JP2008184725A - Dope-dyed nonwoven fabric - Google Patents

Dope-dyed nonwoven fabric Download PDF

Info

Publication number
JP2008184725A
JP2008184725A JP2007021592A JP2007021592A JP2008184725A JP 2008184725 A JP2008184725 A JP 2008184725A JP 2007021592 A JP2007021592 A JP 2007021592A JP 2007021592 A JP2007021592 A JP 2007021592A JP 2008184725 A JP2008184725 A JP 2008184725A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fiber
fibers
split
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007021592A
Other languages
Japanese (ja)
Inventor
Kazuhiro Morishima
一博 森島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Cordley Ltd
Original Assignee
Teijin Cordley Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Cordley Ltd filed Critical Teijin Cordley Ltd
Priority to JP2007021592A priority Critical patent/JP2008184725A/en
Publication of JP2008184725A publication Critical patent/JP2008184725A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dope-dyed nonwoven fabric exhibiting sufficient coloring effect and improved in fiber splittability and process stability. <P>SOLUTION: The dope-dyed nonwoven fabric includes a conjugate fiber splittable by flaking and of two components composed of a polyamide polymer component and a polyester polymer component, wherein 0.5-30 wt.% carbon black having an average primary particle diameter of 10-50 nm is contained in only one of the components based on the weight thereof. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、カーボンブラックにより着色された原着不織布に関するものであり、さらに詳しくは、ポリアミド重合体からなる成分と、ポリエステル重合体からなる成分の、2成分で構成された剥離分割型複合繊維からなる原着不織布に関するものである。   The present invention relates to an original nonwoven fabric colored with carbon black, and more specifically, from a split-divided composite fiber composed of two components, a component made of a polyamide polymer and a component made of a polyester polymer. It is related with the original nonwoven fabric.

従来、品位に優れた徹密できめ細かなタッチやドレープ性に優れた布帛が上市され、そのような布帛を得るために細繊度繊維が多用されている。細繊度繊維を得るための手段としては、最初から細い繊度の繊維を製造する方法および、2成分の異なるポリマーから複合繊維として得られた繊維を分割、抽出などの工程を経て細化するなどの方法が取られている。しかし、工程の合理化や工程調子などの面から、主として、後者の方法により細繊度繊維に細化可能な複合繊維を製造し、布帛とした後、繊維を細化する方法が用いられている。例えば、特開平4−300351号公報、特開平10−53948号公報等には、抽出設備及び抽出工程を必要としない剥離分割型複合繊維からなる長繊維不織布を、高圧水流機で処理して該剥離分割型複合繊維を極細繊維に分割して極細繊維不織布を得る方法が提案されている。しかし、これらの方法には分割遂行度に限界があり、また確実に分割できる不織布目付にも上限がある。特に極細繊維からなる不織布を人工皮革として使用する場合は、目付の大きいものが必要とされるため、容易に極細化可能な方法が望まれている。   In the past, fabrics with high density and fine touch and excellent drape properties have been put on the market, and fineness fibers are often used to obtain such fabrics. As a means for obtaining a fine fiber, a method of producing a fine fiber from the beginning and a fiber obtained as a composite fiber from two different polymers are divided and extracted through a process such as extraction. The method is taken. However, from the viewpoint of rationalization of the process and process condition, a method is mainly used in which a composite fiber that can be thinned into fine fibers by the latter method is manufactured and made into a fabric, and then the fiber is thinned. For example, in JP-A-4-300311, JP-A-10-53948, etc., a long-fiber non-woven fabric made of peeled split-type composite fibers that does not require extraction equipment and an extraction process is treated with a high-pressure water flow machine. There has been proposed a method of obtaining an ultrafine fiber nonwoven fabric by dividing an exfoliation split type composite fiber into ultrafine fibers. However, these methods have a limit in the division performance, and there is also an upper limit in the non-woven fabric basis weight that can be reliably divided. In particular, when a non-woven fabric made of ultrafine fibers is used as artificial leather, a material having a large basis weight is required, and therefore a method that can be easily made ultrafine is desired.

一方で、人工皮革の製造技術は種々開発されており、極細繊維から成る不織布を基布として用いることにより、近年では天然皮革に近い風合いのものも得られるようになってきたが、製品として用いた場合に裁断面が銀付表面層の色と異なるという欠点を有する。特に黒色の表面層を用いる場合には裁断面が白色であると審美性が損なわれ、基布として用いられる不織布自体に色を付与する必要がある。これらの欠点を補うために、例えば繊維に染色加工を行う方法や、原着糸を用いる方法が考えられるが、染色加工では後工程が煩雑となり、原着糸を用いる方法では、繊維の強度低下や工程安定性の低下などの問題が発生する。   On the other hand, various artificial leather manufacturing techniques have been developed. By using a nonwoven fabric made of ultrafine fibers as a base fabric, it has recently become possible to obtain a texture similar to natural leather. The cut surface has a disadvantage that it differs from the color of the surface layer with silver. In particular, when a black surface layer is used, if the cut surface is white, the aesthetics are impaired, and it is necessary to impart a color to the nonwoven fabric itself used as the base fabric. In order to compensate for these drawbacks, for example, a method of dyeing a fiber or a method using an original yarn can be considered, but the subsequent process is complicated in the dyeing process, and the method using the original yarn reduces the strength of the fiber. And problems such as a decrease in process stability occur.

特開平4−300351号公報JP-A-4-30031 特開平10−53948号公報JP-A-10-53948

本発明は、上記背景技術に鑑みなされたもので、その目的は、十分な着色効果を発現し、繊維の分割性や工程安定性が向上した原着不織布を提供することにある。   The present invention has been made in view of the above-described background art, and an object thereof is to provide an original nonwoven fabric that exhibits a sufficient coloring effect and has improved fiber splitting property and process stability.

本発明者らは、鋭意検討した結果、ポリアミド重合体からなる成分と、ポリエステル重合体からなる成分の、2成分で構成された剥離分割型複合繊維からなる不織布であって、どちらか一方の成分にのみ平均1次粒子径が10〜50nmのカーボンブラックが該成分の重量を基準として0.5〜30重量%含有されていることを特徴とする原着不織布』により、上記目的を達成できることを見出した。   As a result of intensive studies, the inventors of the present invention are non-woven fabrics composed of a split-divided composite fiber composed of two components, a component composed of a polyamide polymer and a component composed of a polyester polymer, and one of the components The above-mentioned object can be achieved by the original nonwoven fabric characterized in that only 0.5 to 30% by weight of carbon black having an average primary particle size of 10 to 50 nm is contained on the basis of the weight of the component. I found it.

本発明の原着不織布は、これを構成する剥離分割型複合繊維の1成分にカーボンブラックを含有させることにより、工程安定性良く不織布を得ることができる。また不織布の目付が大きくても、効率よく分割でき極細繊維化することができるため、容易にかつ強度に優れた極細長繊維からなる原着不織布を得ることができる。また、このようにして得られる原着不織布は、審美性と強度などの物性双方が要求される人工皮革基布用途に好適に用いることができる。   The original nonwoven fabric of the present invention can be obtained with good process stability by incorporating carbon black into one component of the peelable split composite fiber constituting the nonwoven fabric. Even if the basis weight of the nonwoven fabric is large, it can be efficiently divided and made into ultrafine fibers, so that an original nonwoven fabric composed of ultrafine fibers having excellent strength can be obtained easily. In addition, the original nonwoven fabric obtained in this manner can be suitably used for artificial leather base fabric applications that require both physical properties such as aesthetics and strength.

以下、本発明の実施の形態について詳細に説明する。本発明で用いられる剥離分割型複合繊維は、繊維形成性ポリエステル系重合体と繊維形成性ポリアミド系重合体とから構成され、機械的処理などで各成分に剥離分割できるものであれば特に限定されない。好ましく用 いられるポリアミド系重合体としては、例えばナイロン−6、ナイロン−66、ナイロン−610、ナイロン−11、ナイロン−12等があげられ、一方ポリエステル系重合体としては、例えばポリエチレンテレフタレート、ポリトリエチレンテレフタレート、ポリブチレンテレフタレート及びこれらを主成分とする共重合ポリエステル等があげられる。中でもナイロン−6/ポリエチレンテレフタレートの組合わせが工程性、コスト等の面から好ましい。   Hereinafter, embodiments of the present invention will be described in detail. The release-dividing composite fiber used in the present invention is not particularly limited as long as it is composed of a fiber-forming polyester polymer and a fiber-forming polyamide-based polymer and can be separated into each component by mechanical treatment or the like. . Examples of polyamide polymers preferably used include nylon-6, nylon-66, nylon-610, nylon-11, nylon-12, and the like, while polyester polymers include, for example, polyethylene terephthalate, polytriethylene. Examples thereof include ethylene terephthalate, polybutylene terephthalate, and copolyesters containing these as main components. Among these, a combination of nylon-6 / polyethylene terephthalate is preferable from the viewpoint of processability and cost.

剥離分割型複合繊維の複合形態としては、ポリエステル系重合体とポリアミド系重合体の接合界面の少なくとも一部分が繊維表面に到達している複合形態で、機械的処理等により各成分に剥離分割できるものであれば特に限定されないが、お互いに一方成分が他方成分によって所定数に分割されている形態であることが、分割性の点で望ましい。なかでも、1成分が他成分間に放射状に配置されている断面形状が好ましい。このように放射状に配置された剥離分割複合繊維は、その分割数は2成分を溶融後、口金内で合流させる方法により任意に設定可能であり、分割前の複合繊維の単糸繊度を考慮して決定されるが、4〜48、特に8〜24分割であることが製糸性と分割の容易さ及びその効果の観点から特に好ましい。本発明においては、極細繊維に含有されているカーボンブラックの平均1次粒径を10〜50nmとする必要がある。平均1次粒径が10nm未満であると、2次凝集を阻止することが困難となり、強度が低下してしまうなどの欠点が生じる。一方、平均1次粒径が50nmを超えると2次凝集の形成は少なくなるが、極細繊維の濃色性は低くなる。より好ましい範囲は12〜30nmである。   The composite form of the peelable split composite fiber is a composite form in which at least a part of the interface between the polyester polymer and the polyamide polymer reaches the fiber surface, and can be separated into each component by mechanical treatment etc. If it is, it will not specifically limit, However, It is desirable from the point of a splittability that the one component mutually is divided | segmented into the predetermined number by the other component. Among these, a cross-sectional shape in which one component is arranged radially between other components is preferable. In this way, the number of divisions of the peeled split composite fibers arranged radially can be arbitrarily set by a method in which two components are melted and then merged in the die, taking into consideration the single yarn fineness of the composite fiber before splitting. However, 4 to 48, particularly 8 to 24 divisions are particularly preferable from the viewpoints of yarn-making properties, easiness of division and the effects thereof. In the present invention, the average primary particle size of carbon black contained in the ultrafine fibers needs to be 10 to 50 nm. When the average primary particle size is less than 10 nm, it becomes difficult to prevent secondary aggregation, and disadvantages such as reduction in strength occur. On the other hand, when the average primary particle size exceeds 50 nm, the formation of secondary aggregation decreases, but the darkness of the ultrafine fibers decreases. A more preferable range is 12 to 30 nm.

また、上記カーボンブラックは剥離分割型複合繊維を構成する2種類の重合体成分に対し、どちらか一方のみに含有させる必要がある。両方に含有させると不織布としたときの強度の低下が著しい他、紡糸中に重合体成分を吐出する孔の周辺部に異物が付着しやすくなるなど工程安定性の低下を引き起こすこととなる。また極細繊維を発生させる為の分割処理において分割性が低下する。   In addition, the carbon black needs to be contained in only one of the two types of polymer components constituting the peelable split composite fiber. If it is contained in both, the strength of the nonwoven fabric will be significantly reduced, and process stability will be lowered, for example, foreign matter tends to adhere to the periphery of the holes for discharging the polymer component during spinning. Further, the splitting property is lowered in the splitting process for generating ultrafine fibers.

さらに、カーボンブラックの繊維に対する含有量は0.5〜30重量%であることが必要である。0.5重量%未満であると十分な着色効果が得られず、30重量%を超えると極細化した後の不織布強度が低下してしまうなどの欠点が生じる。好ましい含有率の範囲は1〜15重量%である。   Furthermore, the content of carbon black with respect to the fibers needs to be 0.5 to 30% by weight. If it is less than 0.5% by weight, a sufficient coloring effect cannot be obtained, and if it exceeds 30% by weight, the strength of the non-woven fabric after ultrathinning is reduced. A preferable range of the content is 1 to 15% by weight.

カーボンブラックを、上記剥離分割型複合繊維に混合させる方法としては、繊維の原料となる溶融状態の樹脂に直接または担持媒体に分散させたカーボンブラックを含有させる方法、樹脂ペレツトをカーボンブラックと混合した後に溶融紡糸等により繊維化する方法、カーボンブラックを高濃度で含有するマスターバッチを樹脂ペレツトと混合して溶融紡糸等により繊維化する方法などが挙げられる。このうち、マスターバッチによりカーボンブラックを混合させる方法が製造コストなどの面で好ましく用いられる。   As a method of mixing carbon black with the above-described separation-dividing composite fiber, a method of containing carbon black dispersed directly or in a support medium in a molten resin used as a raw material of the fiber, a resin pellet was mixed with carbon black. Examples thereof include a method of fiberizing by melt spinning or the like, and a method of mixing a master batch containing carbon black at a high concentration with a resin pellet and fiberizing by melt spinning or the like. Among these, the method of mixing carbon black with a masterbatch is preferably used in terms of production cost.

なお、上記剥離分割型複合繊維の一方成分の全体に対する複合割合は、該複合繊維の製糸性及び後述する長繊維不織布とした後の分割極細繊維化の面から30〜70重量%の範囲、特に40〜60重量%の範囲が適当である。この範囲を外れる場合には、両重合体の粘度バランスの調整が困難となり、紡糸時のセクション不良が発生しやすくなり、また、分割極細繊維化の際の分割効率が低下しやすくなる。かかる剥離分割型複合繊維全体の断面形状は、丸断面形状、多葉断面形状、多角形形状等任意であり、また中空部を有する形態であってもよいが、中空部を有するものでは2成分の界面長さを減少させることができ、剥離分割性が向上するので好ましい。   In addition, the composite ratio with respect to the whole of one component of the above-described peelable split composite fiber is in the range of 30 to 70% by weight from the viewpoint of the spinnability of the composite fiber and the formation of split ultrafine fibers after forming the long fiber nonwoven fabric described later, particularly A range of 40-60% by weight is suitable. When outside this range, it is difficult to adjust the viscosity balance of both polymers, section defects during spinning are likely to occur, and the splitting efficiency when splitting ultrafine fibers is easily reduced. The cross-sectional shape of the entire peelable split composite fiber is arbitrary, such as a round cross-sectional shape, a multi-leaf cross-sectional shape, and a polygonal shape, and may have a hollow portion. This is preferable because the interfacial length can be reduced, and the separation of the separation is improved.

剥離分割処理後の単糸繊度は、0.01〜0.06dtexの範囲が適当であり、0.01dtex未満のものは製造が困難であり、一方、0.06dtexを越えると、得られる不織布のカバーファクターが下がって斑が大きくなりやすく、また風合も低下する傾向にある。   The single yarn fineness after the separation treatment is suitably in the range of 0.01 to 0.06 dtex, and the one less than 0.01 dtex is difficult to produce. On the other hand, if it exceeds 0.06 dtex, As the cover factor decreases, the spots tend to increase, and the texture tends to decrease.

さらに本発明の目的を損なわない範囲内であれば、酸化チタン、酸化アルミニウム、酸化ケイ素、炭酸カルシウム、マイカ、金属微細粉、有機顔料、無機顔料等をポリアミド系重合体およびポリエステル系重合体のどちらへ添加してもよく、これらの添加剤には熱可塑性重合体への着色効果と共に該重合体の溶融粘度を高く又は低くする効果もあり、繊維横断面形状を調節するのに有効である。   Further, within the range not impairing the object of the present invention, either titanium oxide, aluminum oxide, silicon oxide, calcium carbonate, mica, fine metal powder, organic pigment, inorganic pigment or the like is selected from polyamide polymer and polyester polymer. These additives may be added to the polymer, and these additives have the effect of increasing or decreasing the melt viscosity of the polymer as well as the effect of coloring the thermoplastic polymer, and are effective in adjusting the fiber cross-sectional shape.

本発明においては、上記の剥離分割型複合繊維を、スパンボンド法、又は、紡糸・延伸して一旦巻き取った延伸糸を高速の牽引流体により開織しながら多孔補集面上にウェブとして捕集する等の公知の方法により、ウェブとなす。なかでも、口金より紡出された糸条を高速牽引し、補集ネット上に噴射・補集するスパンボンド法が、生産性の点から特に好ましい。ここで、高速牽引の速度としては、2000〜8000m/分の範囲、特に3000〜6000m/分の範囲が適当であり、紡糸口金から吐出された複合長繊維をエジェクターやエアサッカーなどにより上記範囲の速度にて高速牽引すればよい。高速牽引により細化された複合長繊維は、開繊されながら補集ネット上に補集される。その際、コロナ放電による帯電や接触帯電等の従来公知の方法により繊維を帯電させることが、より均一性に優れたウェブを得るためには好ましい。該複合長繊維をネット上に補集する際、他の短繊維を混綿したり、他の長繊維を積層、混合することも可能である。混綿文は積層、混合される他の繊維素材としては、特に限定はされないが、例えば、レーヨン等の再生繊維、アセテート等の半合成繊維、ウール等の天然繊維、ナイロン−6、ナイロン−66等のポリアミド繊維、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系繊維、ポリエチレン、ポリプロピレン等のポリオレフィン系繊維等から任意に1あるいは2種以上選択して使用することができる。もちろん繊維形状等も限定されず、2種以上の熱可塑性樹脂を組み合わせた芯鞘型複合繊維や剥離分割型複合繊維、その他断面形状を異形断面とした繊維等、任意のものを用いることができる。このようにして得られた長繊維ウェブは、必要に応じて複数枚を積層して、又は単独で、必要に応じて予備的に熱接着し、一旦巻き取った後に、又は、連続してニードルパンチ処理等の交絡処理を施して、長繊維不織布とする。   In the present invention, the above-described exfoliated split type composite fiber is captured as a web on the porous collecting surface while weaving the drawn yarn that has been wound up by the spunbond method or by spinning / drawing with a high-speed traction fluid. The web is made by a known method such as collecting. Among these, the spunbond method in which the yarn spun from the base is pulled at high speed and is injected and collected on the collection net is particularly preferable from the viewpoint of productivity. Here, the speed of high-speed towing is suitably in the range of 2000 to 8000 m / min, particularly in the range of 3000 to 6000 m / min, and the composite long fiber discharged from the spinneret is within the above range by an ejector or air soccer. Tow at high speed. The composite long fiber thinned by high-speed traction is collected on a collection net while being opened. At that time, it is preferable to charge the fibers by a conventionally known method such as charging by corona discharge or contact charging in order to obtain a web having more excellent uniformity. When collecting the composite long fibers on the net, it is also possible to mix other short fibers or to laminate and mix other long fibers. The mixed cotton text is not particularly limited as other fiber materials to be laminated and mixed. For example, regenerated fibers such as rayon, semi-synthetic fibers such as acetate, natural fibers such as wool, nylon-6, nylon-66, etc. Polyamide fibers such as polyethylene fibers, polyethylene fibers such as polyethylene terephthalate and polybutylene terephthalate, polyolefin fibers such as polyethylene and polypropylene, and the like can be arbitrarily selected and used. Of course, the fiber shape and the like are not limited, and any of a core-sheath type composite fiber, a peel-splitting type composite fiber combining two or more kinds of thermoplastic resins, and other fibers having an irregular cross-sectional shape can be used. . The long fiber web obtained in this manner is formed by laminating a plurality of sheets as required, or independently, preliminarily thermally bonded as necessary, and once wound up or continuously. A tangled process such as a punch process is applied to obtain a long fiber nonwoven fabric.

本発明においては、上記交絡処理が施された長繊維不織布を処理して、該剥離分割型複合長繊維を分割極細化する必要があるが、その分割方法は、分割極細化が確実に遂行できる方法であれば任意であり、特に限定されず、また複数の方法を組合わせても構わない。例えば機械的な分割処理方法としては、ローラー間で加圧する方法、超音波処理を行なう方法、衝撃を与える方法、揉み処理をする方法を例示することができるが、これらの中で、シート状物打撃式揉み機による方法が最も効果的であり好ましい。なお、ここでいうシート状物打撃式探み機とは、シートの厚み方向に勇断力を効率よく加えることができるものであり、剥離分割型複合繊維の分割極細繊維化を効率よく行なうことができる。これに対して、高圧柱状水流処理や衝撃のみによる方法では、不織布の目付が大きい場合には、剥離分割化がし難くなるので好ましくないが、他の分割極細繊維化の方法と組み合わせることができる。   In the present invention, it is necessary to treat the long-fiber nonwoven fabric subjected to the above-described entanglement treatment to divide and make the exfoliation-divided composite continuous fiber fine, but the division method can surely perform the division and ultra-thinning. Any method may be used, and the method is not particularly limited. A plurality of methods may be combined. For example, examples of the mechanical division treatment method include a method of pressurizing between rollers, a method of performing ultrasonic treatment, a method of applying an impact, and a method of stagnation treatment. A method using a hitting type grinder is the most effective and preferable. In addition, the sheet-like object hitting probe referred to here is one that can efficiently apply a breaking force in the thickness direction of the sheet, and can efficiently perform split ultrafine fiber separation of the split split composite fiber. it can. On the other hand, the method using only high-pressure columnar water flow treatment or impact is not preferable because the separation and division is difficult when the nonwoven fabric has a large basis weight, but it can be combined with other divided ultrafine fiber forming methods. .

不織布を分割極細化後にさらに風合いを向上させる為、徹密化などを目的としている場合は、分割処理に引き続いて収縮熱処理を施すのが好ましいので、繊維の分割が遂行する前に熱がかかる分割処理方法は避けた方が好ましい。また、高圧水流による分割処理方法は、ニードルパンチング等により形成された交絡状態が崩されやすいので避けた方が好ましい。   In order to further improve the texture after dividing the nonwoven fabric into fine pieces, it is preferable to perform shrinkage heat treatment subsequent to the division treatment, so that the heat is applied before the fiber division is performed. It is preferable to avoid the processing method. In addition, it is preferable to avoid the split processing method using a high-pressure water flow because the entangled state formed by needle punching or the like is easily broken.

以上に述べた方法により製造される極細繊維不織布は、引き続いて収縮熱処理、特にリラックス状態で収縮 熱処理を施すことが好ましく、面積収縮率でいって5〜60%の範囲、特に10〜50%の範囲が好適である。かくすることにより、長繊維不織布内部の粗大空隙が排除され、均一で徹密な構造を生起させることができる。なお、剥離離分割型複合長繊維の一方成分が他方成分よりもその熱収縮率が大きいものが好ましく、その際 、95℃の温水中での熱収縮率の差でいえば、5〜60%の範囲、特に10〜50%の範囲であることが好ましい。   The ultrafine fiber nonwoven fabric produced by the method described above is preferably subsequently subjected to shrinkage heat treatment, particularly shrinkage heat treatment in a relaxed state, and the area shrinkage rate is in the range of 5 to 60%, particularly 10 to 50%. A range is preferred. By doing so, coarse voids inside the long fiber nonwoven fabric are eliminated, and a uniform and dense structure can be generated. Note that one component of the separation-separation-type composite continuous fiber is preferably one having a larger heat shrinkage rate than the other component. In this case, the difference in heat shrinkage rate in 95 ° C. warm water is 5 to 60%. It is preferable that it is the range of 10 to 50% especially.

なお、ここでいう熱収縮率は、長繊維を0.005488cN/dtex(0.56g/tex)の荷重下で30分間95℃の温水中で収縮処理したときの収縮率から、次式により算出される。
収縮率=((収縮処理前の長さ−収縮処理後の長さ)/(収縮処理前の長さ))×100(%)
The heat shrinkage referred to here is calculated from the shrinkage obtained by shrinking long fibers in warm water at 95 ° C. for 30 minutes under a load of 0.005488 cN / dtex (0.56 g / tex) by the following equation. Is done.
Shrinkage rate = ((length before shrinkage treatment−length after shrinkage treatment) / (length before shrinkage treatment)) × 100 (%)

一方、面積収縮率は、次式により算出される。
面積収縮率=((収縮前の長繊維不織布面積−収縮後の長繊維不織布面積)/(収縮前の長繊維不織布面積)(%)×100(%)
On the other hand, the area shrinkage rate is calculated by the following equation.
Area shrinkage rate = ((long fiber nonwoven fabric area before shrinkage−long fiber nonwoven fabric area after shrinkage) / (long fiber nonwoven fabric area before shrinkage) (%) × 100 (%)

また、ここでいうリラックス状態での収縮熱処理は、長繊維不織布を3〜30%のオーバーフィード率の下に一方向に前進させながら収縮熱処理することをいう。その際、リラックス状態という観点から、長繊維不織布の前進方向と直交する長繊維不織布の側縁部は無把持状態に保つことが好ましい。また、該オーバーフィード率は、目的とする面積収縮率によって決定すればよいが、3〜30%の範囲にすると5〜60%の面積収縮率を達成しやすいので好ましい。   Moreover, the shrinkage heat treatment in a relaxed state here refers to shrink heat treatment while the long fiber nonwoven fabric is advanced in one direction under an overfeed rate of 3 to 30%. In that case, from the viewpoint of a relaxed state, it is preferable to keep the side edge part of the long-fiber nonwoven fabric orthogonal to the advance direction of the long-fiber nonwoven fabric in a non-gripping state. The overfeed rate may be determined according to the target area shrinkage rate. However, it is preferable to set the overfeed rate in the range of 3 to 30% because an area shrinkage rate of 5 to 60% is easily achieved.

以上の述べた本発明の製造方法により得られた極細繊維不織布は、人工皮革の基布用途や衣料用途、内装材、インテリア材等の産業資材用途、工業用ワイパーやワイピングクロス等のワイパー用途、バグフィルターや濾過布等のフィルター用途、医療衛生材料等の用途に好ましく用いることができる。また、薄目付のものが必要な場合には、得られた高目付けのものをスライスすることにより効率的に生産することもできる。   The ultrafine fiber nonwoven fabric obtained by the production method of the present invention described above is used for artificial leather base fabrics and clothing, interior materials, interior materials and other industrial materials, industrial wipers and wipes such as wiping cloth, It can be preferably used for filter applications such as bag filters and filter cloths, and medical hygiene materials. Moreover, when the thing with a thin weight is required, it can also produce efficiently by slicing the obtained thing with a high weight.

以下、実施例をあげて本発明をさらに具体的に説明するが、本発明はこれら実施例により限定されるものではない。なお、実施例中における部及び%は、特に断らない限り重量基準であり、また各測定値は、それぞれ以下の方法にしたがって求めたものであり、特に断らない限り、測定値は5点を測定した平均値である。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In addition, unless otherwise indicated, the part and% in an Example are a basis of weight, and each measured value was calculated | required according to the following method, respectively, and unless otherwise indicated, a measured value measured 5 points | pieces. The average value.

(1)ポリエステル重合体の固有粘度
o−クロロフェノールを溶媒として35℃で測定した。
(2)ポリアミド重合体の固有粘度
m−クレゾールを溶媒として35℃で測定した。
(3)ポリマー吐出状態
複合紡糸中に、紡糸口金より吐出されているポリマーの吐出状態を観察し、次の基準で吐出状態を格付けした。複合紡糸開始12hr後に観察を行った。
レベル1:吐出糸条がほぼ一定の流下線を描いて、安定に走行している。
レベル2:吐出糸条に小さな屈曲、屈曲の繰り返し、旋回等が見られる。
レベル3:吐出糸条が大きく屈曲、屈曲の繰り返しあるいは旋回している。一部ポリマーが紡糸口金面に接触し、断糸が頻発している。
(4)分割数
剥離分割型複合繊維の分割率は、不織布の断面を電子顕微鏡で200倍にて撮影し、100本の繊維の断面を測定し、全体の面積と未分割(完全に分割していない、例えば、2個や3個程度に分割したものも含む)のフィラメントの断面積の差を全体の面積で除して求めた。該分割率が大きいほどよく分割していることを示す。
(5)複合繊維(未分割)の強度
複合繊維を、島津製作所製引張試験機テンシロンに試料長20mm(つかみ間隔20mm)で把持し、引張速度20mm/分で伸長し、切断時の荷重値を測定し、これを複合繊維の総繊度で除して強度を求めた。
(6)極細繊維の繊度
未分割の複合繊維の繊度を繊度測定器(SERCH Co.LTD、型式DC−21)にて試長2.5cm、荷重1gにて測定し、それを複合繊維断面を構成する分割数で除して求めた。
(7)不織布の厚み
厚み測定器定器(株式会社大栄科学精器製作所製PEACOCKモデルH)を使用し、試料1cm当たり1.764N(180g)の荷重を加えた状態で測定した。
(8)不織布の強度
幅2cm、長さ9cmの分割処理後の試験片を不織布の縦方向、横方向に対してそれぞれサンプリングし、試験片をチャックで掴み、チャック間隔5cmとして、引張速度5cm/分にて伸張させ、破断時の強度を、縦方向、横方向の平均値とし、幅1cm、試料目付100g/m当たりに換算して求めた。
(1) Intrinsic Viscosity of Polyester Polymer It was measured at 35 ° C. using o-chlorophenol as a solvent.
(2) Intrinsic viscosity of polyamide polymer: Measured at 35 ° C. using m-cresol as a solvent.
(3) Polymer discharge state During the composite spinning, the discharge state of the polymer discharged from the spinneret was observed, and the discharge state was rated according to the following criteria. Observation was made 12 hours after the start of the composite spinning.
Level 1: The discharged yarn is running stably with a substantially constant flow line.
Level 2: There are small bends, repeated bends, swiveling, etc. in the discharged yarn.
Level 3: The discharged yarn is greatly bent, repeatedly bent, or swiveled. Part of the polymer is in contact with the spinneret surface, and the yarn breakage occurs frequently.
(4) Number of splits The split ratio of the peelable split composite fibers was measured by taking a cross section of the nonwoven fabric at 200 times with an electron microscope, measuring the cross section of 100 fibers, and the total area and undivided (completely split) The difference in the cross-sectional area of the filaments (not including, for example, those divided into about two or three) is divided by the total area. The larger the division ratio, the better the division.
(5) Strength of the composite fiber (undivided) The composite fiber is gripped by a tensile tester Tensilon manufactured by Shimadzu Corporation with a sample length of 20 mm (grip spacing 20 mm), stretched at a tensile speed of 20 mm / min, and the load value at the time of cutting is determined. The strength was measured by dividing this by the total fineness of the composite fiber.
(6) Fineness of ultrafine fibers The fineness of undivided composite fibers was measured with a fineness measuring instrument (SERCH Co. LTD, model DC-21) at a test length of 2.5 cm and a load of 1 g, and the cross section of the composite fibers was measured. It was obtained by dividing by the number of divisions.
(7) Thickness of non-woven fabric A thickness measuring device (PEACOCK model H manufactured by Daiei Kagaku Seiki Seisakusho Co., Ltd.) was used, and measurement was performed with a load of 1.764 N (180 g) per 1 cm 2 of the sample.
(8) Strength of non-woven fabric The test piece after the split treatment with a width of 2 cm and a length of 9 cm was sampled with respect to the longitudinal direction and the transverse direction of the non-woven fabric, the test piece was gripped with a chuck, the chuck interval was 5 cm, the tensile speed was 5 cm The strength at break was determined by converting the average strength in the longitudinal direction and the transverse direction per width of 1 cm and per sample weight of 100 g / m 2 .

[実施例1]
ポリアミド重合体として固有粘度が1.2のナイロン−6を用いた。このNy−6をベース樹脂とし平均1次粒径が14μm(電子顕微鏡により3000倍で測定)のカーボンブラックを24重量%含有させたマスターバッチペレットと、上記と同じNy−6のペレットとを、カーボンブラックが全体に対して3重量%となるように混合した混合ペレットを準備した。一方、ポリエステル重合体として固有粘度が0.64のポリエチレンテレフタレート(PET:帝人ファイバー株式会社製)のペレットを準備した。上記の、マスターバッチペレットを含む混合ペレットと、PETのペレットを、それぞれ別々にエクストルーダーにて溶融後、口金内で合流させ、単孔当たりの吐出量を2g/分にして中空口金より吐出し、エアサッ力一圧力343kPa(3.5kg/cm)にて高速牽引した後、−30kVで高電圧印加処理し、フィラメントを開織して、図1に示す16分割の多層貼合せ型断面をもつ剥離分割型複合長繊維(両成分の重量比率は48/52、単糸繊度は4.1dtex)からなるウェブとして、補集ネットコンベアーで目付40g/m、幅1mで補集した。
[Example 1]
Nylon-6 having an intrinsic viscosity of 1.2 was used as the polyamide polymer. A master batch pellet containing 24% by weight of carbon black having Ny-6 as a base resin and an average primary particle size of 14 μm (measured by an electron microscope at 3000 times), and the same Ny-6 pellet as described above, A mixed pellet was prepared by mixing so that the carbon black was 3% by weight with respect to the whole. On the other hand, a polyethylene terephthalate (PET: manufactured by Teijin Fibers Limited) pellet having an intrinsic viscosity of 0.64 was prepared as a polyester polymer. The above mixed pellets containing master batch pellets and PET pellets are melted separately in an extruder, and then merged in the die, and discharged from a hollow die with a discharge rate per single hole of 2 g / min. After high-speed traction with an air pressure of 343 kPa (3.5 kg / cm 2 ), a high voltage application treatment is performed at −30 kV, the filament is opened, and the 16-part multilayer laminated section shown in FIG. As a web composed of peeled split composite long fibers (weight ratio of both components is 48/52, single yarn fineness is 4.1 dtex), the web was collected with a gathering net conveyor with a basis weight of 40 g / m 2 and a width of 1 m.

得られたウェブを連続で上下100℃のエンボスカレンダーにて軽く熱接着を行い、このウェブを12枚クロスレイヤーに積層し、ニードルパンチにて交絡処理を施し、これを水に浸漬し、軽くマングルで絞った後、シート状物打撃式揉み機にて複合繊維の分割極細繊維化処理を行った。得られた不織布の目付は480g/mで、内層までよく分割されており、柔らかく風合の優れた不織布であった。結果を表1に示す。 The obtained web is continuously lightly bonded with an embossing calendar at 100 ° C above and below, 12 layers of this web are laminated on a cross layer, entangled with a needle punch, immersed in water, and lightly mangled. After squeezing, the composite fiber was split into ultrafine fibers using a sheet-like material striking-type squeezing machine. The obtained nonwoven fabric had a basis weight of 480 g / m 2 and was well divided up to the inner layer, and was a soft nonwoven fabric excellent in texture. The results are shown in Table 1.

[実施例2]
ポリエステル重合体として、固有粘度が0.64のポリエチレンテレフタレート(PET)に対し、平均1次粒径が14nmのカーボンブラックを20重量%含む、ベース樹脂に上記ポリエステルを用いたマスターバッチペレットをカーボンブラックが10重量%となるように配合したものを用い、ポリアミド重合体として固有粘度1.2のNy−6を用いて、実施例1と同様にして不織布を得た。結果を表1に示す。
[Example 2]
As a polyester polymer, a master batch pellet containing 20% by weight of carbon black having an average primary particle size of 14 nm with respect to polyethylene terephthalate (PET) having an intrinsic viscosity of 0.64 is carbon black. A non-woven fabric was obtained in the same manner as in Example 1 using Ny-6 having an intrinsic viscosity of 1.2 as a polyamide polymer. The results are shown in Table 1.

[実施例3〜4、比較例1〜4]
カーボンブラックの含有量およびマスターバッチに使用するその1次粒径を種々変更したものを、実施例1と同様にして不織布とした。得られた不織布の物性を表1に示す。
表1から明らかなように、実施例1〜4では、高目付であっても効果的に分割極細繊維化が進み、強度も高く、風合に優れた不織布が工程安定性良く得られている。これに対して、本発明の範囲外である比較例1では、カーボンブラック含有量が少なく、工程安定性や物性は良いものの十分な着色性は得られなかった。また、含有量の多すぎる比較例2や、カーボンブラックの1次粒径の大きい比較例4は強度が低く、カーボンブラックを両成分に含有させた比較例3では、分割性が低下する他、工程安定性にも大きく劣るものとなった。
[Examples 3-4, Comparative Examples 1-4]
A non-woven fabric was prepared in the same manner as in Example 1, except that the carbon black content and the primary particle size used in the masterbatch were variously changed. Table 1 shows the physical properties of the obtained nonwoven fabric.
As is clear from Table 1, in Examples 1 to 4, even when the fabric weight is high, the split ultrafine fibers are effectively advanced, the strength is high, and the nonwoven fabric excellent in the texture is obtained with good process stability. . On the other hand, in Comparative Example 1, which is out of the scope of the present invention, the carbon black content was small and the process stability and physical properties were good, but sufficient colorability was not obtained. In addition, Comparative Example 2 having too much content and Comparative Example 4 having a large primary particle size of carbon black have low strength, and Comparative Example 3 in which carbon black is contained in both components reduces the splitting property. The process stability was greatly inferior.

[実施例5]
実施例1で得られた不織布を、850℃の温水パスに2分間浸漬して収縮熱処理を施した。得られた収縮不織布は、面積収縮率が20%で徹密な構造を有していて、柔らかくかつ充実感のある風合を呈し、人工皮革基布として極めて好適なものであり、その裁断面は黒色を呈し人工皮革としても審美性に優れるものであった。
[Example 5]
The nonwoven fabric obtained in Example 1 was immersed in a hot water pass at 850 ° C. for 2 minutes and subjected to shrink heat treatment. The obtained shrinkable nonwoven fabric has an area shrinkage ratio of 20%, has a dense structure, exhibits a soft and solid texture, and is extremely suitable as an artificial leather base fabric. Was black and excellent in aesthetics as an artificial leather.

[比較例5]
実施例1で得られた不織布に代えて比較例1で得られた不織布を用いた以外は、実施例4と同様にした。得られた収縮不織布は、風合いは良好であったものの、裁断面は白く人工皮革として使用した場合に審美性に大きく劣るものであった。
[Comparative Example 5]
The same procedure as in Example 4 was performed except that the nonwoven fabric obtained in Comparative Example 1 was used instead of the nonwoven fabric obtained in Example 1. Although the obtained shrink nonwoven fabric had a good texture, the cut surface was white and when used as artificial leather, it was greatly inferior in aesthetics.

Figure 2008184725
Figure 2008184725

本発明の剥離分割型複合繊維によれば、1成分にカーボンブラックが含有させていることにより、工程安定性良く不織布を得ることができる。また、不織布の目付が大きくても、効率よく分割極細繊維化を行なうことができ、容易にかつ強度に優れた原着極細長繊維不織布を提供することができる。したがって、このようにして得られる該不織布は、特に審美性と強度などの物性双方が要求される人工皮革基布用途に好適に使用することができ、その工業的価値はきわめて大きい。   According to the peelable split composite fiber of the present invention, a nonwoven fabric can be obtained with good process stability by containing carbon black as one component. Further, even if the basis weight of the nonwoven fabric is large, it is possible to efficiently produce divided ultrafine fibers, and it is possible to provide an original ultrathin fiber nonwoven fabric that is easy and excellent in strength. Therefore, the nonwoven fabric obtained in this way can be suitably used for artificial leather base fabric applications that require both physical properties such as aesthetics and strength, and its industrial value is extremely high.

本発明の不織布を構成する剥離分離型複合繊維の断面の一例を示す概略図である。It is the schematic which shows an example of the cross section of the peeling separation type composite fiber which comprises the nonwoven fabric of this invention.

符号の説明Explanation of symbols

1 第一成分(ポリアミド重合体)
2 第二成分(ポリエステル重合体)
1 First component (polyamide polymer)
2 Second component (Polyester polymer)

Claims (3)

ポリアミド重合体からなる成分と、ポリエステル重合体からなる成分との、2成分で構成された剥離分割型複合繊維からなる不織布であって、どちらか一方の成分にのみ平均1次粒子径が10〜50nmのカーボンブラックが該成分の重量を基準として0.5〜30重量%含有されていることを特徴とする原着不織布。   A non-woven fabric made of a split split-type composite fiber composed of two components, a component made of a polyamide polymer and a component made of a polyester polymer, and the average primary particle diameter is 10 to 10 only in one of the components. An original non-woven fabric containing 50 to 30% by weight of carbon black of 50 nm based on the weight of the component. 剥離分割型複合繊維の表面に、どちらか一方の成分が露出している請求項1記載の原着不織布。   The original nonwoven fabric according to claim 1, wherein either one of the components is exposed on the surface of the peelable split composite fiber. 剥離分割型長繊維を、単糸0.01〜0.6dtexの極細繊維に分割した請求項1または2記載の原着不織布。   The raw nonwoven fabric according to claim 1 or 2, wherein the separation-dividing long fibers are divided into ultrafine fibers having a single yarn of 0.01 to 0.6 dtex.
JP2007021592A 2007-01-31 2007-01-31 Dope-dyed nonwoven fabric Pending JP2008184725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007021592A JP2008184725A (en) 2007-01-31 2007-01-31 Dope-dyed nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007021592A JP2008184725A (en) 2007-01-31 2007-01-31 Dope-dyed nonwoven fabric

Publications (1)

Publication Number Publication Date
JP2008184725A true JP2008184725A (en) 2008-08-14

Family

ID=39727960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007021592A Pending JP2008184725A (en) 2007-01-31 2007-01-31 Dope-dyed nonwoven fabric

Country Status (1)

Country Link
JP (1) JP2008184725A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101451277B (en) * 2008-10-23 2011-03-23 宁波三邦超细纤维有限公司 Manufacturing technology of colored and nano silver ion antibiotic polyester-nylon composite superfine fibre

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241415A (en) * 1988-07-25 1990-02-09 Mitsubishi Rayon Co Ltd Spun-dyed fiber
JPH04352815A (en) * 1991-05-23 1992-12-07 Kuraray Co Ltd Colored polyamide-based multicomponent fiber
JPH10168663A (en) * 1996-12-13 1998-06-23 Kuraray Co Ltd Divided type conjugate fiber comprising polyester and polyamide and its production
JP2002146624A (en) * 2000-11-06 2002-05-22 Teijin Ltd Spun-dyed ultrafine fiber and method for producing the same
JP2002275748A (en) * 2001-03-19 2002-09-25 Teijin Ltd Method for producing nonwoven fabric of ultrafine fiber
JP2004011061A (en) * 2002-06-07 2004-01-15 Teijin Ltd Method for producing ultrafine fiber nonwoven fabric

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0241415A (en) * 1988-07-25 1990-02-09 Mitsubishi Rayon Co Ltd Spun-dyed fiber
JPH04352815A (en) * 1991-05-23 1992-12-07 Kuraray Co Ltd Colored polyamide-based multicomponent fiber
JPH10168663A (en) * 1996-12-13 1998-06-23 Kuraray Co Ltd Divided type conjugate fiber comprising polyester and polyamide and its production
JP2002146624A (en) * 2000-11-06 2002-05-22 Teijin Ltd Spun-dyed ultrafine fiber and method for producing the same
JP2002275748A (en) * 2001-03-19 2002-09-25 Teijin Ltd Method for producing nonwoven fabric of ultrafine fiber
JP2004011061A (en) * 2002-06-07 2004-01-15 Teijin Ltd Method for producing ultrafine fiber nonwoven fabric

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101451277B (en) * 2008-10-23 2011-03-23 宁波三邦超细纤维有限公司 Manufacturing technology of colored and nano silver ion antibiotic polyester-nylon composite superfine fibre

Similar Documents

Publication Publication Date Title
JP5082192B2 (en) Method for producing nanofiber synthetic paper
JP2703971B2 (en) Ultrafine composite fiber and its woven or nonwoven fabric
RU2436878C2 (en) Fissionable conjugated fibre, its aggregate and fibrous form made of fissionable conjugated fibre
DE10080786B3 (en) Cleavable multicomponent fiber and fibrous article comprising it
JP3827962B2 (en) Method for producing ultrafine fiber nonwoven fabric
JP3741886B2 (en) Ultrafine fiber generation possible fiber, ultrafine fiber generated from this, and fiber sheet using this ultrafine fiber
JP3852644B2 (en) Split type composite fiber, nonwoven fabric and absorbent article using the same
JP2002061060A (en) Nonwoven fabric and finished article of nonwoven fabric
JP2008184725A (en) Dope-dyed nonwoven fabric
JP3725716B2 (en) Ultrafine fiber generation possible fiber, ultrafine fiber generated from this, and fiber sheet using this ultrafine fiber
JPH10331063A (en) Composite nonwoven fabric and its production
JP4298186B2 (en) Method for producing ultra-thin fiber nonwoven fabric
JP4316783B2 (en) Manufacturing method of long fiber nonwoven fabric
JP4728160B2 (en) Split composite fiber, fiber assembly and non-woven fabric
JP4476724B2 (en) Method for producing drawn extracted fiber, drawn extracted fiber, and nonwoven fabric
JP4453179B2 (en) Split fiber and fiber molded body using the same
JP2004256983A (en) Artificial leather comprising nano fiber
JP3920157B2 (en) Method for producing ultrafine fiber nonwoven fabric
JPH04194013A (en) Fiber capable of producing ultrafine fiber
JP2007284834A (en) Sheet-shaped material and method for producing the same
JP2005171430A (en) Method for producing filament nonwoven fabric
JP4026280B2 (en) Polyolefin-based split composite fiber, production method thereof, and fiber molded body using the fiber
JP2010133044A (en) Hollow splittable conjugate fiber and method for producing ultrafine fiber nonwoven fabric using the same
JP4026279B2 (en) Split type composite fiber and fiber molded body using the same
JP2005002522A (en) Multi-island conjugate fiber and spinneret for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110708

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120717