細繊維の単糸群を走査型電子顕微鏡(SEM:日立社製S−3000N)にて観察した。極細繊維単糸群から50本をランダムに選出し、それら測定値から平均繊維径を算出した。
(5) Average fiber diameter of island component single yarn group A single yarn group of ultrafine fibers composed of island components after dissolving and removing sea components was observed with a scanning electron microscope (SEM: S-3000N manufactured by Hitachi, Ltd.). Fifty fibers were randomly selected from the ultrafine fiber single yarn group, and the average fiber diameter was calculated from the measured values.

(6)製糸安定性
各実施例についての製糸を行い、24時間当たりの糸切れ回数から海島型複合繊維の製糸安定性を4段階評価した。◎〜△は合格であり、×は不合格とした。
優 ◎ :0回
良 ○ :1〜2回未満
可 △ :2〜4回未満
不良 × :4回以上 。
(6) Yarn production stability Yarn production was performed for each example, and the yarn production stability of the sea-island composite fiber was evaluated in four steps based on the number of yarn breaks per 24 hours. △ to △ were acceptable, and × was unacceptable.
Excellent ◎: 0 times Good ○: Less than 1 or 2 times Possible △: Less than 2 to 4 times
Poor ×: 4 times or more.

(7)防透け性
海島型複合繊維を用いて経密度100本/2.54cm、緯95本/2.54cmのゾッキ織物を製作し、95℃にて精錬した。引き続き、95℃の3wt%水酸化ナトリウム水溶液にて21%アルカリ減量後(海成分を溶解除去)、染色工程を経た後、最終セットを行った。太メッシュの柄台紙に得られた布帛サンプル(サンプルサイズ:10×10cm)を貼り付け、熟練者5名による肉眼法で官能評価を行い、4段階判定法で評価した。◎〜△は合格であり、×は不合格とした。
◎:防透け性が極めて高い
〇:防透け性大
△:防透け性有り
×:防透け性の効果が少ない 。
(7) Anti-transparency A seaweed-type composite fiber was used to fabricate a Zokki fabric having a density of 100 strands / 2.54 cm and a weft of 95 strands / 2.54 cm, and was refined at 95 ° C. Subsequently, after a 21% alkali weight loss (dissolving and removing sea components) with a 3 wt% aqueous sodium hydroxide solution at 95 ° C., a final setting was performed after a dyeing step. The obtained fabric sample (sample size: 10 × 10 cm) was affixed to a thick mesh pattern mount, sensory-evaluated by a naked eye method by five skilled persons, and evaluated by a four-step judgment method. △ to △ were acceptable, and × was unacceptable.
◎: Extremely high sheer resistance 性: Large sheer resistance
Δ: Transparency resistant
×: The effect of preventing see-through is small.

(6)製品風合い
上記にて作成した布帛を用いて、肌触り、ソフト感、ドレープ性、ドライ感、ぬめり感、マイルドな光沢感を主体に防透け性も加味し、熟練者5名による官能評価を行い、4段階判定法で評価した。◎〜△は合格であり、×は不合格とした。
◎:優
〇:良
△:可
×:不良 。
(6) Product texture Using the fabric created above, the sensory evaluation by five skilled workers, taking into account the softness, softness, drapability, dryness, sliminess, mild luster and anti-sheer properties. , And evaluated by a four-step determination method. △ to △ were acceptable, and × was unacceptable.
◎: Excellent
〇: good
△: Possible
×: Bad.

(8)微細凹凸の数
上記(5)にて作成した布帛を用いて極細繊維の単糸群を走査型電子顕微鏡(SEM:日立社製S−3000N)にて1視野当たり3〜10本の極細繊維が観察できるようにして撮影した顕微鏡写真により、0.1μm以上の微細凹凸の数をカウントし、40μm当たりに換算して、微細凹凸の数として算出した。
(8) Number of fine irregularities Using the cloth created in the above (5), 3 to 10 ultrafine fibers per single field of a group of ultrafine fibers were observed with a scanning electron microscope (SEM: S-3000N manufactured by Hitachi, Ltd.). The number of fine irregularities of 0.1 μm or more was counted from a micrograph taken so that the fiber could be observed, and the number was counted as 40 μm 2 and calculated as the number of fine irregularities.

(9)アスペクト比
上記(7)にて観察した微細凹凸50個について、繊維軸方向の長さ(L)と繊維軸に垂直な方向を幅(W)を測定し、形状の幅に対する長さの比をアスペクト比Cとして算出した。
C=L/W 。
(9) Aspect ratio The length (L) in the fiber axis direction and the width (W) in the direction perpendicular to the fiber axis of the 50 fine irregularities observed in (7) above were measured, and the length relative to the width of the shape was measured. Was calculated as the aspect ratio C.
C = L / W.

(10)溶解速度差
海成分ポリマーおよび島成分ポリマーで用いるポリマーを約2gそれぞれ用意して計量した後、95℃の3wt%水酸化ナトリウム水溶液にて5分間処理した時の減量率から以下の式にて溶解速度差を算出した。
海成分ポリマーの減量率(%:S)=((処理前重量)/(処理後重量))×100
島成分ポリマーの減量率(%:I)=((処理前重量)/(処理後重量))×100
溶解速度差=S/I 。
(10) Difference in dissolution rate After preparing and weighing about 2 g of each of the polymers used in the sea component polymer and the island component polymer, the following formula was obtained from the weight loss rate when treated with a 3 wt% sodium hydroxide aqueous solution at 95 ° C. for 5 minutes. The dissolution rate difference was calculated.
Weight loss rate of sea component polymer (%: S) = ((weight before treatment) / (weight after treatment)) × 100
Weight loss rate of island component polymer (%: I) = ((weight before treatment) / (weight after treatment)) × 100
Dissolution rate difference = S / I.

(11)無機微粒子の含有量
純度98%以上のO−クロロフェノール(OCP)10mL中に試料ポリマーを0.8g溶かし、遠心分離した後、得られた無機微粒子重量を測定して含有量を測定した。
無機微粒子含有量(wt%)=(遠心分離にて得られた無機微粒子重量/溶解前試料ポリマー重量)×100 。
(11) Content of inorganic fine particles 0.8 g of a sample polymer was dissolved in 10 mL of O-chlorophenol (OCP) having a purity of 98% or more, and after centrifugation, the content was measured by measuring the weight of the obtained inorganic fine particles. did.
Content of inorganic fine particles (wt%) = (weight of inorganic fine particles obtained by centrifugation / weight of sample polymer before dissolution) × 100.

(12)長期の製糸安定性
各実施例についての10日間連続製糸を行い、5日間合計の糸切れ回数から海島型複合繊維の長期製糸安定性を4段階評価した。◎〜△は合格であり、×は不合格とした。
優 ◎ :0〜5回
良 ○ :6〜10回未満
可 △ :11〜19回未満
不良 × :20回以上 。
(12) Long-Term Yarn Stability For each Example, continuous spinning was performed for 10 days, and the long-term yarn-stability of the sea-island composite fiber was evaluated in four steps based on the total number of yarn breakage for 5 days. △ to △ were acceptable, and × was unacceptable.
Excellent ◎: 0 to 5 times Good ○: Less than 6 to 10 times Possible △: Less than 11 to 19 times
Poor ×: 20 times or more.

実施例1
平均粒径が0.50ミクロンのアナターゼ型TiOを表1に示したとおり、6.5wt%含有した固有粘度(IV)0.66のポリエステル(A)を島成分ポリマーに、固有粘度(IV)0.55で5−ナトリウムスルホイソフタル酸7.3モル%共重合した共重合ポリエステル(B)を海成分ポリマーとし、溶解剤をアルカリ水溶液として、溶解剤に対する海成分ポリマーと島成分ポリマーの溶解速度差は50倍であった。これらを各々、エクストルーダーを用いて溶融後、島成分ポリマーの重量割合が80wt%、海成分ポリマーの重量割合が20wt%となるように計量し、パックに導入し、島数127島、ホール数112の海島型複合用紡糸口金に流入させた各ポリマーは、口金内部で合流し、海成分ポリマー中に島成分ポリマーが包含された複合形態を形成し、口金から吐出された。この時の紡糸温度290℃、口金から吐出された糸条は、空冷装置により冷却、油剤付与後、ワインダーにより紡糸ドラフトが180となるように1500m/分の速度で巻き取り、175dtex−112フィラメントの未延伸糸として製糸安定的に巻き取った。このとき、冷却開始点は口金面から100mmに設定し、さらに給油位置を1100mmとすることで紡糸張力は0.09cN/dtexで、製糸性の安定を図った。
Example 1
As shown in Table 1, the polyester (A) having an intrinsic viscosity (IV) of 0.66 containing 6.5 wt% of an anatase type TiO 2 having an average particle size of 0.50 μm was added to the island component polymer, and the intrinsic viscosity (IV) ) Dissolution of the sea component polymer and the island component polymer in the dissolving agent by using the copolyester (B) copolymerized with 7.3 mol% of 5-sodium sulfoisophthalic acid at 0.55 as the sea component polymer and the dissolving agent as the aqueous alkali solution. The speed difference was 50 times. Each of these was melted using an extruder, then weighed so that the weight ratio of the island component polymer was 80 wt% and the weight ratio of the sea component polymer was 20 wt%, and introduced into the pack. The number of islands was 127, and the number of holes was 127. The polymers flowing into the sea-island type composite spinneret 112 merged inside the spinneret to form a composite form in which the island component polymer was included in the sea component polymer, and was discharged from the spinneret. At this time, the yarn discharged from the die at a spinning temperature of 290 ° C. is cooled by an air cooling device, applied with an oil agent, and then wound by a winder at a speed of 1500 m / min so that the spinning draft becomes 180, and 175 dtex-112 filaments are wound. The yarn was stably wound as an undrawn yarn. At this time, the spinning tension was 0.09 cN / dtex by setting the cooling start point at 100 mm from the surface of the die and the lubrication position at 1100 mm, thereby stabilizing the spinning properties.

続いて、得られた未延伸糸を300m/分の速度で延伸装置に送糸し、延伸温度90℃、残留伸度25〜40%程度となるような倍率で延伸した後、130℃で熱セットし、紡糸、延伸工程を通じて製糸安定的に66dtex−112フィラメントの延伸糸を得た。得られた海島型複合繊維を95℃の3wt%水酸化ナトリウム水溶液に浸漬することで海成分ポリマーを溶解除去した。得られた極細単糸群の平均繊維径は590nmであった。   Subsequently, the obtained undrawn yarn is sent to a drawing device at a speed of 300 m / min, and drawn at a drawing temperature of 90 ° C. and a draw ratio of about 25 to 40% of residual elongation. After setting, the spinning and drawing steps were performed to obtain a 66dtex-112 filament drawn yarn stably. The sea component polymer was dissolved and removed by immersing the obtained sea-island type composite fiber in a 3 wt% aqueous solution of sodium hydroxide at 95 ° C. The average fiber diameter of the obtained ultrafine single yarn group was 590 nm.

この繊維を2本合糸した後、甘撚し、経糸および緯糸に使用して製織し、得られた織物特性について評価した結果を表1に示す。
繊維表面には微細な凹凸が発現しており、繊細な肌触りやソフトな触感、ドレープ性が認められ、更に、ドライ感の付与、防透け性、マイルドな光沢感が発現でき製品風合い、製品品位とも満足できるものであった。
After the two fibers were combined, the fibers were sweet-twisted, woven using warp and weft yarns, and the results of evaluating the obtained woven fabric characteristics are shown in Table 1.
Fine irregularities are expressed on the fiber surface, and a delicate touch, soft touch, and drape are recognized, and further, a dry feeling, anti-transparency, mild gloss can be expressed, and the product texture and product quality Was satisfactory.

実施例2、参考例3
実施例2は無機微粒子として酸化チタンの含有量を1.0wt%、参考例3は含有量を10.0wt%にそれぞれ変更した以外は、実施例1に準じた。
Example 2, Reference Example 3
Example 2 was the same as Example 1 except that the content of titanium oxide as inorganic fine particles was changed to 1.0 wt%, and that of Reference Example 3 was changed to 10.0 wt%.

いずれも表1に示したとおり、繊維表面には微細な凹凸が発現しており、繊細な肌触りやソフトな触感、ドレープ性が認められ、更に、ドライ感の付与、防透け性、マイルドな光沢感が発現でき製品風合い、製品品位とも満足できるものであった。   As shown in Table 1, fine irregularities are expressed on the fiber surface, and delicate touch, soft touch, and drape property are recognized. Further, dryness is imparted, sheer resistance, and mild luster are exhibited. The feeling was able to be expressed and the product texture and product quality were satisfactory.

実施例4、参考例5
実施例4は無機微粒子を平均粒径約0.11μmのジルコニア、参考例5は無機微粒子を平均粒径約0.04μmのコロイダルシリカ、実施例6は無機微粒子を平均粒径約0.10μmのアルミナにそれぞれ変更した以外は、実施例1に準じた。
結果を表1に示した。実施例4は、マイルドな光沢感の点で、参考例5、実施例6は、防透け性やマイルドな光沢感で劣るものの、製品風合い、製品品位とも満足できるものであった。
Examples 4 and 6 , Reference Example 5
In Example 4, the inorganic fine particles were made of zirconia having an average particle size of about 0.11 μm, Reference Example 5 was made of colloidal silica having an average particle size of about 0.04 μm, and Example 6 was made of inorganic fine particles having an average particle size of about 0.10 μm. Example 1 was repeated except that alumina was changed.
The results are shown in Table 1. Example 4 was milder in glossiness, while Reference Example 5 and Example 6 were inferior in see-through resistance and mild glossiness, but were satisfactory in both product texture and product quality.

比較例1、2
比較例1は無機微粒子の含有量を0wt%、比較例2は無機微粒子の含有量を12.0wt%にそれぞれ変更した以外は、実施例1に準じた。
結果を表1に示した。比較例1は、繊維表面には微細な凹凸が全くなく、防透け性、風合い、マイルドな光沢感いずれも満足できるものでなかった。さらに、比較例2においては、製糸性が著しく悪く、製品品位もぬめり感が発現しており、満足できるものでなかった。
Comparative Examples 1 and 2
Comparative Example 1 was the same as Example 1 except that the content of inorganic fine particles was changed to 0 wt%, and that of Comparative Example 2 was changed to 12.0 wt%.
The results are shown in Table 1. In Comparative Example 1, there were no fine irregularities on the fiber surface, and none of the see-through resistance, the texture, and the mild glossiness were satisfactory. Furthermore, in Comparative Example 2, the spinnability was extremely poor, and the product quality exhibited a slimy feeling, which was not satisfactory.

参考例7、実施例
参考例7は、延伸後の海島型複合繊維を22dtex−112フィラメントとし、海成分除去後の島成分の平均繊維径を197nm、実施例8は、島数を8島とし、ホール数を36とし、海成分除去後の島成分の平均繊維径を4640nmに変更した以外は、実施例1に準じ、結果を表1に示した。
Reference Example 7, Example 8
In Reference Example 7, the drawn sea-island composite fiber was 22 dtex-112 filament, the average fiber diameter of the island component after removal of the sea component was 197 nm, and Example 8 was set to 8 islands and 36 holes. The results are shown in Table 1 according to Example 1, except that the average fiber diameter of the island component after removing the sea component was changed to 4640 nm.

参考例9
参考例9は、延伸後の海島型複合繊維を84dtex−9フィラメントとし、島数8島、ホール数を9ホールとし、海成分除去後の島成分の平均繊維径を9280nmに変更した以外は、実施例1に準じ、結果を表1に示した。
Reference Example 9
Reference Example 9 is that the sea-island type composite fiber after drawing is 84dtex-9 filament, the number of islands is 8 and the number of holes is 9 holes, except that the average fiber diameter of the island component after removing the sea component is 9280 nm. The results are shown in Table 1 according to Example 1.

実施例10
平均粒径が0.50ミクロンのアナターゼ型TiOを6.5wt%含有した固有粘度(IV)0.66のポリエステル(A)を島成分ポリマーに、平均粒径が0.50ミクロンのアナターゼ型TiOを0.3wt%含有した固有粘度(IV)0.55で5−ナトリウムスルホイソフタル酸7.3モル%共重合した共重合ポリエステル(B)を海成分ポリマーとし、溶解剤をアルカリ水溶液として、溶解剤に対する海成分ポリマーと島成分ポリマーの溶解速度差は50倍であった。これらを各々、エクストルーダーを用いて溶融後、島成分ポリマーの重量割合が80wt%、海成分ポリマーの重量割合が20wt%、海島型複合繊維の繊度が84dtexとなるように計量し、パックに導入し、島数8島、ホール数36の海島型複合用紡糸口金に流入させた各ポリマーは、口金内部で合流し、海島型を形成し、口金から吐出された。この時の紡糸温度290℃、口金から吐出された糸条は、空冷装置により冷却、油剤付与後、紡糸ドラフトが180となるように1500m/分の速度で引き取り、一旦巻き取ることなく延伸温度90℃、残留伸度25〜40%程度となるような倍率で延伸後、130℃で熱セットし84dtex−36フィラメントの海島型複合繊維をワインダーでドラムパッケージに巻き取った。このとき、冷却開始点は口金面から100mmに設定し、さらに給油位置を1100mmとした。紡糸張力は0.09cN/dtexであった。
Example 10
The average particle size of 0.50 microns anatase intrinsic viscosity of TiO 2 contained 6.5wt% (IV) 0.66 polyester (A) the island component polymer, the average particle size of 0.50 microns anatase Copolymer polyester (B) obtained by copolymerizing 7.3 mol% of 5-sodium sulfoisophthalic acid having an intrinsic viscosity (IV) of 0.55 and containing 0.3 wt% of TiO 2 as a sea component polymer, and a dissolving agent as an aqueous alkali solution The dissolution rate difference between the sea component polymer and the island component polymer in the dissolving agent was 50 times. Each of these was melted using an extruder, then weighed so that the weight ratio of the island component polymer was 80 wt%, the weight ratio of the sea component polymer was 20 wt%, and the fineness of the sea-island composite fiber was 84 dtex, and introduced into the pack. Then, the polymers flowing into the sea-island composite spinning nozzle having 8 islands and 36 holes merged inside the die to form a sea-island shape, and were discharged from the die. At this time, the yarn discharged from the die at a spinning temperature of 290 ° C. is cooled by an air cooling device, and after the oil agent is applied, the yarn is drawn at a speed of 1500 m / min so that the spinning draft becomes 180. After stretching at a temperature of 130 ° C. and a draw ratio of about 25 to 40% of residual elongation, heat setting was performed at 130 ° C., and 84 dtex-36 filament sea-island composite fibers were wound around a drum package with a winder. At this time, the cooling start point was set to 100 mm from the base surface, and the refueling position was set to 1100 mm. The spinning tension was 0.09 cN / dtex.

得られた海島型複合繊維の強度は3.5cN/dtex、伸度は35%、U%(N)は0.4%であった。36フィラメント全ての断面を観察した結果、全単糸の島成分が海成分に完全に覆われており、島成分が海成分に完全に分離されていた。島成分の面積バラツキは2.5%であった。   The strength of the obtained sea-island composite fiber was 3.5 cN / dtex, the elongation was 35%, and the U% (N) was 0.4%. As a result of observing the cross section of all 36 filaments, the island component of all single yarns was completely covered by the sea component, and the island component was completely separated into the sea component. The area variation of the island components was 2.5%.

連続10日間の製糸評価をした結果、10日間TOTALでの糸切れ回数は1回と安定していた。   As a result of the evaluation of yarn production for 10 consecutive days, the number of times of yarn breakage in TOTAL for 10 days was stable at one.

該海島型複合繊維を95℃の3wt%水酸化ナトリウム水溶液に浸漬することで海成分ポリマーを溶解除去した。得られた極細単糸群の平均繊維径は4600nmであった。   The sea component polymer was dissolved and removed by immersing the sea-island composite fiber in a 3% by weight aqueous solution of sodium hydroxide at 95 ° C. The average fiber diameter of the obtained ultrafine single yarn group was 4600 nm.

この繊維を2本合糸した後、甘撚し、経糸および緯糸に使用して製織した。撚糸および製織中の糸切れはなく、得られた織物の繊維表面には微細な凹凸が発現しており、繊細な肌触りやソフトな触感、ドレープ性が認められ、更に、ドライ感の付与、防透け性、マイルドな光沢感が発現でき製品風合い、製品品位とも満足できるものであった。結果を表2に示す。   After the two fibers were combined, they were sweet-twisted and used for warp and weft and woven. There is no yarn breakage during twisting and weaving, and fine irregularities are expressed on the fiber surface of the obtained woven fabric, delicate touch, soft tactile sensation, drape property are recognized, and further, imparting dry feeling, preventing Transparency and mild glossiness were exhibited, and the product texture and product quality were satisfactory. Table 2 shows the results.

実施例11、12
海成分のTiO含有率をそれぞれ0.1wt%、0.8wt%とした以外は実施例10に準じた。
Examples 11 and 12
Example 10 was followed except that the TiO 2 content of the sea component was 0.1 wt% and 0.8 wt%, respectively.

得られた海島型複合繊維の物性は表2の通りであった。36フィラメント全ての断面を観察した結果、全単糸の島成分が海成分に完全に覆われており、島成分が海成分に完全に分離されていた。   Table 2 shows the physical properties of the obtained sea-island composite fiber. As a result of observing the cross section of all 36 filaments, the island component of all single yarns was completely covered by the sea component, and the island component was completely separated into the sea component.

連続10日間の製糸評価をした結果、10日間TOTALでの糸切れ回数はそれぞれ6回、8回とやや不安定であった。   As a result of the evaluation of yarn production for 10 consecutive days, the number of times of yarn breakage in TOTAL for 10 days was slightly unstable, 6 times and 8 times, respectively.

この繊維を2本合糸した後、甘撚し、経糸および緯糸に使用して製織した。得られた織物は良好な肌触りやソフトな触感、ドレープ性が認められ、更に、ドライ感の付与、防透け性、マイルドな光沢感が発現でき製品風合い、製品品位とも満足できるものであった。   After the two fibers were combined, they were sweet-twisted and used for warp and weft and woven. The obtained woven fabric was found to have good touch, soft touch, and drape, and furthermore, impart dryness, show-through resistance, and mild luster, and were satisfactory in product texture and product quality.

実施例13、14
海成分のTiO含有率をそれぞれ0wt%、1.0wt%とした以外は実施例10に準じた。
Examples 13 and 14
Example 10 was followed except that the TiO 2 content of the sea component was 0 wt% and 1.0 wt%, respectively.

得られた海島型複合繊維の物性は表2の通りであった。36フィラメント全ての断面を観察した結果、全単糸の島成分が海成分に完全に覆われており、島成分が海成分に完全に分離されていた。   Table 2 shows the physical properties of the obtained sea-island composite fiber. As a result of observing the cross section of all 36 filaments, the island component of all single yarns was completely covered by the sea component, and the island component was completely separated into the sea component.

連続10日間の製糸評価をした結果、実施例13は製糸初期から糸切れが散発し10日間TOTALの糸切れは45回と不安定であった。実施例14は製糸初期は安定していたが6日目頃から糸切れが散発し10日間TOTALの糸切れは22回と不安定であった。   As a result of the evaluation of the yarn production for 10 consecutive days, in Example 13, yarn breaks sporadically occurred from the initial stage of the yarn production, and TOTAL yarn breakage was unstable at 45 times for 10 days. Example 14 was stable in the initial stage of yarn production, but yarn breaks sporadically started around the sixth day, and TOTAL yarn breaks were unstable at 22 times for 10 days.

この繊維を2本合糸した後、甘撚し、経糸および緯糸に使用して製織した。得られた織物はいずれも毛羽立ちが見られ、チクチクとした肌触りであり、チラチラとした光沢感でやや不満が残った。   After the two fibers were combined, they were sweet-twisted and used for warp and weft and woven. Each of the obtained fabrics was fluffy, had a tingling feel, and was somewhat unsatisfied with a crisp luster.

実施例15〜18
海島型複合繊維の繊度、単糸数、1単糸当たりの島数を表2の通り変更した以外は実施例10に準じた。
Examples 15 to 18
Example 10 was followed except that the fineness, the number of single yarns, and the number of islands per single yarn of the sea-island type composite fiber were changed as shown in Table 2.

得られた海島型複合繊維の物性は表2の通りであった。全ての断面を観察した結果、全単糸の島成分が海成分に完全に覆われており、島成分が海成分に完全に分離されていた。   Table 2 shows the physical properties of the obtained sea-island composite fiber. As a result of observing all the cross sections, the island components of all single yarns were completely covered by the sea component, and the island components were completely separated into the sea component.

連続10日間の製糸評価の結果は、実施例15は10日間TOTALの糸切れが12回とやや不安定であったが実用可能なレベルであった。実施例16は糸切れ3回と安定していた。実施例17は糸切れ18回とやや不安定であった。実施例18は製糸初期3日間は糸切れが多かったがそのご安定化しTOTAL糸切れは13回と実用可能なレベルであった。   As a result of the evaluation of yarn production for 10 consecutive days, Example 15 showed that TOTAL yarn breakage was slightly unstable at 12 times for 10 days, but at a practical level. Example 16 was stable with three thread breaks. Example 17 was slightly unstable with 18 thread breaks. In Example 18, yarn breakage was frequent during the first three days of spinning, but the stabilization was continued, and TOTAL yarn breakage was at a practical level of 13 times.

各繊維を2本合糸した後、甘撚し、経糸および緯糸に使用して製織した。得られた織物の評価結果、実施例15は良好な肌触りやソフトな触感、ドレープ性が認められ、更に、ドライ感の付与、防透け性、マイルドな光沢感が発現でき製品風合い、製品品位とも満足できるものであった。実施例16はソフト感がやや不足し、肌触り、ドレープ性がやや不満でぬめり感も感じられたが合格レベルであった。実施例17は織物に毛羽立ちが見られ肌触りに不満が認められたが合格レベルであった。実施例18は織物に毛羽立ちが見られ肌触りと光沢感に不満が認められ、ややぬめり感も感じられたが合格レベルであった。   After doubling each fiber, the fibers were sweet-twisted and woven using warp and weft. As a result of evaluation of the obtained woven fabric, in Example 15, good touch, soft touch, and drape property were recognized, and further, impartation of dryness, anti-shedding property, mild glossiness, and a product texture and product quality were obtained. It was satisfactory. In Example 16, the softness was slightly insufficient, and the touch and drape property were slightly unsatisfactory and the slimy feeling was felt, but it was acceptable. In Example 17, fluff was observed in the woven fabric, and dissatisfaction with the touch was recognized, but the level was acceptable. In Example 18, fluff was observed in the woven fabric, dissatisfaction with the touch and glossiness was recognized, and a slight slimy feeling was also felt, but the level was acceptable.

比較例3
海島型複合繊維の繊度、単糸数、1単糸当たりの島数を表2の通り変更した以外は実施例10に準じた。
Comparative Example 3
Example 10 was followed except that the fineness, the number of single yarns, and the number of islands per single yarn of the sea-island type composite fiber were changed as shown in Table 2.

得られた海島型複合繊維の物性は表2の通りであった。全ての断面を観察した結果、全単糸の島成分が海成分に完全に覆われており、島成分が海成分に完全に分離されていた。   Table 2 shows the physical properties of the obtained sea-island composite fiber. As a result of observing all the cross sections, the island components of all single yarns were completely covered by the sea component, and the island components were completely separated into the sea component.

連続10日間の製糸評価の結果、10日間通して糸切れが多く、TOTAL28回であった。   As a result of the continuous 10-day yarn production evaluation, the number of yarn breaks was large during 10 days, and TOTAL was 28 times.

各繊維を2本合糸した後、甘撚し、経糸および緯糸に使用して製織した。撚り、製織での糸切れも多く織物を得るのに苦心した。得られた織物は毛羽立ちが認められ、チクチクとした肌触りとチラチラとした光沢感であり不合格レベルであった。   After doubling each fiber, the fibers were sweet-twisted and woven using warp and weft. Many twists and breaks in weaving made it difficult to obtain a woven fabric. The obtained woven fabric was found to have fluff, had a tingling feel and a flickering glossiness, and was at a reject level.

比較例4、5
海島型複合繊維の繊度、単糸数、1単糸当たりの島数を表2の通り変更した以外は実施例10に準じた。
Comparative Examples 4 and 5
Example 10 was followed except that the fineness, the number of single yarns, and the number of islands per single yarn of the sea-island type composite fiber were changed as shown in Table 2.

得られた海島型複合繊維の物性は表2の通りで、比較例5は島成分の面積バラツキが大きかった。全ての断面を観察した結果、全単糸の島成分が海成分に完全に覆われており、島成分が海成分に完全に分離されていた。   The physical properties of the obtained sea-island composite fiber are as shown in Table 2, and Comparative Example 5 had a large area variation of the island component. As a result of observing all the cross sections, the island components of all single yarns were completely covered by the sea component, and the island components were completely separated into the sea component.

連続10日間の製糸評価の結果、比較例4はTOTAL糸切れ1回と安定していた。比較例5は10日間通して糸切れが多く糸切れ28回と不安定であった。   As a result of the yarn evaluation for 10 consecutive days, Comparative Example 4 was stable with one TOTAL yarn break. In Comparative Example 5, the thread breakage was large during 10 days, and the thread breakage was unstable 28 times.

各繊維を2本合糸した後、甘撚し、経糸および緯糸に使用して製織した。得られた織物の評価結果、比較例4はソフト感が不足し、肌触り、光沢感が不満で不合格レベルであった。比較例5は肌触りや光沢感がムラっぽく上質な風合いとは言えないレベルであり不合格であった。   After doubling each fiber, the fibers were sweet-twisted and woven using warp and weft. As a result of evaluation of the obtained woven fabric, Comparative Example 4 was insufficient in softness, unsatisfactory in touch and glossiness, and was at a reject level. Comparative Example 5 was unsatisfactory because the texture and glossiness were uneven and could not be said to be a high-quality texture.

比較例6
海島型複合繊維の繊度、単糸数、1単糸当たりの島数を表2の通り変更した以外は実施例10に準じた。
Comparative Example 6
Example 10 was followed except that the fineness, the number of single yarns, and the number of islands per single yarn of the sea-island type composite fiber were changed as shown in Table 2.

得られた海島型複合繊維の物性は表2の通りで、島成分の面積バラツキが大きかった。全ての断面を観察した結果、全単糸の島成分が海成分に完全に覆われていたが、一部の島成分同士がくっついていた。   The physical properties of the obtained sea-island composite fiber are as shown in Table 2, and the area variation of the island component was large. As a result of observing all the cross sections, the island components of all single yarns were completely covered by the sea component, but some of the island components were stuck together.

連続10日間の製糸評価の結果、特に製糸初期3日間の糸切れが多発しTOTAL糸切れ24回であった。   As a result of the continuous 10 days of the yarn production evaluation, the yarn breakage occurred frequently in the initial 3 days of the yarn production, and the total yarn breakage was 24 times.

各繊維を2本合糸した後、甘撚し、経糸および緯糸に使用して製織した。得られた織物の評価結果、肌触り、ソフト感にムラがあり、固く感じる部分認められた。また光沢感が
ムラっぽく上質な風合いとは言えないレベルであり不合格であった。
After doubling each fiber, the fibers were sweet-twisted and woven using warp and weft. As a result of the evaluation of the obtained woven fabric, there was unevenness in the touch and softness, and a part that felt firm was recognized. In addition, the glossiness was uneven and the quality was not a high quality texture, and it was rejected.

実施例19、20
島成分と海成分のポリマー重量割合を表3の通り変更した以外は実施例10に準じた。
Examples 19 and 20
Example 10 was followed except that the polymer weight ratio of the island component and the sea component was changed as shown in Table 3.

得られた海島型複合繊維の物性は表3の通りで、実施例19は強度がやや低かった。全ての断面を観察した結果、全単糸の島成分が海成分に完全に覆われており、島成分が海成分に完全に分離されていた。   The physical properties of the obtained sea-island composite fiber are as shown in Table 3, and the strength of Example 19 was slightly lower. As a result of observing all the cross sections, the island components of all single yarns were completely covered by the sea component, and the island components were completely separated into the sea component.

連続10日間の製糸評価の結果は、実施例19は10日間TOTALの糸切れが12回とやや不安定であったが実用可能なレベルであった。実施例20は糸切れ6回と問題ないレベルであった。   As a result of the evaluation of yarn production for 10 consecutive days, Example 19 showed that TOTAL yarn breakage was slightly unstable at 12 times for 10 days, but at a practical level. In Example 20, the thread breakage was six times, which was a level without a problem.

各繊維を2本合糸した後、甘撚し、経糸および緯糸に使用して製織した。得られた織物の評価結果、実施例19、20ともに良好な肌触りやソフトな触感、ドレープ性が認められ、更に、ドライ感の付与、防透け性、マイルドな光沢感が発現でき製品風合い、製品品位とも満足できるものであった。   After doubling each fiber, the fibers were sweet-twisted and woven using warp and weft. As a result of evaluation of the obtained woven fabric, good touch, soft touch, and drape were recognized in both Examples 19 and 20, and further, dryness was imparted, sheer-proofing property, and mild luster were able to be expressed. The quality was satisfactory.

比較例7
島成分と海成分のポリマー重量割合を表3の通り変更した以外は実施例10に準じた。
Comparative Example 7
Example 10 was followed except that the polymer weight ratio of the island component and the sea component was changed as shown in Table 3.

得られた海島型複合繊維の物性は表3の通りで強度低下が認められた。全ての断面を観察した結果、全単糸の島成分が海成分に完全に覆われており、島成分が海成分に完全に分離されていた。   The physical properties of the obtained sea-island composite fiber were as shown in Table 3, and a decrease in strength was observed. As a result of observing all the cross sections, the island components of all single yarns were completely covered by the sea component, and the island components were completely separated into the sea component.

連続10日間の製糸評価の結果は、10日間通して糸切れが多く、10日間TOTALの糸切れは23回と不安定であった。   As a result of the yarn production evaluation for 10 consecutive days, the number of yarn breaks was large throughout the 10 days, and the number of TOTAL yarn breaks for 10 days was unstable at 23 times.

各繊維を2本合糸した後、甘撚し、経糸および緯糸に使用して製織した。得られた織物の評価結果、上質な風合いとは言えず不合格レベルであった。織物を詳細に分析した結果、一部の極細繊維で海成分が残っており、割繊不良が見られた。   After doubling each fiber, the fibers were sweet-twisted and woven using warp and weft. As a result of evaluation of the obtained woven fabric, the texture was not good quality and was at a reject level. As a result of detailed analysis of the woven fabric, sea components remained in some of the ultrafine fibers, and poor splitting was observed.

比較例8
島成分と海成分のポリマー重量割合を表3の通り変更した以外は実施例10に準じた。
Comparative Example 8
Example 10 was followed except that the polymer weight ratio of the island component and the sea component was changed as shown in Table 3.

得られた海島型複合繊維の物性は表3の通りであった。全ての断面を観察した結果、一部の島成分同士がくっついていた。また、一部の島成分が繊維表面に露出していた。その影響で島成分の面積バラツキは大きい結果となった。   Table 3 shows the physical properties of the obtained sea-island composite fiber. As a result of observing all the cross sections, some island components were stuck together. Some island components were exposed on the fiber surface. As a result, the area variation of the island components was large.

連続10日間の製糸評価の結果は、特に製糸後半の糸切れが多発し、10日間TOTALの糸切れは28回と不安定であった。   As a result of the continuous ten-day yarn-making evaluation, the yarn breakage particularly in the latter half of the yarn-making occurred frequently, and the total-day TOTAL yarn breakage was unstable at 28 times.

各繊維を2本合糸した後、甘撚し、経糸および緯糸に使用して製織した。甘撚り、製織工程で糸切れが多く織物サンプル採取に苦労した。得られた織物の評価結果、肌触り、ソフト感、光沢感が悪く、上質な風合いとは言えず不合格レベルであった。   After doubling each fiber, the fibers were sweet-twisted and woven using warp and weft. There were many yarn breaks during the sweet twisting and weaving processes, and it was difficult to collect textile samples. The evaluation result of the obtained woven fabric was poor in feel, softness and glossiness, and could not be said to be a good quality texture, and was at a reject level.

Claims (3)

平均粒径が0.10〜0.50μmの酸化チタン、ジルコニア、アルミナから選択される無機微粒子を含有し、繊維径が590〜6000nmである極細繊維であって、繊維の表面に微細な凹凸を有し、微細凹凸は次の(1)、(2)の要件を満足することを特徴とする極細ポリエステル繊維。
(1)微細凹凸の数が1〜15個/40μm
(2)微細凹凸の大きさがアスペクト比10以下
It is an ultrafine fiber having an average particle diameter of 0.10 to 0.50 μm, containing inorganic fine particles selected from titanium oxide, zirconia, and alumina, and having a fiber diameter of 590 to 6000 nm, and having fine irregularities on the surface of the fiber. An ultra-fine polyester fiber having fine irregularities satisfying the following requirements (1) and (2).
(1) The number of small projections 1-15 pieces / 40 [mu] m 2
(2) The size of the fine irregularities is an aspect ratio of 10 or less
機微粒子を1.0〜8.0wt%含有することを特徴とする請求項1記載の極細ポリエステル繊維。 Ultrafine polyester fiber according to claim 1, characterized in that it contains no machine particulates 1.0 to 8.0 wt%. 請求項1または2に記載の繊維が少なくとも一部を構成する織編物。 A woven or knitted fabric in which the fiber according to claim 1 or 2 constitutes at least a part.
JP2015167715A 2015-03-17 2015-08-27 Extra fine polyester fiber with uneven surface Active JP6672641B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015053164 2015-03-17
JP2015053164 2015-03-17

Publications (2)

Publication Number Publication Date
JP2016172945A JP2016172945A (en) 2016-09-29
JP6672641B2 true JP6672641B2 (en) 2020-03-25

Family

ID=57008818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015167715A Active JP6672641B2 (en) 2015-03-17 2015-08-27 Extra fine polyester fiber with uneven surface

Country Status (1)

Country Link
JP (1) JP6672641B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6491932B2 (en) * 2015-04-03 2019-03-27 Kbセーレン株式会社 Synthetic fiber
JP6996419B2 (en) * 2018-05-23 2022-01-17 トヨタ紡織株式会社 Epidermis material
CN112135728B (en) * 2018-05-23 2022-12-09 丰田纺织株式会社 Skin material

Also Published As

Publication number Publication date
JP2016172945A (en) 2016-09-29

Similar Documents

Publication Publication Date Title
KR102277678B1 (en) Eccentric Core Sheath Composite Fiber and Blended Fiber
TWI541399B (en) Composite fiber
WO2016129467A1 (en) Core-sheath conjugated fiber, slit fiber, and method for manufacturing these fibers
JP2007262610A (en) Combined filament yarn
JP5040270B2 (en) Composite processed yarn
JP6672641B2 (en) Extra fine polyester fiber with uneven surface
JP7415455B2 (en) Core-sheath composite fiber
JP6271856B2 (en) Fabric manufacturing method and textile manufacturing method
JP5229890B2 (en) Multi-layer structure woven and textile products
JP4315009B2 (en) Blended yarn and textile products comprising the same
JP5735844B2 (en) Cationic dyeable polyester fibers and fiber aggregates with excellent dyeability
JP2011157646A (en) Polyester microfiber
JP2005133250A (en) Core-sheath conjugate fiber
JP7476619B2 (en) Polyester composite fiber
JP5495286B2 (en) Method for producing hair knitted fabric, hair knitted fabric and textile product
JP2008274446A (en) Latently crimpable conjugate fiber
JP2002105796A (en) Light-shielding woven fabric
JP2011157647A (en) Wiping cloth
JP2010053502A (en) Napped fabric and napped fabric product
JP4292893B2 (en) Polymer alloy crimped yarn
JP2007332476A (en) Nano fiber fabric
JPH1150335A (en) Polyester fiber and its production
JP3874529B2 (en) Pre-oriented polyester fiber and processed yarn therefrom
JP2004270110A (en) Polymer alloy fiber
JP4395948B2 (en) Low shrinkage polyester yarn and polyester blended yarn comprising the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200217

R151 Written notification of patent or utility model registration

Ref document number: 6672641

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151