JP2004008501A - Ultrafine fiber nonwoven fabric for wiping cloth - Google Patents

Ultrafine fiber nonwoven fabric for wiping cloth Download PDF

Info

Publication number
JP2004008501A
JP2004008501A JP2002166670A JP2002166670A JP2004008501A JP 2004008501 A JP2004008501 A JP 2004008501A JP 2002166670 A JP2002166670 A JP 2002166670A JP 2002166670 A JP2002166670 A JP 2002166670A JP 2004008501 A JP2004008501 A JP 2004008501A
Authority
JP
Japan
Prior art keywords
fiber
nonwoven fabric
polyamide
split
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002166670A
Other languages
Japanese (ja)
Inventor
Kazuhiro Morishima
森島 一博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2002166670A priority Critical patent/JP2004008501A/en
Publication of JP2004008501A publication Critical patent/JP2004008501A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrafine fiber nonwoven fabric for a wiping cloth which consists of ultrafine polyester fiber and ultrafine polyamide fiber peeled and split sufficiently and which has excellent wiping properties. <P>SOLUTION: The nonwoven fabric is prepared by peeling and splitting conjugated fiber of a peeling and splitting type consisting of polyester polymer and polyamide polymer of an absorption coefficient of 10 to 30 wt. % with a peeling and splitting ratio of 80% and consists of untrafine fiber whose single yarn fineness of 0.005 to 0.60 dtex after peeling and splitting. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、ポリエステル系重合体とポリアミド系重合体とからなる剥離分割型複合繊維が剥離分割されてなる極細繊維、特に極細長繊維から構成されるワイピングクロス用極細繊維不織布に関するものである。
【0002】
【従来の技術】
極細繊維からなる布帛は、構成する繊維の表面積が大きく、微細塵芥の拭き取り性が良いのでワイピングクロスとして好ましく使用されている。極細繊維からなる不織布は、例えば、「特公昭60−25543号公報、特開昭62−97957号公報等に開示されているように、海島型混合紡糸繊維又は海島型複合繊維からなる長繊維不織布を溶剤処理することにより該繊維の海成分を抽出除去して」得る方法がある。しかし、このような方法では、抽出設備及び抽出工程が必要なため、コスト面、生産性、環境等の点からさまざまな問題が発生している。そこで、特開平4−300351号公報には、繊維形成性重合体Aと、該重合体Aに対し非相溶の繊維形成性重合体Bとよりなる分割二成分系複合連続単糸を開繊集積させた繊維集積体に、高圧液体膜状流を作用させ繊維を剥離分割した極細繊維不織布が開示されている。この極細繊維不織布は確かに、簡潔な工程で、経済的に製造されたものであるが、単に相互に非相溶の重合体を複合した剥離分割型複合繊維を用いるのみでは、このような特殊な条件の高圧液体膜状流を作用させても、剥離分割率が充分に上がらず、得られた極細繊維不織布の拭き取り性は向上せず、ワイピングクロスとして使用できる性能のものでは無いという問題があった。
【0003】
【発明が解決しようとする課題】
本発明は、上記従来技術を背景になされたもので、その目的は、充分に剥離分割された極細ポリエステル繊維と極細ポリアミド繊維とからなるワイピングクロス用極細繊維不織布を提供することにある。
【0004】
【課題を解決するための手段】
本発明者は、上記課題を解決するために鋭意検討を重ねた結果、上記課題は「ポリエステル系重合体と吸水率10〜30重量%未満のポリアミド系重合体とからなる剥離分割型複合繊維が剥離分割率80%で剥離分割されて生成され、剥離分割後の単糸繊度が0.05〜0.60dtexである極細繊維から構成される不織布」により達成されることが見出された。
【0005】
【発明の実施の形態】
以下本発明の実施形態について詳細に説明する。
本発明の剥離分割型複合繊維、好ましくは剥離分割型複合長繊維を構成するポリエステル系重合体としては、例えばポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート及びこれらを主成分とする共重合ポリエステル等があげられる。なかでもポリエチレンテレフタレートは、広い用途に適した物性、ポリアミドとの複合紡糸安定性などを考慮すると最も好ましく用いることができる。該剥離分割型複合繊維を構成するポリアミド系重合体としては、例えばナイロン−6、ナイロン−66、ナイロン−610、ナイロン−11、ナイロン−12等があげられる。
【0006】
本発明の剥離分割型複合繊維の複合断面形態としては、ポリエステル系重合体とポリアミド系重合体が交互に接合し、少なくとも一部分が繊維表面に到達している複合形態で、機械的処理等により各成分に剥離分割できるものであれば良い。なかでも、図1に示すような、お互いに一方の成分が他方の成分によって所定数に区分され、放射状に配置された複合断面形態が好ましい。複合断面の区分数はポリエステル系重合体とポリアミド系重合体とを溶融後、紡糸口金内での流路数を変えることにより任意に設定可能である。2成分の区分数は剥離分割後の単糸繊度を考慮して、4〜48区分、より好ましくは8〜24区分、の範囲に設定するのが望ましい。上記剥離分割型複合繊維の一方成分の全体に対する複合割合は、該複合繊維の製糸性及び剥離分割性の面から30〜70重量%の範囲、特に40〜60重量%の範囲が適当である。かかる剥離型複合繊維全体の断面形状は、丸断面形状、多葉断面形状、多角形形状等任意であり限定する必要はないが、2〜18%程度の中空部の存在は剥離分割性の面でより好ましい。
【0007】
このような複合断面の1つの成分をなすポリアミド系重合体は、吸水率10〜30重量%未満、好ましくは12〜20重量%、である性能を有していることが必要である。本発明でいう吸水率とはポリアミド系重合体を110℃、4時間乾燥した後の重量を測定し、次いで20℃、65%RHの雰囲気中に24時間放置した後の重量を測定して、両者の重量差を吸水量として重量100分率で表記したものを指す。吸水率10〜30重量%未満のポリアミド系重合体からなる複合断面成分は、吸水により膨潤し、ポリエステル系重合体との界面での剥離が容易となり、剥離分割効率が飛躍的に向上する。吸水率が10重量%未満であると、ポリアミド系重合体からなる複合断面成分の吸水膨潤が不充分で剥離分割が充分促進されず、剥離分割率が80%以上とならず、拭き取り性が不良となる。また、不織布の吸水性が低く、拭き取り性が低下する。さらに、不織布内の繊維同士の絡みが不充分であり、不織布としての強度が低下する。ポリアミド系重合体の吸水率が30重量%以上の場合、ポリエステル系重合体との複合紡糸時、断糸が多発し、安定して剥離分割型複合繊維を紡糸引き取りすることが困難になるだけでなく、極細化したポリアミド繊維の強力が低く、不織布としての強度が保てなくなる。また極細繊維の脱落が起こりやすく、拭き取り性が使用とともに悪くなる。
【0008】
かかるポリアミド系重合体は、親水性を有する化合物をポリアミド系重合体に混合したり、共重合させる方法などで得ることができる。たとえば、ポリアルキレングリコールやポリアクリル酸を固体あるいは溶融状態でポリアミド系重合体と混合する、またはポリアルキレングリコールやアクリル酸、ナイアミン(3,6−ジオキサオクタミチレンジアミン)を共重合する方法が挙げられる。
【0009】
剥離分割処理後の単糸繊度は、0.05〜0.60dtex、好ましくは0.1〜0.40の範囲となっていなければならない。単糸繊度が0.05dtex未満のものは不織布表面の単糸が摩擦によって脱落したり、切れた単糸先端同士が絡み合って毛玉状になり、拭き取り性が使用とともに悪くなる。単糸繊度が0.60dtexを越えると、拭き取り性が不良となる。また、不織布表面感触が硬くなる。
【0010】
本発明の極細繊維不織布は、例えば以下の方法で製造することができる。
剥離分割型複合繊維を構成するポリエステル系重合体およびポリアミド系重合体を、2基の溶融押出機(図2の1、1’)を備えた溶融紡糸機で溶融し、スピンブロック(図2の2)を通過させ、スピンパック(図2の3)で濾過し、2つの重合体流が複合紡糸口金(図2の3’)で複合し、溶融吐出する。次いで溶融吐出ポリマー流を冷却風送風筒(図2の4)からの冷却風で複合繊維糸条(図2の5)に冷却・細化し、エアーサッカー(図2の6)等の流体吸引装置により高速牽引し、コロナ放電装置(図2の7)で高電圧印加処理し、空気流と共に補集コンベアーの捕集ネット(図2の8)に衝突させ複合繊維束を開繊し、ウェブ状となし捕集ネットコンベアーで移動せしめる。この時、捕集ネットコンベアーの移動速度を変えて、ワイピングクロス用途に合う目付け50〜100g/mに調整する。
【0011】
次に本発明においては、複合繊維が剥離分割される時に、ポリアミド系重合体の吸水率に見合う程度の水分量がウェブに付加されていることが重要である。水分の付加は、剥離分割に先立って、ウェブを水槽に通し付着させる方法あるいはスプレイにて水分をウェブに噴霧する方法のどちらでも良い。剥離分割水分を高圧液体柱状流で衝撃を与える方法(図2)は、剥離分割処理とともに充分な水分がウェブに付加されるので、より好ましい。その他の剥離分割方法としては、ローラー間で加圧する方法、超音波処理を行なう方法、機械揉み処理をする方法などがあり、前記の高圧液体柱状流衝撃を含め、いずれの方法を採用しても良い。かくして剥離分割され極細化された繊維よりなるウェブはロール状に巻き取られ極細繊維不織布(図2の14)となる。
【0012】
【実施例】
以下、実施例により、本発明を更に具体的に説明する。なお、実施例における各項目は次の方法で測定した。なお、実施例中における各測定値は、特に断らない限り、5点の平均値である。
(1)ポリエステル系重合体固有粘度
o−クロロフェノールを溶媒として使用し35℃で測定
(2)ポリアミド系重合体固有粘度
m−クレゾールを溶媒として35℃で測定
(3)ポリアミド系重合体の吸水率
ポリアミド系重合体チップを110℃、4時間乾燥した後の重量を測定し、次いで20℃、65%RHの雰囲気中に24時間放置した後の重量を測定して、両者の重量差を吸水量として重量100分率で表記した。
(4)ウェブの吸水性
ウェブを幅20mm、長さ500mmとし、一方の短辺側を長さ1cmだけ水に浸漬させた状態で3分間放置し、3分後の試料端からの吸上高さ(cm)を測定した。ウェブの縦方向と横方向の平均値として算出した。
(5)剥離分割率
不織布の断面を200倍に電子顕微鏡撮影し、100本の繊維断面積を測定し、全体の面積と未分割(完全に分割していない、例えば、2個や3個程度に分割したものも含む)のフィラメントの断面積の差を全体面積に対する100分率を剥離分割率とした。
(6)極細繊維の繊度
未分割の繊維の繊度を繊度測定器(SERCH CO.LTD、型式DC−21)にて試長2.5cm、荷重1gにて測定し、繊維断面を構成する分割数で除して求めた。
(7)拭き取り性
着色液(Suminol Fast Blue 4GL:0.2%、水:20.0%、エチレングリコール(重合度300):79.8%)を、30cm×20cmの大きさアクリル板上に、スクリーンプリント用ステージで均一に塗布した後、該アクリル板上に、200gの荷重がのった8cm×6cmの不織布試料を2000mm/分で滑らせ、アクリル板上に残った着色液の割合を、写真に撮影した後測定し、その結果を以下のように示した。
良好:アクリル板上の残液が塗布量の20%未満
不良:アクリル板上の残液が塗布量の20%以上
(8)拭き取り耐久性
同一不織布試料で上記拭き取り性試験を30回繰り返し、30回目の拭き取り性結果を拭き取り耐久性とした。
(9)引張強力および破断伸度
JIS L−1096法に準じ、幅5cm、長さ15cmの試料片をつかみ間隔10cmで把持し、定速伸長型引張試験機を用いて引張速度30cm/分で伸長し、切断時の荷重値および伸長率をそれぞれ引張強力、破断伸度とした。なお、不織布のたて方向およびよこ方向に各々引張試験を実施した。
(10)目付け
不織布を幅50cm、長さ50cmの大きさに切り取り、重量を測定し、単位面積(1m)当たりの重さで表記した。
【0013】
[実施例1〜2、比較例1〜2]
固有粘度0.64のポリエチレンテレフタレートと各々表1に示すポリアミド系重合体とを、別々に乾燥後、2基のスクリュウ押出機を装備した複合紡糸設備にて各々溶融後、特開昭54−38914号公報記載の複合紡糸口金を使用し2つのポリマー流を合流させ、吐出量2g/分・孔で吐出し、25℃の冷却風で冷却後、エアーサッカー(エジェクター圧力343kPa(3.5kg/cm))にて高速牽引し、−30kVで高電圧印加処理し、空気流と共に補集コンベアーの捕集ネット上に突させ、複合繊維束を開繊し、幅1mのウェブとした。複合繊維の断面は図1に示すように16区分の多層貼合せ型断面となっており、ポリエステル系重合体とポリアミド系重合体との成分重量比率は52/48、単糸繊度は4.1デシテックスであった。なお、本発明の範囲外である比較例1(ポリアミド系重合体としてPA−B使用)では、複合紡糸時、断糸が多発して、安定して剥離分割型複合繊維を紡糸引き取りすることができなかった。
【0014】
【表1】

Figure 2004008501
【0015】
得られたウェブを、メッシュ状のスクリーン上に供給し、予備スプレー(図2の9)で水を付与した後に高圧液体柱状流噴射装置(図2の10)からの高圧水流(7.5MPa)によって、剥離分割処理を行った。その際、高圧水流の噴出口の孔径は0.1mm、孔数は601個、孔ピッチは1mm、噴射孔群列は6列とし、該ウェッブの表裏に一回ずつ処理を施した。この後、マングロロール(図2の12)にて水分を絞り、98℃の雰囲気に保たれた乾燥・熱処理装置(図2の13)を通して乾燥・熱処理して、不織布ロール(図2の14)として巻き取った。得られた不織布の特性、拭き取り性、拭き取り耐久性評価結果を表2に示す。
【0016】
【表2】
Figure 2004008501
【0017】
[実施例3〜4、比較例3〜4]
複合繊維の単糸繊度および成分区分数を各々表3のように変えた以外は、実施例2と同じ方法、条件で極細繊維不織布を得た。得られた不織布の特性、拭き取り性、拭き取り耐久性評価結果を表3に示す。
【0018】
【表3】
Figure 2004008501
【0019】
【発明の効果】
本発明によれば、充分に剥離分割された、極細ポリエステル繊維と極細ポリアミド繊維とから構成され、拭き取り性の良い極細繊維不織布を提供することができる。
【図面の簡単な説明】
【図1】本発明の剥離分割型複合繊維の繊維断面を示した一模式図。
【図2】本発明で用いる極細繊維不織布製造工程の一態様を示した模式図。
【符号の説明】
a  : ポリエステル系重合体成分
b  : ポリアミド系重合体成分
1,1’: 溶融押出機
2   : スピンブロック
3   : スピンパック
3’  : 複合紡糸口金
4   : 冷却風送風装置
5   : 細化した糸条流
6   : エアーサッカー
7   : コロナ放電装置
8   : 捕集コンベアー
9   : 予備スプレー
10  : 高圧液体柱状流噴射装置
11  : 吸引装置
12  : マングロロール
13  : 乾燥・熱処理装置
14  : 極細繊維不織布不織布ロール[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an ultrafine fiber obtained by exfoliating and splitting a splittable conjugate fiber composed of a polyester-based polymer and a polyamide-based polymer, particularly to an ultrafine nonwoven fabric for wiping cloth composed of an ultrafine long fiber.
[0002]
[Prior art]
Cloths made of ultrafine fibers are preferably used as wiping cloths because of the large surface area of the constituent fibers and good wiping properties of fine dust. Non-woven fabrics made of ultrafine fibers include, for example, a long-fiber non-woven fabric made of sea-island mixed spun fibers or sea-island composite fibers as disclosed in Japanese Patent Publication No. 60-25543 and Japanese Patent Application Laid-Open No. 62-97957. By extracting the sea component of the fiber by solvent treatment. However, such a method requires an extraction facility and an extraction step, and thus causes various problems in terms of cost, productivity, environment, and the like. Therefore, Japanese Patent Application Laid-Open No. 4-300351 discloses a fiber-forming polymer A and a split two-component composite continuous single yarn comprising a fiber-forming polymer B incompatible with the polymer A. An ultra-fine fiber non-woven fabric in which fibers are separated and separated by applying a high-pressure liquid film-like flow to the accumulated fiber assembly is disclosed. Although this ultra-fine fiber nonwoven fabric is certainly manufactured in a simple process and economically, it is difficult to use such exfoliated splittable composite fibers simply by combining mutually incompatible polymers. Even when a high-pressure liquid film-like flow under the following conditions is applied, the peeling division ratio does not sufficiently increase, the wiping properties of the obtained ultrafine fiber nonwoven fabric do not improve, and there is a problem that the performance is not one that can be used as a wiping cloth. there were.
[0003]
[Problems to be solved by the invention]
The present invention has been made on the background of the above-mentioned conventional technology, and an object of the present invention is to provide a microfiber nonwoven fabric for wiping cloth, which is composed of a microfiber polyester fiber and a microfiber polyamide fiber which are sufficiently separated and separated.
[0004]
[Means for Solving the Problems]
The inventor of the present invention has conducted intensive studies in order to solve the above-mentioned problems. As a result, the above-mentioned problems are described as follows. It has been found that this is achieved by a nonwoven fabric composed of ultrafine fibers which are produced by peeling and splitting at a peeling split ratio of 80% and have a single-fiber fineness of 0.05 to 0.60 dtex after peeling and splitting.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
Examples of the polyester polymer constituting the peelable splittable conjugate fiber of the present invention, preferably the peelable splittable conjugate long fiber, include, for example, polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, and copolymerized polyester containing these as a main component. Is raised. Among them, polyethylene terephthalate can be most preferably used in view of physical properties suitable for a wide range of uses, stability of composite spinning with polyamide, and the like. Examples of the polyamide-based polymer constituting the exfoliated splittable conjugate fiber include nylon-6, nylon-66, nylon-610, nylon-11, nylon-12, and the like.
[0006]
The composite cross-sectional form of the peelable splittable conjugate fiber of the present invention is a composite form in which a polyester-based polymer and a polyamide-based polymer are alternately joined and at least a part reaches the fiber surface. Any material that can be separated into components can be used. Above all, as shown in FIG. 1, a compound cross-sectional form in which one component is divided into a predetermined number by the other component and arranged radially is preferable. The number of sections of the composite cross section can be arbitrarily set by changing the number of flow paths in the spinneret after melting the polyester-based polymer and the polyamide-based polymer. The number of sections of the two components is desirably set in the range of 4 to 48 sections, more preferably 8 to 24 sections, in consideration of the fineness of the single yarn after the separation. The conjugate ratio of one component to the whole of the split-split type conjugate fiber is preferably in the range of 30 to 70% by weight, particularly in the range of 40 to 60% by weight, in view of the spinnability and the splittable property of the conjugate fiber. The cross-sectional shape of the entire peelable conjugate fiber is arbitrary and need not be limited, such as a round cross-sectional shape, a multi-leaf cross-sectional shape, and a polygonal shape. Is more preferable.
[0007]
It is necessary that the polyamide-based polymer constituting one component of such a composite cross section has a water absorption of less than 10 to 30% by weight, preferably 12 to 20% by weight. The water absorption in the present invention refers to the weight of a polyamide-based polymer after drying at 110 ° C. for 4 hours, and then measuring the weight after standing at 20 ° C. and an atmosphere of 65% RH for 24 hours. The difference in weight between the two is expressed in terms of water absorption as a percentage by weight. A composite cross-sectional component composed of a polyamide-based polymer having a water absorption of less than 10 to 30% by weight swells due to water absorption, facilitates separation at the interface with the polyester-based polymer, and dramatically improves separation efficiency. If the water absorption is less than 10% by weight, the composite cross-sectional component composed of the polyamide polymer will have insufficient water absorption and swelling, so that peeling and splitting will not be sufficiently promoted, the peeling splitting rate will not be 80% or more, and the wiping properties will be poor. It becomes. Further, the water absorption of the nonwoven fabric is low, and the wiping property is reduced. Furthermore, the entanglement between the fibers in the nonwoven fabric is insufficient, and the strength of the nonwoven fabric is reduced. When the water absorption of the polyamide-based polymer is 30% by weight or more, thread breakage frequently occurs during composite spinning with the polyester-based polymer, and it is only difficult to stably take off the split-split composite fiber. In addition, the strength of the ultrafine polyamide fiber is low, and the strength as a nonwoven fabric cannot be maintained. Also, the ultrafine fibers are likely to fall off, and the wiping properties deteriorate with use.
[0008]
Such a polyamide-based polymer can be obtained by mixing a compound having hydrophilicity with the polyamide-based polymer, or by copolymerization. For example, a method in which polyalkylene glycol or polyacrylic acid is mixed with a polyamide polymer in a solid or molten state, or a method in which polyalkylene glycol, acrylic acid, or nyamine (3,6-dioxaoctamitilenediamine) is copolymerized. No.
[0009]
The single-fiber fineness after the peeling and splitting treatment must be in the range of 0.05 to 0.60 dtex, preferably 0.1 to 0.40. When the single yarn fineness is less than 0.05 dtex, the single yarn on the surface of the nonwoven fabric falls off due to friction, or the cut single yarn ends are entangled to form a pill, and the wiping property deteriorates with use. If the single-fiber fineness exceeds 0.60 dtex, the wiping properties become poor. In addition, the nonwoven fabric surface feel becomes hard.
[0010]
The microfiber nonwoven fabric of the present invention can be produced, for example, by the following method.
The polyester-based polymer and the polyamide-based polymer constituting the peelable splittable conjugate fiber are melted by a melt spinning machine equipped with two melt extruders (1, 1 'in FIG. 2) and a spin block (FIG. 2). 2), filtered by a spin pack (3 in FIG. 2), and the two polymer streams are combined in a composite spinneret (3 ′ in FIG. 2) and melted and discharged. Next, the melt-discharged polymer stream is cooled and thinned into a composite fiber yarn (5 in FIG. 2) by cooling air from a cooling air blower tube (4 in FIG. 2), and a fluid suction device such as an air sucker (6 in FIG. 2). , A high voltage is applied by a corona discharge device (7 in FIG. 2), and the composite fiber bundle is opened by collapsing with a collecting net (8 in FIG. 2) of the collection conveyor together with an air flow, and the web is formed. It is moved by a trash collecting net conveyor. At this time, the moving speed of the collecting net conveyor is changed to adjust the basis weight to 50 to 100 g / m 2 suitable for the wiping cloth.
[0011]
Next, in the present invention, when the conjugate fiber is peeled and split, it is important that an amount of water corresponding to the water absorption of the polyamide polymer is added to the web. Prior to the peeling division, the method of adding moisture may be either a method in which the web is passed through a water tank and adhered thereto, or a method in which moisture is sprayed on the web by spraying. The method of impacting the separation-split water by a high-pressure liquid columnar flow (FIG. 2) is more preferable because sufficient water is added to the web together with the separation-split processing. Other separation and division methods include a method of applying pressure between rollers, a method of performing ultrasonic treatment, a method of performing mechanical kneading, and the like, including any of the above-described high-pressure liquid columnar flow impacts, regardless of which method is employed. good. Thus, the web made of the fibers separated and divided into ultrafine fibers is wound into a roll and becomes an ultrafine fiber nonwoven fabric (14 in FIG. 2).
[0012]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. Each item in the examples was measured by the following method. In addition, each measured value in an Example is an average value of five points unless there is particular notice.
(1) Intrinsic viscosity of polyester polymer Measured at 35 ° C. using o-chlorophenol as a solvent (2) Intrinsic viscosity of polyamide polymer Measured at 35 ° C. using m-cresol as a solvent (3) Water absorption of polyamide polymer Rate after drying the polyamide polymer chip at 110 ° C. for 4 hours, and then measuring the weight after leaving the chip in an atmosphere of 20 ° C. and 65% RH for 24 hours, to determine the difference in weight between the two. The amount was expressed as a weight percentage.
(4) Water Absorption of Web The web was 20 mm in width and 500 mm in length, and one short side was immersed in water by 1 cm in length for 3 minutes, and the suction height from the sample end after 3 minutes The length (cm) was measured. It was calculated as an average value in the vertical and horizontal directions of the web.
(5) Peeling and splitting ratio The cross section of the nonwoven fabric was photographed by an electron microscope at a magnification of 200 times, the cross-sectional area of 100 fibers was measured, and the total area and undivided (not completely divided, for example, about 2 or 3 pieces) The difference between the cross-sectional areas of the filaments (including the filaments divided into two parts) was defined as 100% of the total area of the filaments.
(6) Fineness of ultrafine fiber The fineness of the undivided fiber is measured with a fineness measuring device (SERCH CO. LTD, model DC-21) at a test length of 2.5 cm and a load of 1 g, and the number of divisions constituting the fiber cross section Divided by
(7) A wiping colored liquid (Suminol Fast Blue 4GL: 0.2%, water: 20.0%, ethylene glycol (degree of polymerization: 300): 79.8%) was placed on a 30 cm × 20 cm acrylic plate. After applying uniformly on a stage for screen printing, a nonwoven fabric sample of 8 cm × 6 cm with a load of 200 g was slid on the acrylic plate at 2000 mm / min to determine the ratio of the coloring liquid remaining on the acrylic plate. After taking a photograph, it was measured and the result was shown as follows.
Good: The residual liquid on the acrylic plate was less than 20% of the applied amount. Poor: The residual liquid on the acrylic plate was 20% or more of the applied amount. (8) Wiping Durability The same wiping test was repeated 30 times with the same nonwoven fabric sample. The result of the second wiping property was defined as wiping durability.
(9) Tensile Strength and Elongation at Break According to JIS L-1096 method, a sample piece having a width of 5 cm and a length of 15 cm is gripped at an interval of 10 cm, and a tensile speed of 30 cm / min is measured using a constant-speed tensile tester. The load value and elongation at the time of elongation and cutting were defined as tensile strength and elongation at break, respectively. In addition, the tensile test was implemented in the vertical direction and the horizontal direction of the nonwoven fabric, respectively.
(10) The basis weight nonwoven fabric was cut into a size having a width of 50 cm and a length of 50 cm, the weight was measured, and the weight was expressed as the weight per unit area (1 m 2 ).
[0013]
[Examples 1 and 2, Comparative Examples 1 and 2]
Polyethylene terephthalate having an intrinsic viscosity of 0.64 and each of the polyamide-based polymers shown in Table 1 were separately dried, and then melted in a composite spinning facility equipped with two screw extruders. The two polymer streams are combined using a composite spinneret described in Japanese Patent Application Laid-Open Publication No. H11-27139, discharged at a discharge rate of 2 g / min. / Hole, cooled with a cooling air of 25 ° C., and then cooled with an air sucker (ejector pressure 343 kPa (3.5 kg / cm). 2 )), a high-speed traction was performed, a high voltage application treatment was performed at −30 kV, and the composite fiber bundle was made to project along with an air flow onto a collection net of a collection conveyor, and the composite fiber bundle was opened to form a web having a width of 1 m. As shown in FIG. 1, the cross section of the conjugate fiber is a 16-section multi-layer lamination type cross section. The component weight ratio of the polyester-based polymer to the polyamide-based polymer is 52/48, and the single-fiber fineness is 4.1. It was decitex. In Comparative Example 1 (using PA-B as a polyamide-based polymer), which is outside the scope of the present invention, yarn breakage frequently occurs during conjugate spinning, and the split-split type conjugate fiber can be stably drawn off. could not.
[0014]
[Table 1]
Figure 2004008501
[0015]
The obtained web is supplied on a mesh screen, and water is applied by a preliminary spray (9 in FIG. 2), and then a high-pressure water flow (7.5 MPa) from a high-pressure liquid columnar flow injection device (10 in FIG. 2). , A peeling division process was performed. At that time, the hole diameter of the high pressure water jet outlet was 0.1 mm, the number of holes was 601, the hole pitch was 1 mm, and the number of rows of the injection holes was six, and the front and back of the web were treated once. Thereafter, moisture is squeezed out with a mangrove roll (12 in FIG. 2), and dried and heat-treated through a drying / heat treatment device (13 in FIG. 2) maintained at an atmosphere of 98 ° C., thereby forming a non-woven fabric roll (14 in FIG. 2). Rolled up. Table 2 shows the properties, wiping properties, and wiping durability evaluation results of the obtained nonwoven fabric.
[0016]
[Table 2]
Figure 2004008501
[0017]
[Examples 3 and 4, Comparative Examples 3 and 4]
An ultrafine fiber nonwoven fabric was obtained in the same manner and under the same conditions as in Example 2, except that the single fiber fineness and the number of component divisions of the composite fiber were changed as shown in Table 3. Table 3 shows the properties, wiping properties, and wiping durability evaluation results of the obtained nonwoven fabric.
[0018]
[Table 3]
Figure 2004008501
[0019]
【The invention's effect】
According to the present invention, it is possible to provide an ultrafine fiber nonwoven fabric which is composed of an ultrafine polyester fiber and an ultrafine polyamide fiber which are sufficiently separated from each other and has good wiping properties.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a fiber cross section of a split-split type composite fiber of the present invention.
FIG. 2 is a schematic diagram showing one embodiment of a process for producing a microfiber nonwoven fabric used in the present invention.
[Explanation of symbols]
a: Polyester-based polymer component b: Polyamide-based polymer component 1, 1 ': Melt extruder 2: Spin block 3: Spin pack 3': Composite spinneret 4: Cooling air blower 5: Thinned yarn flow 6: Air soccer 7: Corona discharge device 8: Collection conveyor 9: Preliminary spray 10: High pressure liquid columnar flow jetting device 11: Suction device 12: Mangroroll 13: Drying / heat treatment device 14: Microfiber nonwoven fabric non-woven roll

Claims (1)

ポリエステル系重合体と吸水率10〜30重量%未満のポリアミド系重合体とからなる剥離分割型複合繊維が剥離分割率80%で剥離分割されて生成され、剥離分割後の単糸繊度が0.05〜0.60dtexである極細繊維から構成される不織布であるワイピングクロス用極細繊維不織布。A split-split conjugate fiber composed of a polyester polymer and a polyamide polymer having a water absorption of less than 10 to 30% by weight is split and split at a split split rate of 80%, and the single-fiber fineness after splitting is 0.1%. An extra-fine fiber non-woven fabric for wiping cloth, which is a non-woven fabric composed of extra-fine fibers having a particle size of 0.5 to 0.60 dtex.
JP2002166670A 2002-06-07 2002-06-07 Ultrafine fiber nonwoven fabric for wiping cloth Pending JP2004008501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002166670A JP2004008501A (en) 2002-06-07 2002-06-07 Ultrafine fiber nonwoven fabric for wiping cloth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002166670A JP2004008501A (en) 2002-06-07 2002-06-07 Ultrafine fiber nonwoven fabric for wiping cloth

Publications (1)

Publication Number Publication Date
JP2004008501A true JP2004008501A (en) 2004-01-15

Family

ID=30434150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002166670A Pending JP2004008501A (en) 2002-06-07 2002-06-07 Ultrafine fiber nonwoven fabric for wiping cloth

Country Status (1)

Country Link
JP (1) JP2004008501A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200424A (en) * 2007-02-22 2008-09-04 Teijin Cordley Ltd Manufacturing method of ultrafine nonwoven fabric for wiping cloth and ultrafine nonwoven fabric for wiping cloth
JP2017506954A (en) * 2014-02-21 2017-03-16 カール・フロイデンベルク・カー・ゲー Cleaning cloth
CN107400992A (en) * 2017-08-24 2017-11-28 芜湖立新清洁用品有限公司 A kind of preparation method of catering industry wiping not weaving fabric of superfine fiber
CN115928319A (en) * 2022-12-09 2023-04-07 阳光卫生医疗科技江阴有限公司 Non-woven wiping sheet, preparation method and firearm wiping cloth

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008200424A (en) * 2007-02-22 2008-09-04 Teijin Cordley Ltd Manufacturing method of ultrafine nonwoven fabric for wiping cloth and ultrafine nonwoven fabric for wiping cloth
JP2017506954A (en) * 2014-02-21 2017-03-16 カール・フロイデンベルク・カー・ゲー Cleaning cloth
CN107400992A (en) * 2017-08-24 2017-11-28 芜湖立新清洁用品有限公司 A kind of preparation method of catering industry wiping not weaving fabric of superfine fiber
CN115928319A (en) * 2022-12-09 2023-04-07 阳光卫生医疗科技江阴有限公司 Non-woven wiping sheet, preparation method and firearm wiping cloth

Similar Documents

Publication Publication Date Title
KR101605933B1 (en) Sea-island composite fiber, ultrafine fiber, and composite die
JP5450055B2 (en) Mixed long fiber nonwoven fabric and method for producing the same
JP4676857B2 (en) Sea-island composite fiber for high toughness ultrafine fiber
JPWO2008035637A1 (en) Filter material and manufacturing method thereof
JP2005264420A (en) Nano-fiber synthetic paper and method for producing the same
JP2004008501A (en) Ultrafine fiber nonwoven fabric for wiping cloth
JP3110566B2 (en) Method for producing polypropylene-based nonwoven fabric
JP3827962B2 (en) Method for producing ultrafine fiber nonwoven fabric
JP4298186B2 (en) Method for producing ultra-thin fiber nonwoven fabric
JPH10331063A (en) Composite nonwoven fabric and its production
KR101723335B1 (en) Splittable conjugate fiber and manufacturing method thereof, and nonwoven fabrics and manufacturing method thereof
JP3920157B2 (en) Method for producing ultrafine fiber nonwoven fabric
JP4316783B2 (en) Manufacturing method of long fiber nonwoven fabric
JPH09316730A (en) Islands-sea structure fiber and nonwoven cloth using the same
JPH07207566A (en) Laminated nonwoven fabric and its production
JP2004256983A (en) Artificial leather comprising nano fiber
JP2866131B2 (en) Method for producing ultrafine long-fiber nonwoven fabric
JPH06248519A (en) Finely splittable conjugate fiber and fiber assembly comprising fibrillated fiber
JP4453179B2 (en) Split fiber and fiber molded body using the same
JP4018784B2 (en) Artificial leather made of non-woven fabric
JP2018100459A (en) Split type composite fiber
JP2005171430A (en) Method for producing filament nonwoven fabric
JP4213054B2 (en) Method for producing ultra-thin fiber nonwoven fabric
JP3221200B2 (en) Laminated nonwoven fabric and method for producing the same
JP2010133042A (en) Splittable conjugate fiber