JP4316783B2 - Manufacturing method of long fiber nonwoven fabric - Google Patents

Manufacturing method of long fiber nonwoven fabric Download PDF

Info

Publication number
JP4316783B2
JP4316783B2 JP2000307069A JP2000307069A JP4316783B2 JP 4316783 B2 JP4316783 B2 JP 4316783B2 JP 2000307069 A JP2000307069 A JP 2000307069A JP 2000307069 A JP2000307069 A JP 2000307069A JP 4316783 B2 JP4316783 B2 JP 4316783B2
Authority
JP
Japan
Prior art keywords
fiber
nonwoven fabric
polymer
long
split
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000307069A
Other languages
Japanese (ja)
Other versions
JP2002115163A (en
Inventor
一博 森島
耕一 庵原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Cordley Ltd
Original Assignee
Teijin Cordley Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Cordley Ltd filed Critical Teijin Cordley Ltd
Priority to JP2000307069A priority Critical patent/JP4316783B2/en
Publication of JP2002115163A publication Critical patent/JP2002115163A/en
Application granted granted Critical
Publication of JP4316783B2 publication Critical patent/JP4316783B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、品位の良好な長繊維不織布の製造方法に関するものである。
【0002】
【従来の技術】
従来、長繊維からなる不織布は、短繊維からなる不織布に比べて強力が高く、その製造方法も原綿供給部、開繊装置、カード機、クロスレイ機などの一連の大型設備を必要としないという利点がある為、土木用や農業用をはじめとして生活関連資材、衣料用など多岐にわたって使用されている。近年では構成する繊維をより細くし、柔らかさ、繊維表面積をより向上させ、品質やそれに基づく性能を向上させたものが種々提案されている。
【0003】
また、かかる長繊維不織布においては、さらに柔らかい風合を得るため不織布を構成する繊維の繊度を低くすることが検討されてきている。例えばその方法とは、あらかじめ極細繊維を発生可能な複合繊維を用いて不織布を形成し、その後分割割繊や抽出などの工程を経て極細繊維不織布とする方法などが提案されている(特開平3−213555号公報、特開昭49−14774号公報、特開平10−53948号公報、特許第2916590号公報など)。
【0004】
さらに、以上のような長繊維不織布、特に上記のような極細繊維からなる不織布においては、より優れた品位、風合いとするため、緻密化して繊維間空隙を狭くする方法がとられており、このため交絡処理などして得られた不織布を熱収縮させる方法が一般に多く用いられてきた。しかし、上記長繊維不織布を構成する繊維の収縮率を上げるためには紡速を下げて繊維を低配向化させることにより達成されるが、紡速を下げると生産性が低下するという問題が生じる。さらに、紡糸直結型のスパンボンド法において、紡速は繊維を細化するイジェクターやエアサッカー内の牽引流体の流速で決定され、低紡速化は牽引流体の流速を下げることにつながり、牽引流体と共に補集ネット上に堆積される繊維群の開繊性が大幅に低下し、品位が低下する、つまり目付斑が発生するという問題がある。
【0005】
【発明が解決しようとする課題】
本発明は、上記従来技術が有する問題点を解消し、生産性に優れ、均一で、かつ、十分な熱収縮性を有するため緻密な構造の不織布が得られる新規な製造方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らの研究によれば、上記目的は、種類以上の繊維形成性重合体を口金から紡出するに際し、該2種類以上のそれぞれの繊維形成性重合体成分が、他の成分を複数個に分割した繊維横断面形状を有する剥離分割型複合繊維を紡出するものであり、少なくとも1つの該繊維形成性重合体に該繊維形成性重合体と実質的に非相溶でかつ分子量が2000以上の不飽和モノマーからなる付加重合体を該繊維形成性重合体に対して0.2〜10重量%含有させ、次いで該紡出糸条を牽引流体により見かけの紡速を2500m/分以上として牽引した後開繊し、捕集面に堆積させ、不織布を構成する繊維の沸水収縮率が5%以上であることを特徴とする長繊維不織布の製造方法により達成できることを見出した。
【0007】
【発明の実施の形態】
本発明が対象とする不織布の製造方法は、1種類以上の繊維形成性重合体を口金から紡出し、紡出糸条を牽引流体により牽引した後開繊し、捕集面に堆積させる方法である。
【0008】
ここでいう繊維形成性重合体としては、例えば、ナイロン−6、ナイロン−66、ナイロン−12、ナイロン−610、ナイロン−46等のポリアミド重合体、ポリエチレンテレフタレート、ポリテトラメチレンレンテレフタレート、ポリトリメチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート、ポリエチレン−2,6−ナフタレンジカルボキシレート等のポリエステル重合体、ポリエチレン、ポリプロピレン等のポリオレフィン重合体等を挙げることができる。
【0009】
上記重合体には、本発明の目的を奏する範囲内であればカーボンブラック、酸化チタン、酸化アルミニウム、酸化ケイ素、炭酸カルシウム、マイカ、金属微細粉、有機顔料、無機顔料などを添加しても良く、これらの添加剤には熱可塑性重合体への着色効果と共に該重合体の溶融粘度を高くまたは低くする効果もあり、繊維横断面を調節する際に有効である。
【0010】
本発明においては、上記繊維成形性重合体1種類のみを口金から紡出しても良いし、2種類以上の繊維成形性重合体を混合、あるいは複合化して口金から紡出しても良い。特に、熱収縮してより緻密な品位の高い長繊維不織布とすることができる、分割により極細繊維を発現する複合繊維であることが好ましい。このため、上記で製造方法において、二種類以上の繊維形成性重合体成分を、それぞれ成分が他の成分を複数個に分割する繊維横断面形状を有する剥離分割型複合繊維に溶融複合紡出させることがより好ましい。ここでいう極細繊維とは、単糸が0.0001〜1デシテックスの細繊度繊維をいう。
【0011】
紡出糸条が剥離分割型複合繊維の場合、該複合繊維は、一成分がポリアミド重合体であり、他の一成分がポリエステル重合体である、二成分からなる剥離分割型複合繊維であることがより望ましい。その際、剥離分割型複合繊維の分割数は、工程性や、製編織またはニードルパンチ後の剥離分割性を考慮し、8〜24分割が特に好ましい。また、剥離分割型複合繊維の1成分の全体に対する配合の割合は、繊維の分割性および紡糸性の面から30〜70%が好ましく、特に40〜60%が好ましい。この範囲を超えると樹脂の粘度バランスの調整が困難なためセクション不良となり、分割率が低下する恐れが生じるからである。
【0012】
上記のように2種類以上の重合体を複合化する場合は、繊維断面の形成を容易にするため、上記二成分の吐出時の溶融粘度をほぼ同等とすることが好ましい。この際、溶融粘度調整剤などを配合することで調整しても良い。
【0013】
本発明においては、繊維形成性重合体に、剥離分割型複合繊維のように2種類以上の繊維形成性重合体成分からなる場合はこれを構成する該成分の少なくとも一成分に、該成分と実質的に非相溶の不飽和モノマーからなる付加重合体が含有され、その際該付加重合体の分子量、含有量が以下要件を満足していることが、優れた生産性と開繊性が得られる見かけの紡速2500m/分以上でも、高い収縮率を維持できる上で肝要である。つまり、かかる要件を同時に満足させることにより、目付斑がなく、かつ十分な収縮率を有する、品位の高い長繊維不織布を製造することができるのである。
【0014】
上記の不飽和モノマーからなる付加重合体としては、例えばポリメチルメタクリレート、ポリアクリレート、ポリ(4−メチル−1−ペンテン)、ポリスチレン、ポリオクダデイセン−1、ポリビニルベンジル、アクリロニトリル・スチレン共重合体、アクリロニトリル・ブタジエン・スチレン共重合体、ポリテトラフルオロエチレン、高密度ポリエチレン、低密度ポリエチレン、ポリプロピレンなど、あるいはこれらの誘導体を挙げることができる。特にポリメチルメタクリレートやポリスチレン、ポリ(4−メチル−1−ペンテン)が好ましい。さらに、ポリメチルメタクリレートはメルトフローレート(MFR)が0.1〜6.0g/10分(ASTM−D1238に準拠、230℃、3.8kg荷重)、アイソタクチック型ポリスチレンはMFRが1〜20g/10分(ASTM−D1238に準拠、230℃、3.8kg荷重)、シンジオタクチック型ポリスチレンはMFRが1〜30g/10分(ASTM−D1238に準拠、300℃、2.16kg荷重)、ポリ(4−メチル−1−ペンテン)は、MFRが5〜40g/10分(ASTM−D1238に準拠、260℃、5kg荷重)であることが一層好ましい。
【0015】
また、上記不飽和モノマーからなる付加重合体は、その分子量が2000以上であることが必要である。分子量が2000よりも小さいと、被添加繊維形成性重合体に対して応力担持体としての効果が発現しない。一方、分子量が20万を超えると、被添加繊維形成性重合体中の分散が困難となり、曳糸性が低下する他、繊維としての物性も低下する傾向にあり、分子量は20万以下が好ましい。より好ましい分子量の範囲は5000以上15万以下である。
【0016】
さらに、上記不飽和モノマーからなる付加重合体の添加量は、被添加繊維形成性重合体に対して0.2〜10重量%、好ましくは0.5〜5重量%ある。添加量が0.2重量%未満では見かけの紡速を2500m/分以上とした場合、十分な収縮率を達成できない。一方、10重量%超えると曳糸性が悪化し、繊維としての物性も低下する。
【0017】
本発明の不飽和モノマーからなる付加重合体は、剥離分割型複合繊維の場合、これを構成する繊維形成性重合体の内、少なくとも1成分以上に添加されている必要がある。例えば2成分からなる剥離分割型繊維の場合、片方のみへの添加でも、見かけの紡速2500m/分以上で高い収縮率を実現できる。
【0018】
添加にあたっては、任意の方法を採用することができ、例えば繊維形成重合体の重合過程で行っても良く、また、繊維形成性重合体と溶融混合してそのまま紡糸する、あるいは溶融混合してチップ化して溶融紡糸する、チップ状態で混合して溶融紡糸するなどいずれの方法を用いても良い。いずれの方法を用いるにしても溶融中に混合を十分に行い、繊維形成性重合体中で不飽和モノマーからなる付加重合体が細かく均一に分散する様配慮することが好ましい。混練を十分に行うことにより上記工程での高収縮化の効果がより顕著なものとなる。
【0019】
紡出糸条の繊維横断面形状は、円形、楕円形、矩形、多葉断面形状、中空断面形状など公知の横断面形状をいずれも採用することができる。
【0020】
また、複合繊維の形状としては、用途によって、長繊維状、短繊維状のいずれを選択しても良く、捲縮や他の形態が付与されていても良い。
【0021】
紡出糸条を牽引した後開繊する方法としては、コロナ放電による帯電や接触帯電などの従来公知の方法で繊維を帯電させるのが好ましい。
【0022】
捕集面に堆積されたウェブは、他の短繊維を混綿、または長繊維を積層、混合することも可能である。混綿またはされる場合の素材としては、特に限定はされないが、例えば、レーヨン等の再生繊維、アセテート等の半合成繊維、ウール等の天然繊維、ナイロン−6、ナイロン−66等のポリアミド繊維、ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル系繊維、ポリエチレン、ポリプロピレン等のポリオレフィン系繊維等から任意に1あるいは2種以上選択して使用することができる。もちろん繊維形状等も限定されず、上記の熱可塑性樹脂を組み合わせた芯鞘型複合繊維、剥離分割型複合繊維、異形断面を有する繊維等を任意に用いることができる。
【0023】
上記のようにして得られたウェブは、交絡または接着により繊維同士が固定されるが、三次元的に機械交絡が施されることが収縮性のうえで好ましい。この場合は、必要に応じて弱熱圧着され、一旦巻き取った後、またはそのまま連続で三次元的に機械的交絡処理が施される。ウェブの交絡処理はニードルパンチ等のようにバーブ付の針でパンチングする方法、あるいは高圧水流によって繊維を交絡させる従来の方法によってなされる。
【0024】
紡出糸条が剥離分割型複合繊維の場合、上記ウェブの交絡後、あるいは交絡前に分割割繊処理が施される。分割割繊の程度は用途により選択されるものであるが、分割処理方法としては主として機械的方法による処理がコスト的、工程的に好ましく用いられる。高圧流体処理による方法は交絡と割繊処理が同時に行える点で好ましい。また、機械的な分割処理としては、ローラー間で加圧する方法、超音波処理を行う方法、衝撃を与える方法など公知の方法を用いることができる。さらに、化学的な分割処理としては、該剥離分割型複合繊維を構成する少なくとも1成分を膨潤させるような薬液、または少なくとも1成分を溶解するような薬液により浸漬処理するなど従来公知の方法を用いることができる。これらの分割処理は単独で行っても、組み合わせても良い。
【0025】
本発明においては、不織布を構成する繊維の収縮率としては5%以上が好ましく、より好ましくは10%以上である。特に、上記繊維が単独の繊維形成性重合体からなる繊維と比較して、剥離分割型複合繊維の場合は十分な収縮率が得られない傾向にあるが、本発明によれば上記のような高い収縮率を達成できる。さらに、本発明においては得られる不織布を構成する繊維の下記式で表される収縮率増加率X(%)が10%以上であることが好ましく、これにより十分な収縮が得られ、より品位の高い不織布とすることができる。
X(%)=(Sa(%)/So(%)−1)×100
(但し、Saは上記付加重合体を含む繊維の沸水中の収縮率(%)、Soは実質的に上記付加重合体を含まない繊維の沸水中の収縮率(%)を示す。)
【0026】
【実施例】
以下に実施例を挙げて本発明をさらに具体的に説明するが、本発明はこれら実施例により限定されるものではない。
【0027】
(1)複合繊維の破断強度および破断伸度
ウェブから単繊維を10本ランダムに抜き取り、気温25℃、湿度60%の恒温恒湿に保たれた部屋に1昼夜保存した後、島津製作所製引張試験機テンシロンにサンプル長さ100mm(つかみ間隔100mm)で把持し、引張速度200mm/分で伸長し、切断時の荷重値をサンプルの繊度で除した値を引張破断強度、伸長率を破断伸度とする。
【0028】
(2)収縮率
ウェブから単繊維を10本ランダムに抜き取り、気温25℃、湿度60%の恒温恒湿に保たれた部屋に1昼夜保存した後、長さ約60cmの輪状として荷重0.044cN/dtexで長さ(Lo)を測定し、荷重をはずして沸水中に30分間浸漬し、その後再度荷重をかけて長さ(L)を測定後、次式により収縮率S(%)を求めた。
S(%)=(L−Lo)/Lo×100
【0029】
(3)メルトフローレート(MFR)
ASTM−D1238に準拠して求めた。
【0030】
(4)不織布目付の均一性(cv%)
不織布を幅2cm、長さ20cmの小片に、幅が不織布の幅方向となるように切り取って重量を測定し、その標準偏差を重量の平均値で除したものを%で表す。
【0031】
(5)不織布の収縮性
孔径0.2mmのオリフィスが0.8mmの間隔で設けられたノズルから水圧7MPaの柱状水流を不織布の表裏面にそれぞれ2回ずつ噴射したものを、85℃の温水バスに緊張状態とならない様に浸漬し、触感と目視による評価を行った。
【0032】
(6)見かけの紡速
口金からの繊維形成性重合体の吐出量と、捕集面に堆積されたウェブ中の繊維の繊度とから換算した。
【0033】
参考例1]
ポリエチレンテレフタレート(PET;o−クロロフェノール中の極限粘度0.64)を、エクストルーダーにて溶融させた。その際、エクストルーダー中でこのポリエチレンテレフタレートに対してサイドストリームから溶融状態でMFR=2.5、分子量60000のポリメチルメタクリレート(PMMA)をPET中の含有量が2重量%となるよう導入し、合流させ混合分散させた。その後、ポリエチレンテレフタレートを、単孔当たりの吐出量を2g/分にて中空口金より吐出し、エジェクター圧力を0.25MPaとして高速牽引した後、−30kVで高電圧印加処理後、空気流とともに分散板に衝突させ、フィラメントを開繊し、補集ネットコンベアーに堆積させ、幅1mのウェブを得た。さらに得られたウェブを連続で上下130℃のエンボスカレンダーにて軽く熱圧着を行った。得られた不織布は目付が50g/mで均一性に優れたものであった。得られたウェブ中の繊維、および不織布の物性を表1に示す。
【0034】
[実施例
ナイロン−6(Ny6;m−クレゾール中の極限粘度1.1)、ポリエチレンテレフタレート(PET;o−クロロフェノール中の極限粘度0.64)とを、エクストルーダーにて溶融させた。その際、エクストルーダー中でナイロン−6に対してサイドストリームから溶融状態でMFR=2.5、分子量60000のポリメチルメタクリレート(PMMA)を2重量%の添加率となるよう導入し、合流させ混合分散させた。その後、該ポリアミドと該ポリエステルとを口金内で合流させ、単孔当たりの吐出量を2g/分にて中空口金より吐出し、エジェクター圧力を0.25MPaとして高速牽引した後、−30kVで高電圧印加処理後、空気流とともに分散板に衝突させ、フィラメントを開繊し、図1に示すような16分割の多層貼合せ型断面をもつ剥離分割型複合繊維からなるウェブとして補集ネットコンベアーで幅1mで補集した。さらに得られたウェブを連続で上下100℃のエンボスカレンダーにて軽く熱圧着を行った。両成分の重量率は48/52であり、両成分は互いに相手成分によって16分割されており、不織布を分割、収縮処理した後の不織布の目付は50g/mであった。得られたウェブ中の繊維、および不織布の物性を表1に示す。
【0035】
[実施例2〜6、比較例1〜5]
実施例で、添加剤の種類、添加量、不飽和モノマーからなる付加重合体を添加する繊維形成性重合体、換算紡速を表1のように変更した以外は実施例と同様にして、ウェブを得、さらに不織布とした。得られたウェブ中の繊維、および不織布の物性を表1に示す。表1でPstはアイソタクチック型ポリスチレンを示す。
【0036】
【表1】

Figure 0004316783
【0037】
【発明の効果】
本発明の長繊維不織布の製造方法によれば、2500m/分以上の紡速でも十分な収縮性を達成できるため、生産性を落とすことなく、均一で緻密な品位の良い外観、構造を有する不織布を得ることができる。また、本発明によれば、上記長繊維不織布を構成する繊維を剥離分割型複合繊維とした場合、従来よりも収縮率の高い複合繊維を得ることができ、さらにかかる複合繊維は分割して極細繊維化できることから、一層緻密な不織布が得られ、該不織布は格段に優れた品位や風合を達成できる。かくして、本発明により得られる長繊維不織布は人工皮革基布、ワイパー、フィルター、医療衛生材料などに好適に使用することができるものである。
【図面の簡単な説明】
【図1】図1は、本発明の剥離分離型複合繊維の断面拡大図の一例を示す。
【符号の説明】
1 ナイロン−6
2 ポリエチレンテレフタレート[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a long-fiber nonwoven fabric of good quality.
[0002]
[Prior art]
Conventional non-woven fabrics made of long fibers are more powerful than non-woven fabrics made of short fibers, and the manufacturing method does not require a series of large-scale equipment such as raw cotton supply units, fiber opening devices, card machines, and cross-lay machines. Therefore, it is used in a wide variety of fields such as civil engineering and agriculture, as well as daily life-related materials and clothing. In recent years, various proposals have been made in which the constituent fibers are made thinner, the softness and the fiber surface area are further improved, and the quality and performance based thereon are improved.
[0003]
Moreover, in order to obtain a softer texture in such a long-fiber nonwoven fabric, it has been studied to reduce the fineness of the fibers constituting the nonwoven fabric. For example, as such a method, a method is proposed in which a nonwoven fabric is formed in advance using a composite fiber capable of generating ultrafine fibers, and then is made into an ultrafine fiber nonwoven fabric through processes such as split splitting and extraction (Japanese Patent Laid-Open No. 3). No. 213555, JP 49-14774, JP 10-53948, JP 2916590, etc.).
[0004]
Furthermore, in the above-described long fiber nonwoven fabric, particularly a nonwoven fabric composed of ultrafine fibers as described above, in order to obtain superior quality and texture, a method of densifying and narrowing the inter-fiber gap is employed. Therefore, a method of thermally shrinking a nonwoven fabric obtained by entanglement treatment has been generally used. However, in order to increase the shrinkage ratio of the fibers constituting the long-fiber nonwoven fabric, it is achieved by lowering the spinning speed to lower the orientation of the fibers. However, lowering the spinning speed causes a problem that productivity is lowered. . Furthermore, in the spunbond method of direct spinning type, the spinning speed is determined by the flow velocity of the traction fluid in the ejector or air soccer that thins the fiber, and the lower spinning speed leads to lowering the traction fluid flow velocity. At the same time, there is a problem in that the spreadability of the fiber group deposited on the collection net is significantly lowered, and the quality is lowered, that is, spotted spots are generated.
[0005]
[Problems to be solved by the invention]
The present invention provides a novel manufacturing method that eliminates the above-mentioned problems of the prior art, provides a highly-structured nonwoven fabric that is excellent in productivity, uniform, and has sufficient heat shrinkability. Objective.
[0006]
[Means for Solving the Problems]
According to the researches of the present inventors, the above-mentioned purpose is that when two or more types of fiber-forming polymers are spun from the die , each of the two or more types of fiber-forming polymer components contains other components. A separation split type composite fiber having a fiber cross-sectional shape divided into a plurality of parts is spun, and at least one of the fiber-forming polymer is substantially incompatible with the fiber-forming polymer and has a molecular weight. Is added to the fiber-forming polymer in an amount of 0.2 to 10% by weight based on the fiber-forming polymer, and then the spun yarn is spun at an apparent spinning speed of 2500 m / min. by spreading after traction as above, is deposited on the collecting surface was found that can be achieved by the method for producing a long-fiber nonwoven fabric boiling water shrinkage percentage of the fibers constituting the nonwoven fabric, characterized in at least 5% der Rukoto.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The method for producing a nonwoven fabric targeted by the present invention is a method in which one or more types of fiber-forming polymers are spun from a die, the spun yarn is pulled by a traction fluid, then opened, and deposited on a collecting surface. is there.
[0008]
Examples of the fiber-forming polymer herein include polyamide polymers such as nylon-6, nylon-66, nylon-12, nylon-610, and nylon-46, polyethylene terephthalate, polytetramethylene terephthalate, and polytrimethylene. Examples thereof include polyester polymers such as terephthalate, polycyclohexanedimethylene terephthalate and polyethylene-2,6-naphthalenedicarboxylate, and polyolefin polymers such as polyethylene and polypropylene.
[0009]
Carbon black, titanium oxide, aluminum oxide, silicon oxide, calcium carbonate, mica, fine metal powder, organic pigment, inorganic pigment and the like may be added to the above polymer as long as the object of the present invention is achieved. These additives have the effect of increasing or decreasing the melt viscosity of the polymer as well as the effect of coloring the thermoplastic polymer, and are effective in adjusting the fiber cross section.
[0010]
In the present invention, only one type of the above fiber moldable polymer may be spun from the die, or two or more types of fiber moldable polymers may be mixed or combined and spun from the die. In particular, it is preferably a composite fiber that can be made into a long-fiber non-woven fabric that is heat-shrinkable and more dense, and that expresses ultrafine fibers by splitting. For this reason, in the manufacturing method described above, two or more types of fiber-forming polymer components are melt-combined and spun into release split-type composite fibers each having a fiber cross-sectional shape in which the other components are divided into a plurality of other components. It is more preferable. The ultrafine fiber here means a fineness fiber having a single yarn of 0.0001 to 1 dtex.
[0011]
When the spun yarn is a peelable split composite fiber, the composite fiber is a split split composite fiber composed of two components, one component being a polyamide polymer and the other component being a polyester polymer. Is more desirable. At that time, the number of divisions of the peelable split composite fiber is particularly preferably 8 to 24 splits in consideration of processability and peelability after weaving or needle punching. In addition, the blending ratio of one component of the peelable split composite fiber is preferably 30 to 70%, particularly preferably 40 to 60%, from the standpoint of fiber splitting and spinnability. If this range is exceeded, it is difficult to adjust the viscosity balance of the resin, resulting in a section failure, which may reduce the division rate.
[0012]
When two or more types of polymers are combined as described above, it is preferable to make the melt viscosities at the time of discharging the two components substantially equal to facilitate the formation of the fiber cross section. At this time, it may be adjusted by blending a melt viscosity modifier or the like.
[0013]
In the present invention, when the fiber-forming polymer is composed of two or more kinds of fiber-forming polymer components such as a peelable split composite fiber, at least one of the components constituting the fiber-forming polymer is substantially the same as the component. In that case, an addition polymer composed of an incompatible unsaturated monomer is contained, and the molecular weight and content of the addition polymer satisfy the following requirements. Even if the apparent spinning speed is 2500 m / min or more, it is important to maintain a high shrinkage rate. That is, by satisfying these requirements at the same time, it is possible to produce a high-quality long-fiber non-woven fabric that is free from spot spots and has a sufficient shrinkage rate.
[0014]
Examples of the addition polymer comprising the above unsaturated monomer include polymethyl methacrylate, polyacrylate, poly (4-methyl-1-pentene), polystyrene, polyoctadecene-1, polyvinylbenzyl, acrylonitrile / styrene copolymer. Acrylonitrile / butadiene / styrene copolymer, polytetrafluoroethylene, high density polyethylene, low density polyethylene, polypropylene, etc., or derivatives thereof. Polymethyl methacrylate, polystyrene, and poly (4-methyl-1-pentene) are particularly preferable. Furthermore, polymethyl methacrylate has a melt flow rate (MFR) of 0.1 to 6.0 g / 10 min (according to ASTM-D1238, 230 ° C., 3.8 kg load), and isotactic polystyrene has an MFR of 1 to 20 g. / 10 min (according to ASTM-D1238, 230 ° C., 3.8 kg load), syndiotactic polystyrene has an MFR of 1-30 g / 10 min (according to ASTM-D1238, 300 ° C., 2.16 kg load), poly (4-methyl-1-pentene) more preferably has an MFR of 5 to 40 g / 10 min (according to ASTM-D1238, 260 ° C., 5 kg load).
[0015]
Moreover, the addition polymer consisting of the unsaturated monomer must have a molecular weight of 2000 or more. When the molecular weight is less than 2000, the effect as a stress carrier is not expressed with respect to the fiber-forming polymer to be added. On the other hand, when the molecular weight exceeds 200,000, it becomes difficult to disperse in the added fiber-forming polymer, and the spinnability is lowered and the physical properties as fibers tend to be lowered. The molecular weight is preferably 200,000 or less. . A more preferable molecular weight range is 5000 to 150,000.
[0016]
Furthermore, the addition amount of the addition polymer composed of the unsaturated monomer is 0.2 to 10% by weight, preferably 0.5 to 5% by weight, based on the fiber-forming polymer to be added. When the addition amount is less than 0.2% by weight, when the apparent spinning speed is 2500 m / min or more, sufficient shrinkage cannot be achieved. On the other hand, if it exceeds 10% by weight, the spinnability deteriorates and the physical properties as fibers also deteriorate.
[0017]
In the case of a peelable split type composite fiber, the addition polymer comprising the unsaturated monomer of the present invention needs to be added to at least one component among the fiber-forming polymers constituting the addition polymer. For example, in the case of a split-divided fiber composed of two components, a high shrinkage can be realized at an apparent spinning speed of 2500 m / min or more even when added to only one side.
[0018]
For the addition, any method can be adopted, for example, it may be carried out in the process of polymerizing the fiber-forming polymer, and it is melt-mixed with the fiber-forming polymer and spun as it is, or melt-mixed to form a chip. Any method may be used, such as forming and melt spinning, mixing in a chip state and melt spinning. Regardless of which method is used, it is preferable that sufficient mixing is performed during melting so that the addition polymer composed of the unsaturated monomer is finely and uniformly dispersed in the fiber-forming polymer. By sufficiently kneading, the effect of high shrinkage in the above process becomes more remarkable.
[0019]
As the fiber cross-sectional shape of the spun yarn, any known cross-sectional shape such as a circular shape, an elliptical shape, a rectangular shape, a multi-leaf cross-sectional shape, and a hollow cross-sectional shape can be adopted.
[0020]
Further, as the shape of the composite fiber, either a long fiber shape or a short fiber shape may be selected depending on the application, and crimps or other forms may be given.
[0021]
As a method for opening the fiber after pulling the spun yarn, it is preferable to charge the fiber by a conventionally known method such as charging by corona discharge or contact charging.
[0022]
The web deposited on the collecting surface can be blended with other short fibers or laminated and mixed with long fibers. The material used when blended or used is not particularly limited. For example, recycled fibers such as rayon, semi-synthetic fibers such as acetate, natural fibers such as wool, polyamide fibers such as nylon-6 and nylon-66, polyethylene One or more can be arbitrarily selected from polyester fibers such as terephthalate, polytrimethylene terephthalate and polybutylene terephthalate, and polyolefin fibers such as polyethylene and polypropylene. Of course, the fiber shape and the like are not limited, and a core-sheath type composite fiber, a peel-splitting type composite fiber, a fiber having an irregular cross section, etc., which are combined with the above thermoplastic resin, can be arbitrarily used.
[0023]
In the web obtained as described above, the fibers are fixed to each other by entanglement or adhesion, but it is preferable in terms of shrinkage that mechanical entanglement is performed three-dimensionally. In this case, it is weakly heat-bonded as necessary, and once wound up or continuously, three-dimensional mechanical entanglement is performed. The web entanglement treatment is performed by a method of punching with a needle with a barb such as a needle punch or a conventional method of entanglement of fibers by a high-pressure water flow.
[0024]
When the spun yarn is a peeled split type composite fiber, the split splitting process is performed after the web is entangled or before the web is entangled. The degree of split splitting is selected depending on the application, but as a split processing method, mainly a mechanical method is preferably used in terms of cost and process. The method using high-pressure fluid treatment is preferable in that entanglement and split fiber treatment can be performed simultaneously. In addition, as the mechanical division treatment, a known method such as a method of applying pressure between rollers, a method of performing ultrasonic treatment, a method of applying an impact, or the like can be used. Furthermore, as the chemical splitting treatment, a conventionally known method such as a dip treatment with a chemical solution that swells at least one component constituting the peelable split-type conjugate fiber or a chemical solution that dissolves at least one component is used. be able to. These division processes may be performed alone or in combination.
[0025]
In the present invention, the shrinkage rate of the fibers constituting the nonwoven fabric is preferably 5% or more, more preferably 10% or more. In particular, compared to a fiber made of a single fiber-forming polymer, there is a tendency that a sufficient shrinkage rate cannot be obtained in the case of a peelable split type composite fiber. High shrinkage can be achieved. Furthermore, in the present invention, it is preferable that the shrinkage rate increase rate X (%) represented by the following formula of the fiber constituting the nonwoven fabric obtained is 10% or more, whereby sufficient shrinkage can be obtained, and the quality is further improved. A high nonwoven fabric can be obtained.
X (%) = (Sa (%) / So (%) − 1) × 100
(However, Sa represents the shrinkage rate (%) in boiling water of the fiber containing the addition polymer, and So represents the shrinkage rate (%) in boiling water of the fiber substantially not containing the addition polymer.)
[0026]
【Example】
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples.
[0027]
(1) Tensile single fibers were randomly extracted from the breaking strength and breaking elongation web of the composite fiber and stored for one day in a room maintained at a constant temperature and humidity of 25 ° C and 60% humidity. The sample is held at a tester Tensilon with a sample length of 100 mm (grab interval 100 mm), stretched at a tensile speed of 200 mm / min, and the value obtained by dividing the load value at the time of cutting by the fineness of the sample is the tensile breaking strength and the elongation is the breaking elongation. And
[0028]
(2) Ten monofilaments were randomly extracted from the shrinkage web and stored for one day in a room kept at a constant temperature and humidity of 25 ° C. and 60% humidity, and then loaded into a ring shape of about 60 cm in length with a load of 0.044 cN. Measure the length (Lo) with / dtex, remove the load and immerse in boiling water for 30 minutes, then apply the load again and measure the length (L), then calculate the shrinkage S (%) by the following formula It was.
S (%) = (L−Lo) / Lo × 100
[0029]
(3) Melt flow rate (MFR)
It calculated | required based on ASTM-D1238.
[0030]
(4) Uniformity of nonwoven fabric basis weight (cv%)
The nonwoven fabric is cut into small pieces having a width of 2 cm and a length of 20 cm so that the width is in the width direction of the nonwoven fabric, the weight is measured, and the standard deviation is divided by the average value of the weight and expressed in%.
[0031]
(5) A non-woven fabric having a shrinkable pore diameter of 0.2 mm, a water column having a water pressure of 7 MPa, which is jetted twice on the front and back surfaces of the non-woven fabric from a nozzle provided at an interval of 0.8 mm. The sample was dipped so as not to be in a tension state and evaluated by tactile sensation and visual observation.
[0032]
(6) Conversion was made from the discharge amount of the fiber-forming polymer from the apparent spinneret and the fineness of the fibers in the web deposited on the collecting surface.
[0033]
[ Reference Example 1]
Polyethylene terephthalate (PET; intrinsic viscosity 0.64 in o-chlorophenol) was melted with an extruder. At that time, in the extruder, polymethyl methacrylate (PMMA) having a MFR = 2.5 and a molecular weight of 60000 in a molten state from a side stream was introduced into the polyethylene terephthalate so that the content in PET was 2% by weight. The mixture was mixed and dispersed. After that, polyethylene terephthalate is discharged from the hollow die at a discharge rate per hole of 2 g / min, pulled at a high speed with an ejector pressure of 0.25 MPa, treated with a high voltage at −30 kV, and dispersed with air flow. The filament was opened and deposited on a collecting net conveyor to obtain a web having a width of 1 m. Furthermore, the obtained web was lightly thermocompression bonded continuously with an embossing calendar at 130 ° C up and down. The obtained nonwoven fabric had a basis weight of 50 g / m 2 and excellent uniformity. Table 1 shows the physical properties of the fibers in the web and the nonwoven fabric.
[0034]
[Example 1 ]
Nylon-6 (Ny6; intrinsic viscosity 1.1 in m-cresol) and polyethylene terephthalate (PET; intrinsic viscosity 0.64 in o-chlorophenol) were melted with an extruder. At that time, polymethylmethacrylate (PMMA) with MFR = 2.5 and molecular weight 60,000 in a molten state from a side stream was introduced into nylon-6 in an extruder so as to have an addition rate of 2% by weight, merged and mixed. Dispersed. Thereafter, the polyamide and the polyester are merged in the die, discharged from the hollow die at a discharge rate per single hole of 2 g / min, pulled at a high speed with an ejector pressure of 0.25 MPa, and then at a high voltage of −30 kV. After the application treatment, it is made to collide with the dispersion plate together with the air flow, the filament is opened, and the width is obtained by a collecting net conveyor as a web composed of a split split type composite fiber having a 16 split multi-layer laminated cross section as shown in FIG. Collected at 1 m. Furthermore, the obtained web was lightly thermocompression bonded continuously with an embossing calendar of 100 ° C above and below. The weight ratio of both components was 48/52, and both components were divided into 16 parts by the other component, and the basis weight of the nonwoven fabric after dividing and shrinking the nonwoven fabric was 50 g / m 2 . Table 1 shows the physical properties of the fibers in the web and the nonwoven fabric.
[0035]
[Examples 2-6 , Comparative Examples 1-5]
In Example 1, the type of additives, amount, fiber-forming polymer to be added the addition polymer consisting of unsaturated monomers, except that the terms spinning speed was changed as shown in Table 1 in the same manner as in Example 1 A web was obtained and further made into a nonwoven fabric. Table 1 shows the physical properties of the fibers in the web and the nonwoven fabric. In Table 1, Pst represents isotactic polystyrene.
[0036]
[Table 1]
Figure 0004316783
[0037]
【The invention's effect】
According to the method for producing a long-fiber non-woven fabric of the present invention, sufficient shrinkage can be achieved even at a spinning speed of 2500 m / min or more, so that the non-woven fabric has a uniform, dense, good-quality appearance and structure without reducing productivity. Can be obtained. Further, according to the present invention, when the fiber constituting the long-fiber nonwoven fabric is a separation-dividing type composite fiber, a composite fiber having a higher shrinkage than the conventional one can be obtained. Since it can be made into a fiber, a denser nonwoven fabric can be obtained, and the nonwoven fabric can achieve remarkably superior quality and texture. Thus, the long fiber nonwoven fabric obtained by the present invention can be suitably used for artificial leather base fabrics, wipers, filters, medical hygiene materials and the like.
[Brief description of the drawings]
FIG. 1 shows an example of an enlarged cross-sectional view of a peelable-separated conjugate fiber of the present invention.
[Explanation of symbols]
1 Nylon-6
2 Polyethylene terephthalate

Claims (4)

種類以上の繊維形成性重合体を口金から紡出するに際し、該2種類以上のそれぞれの繊維形成性重合体成分が、他の成分を複数個に分割した繊維横断面形状を有する剥離分割型複合繊維を紡出するものであり、少なくとも1つの該繊維形成性重合体に該繊維形成性重合体と実質的に非相溶でかつ分子量が2000以上の不飽和モノマーからなる付加重合体を該繊維形成性重合体に対して0.2〜10重量%含有させ、次いで該紡出糸条を牽引流体により見かけの紡速を2500m/分以上として牽引した後開繊し、捕集面に堆積させ、不織布を構成する繊維の沸水収縮率が5%以上であることを特徴とする長繊維不織布の製造方法。 When two or more types of fiber-forming polymers are spun from a die, each of the two or more types of fiber-forming polymer components has a fiber split cross-sectional shape in which other components are divided into a plurality of parts. A composite fiber is spun, and at least one of the fiber-forming polymers includes an addition polymer composed of an unsaturated monomer that is substantially incompatible with the fiber-forming polymer and has a molecular weight of 2000 or more. The fiber-forming polymer is contained in an amount of 0.2 to 10% by weight, and then the spun yarn is pulled by a pulling fluid with an apparent spinning speed of 2500 m / min or more, then opened and deposited on the collecting surface. is allowed, the manufacturing method of the long-fiber nonwoven fabric boiling water shrinkage percentage of the fibers constituting the nonwoven fabric, characterized in at least 5% der Rukoto. 不織布を構成する繊維の下記式で表される収縮率増加率X(%)が10%以上である請求項1記載の長繊維不織布の製造方法。The method for producing a long-fiber nonwoven fabric according to claim 1, wherein the shrinkage rate increase rate X (%) represented by the following formula of the fiber constituting the nonwoven fabric is 10% or more.
X(%)=(Sa(%)/So(%)−1)×100  X (%) = (Sa (%) / So (%) − 1) × 100
(但し、Saは付加重合体を含む繊維の沸水中の収縮率(%)、Soは実質的に付加重合体を含まない繊維の沸水中の収縮率(%)を示す。)(However, Sa represents the shrinkage rate (%) in boiling water of the fiber containing the addition polymer, and So represents the shrinkage rate (%) in boiling water of the fiber substantially free of the addition polymer.)
複合繊維が分割処理により単糸0.0001〜1デシテックスの極細繊維を発生可能なものである請求項1または2記載の長繊維不織布の製造方法。The method for producing a long-fiber non-woven fabric according to claim 1 or 2, wherein the composite fiber is capable of generating ultrafine fibers having a single yarn of 0.0001 to 1 dtex by splitting treatment. 複合繊維が、一成分がポリアミド重合体であり、他の一成分がポリエステル重合体である二成分からなる剥離分割型複合繊維である請求項1から3のいずれか1項記載の長繊維不織布の製造方法。The long-fiber nonwoven fabric according to any one of claims 1 to 3, wherein the composite fiber is a split split-type composite fiber composed of two components in which one component is a polyamide polymer and the other one component is a polyester polymer. Production method.
JP2000307069A 2000-10-06 2000-10-06 Manufacturing method of long fiber nonwoven fabric Expired - Fee Related JP4316783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000307069A JP4316783B2 (en) 2000-10-06 2000-10-06 Manufacturing method of long fiber nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000307069A JP4316783B2 (en) 2000-10-06 2000-10-06 Manufacturing method of long fiber nonwoven fabric

Publications (2)

Publication Number Publication Date
JP2002115163A JP2002115163A (en) 2002-04-19
JP4316783B2 true JP4316783B2 (en) 2009-08-19

Family

ID=18787633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000307069A Expired - Fee Related JP4316783B2 (en) 2000-10-06 2000-10-06 Manufacturing method of long fiber nonwoven fabric

Country Status (1)

Country Link
JP (1) JP4316783B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5003028B2 (en) * 2006-06-15 2012-08-15 東洋紡績株式会社 Urethane foam reinforcement
JP2010196235A (en) * 2009-01-28 2010-09-09 Toyobo Co Ltd Filament nonwoven fabric excellent in formability and production method thereof
JP2011001650A (en) * 2009-06-18 2011-01-06 Toyobo Co Ltd Filament nonwoven fabric for molded container, which has excellent moldability and printability, and method for producing the same

Also Published As

Publication number Publication date
JP2002115163A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
JP2599847B2 (en) Polyethylene terephthalate type melt blown nonwoven fabric and its manufacturing method
CA2236324C (en) Low density microfiber nonwoven fabric
RU2436878C2 (en) Fissionable conjugated fibre, its aggregate and fibrous form made of fissionable conjugated fibre
JP2002522653A (en) Elastic nonwoven fabric made from bicomponent filaments
CN113293517B (en) Polylactic acid elastic superfine fiber non-woven material and preparation method and application thereof
JPH02169718A (en) Polyolefinic heat fusible fiber and nonwoven fabric thereof
CN101688334B (en) Splittable conjugate fiber containing polyacetal, and molded fiber material and product each using the same
JP3827962B2 (en) Method for producing ultrafine fiber nonwoven fabric
JP4316783B2 (en) Manufacturing method of long fiber nonwoven fabric
JP3957355B2 (en) Sea-island fiber and non-woven fabric using the same
JP4298186B2 (en) Method for producing ultra-thin fiber nonwoven fabric
KR100680373B1 (en) Non-woven fabric and preparation thereof
JP4453179B2 (en) Split fiber and fiber molded body using the same
JP4223113B2 (en) Mixed spun fiber and method for producing the same
JP4018784B2 (en) Artificial leather made of non-woven fabric
JP7032780B2 (en) Continuous fiber non-woven fabric and its manufacturing method
JP4213054B2 (en) Method for producing ultra-thin fiber nonwoven fabric
JP2004008501A (en) Ultrafine fiber nonwoven fabric for wiping cloth
JP2005171430A (en) Method for producing filament nonwoven fabric
WO2003097353A1 (en) Improved abrasion resistance of nonwovens
JPH0525710A (en) Splittable conjugate fiber and collected fiber material thereof
JP2008184725A (en) Dope-dyed nonwoven fabric
JP2004011061A (en) Method for producing ultrafine fiber nonwoven fabric
JPH1143856A (en) Non-woven fabric of conjugate, continuous fiber
JP2005002522A (en) Multi-island conjugate fiber and spinneret for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090521

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees