JP2008200424A - Manufacturing method of ultrafine nonwoven fabric for wiping cloth and ultrafine nonwoven fabric for wiping cloth - Google Patents

Manufacturing method of ultrafine nonwoven fabric for wiping cloth and ultrafine nonwoven fabric for wiping cloth Download PDF

Info

Publication number
JP2008200424A
JP2008200424A JP2007042708A JP2007042708A JP2008200424A JP 2008200424 A JP2008200424 A JP 2008200424A JP 2007042708 A JP2007042708 A JP 2007042708A JP 2007042708 A JP2007042708 A JP 2007042708A JP 2008200424 A JP2008200424 A JP 2008200424A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
split
polymer
composite fiber
wiping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007042708A
Other languages
Japanese (ja)
Inventor
Kazuhiro Morishima
一博 森島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Cordley Ltd
Original Assignee
Teijin Cordley Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Cordley Ltd filed Critical Teijin Cordley Ltd
Priority to JP2007042708A priority Critical patent/JP2008200424A/en
Publication of JP2008200424A publication Critical patent/JP2008200424A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for improving fiber fineness and a segmentation rate, and an ultrafine nonwoven fabric for wiping clothes, which has an excellent wiping property, in a manufacturing method of the ultrafine nonwoven fabric for wiping clothes by segmenting the segmenting, splittable composite fiber consisting of two components of polyamide and polyester. <P>SOLUTION: This manufacturing method of the ultrafine nonwoven fabric for wiping clothes for segmenting the segmenting, splittable composite fiber consisting of polyamide based polymer and polyester based polymer and having a single yarn fineness of 0.01-0.30 dtex, contains polyalkylene glycol of 0.3-3.0 wt.% and organic metal salt expressed by R-SO<SB>3</SB>M of 0.5-3.0 wt.% at least in either one of the polymers, forming it into a nonwoven fabric, segmenting it under the presence of water and providing the ultrafine nonwoven fabric for wiping clothes, which has micro fineness and a high segmentation rate and consisting of polyamide and polyester. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ポリアミド系重合体とポリエステル系重合体とからなる剥離分割型複合繊維を不織布となし、剥離分割型複合繊維を分割処理してなるワイピングクロス用極細不織布に関するものである。   The present invention relates to an ultrafine nonwoven fabric for wiping cloth, in which a release split composite fiber composed of a polyamide polymer and a polyester polymer is a nonwoven fabric, and the release split composite fiber is split.

従来、極細繊維不織布は生活関連資材、衣料用など多岐の分野にわたって使用され、数多くの種類が提案なされている。   Conventionally, ultrafine fiber nonwoven fabrics have been used in various fields such as life-related materials and clothing, and many types have been proposed.

極細繊維不織布の用途の一つであるワイピングクロスにおいて、それを構成する繊維の表面積を拡大して、より高度な拭き取り性、すなわち、より高度な拭き取り効率とより微小な汚れや塵の拭き取り性の向上が求められている。この表面積拡大の手段としては、繊維を細くすればするほど、単糸繊度の2分の1乗に反比例して単糸繊度当たりの比表面積は拡大するため、より細繊度の且つ高密度の極細繊維不織布が好ましい。細繊度化の方法としては直接紡糸延伸により細い繊度のものを得る方法や、極細繊維発生可能な繊維を後工程で分割・溶剤処理して極細繊維を発生させる方法などが提案されている。
しかしながら、直接紡糸延伸法では単糸繊度は0.3dtex程度が限界であり、これより細い極細繊維を製造することは技術的に困難である。
In wiping cloth, which is one of the applications of ultrafine fiber nonwoven fabrics, the surface area of the fibers that make it up is expanded to achieve higher wiping performance, that is, higher wiping efficiency and more wiping performance of fine dirt and dust. There is a need for improvement. As a means of increasing the surface area, the thinner the fiber, the larger the specific surface area per single yarn fineness in inverse proportion to the half power of the single yarn fineness. A fiber nonwoven fabric is preferred. As a method for reducing the fineness, there have been proposed a method for obtaining a fineness by direct spinning and drawing, a method for generating ultrafine fibers by dividing and solvent-treating fibers capable of generating ultrafine fibers in a subsequent process, and the like.
However, in the direct spinning drawing method, the fineness of the single yarn is limited to about 0.3 dtex, and it is technically difficult to produce a fine fiber finer than this.

又他の方法として、複数種の高分子重合体から構成される海島型複合繊維の海成分を溶出除去して島成分を極細化する方法、または2成分交互貼り合わせ剥離分割型複合繊維(以後単に剥離分割型複合繊維と略称する)に機械的外力を与え、極細繊維に分割して不織布を製造する方法等がある。
なかでも剥離分割型複合繊維をスパンボンド法と組み合わせることにより得られる長繊維不織布を、一方の重合体成分を溶出しないで極細繊維化する方法は、エネルギーコストや環境面への配慮の点でも優れた方法である。
As another method, a sea component of a sea-island type composite fiber composed of a plurality of types of polymer is eluted and removed, and the island component is made ultrafine, or a two-component alternating laminating and separating split type composite fiber (hereinafter referred to as “component”). There is a method of producing a nonwoven fabric by applying a mechanical external force to the separated split type composite fiber) and dividing it into ultrafine fibers.
In particular, the method of making ultra-fine fibers from a long-fiber nonwoven fabric obtained by combining exfoliated split-type composite fibers with the spunbond method without eluting one polymer component is also excellent in terms of energy costs and environmental considerations. It is a method.

本発明者らは特開2004−8501号公報でポリアミドとポリエステルの2成分からなる剥離分割型複合長繊維不織布を分割極細化してなる拭き取り性に優れたワイピングクロスを提案している。ポリアミドの吸水性、しなやかさという特性とポリエステルの強度度特性を生かすことが出来て有用なものであるが拭き取り性が十分ではなかった。拭き取り性を高めるためには更に細繊度化、分割率の向上が必要で現状では細繊度化すれば分割率が低下するという問題点があり、更なる分割性を向上する方法が求められていた。
特開2004−8501号公報
The present inventors have proposed a wiping cloth excellent in wiping property obtained by dividing and thinning a separation-dividing composite long-fiber nonwoven fabric composed of two components of polyamide and polyester in Japanese Patent Application Laid-Open No. 2004-8501. Although it is useful to take advantage of the water absorption and flexibility properties of polyamide and the strength properties of polyester, the wiping property is not sufficient. In order to improve the wiping property, it is necessary to further reduce the fineness and the division rate. At present, there is a problem that the division rate decreases if the fineness is reduced, and a method for further improving the division property has been demanded. .
JP 2004-8501 A

本発明は、上記従来技術を背景になされたもので、その目的はポリアミドとポリエステルの2成分からなる極細繊維不織布の細繊度化における分割率を改善する方法及び拭き取り性に優れたワイピングクロス用極細不織布を提供することにある。   The present invention has been made against the background of the above-described prior art, and the object thereof is a method for improving the division ratio in the fineness of an ultrafine fiber nonwoven fabric composed of two components of polyamide and polyester, and an ultrafine wiping cloth excellent in wiping performance. It is to provide a non-woven fabric.

本発明者等は、上記課題を解決するために鋭意検討を重ねた結果、ポリアミド系重合体とポリエステル系重合体とからなる分割後単糸繊度が0.01〜0.30dtexである剥離分割型複合繊維不織布をからなり、少なくとも一方の重合体中に、ポリアルキレングリコール類を0.3〜3.0重量%及びRSOMで表される有機金属塩を0.5〜3.0重量%含有させ、不織布化後水存在下で分割処理することにより高分割率のポリアミドとポリエステルからなるワイピングクロス用極細不織布を得るに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors, as a result, have a separation split type in which the single yarn fineness after split consisting of a polyamide polymer and a polyester polymer is 0.01 to 0.30 dtex. Composed of a composite fiber nonwoven fabric, and at least one polymer, 0.3 to 3.0% by weight of a polyalkylene glycol and 0.5 to 3.0% by weight of an organometallic salt represented by RSO 3 M It was made to contain, and after making it into a nonwoven fabric, it was subjected to a division treatment in the presence of water, thereby obtaining an ultrafine nonwoven fabric for wiping cloth made of polyamide and polyester having a high division ratio.

本発明によれば、ポリアミド系重合体とポリエステル系重合体とからなる剥離分割型複合繊維不織布を分割極細化するにあたり、少なくとも繊維成分の一成分にポリアルキレングリコール類と共にRSOMで表される有機金属塩を特定量共存含有させることで、水存在下でポリアルキレングリコールの水膨潤が相乗的に促進され、剥離分割後の単糸繊度を0.01〜0.30dtexという細繊度としても分割性が向上する。これにより細繊度で高分割率の拭き取り性の良いワイピングクロス用極細不織布を得ることができる。 According to the present invention, when the exfoliated split type composite fiber nonwoven fabric composed of a polyamide polymer and a polyester polymer is divided and made fine, at least one component of the fiber component is represented by RSO 3 M together with polyalkylene glycols. By containing a specific amount of an organic metal salt, the water swelling of polyalkylene glycol is synergistically promoted in the presence of water, and the single yarn fineness after separation is divided into fine fineness of 0.01 to 0.30 dtex. Improves. As a result, it is possible to obtain an ultrafine nonwoven fabric for wiping cloth having a fineness and a high division ratio and good wiping property.

以下本発明の実施形態について詳細に説明する。
本発明のワイピングクロス用極細不織布は、剥離分割型複合繊維を不織布となし、その後分割処理して得られるものである。
Hereinafter, embodiments of the present invention will be described in detail.
The ultra-fine nonwoven fabric for wiping cloth of the present invention is obtained by forming a separation-dividing composite fiber as a nonwoven fabric and then performing a division treatment.

不織布化の方法は、剥離分割型複合繊維を短繊維化後カード、ニードルパンチ処理して不織布とする方法、剥離分割型複合繊維をスパンボンド不織布となし長繊維不織布とする方法があるが、どちらの方法でも可能であるが、生産性の点から長繊維不織布とする方法が好ましい。   There are two methods for making a nonwoven fabric: a card after stripping the split split composite fiber, a method of needle punching to make a nonwoven fabric, and a method of making the split split composite fiber a spunbond nonwoven fabric and a long fiber nonwoven fabric. This method is also possible, but from the viewpoint of productivity, a method using a long-fiber nonwoven fabric is preferred.

本発明における剥離分割型複合繊維は、繊維形成性ポリエステル系重合体と繊維形成性ポリアミド系重合体とから構成され、機械的処理などで各成分に剥離分割できるものであれば特に限定されない。好ましく用いられるポリアミド系重合体としては、例えばナイロン−6、ナイロン−66、ナイロン−610、ナイロン−11、ナイロン−12等があげられる。一方ポリエステル系重合体としては、例えばポリエチレンテレフタレート、ポリトリエチレングテレフタレート、ポリブチレンテレフタレート及びこれらを主成分とする共重合ポリエステル等があげられる。中でもナイロン−6/ポリエチレンテレフタレートの組合わせが生産安定性、コスト等の面から好ましい。   The release-dividing composite fiber in the present invention is not particularly limited as long as it is composed of a fiber-forming polyester polymer and a fiber-forming polyamide-based polymer and can be separated into each component by mechanical treatment or the like. Examples of the polyamide polymer preferably used include nylon-6, nylon-66, nylon-610, nylon-11, nylon-12 and the like. On the other hand, examples of the polyester-based polymer include polyethylene terephthalate, polytriethylene terephthalate, polybutylene terephthalate, and copolymer polyesters containing these as main components. Among these, a combination of nylon-6 / polyethylene terephthalate is preferable from the viewpoints of production stability and cost.

剥離分割型複合繊維の複合形態としては、ポリエステル系重合体とポリアミド系重合体の接合界面の少なくとも一部分が繊維断面円周に到達しており、機械的処理等により各成分に剥離分割できる形態となっていることが必要である。また、お互いに一方成分が他方成分によって所定数に分割されている形態であることが、剥離分割性の点で望ましい。なかでも、1成分が他成分間に放射状に配置されている断面形状が好ましい。このような複合形態は、例えば特開昭54−38914号公報記載の複合紡糸口金を用いて、ポリエステル系重合体とポリアミド系重合体とを複合紡糸することによって得られる。   As the composite form of the peelable split type composite fiber, at least a part of the joint interface between the polyester polymer and the polyamide polymer has reached the circumference of the fiber cross section and can be peeled and split into each component by mechanical treatment or the like It is necessary to become. In addition, it is desirable from the viewpoint of the separation property that one component is divided into a predetermined number by the other component. Among these, a cross-sectional shape in which one component is arranged radially between other components is preferable. Such a composite form can be obtained by, for example, composite spinning a polyester polymer and a polyamide polymer using a composite spinneret described in JP-A-54-38914.

本発明では、繊維断面円周に占めるポリエステル系重合体の円弧長(B)に対するポリアミド系重合体の円弧長(A)の比率(以下、重合体成分円弧長比(A/B)と称する)を0.1〜2.0の範囲、さらに好ましくは0.2〜1.5の範囲となるよう2成分を配置することが望ましい。   In the present invention, the ratio of the arc length (A) of the polyamide polymer to the arc length (B) of the polyester polymer occupying the fiber cross-section circumference (hereinafter referred to as polymer component arc length ratio (A / B)). It is desirable to arrange the two components so that is in the range of 0.1 to 2.0, more preferably in the range of 0.2 to 1.5.

重合体成分円弧長比(A/B)が2.0を超えると、開繊性が大幅に低下し、不織布の目付け斑および強度低下が発生する。ポリアミド系重合体は比較的ガラス転移点が低く、固化が遅く、また水分を吸着しやすいことなどによって繊維同士が密着し易くなり、開繊不良が起こるものと推測される。一方、重合体成分円弧長比(A/B)が0.1未満であると、剥離分割処理時、外部応力が2成分の接合界面へ充分に負荷されなくなり剥離分割が困難となる。   When the polymer component arc length ratio (A / B) exceeds 2.0, the opening property is significantly lowered, and the nonwoven fabric weight and the strength are reduced. It is presumed that the polyamide-based polymer has a relatively low glass transition point, is slow to solidify, easily adsorbs moisture, and the fibers tend to adhere to each other, resulting in poor opening. On the other hand, when the polymer component arc length ratio (A / B) is less than 0.1, the external stress is not sufficiently applied to the two-component bonding interface during the separation process, and the separation process becomes difficult.

なお、各重合体成分の円弧長は、複合紡糸口金内での各重合体成分の合流方法、重量比、あるいは口金内合流部での粘度比を変更することで任意に設定できる。特に、溶融押出しされた重合体がスピンブロックに流入する直前の溶融体温度(以下導管ポリマー温度と称する)を各々設定することによって、各々の重合体の溶融粘度を変更し、重合体成分円弧長比(A/B)を設定する方法が簡易であり好ましい。   The arc length of each polymer component can be arbitrarily set by changing the method of joining the polymer components in the composite spinneret, the weight ratio, or the viscosity ratio at the confluence portion in the die. In particular, by setting the melt temperature (hereinafter referred to as the conduit polymer temperature) immediately before the melt-extruded polymer flows into the spin block, the melt viscosity of each polymer is changed, and the polymer component arc length is changed. A method of setting the ratio (A / B) is simple and preferable.

このように成分配置された剥離分割複合繊維の分割数は,2成分を溶融後紡糸口金内で合流させる方法により任意に設定できる。安定して紡糸できる複合繊維の単糸繊度を考慮すると、分割数を4〜48個、より好ましくは8〜24個に設定するのが望ましい。   The number of divisions of the exfoliated and divided composite fibers arranged in this way can be arbitrarily set by a method in which the two components are melted and merged in the spinneret. Considering the single yarn fineness of the composite fiber that can be stably spun, it is desirable to set the number of divisions to 4 to 48, more preferably 8 to 24.

なお、剥離分割型複合繊維の一方成分の全体に対する複合割合を、30〜70重量%の範囲、特に40〜60重量%の範囲とすれば、紡糸工程がより安定となり、安定した断面の剥離分割型複合繊維の適当である。この範囲を外れる場合には、両重合体の粘度バランスの調整が困難となり、紡糸時セクション不良が発生しやすくなり、また、剥離分割効率が低下しやすくなる。   In addition, if the composite ratio with respect to the whole of one component of the peelable split type composite fiber is in the range of 30 to 70% by weight, particularly in the range of 40 to 60% by weight, the spinning process becomes more stable and the cross section of the cross section is stabilized. Type composite fiber is suitable. When outside this range, it is difficult to adjust the viscosity balance of both polymers, section defects during spinning are likely to occur, and the separation efficiency is liable to decrease.

このような剥離型複合繊維全体の断面形状は、丸断面形状、多葉断面形状、多角形形状等任意であり、また中空部を有する形態であってもよい。中空部を有する断面形状のものでは2成分の接合界面長さが短くなるので、剥離分割性がより向上する。   The cross-sectional shape of the whole peelable conjugate fiber is arbitrary, such as a round cross-sectional shape, a multi-leaf cross-sectional shape, and a polygonal shape, and may have a hollow portion. In the case of a cross-sectional shape having a hollow part, the length of the two-component bonding interface is shortened, so that the separation of separation is further improved.

さらに、本発明においては、上記2成分の重合体の少なくとも一成分に、0.3〜3.0重量%未満、好ましくは0.5〜2.0重量%のポリアルキレングリコール類を含有させると共に有機金属塩を0.5〜3.0重量%未満含有させなければならない。   Furthermore, in the present invention, at least one component of the two-component polymer contains 0.3 to 3.0% by weight, preferably 0.5 to 2.0% by weight of polyalkylene glycols. The organic metal salt must be contained in an amount of 0.5 to less than 3.0% by weight.

ポリアルキレングリコール類を少なくとも1成分の重合体へ配合することにより、特にスパンボンド長繊維工程における紡糸工程での細化時および繊維補集時に発生する多大な静電気を大幅に抑制し、均一な開繊状態で繊維をウェブ状に捕集することができる。しかしながら静電気を抑制する効果はポリアルキレングリコール類の添加のみでは十分でなく、本発明ではR−SOMで表される有機金属塩を共に添加することにより著しく静電気が抑制される事を見出した。R−SOMで表される有機金属塩は制電効果を有することが知られており、これを添加することにより不織布の帯電性が防止できることは予想の範囲内であるが、ポリアルキレングリコール類とR−SOMで表される有機金属塩を共存させることにより、制電性と共に分割性が大幅に向上することは予想を超えた効果である。ポリアルキレングリコール類を使用することによりポリアミドとポリエステル成分の界面剥離がある程度向上するが、更にR−SOMで表される有機金属塩を共存させることにより相乗効果的に界面剥離が易化し、分割性の向上が発現する。特に水存在化で機械的応力をかけると良好な分割性を示す。その理由としては明らかではないが、極性の大きいR−SOMで表される有機金属塩による繊維重合体ポリマーと水との親和性が向上するだけでなく、ポリマー中でのポリアルキレングリコール類の分散性が向上し、ポリエステル/ナイロン界面に存在する界面剥離を易化するポリアルキレングリコール類の粒子の存在確率が増えて分割性が大きく向上するものと考えている。 By blending polyalkylene glycols with at least one polymer, significant static electricity generated during thinning and fiber collection, especially in the spunbond long fiber process, can be greatly suppressed and evenly opened. The fibers can be collected in a web shape in a fine state. However, the addition of polyalkylene glycols is not sufficient for the effect of suppressing static electricity, and in the present invention, it has been found that static electricity is remarkably suppressed by adding together an organometallic salt represented by R-SO 3 M. . The organometallic salt represented by R—SO 3 M is known to have an antistatic effect, and it is within the expectation that the addition of this can prevent the non-woven fabric from being charged. It is an effect beyond expectation that the splitting property is greatly improved together with the antistatic property by coexisting the organic metal salt represented by R-SO 3 M with the alkenyl group. By using polyalkylene glycols, the interfacial delamination between the polyamide and the polyester component is improved to some extent, but further, interfacial delamination is facilitated synergistically by coexisting an organometallic salt represented by R-SO 3 M, The improvement of the splitting property is manifested. In particular, when a mechanical stress is applied in the presence of water, good splitting properties are exhibited. The reason for this is not clear, but not only the affinity between the fiber polymer polymer and water due to the organic metal salt represented by the highly polar R—SO 3 M is improved, but also polyalkylene glycols in the polymer. It is believed that the dispersibility of the polyalkylene glycols that facilitate interfacial peeling at the polyester / nylon interface increases and the probability of splitting increases greatly.

ポリアルキレングリコール類の添加量が0.3重量%未満では、静電気抑制効果は得られず、また成分剥離効果が減失し、2成分の剥離分割が困難となる。ポリアルキレングリコール類の添加量が3.0重量%を超える場合、または有機金属塩の添加量が3.0重量%を超えると被添加重合体の粘度低下を来たし、紡糸が困難となり、重合体のフィブリル化による不織布の物性劣化などの問題が発生する。   When the amount of polyalkylene glycol added is less than 0.3% by weight, the static electricity suppressing effect cannot be obtained, the component peeling effect is reduced, and the separation of the two components becomes difficult. When the addition amount of polyalkylene glycol exceeds 3.0% by weight, or when the addition amount of the organometallic salt exceeds 3.0% by weight, the viscosity of the polymer to be added decreases, and spinning becomes difficult. Problems such as deterioration of the physical properties of the non-woven fabric due to fibrillation occur.

本発明で使用するポリアルキレングリコール類としては、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコール、エチレンオキサイド/プロピレンオキサイドブロックまたはランダム共重合体などを挙げる事ができる。これらはアルキル基、アリール基、アシル基などで末端が封鎖されていても良く、また各種グリコール成分もしくはアミン成分並びに酸成分を反応させたブロックポリエーテルエステルまたはブロックポリエーテルアミドであっても良い。なかでも末端をアルキル基で封鎖したものは、耐光性が良好となるのでより好ましい。   Examples of the polyalkylene glycols used in the present invention include polyethylene glycol, polytrimethylene glycol, polytetramethylene glycol, ethylene oxide / propylene oxide block, and random copolymer. These may be blocked with an alkyl group, an aryl group, an acyl group or the like, or may be a block polyether ester or a block polyether amide obtained by reacting various glycol components, amine components, and acid components. Among these, those whose ends are blocked with an alkyl group are more preferable because light resistance is improved.

ポリアルキレングリコール類の平均分子量としては2000〜600000のものが使用可能である。4000〜100000、なかでも5000〜50000の平均分子量のものが容易に入手でき、紡糸安定性も良いので好ましい。   Polyalkylene glycols having an average molecular weight of 2000 to 600000 can be used. Those having an average molecular weight of 4,000 to 100,000, particularly 5,000 to 50,000 are easily available, and are preferable because they have good spinning stability.

有機金属塩としては、R−SOMで示されるスルホン酸金属塩が好ましく用いられる。ここで、Rは炭素数が8〜15のアルキル基、Mはアルカリ金属あるいはアルカリ土類金属であり、その中でもNaが好ましい。ドデシルベンゼンスルホン酸、トリデシルベンゼンスルホン酸、ノニルベンゼンスルホン酸、ジブチルナフタレンスルホン酸、ヘキサデシルスルホン酸、ドデシルスルホン酸などが挙げられ、他にジステアリルリン酸ナトリウムなどのリン酸エステルのアルカリ金属塩なども好ましく用いられる。該有機金属塩は1種でも、2種以上併用してもよい。その配合量は0.5〜3重量%の範囲が好ましい。 As the organic metal salt, a sulfonic acid metal salt represented by R—SO 3 M is preferably used. Here, R is an alkyl group having 8 to 15 carbon atoms, M is an alkali metal or an alkaline earth metal, and among these, Na is preferable. Examples include dodecyl benzene sulfonic acid, tridecyl benzene sulfonic acid, nonyl benzene sulfonic acid, dibutyl naphthalene sulfonic acid, hexadecyl sulfonic acid, and dodecyl sulfonic acid, and other alkali metal salts of phosphate esters such as sodium distearyl phosphate. Etc. are also preferably used. The organometallic salt may be used alone or in combination of two or more. The blending amount is preferably in the range of 0.5 to 3% by weight.

ポリアルキレングリーコール類、および有機金属塩の各繊維形成重合体への添加は、成分形成重合体の重合工程で添加する方法、複合繊維を溶融紡糸する際に該繊維形成重合体とポリアルキレングリコール類および有機金属塩とを混合した後に溶融混練する方法、別々に溶融した該繊維形成重合体とポリアルキレングリコール類および有機金属塩とを溶融紡糸する前に混練する方法等任意の方法を採用することができる。なかでも、ポリアルキレングリコール類および有機金属塩の耐熱性の点、溶融紡糸の作業が容易であること等の点から、該成分形成重合体チップとポリアルキレングリコール類とを混合後溶融紡糸する方法が望ましい。   Polyalkylene glycols and organometallic salts are added to each fiber-forming polymer by a method of adding them in the polymerization step of the component-forming polymer, and when the composite fiber is melt-spun, the fiber-forming polymer and the polyalkylene glycol are added. Any method may be employed, such as a method of melt-kneading the mixture and the organometallic salt, and a method of kneading the melted fiber-forming polymer, the polyalkylene glycol and the organometallic salt before melt spinning. be able to. Among them, from the viewpoint of heat resistance of polyalkylene glycols and organometallic salts, and easy melt spinning, etc., a method of melt spinning after mixing the component-forming polymer chip and polyalkylene glycols. Is desirable.

次に、紡糸口金より吐出された剥離分割型複合繊維は、エジェクターやエアサッカーなど高速牽引流体により1500〜8000m/分、より好ましくは2000〜6000m/分、の速度で索引・細化され、開繊しながら多孔補集面上に補集され、ウェブ状のシートとして巻き取られることにより不織布化される。その際、コロナ放電や接触帯電等の処理を行うと、開繊性はより向上する。   Next, the peelable split type composite fiber discharged from the spinneret is indexed and refined at a speed of 1500 to 8000 m / min, more preferably 2000 to 6000 m / min, by a high-speed traction fluid such as an ejector or air soccer, and opened. The fiber is collected on the porous collecting surface while being finely wound, and wound into a web-like sheet to form a nonwoven fabric. At that time, if treatment such as corona discharge or contact charging is performed, the spreadability is further improved.

このようにして得られた複合繊維の不織布は、必要に応じて複数枚を積層、又は単独で、必要に応じて熱接着され、一旦巻き取られた後に、又は、連続してニードルパンチ処理等の交絡処理を施し、剥離分割処理に供される。   The nonwoven fabric of the composite fiber obtained in this manner is laminated as needed, or alone, thermally bonded as necessary, once wound up, or continuously after needle punching, etc. The entanglement process is applied to the separation separation process.

剥離分割方法は、成分の剥離分割が確実に遂行できる方法であれば任意であり、特に限定されず、また複数の方法を組合わせても良い。例えば機械的な剥離分割処理方法としては、ローラー間で加圧する方法、超音波処理方法、衝撃を与える方法、揉み処理をする方法を例示することができる。   The separation method is not particularly limited as long as the separation and separation of components can be reliably performed, and a plurality of methods may be combined. For example, examples of the mechanical separation and division method include a method of applying pressure between rollers, an ultrasonic treatment method, an impact applying method, and a stagnation treatment method.

本発明においては、上記剥離分割型複合繊維の分割極細繊維化処理に先立って、該長繊維不織布に予め水を付与し水存在下で分割処理することが肝要である。ここで、付与する水には該剥離分割型繊維の少なくとも一方成分を膨潤させる薬品が混合されていてもよく、また付与方法は、水中への浸漬処理する等、従来公知の方法を採用すればよい。但し、緻密化などを目的としている場合は、分割処理に引き続いて収縮熱処理を施すのが好ましいので、繊維の分割が遂行する前に熱がかかる分割処理方法は避けた方が好ましい。高圧水流による分割処理方法は、交絡と同時に分割処理を行うことができる為好ましく用いられる。また、薄目付のものが必要な場合には、ワイピングの用途によっては得られた高目付けのものをスライスすることにより効率的に生産することもできる。   In the present invention, prior to the split ultrafine fiber processing of the split split composite fiber, it is important to preliminarily apply water to the long fiber nonwoven fabric and perform split processing in the presence of water. Here, the water to be applied may be mixed with a chemical that swells at least one component of the separation-divided fiber, and the application method may be a conventionally known method such as immersion in water. Good. However, in the case of aiming at densification or the like, it is preferable to perform shrinkage heat treatment subsequent to the division treatment, so it is preferable to avoid a division treatment method in which heat is applied before fiber division is performed. The dividing method using a high-pressure water stream is preferably used because the dividing process can be performed simultaneously with the confounding. Moreover, when the thing with a thin weight is required, it can also produce efficiently by slicing the thing with the high weight obtained according to the use of wiping.

剥離分割処理後の単糸繊度は、ワイピングクロスとしての高い拭き取り性を付与するためには0.01〜0.30dtexの範囲が適当である。0.01dtex未満のものは、剥離分割が困難となったり、剥離分割後の繊維があまりにも細いため繊維間で膠着が生じたりする傾向が出てくる。また0.30dtexを超えると拭き取り性が低下し又繊維が太すぎるため均一で微細な不織布が得られ難くなる。   The single yarn fineness after the separation treatment is suitably in the range of 0.01 to 0.30 dtex in order to impart high wiping properties as a wiping cloth. Those having a thickness of less than 0.01 dtex tend to be difficult to separate by peeling, or the fibers after the separation and separation are so thin that sticking occurs between the fibers. On the other hand, if it exceeds 0.30 dtex, the wiping property is lowered and the fiber is too thick, making it difficult to obtain a uniform and fine nonwoven fabric.

このような剥離分割後の細い繊度は、剥離分割型複合繊維の単糸繊度と成分分割数とから決定される。剥離分割型複合繊維の分割前単糸繊度は1〜10dtexとするのが好ましい。剥離分割型複合繊維の分割前単糸繊度が1dtex未満であると紡糸時に糸切れが発生し易くなる。剥離分割型複合繊維の分割前単糸繊度が10dtexより大きくなると、剥離分割後の繊度をより細くするのが難しくなる。   Such fine fineness after separation by separation is determined from the single yarn fineness and the number of component divisions of the separation-division type composite fiber. The single yarn fineness before splitting of the peelable split composite fiber is preferably 1 to 10 dtex. If the single yarn fineness before splitting of the peelable split composite fiber is less than 1 dtex, yarn breakage is likely to occur during spinning. If the single yarn fineness before separation of the peelable split composite fiber is greater than 10 dtex, it becomes difficult to make the fineness after the peel splitting finer.

以下、実施例により、本発明を更に具体的に説明する。
なお、実施例における各項目は次の方法で測定した。
(1)剥離分割率
不織布の断面を電子顕微鏡にて200倍で撮影し、50本の繊維の断面積を測定し、全体の面積と未分割(完全に剥離分割していない、例えば、2個や3個程度に剥離分割したものも含む)の繊維の断面積の差を全体の面積で除して求めた。
(2)剥離分割後の単糸繊度
口金より紡出され、空気流により高速牽引された直後の複合繊維をサンプリングし、繊度測定器(SERCH CO.LTD、型式DC−21)を用いて試長2.5cm、荷重0.3gにて測定し、10本の平均単糸繊度から複合繊維繊度を求め、下記式により算出して求めた。
剥離分割後の単糸繊度=複合繊維の平均単糸繊度/分割数/(剥離分割率/100)
(3)制電性
不織布をガラス板と擦り合わせた後、不織布表面静電気量を、静電電位測定器(シシド静電気株式会社製 STATIRON DZ3)にて測定した。
(4)拭き取り性
着色液(Suminol Fast Blue 4GL:0.2%、水:20.0%、エチレングリコール(重合度300):79.8%)を、30cm×20cmの大きさアクリル板上に、スクリーンプリント用ステージで均一に塗布した後、該アクリル板上に、200gの荷重がのった8cm×6cmの試料を2000mm/分で滑らせ、アクリル板上に残った着色液の割合を、写真に撮影した後測定し、その結果を以下のように示した。
○:アクリル板上の残液が、塗布量の20%未満
×:アクリル板上の残液が、塗布量の20%以上
Hereinafter, the present invention will be described more specifically with reference to examples.
In addition, each item in an Example was measured with the following method.
(1) Detachment division ratio A cross section of the nonwoven fabric was photographed at 200 times with an electron microscope, the cross-sectional area of 50 fibers was measured, and the entire area and undivided (not completely separated by separation, for example, 2 pieces And the difference in the cross-sectional area of the fibers (including those separated and separated into about 3 pieces) was obtained by dividing by the total area.
(2) Single yarn fineness after separation after separation The composite fiber immediately after being spun from the base and pulled at high speed by the air flow is sampled, and the length is measured using a fineness measuring instrument (SERCH CO. LTD, model DC-21). The measurement was performed at 2.5 cm and a load of 0.3 g, and the composite fiber fineness was determined from the 10 average single yarn finenesses.
Single yarn fineness after separation after separation = average single yarn fineness of composite fiber / number of divisions / (exfoliation division ratio / 100)
(3) Antistatic property After the non-woven fabric was rubbed with the glass plate, the surface static electricity amount of the non-woven fabric was measured with an electrostatic potential measuring device (STATIRON DZ3, manufactured by Sisid Electric Co., Ltd.).
(4) Wiping property A colored liquid (Suminol Fast Blue 4GL: 0.2%, water: 20.0%, ethylene glycol (degree of polymerization 300): 79.8%) is placed on an acrylic plate having a size of 30 cm × 20 cm. After uniformly applying on the screen printing stage, an 8 cm × 6 cm sample having a load of 200 g was slid at 2000 mm / min on the acrylic plate, and the ratio of the colored liquid remaining on the acrylic plate was determined. Measurements were taken after taking photographs, and the results were shown as follows.
○: The residual liquid on the acrylic plate is less than 20% of the coating amount. X: The residual liquid on the acrylic plate is 20% or more of the coating amount.

[実施例1]
120℃で乾燥したナイロン−6(m−クレゾール中の極限粘度1.2)に対して、分子量20000のポリエチレングリコール(日本油脂(株)社製)を2.0重量%、ドデシルベンゼンスルホン酸ナトリウムを1重量%ブレンドした混合体を、エクストルーダーに供給し溶融した。別途160℃で乾燥したポリエチレンテレフタレート(o−クロロフェノール中の極限粘度0.64)を、前述とは別個のエクストルーダーにて溶融した。
[Example 1]
Polyethylene glycol having a molecular weight of 20000 (manufactured by Nippon Oil & Fats Co., Ltd.) and 2.0% by weight of sodium dodecylbenzenesulfonate with respect to nylon-6 (intrinsic viscosity 1.2 in m-cresol) dried at 120 ° C. A 1% by weight blended mixture was fed to an extruder and melted. Separately dried polyethylene terephthalate (at an intrinsic viscosity of 0.64 in o-chlorophenol) at 160 ° C. was melted with an extruder separate from the foregoing.

引き続き、上記ポリエチレングリコール/有機金属塩/ナイロン−6混合体溶融流は導管ポリマー温度245℃で、ポリエチレンテレフタレート溶融流は300℃で、275℃に保温されたスピンブロックへ導入し、特開昭54−38914号公報記載の合流部を有し、幅100cm×20cmの範囲に3200個の丸断面吐出孔を格子状配列で有する矩形の紡糸口金を用いて両重合体溶融流を流量比で50/50となる様合流させ複合し1g/分・孔の量で吐出し、120cm幅のスリット形状を有するエアサッカーで空気圧力230kPa(吐出量と複合繊維繊度から換算した紡速で約2700m/分)にて高速牽引した。   Subsequently, the polyethylene glycol / organometallic salt / nylon-6 mixture melt flow was introduced into a spin block maintained at 275 ° C. at a conduit polymer temperature of 245 ° C. and a polyethylene terephthalate melt flow at 300 ° C. No. 38914 and a rectangular spinneret having 3200 round cross-section discharge holes in a grid arrangement in a range of 100 cm × 20 cm in width, the both polymer melt flows at a flow rate ratio of 50 / 50 g of air and a 120 cm wide slit with air pressure of 230 kPa (spinning speed converted from the discharge rate and composite fiber fineness, about 2700 m / min) Towed at high speed.

牽引された複合繊維の分割前繊度は3.7dtexとし、空気流とともに補集ネット上に、図1に示すような16分割の多層貼合せ型断面をもつ剥離分割型複合繊維からなるウェブとしてネットコンベアー上に幅1mで開繊、補集した。引き続き、得られたウェブを連続で上下100℃のエンボスカレンダーにて軽く熱接着を行い、次いで速度50m/分で移動しているメッシュ状のスクリーンの上に供給し、水をスクリーン上部から、幅方向に亘って20mm間隔で水供給ノズルのついたノズルより付与した後に高圧(7.5MPa)の水流によって、分割処理を行った。その際、高圧水流の噴出口の孔径は0.1mm、孔数は601個、孔ピッチは1mm、噴射孔群列は6列とし、該ウェッブの表裏に一回ずつ処理を施した。この後、マングルロールにて水分を絞り、98℃の雰囲気に保たれた乾燥・熱処理装置で処理して、目付80g/mの不織布を得た。得られたワイピングクロスの評価結果を表1に示す。 The pulled fineness of the composite fiber is 3.7 dtex, and the net is a web made of a split split type composite fiber having a 16-layer multi-layer laminated cross section as shown in FIG. The fiber was opened and collected with a width of 1 m on the conveyor. Subsequently, the obtained web was continuously lightly bonded with an embossing calendar at 100 ° C. up and down, and then supplied onto a mesh screen moving at a speed of 50 m / min. After applying from a nozzle provided with a water supply nozzle at intervals of 20 mm across the direction, a division treatment was performed by a high-pressure (7.5 MPa) water flow. At that time, the hole diameter of the outlet of the high-pressure water flow was 0.1 mm, the number of holes was 601, the hole pitch was 1 mm, and the injection hole group row was 6 rows, and the treatment was performed once on the front and back of the web. Then, the moisture was squeezed with a mangle roll, and it processed with the drying and heat processing apparatus maintained at 98 degreeC atmosphere, and obtained the nonwoven fabric of 80 g / m < 2 > of fabric weights. The evaluation results of the obtained wiping cloth are shown in Table 1.

[実施例2]
120℃で乾燥したナイロン−6(m−クレゾール中の極限粘度1.2)に対して、分子量25000のポリトリメチレングリコールを0.7重量%、ドデシルベンゼンスルホン酸ナトリウムを0.5重量%ブレンドした混合体を、エクストルーダーに供給し溶融した。別途160℃で乾燥したポリエチレンテレフタレート(o−クロロフェノール中の極限粘度0.62)を、前述とは別個のエクストルーダーにて溶融した。
以下、実施例1と同様な条件、方法で吐出、高速牽引、捕集、熱接着、交絡処理および剥離分割処理を行い目付80g/mの極細繊維不織布を得た。本例で得られた評価結果を表1に示す。
[Example 2]
A blend of 0.7% by weight of polytrimethylene glycol having a molecular weight of 25000 and 0.5% by weight of sodium dodecylbenzenesulfonate to nylon-6 (intrinsic viscosity 1.2 in m-cresol) dried at 120 ° C. The resulting mixture was fed to an extruder and melted. Separately dried polyethylene terephthalate (1602 intrinsic viscosity in o-chlorophenol) was melted with an extruder separate from the above.
Thereafter, discharging, high-speed traction, collection, thermal bonding, entanglement treatment, and exfoliation division treatment were performed under the same conditions and methods as in Example 1 to obtain an ultrafine fiber nonwoven fabric having a basis weight of 80 g / m 2 . The evaluation results obtained in this example are shown in Table 1.

[実施例3]
実施例1で分割前繊度2.5dtex、分割数を48とした以外は同様にして行った。得られた評価結果を表1に示す。0.05dtexという細繊度でも分割率は良好で拭き取り性も良好であった。
[Example 3]
The same procedure as in Example 1 was performed except that the fineness before division was 2.5 dtex and the number of divisions was 48. The obtained evaluation results are shown in Table 1. Even with a fineness of 0.05 dtex, the division ratio was good and the wiping property was also good.

[比較例1〜4]
ポリエチレングリコール、および有機金属塩の添加量を変更した以外は、実施例1と同様の方法でワイピングクロス用極細繊維不織布を得た。本例で得られた評価結果を表1に示す。
[Comparative Examples 1-4]
An ultrafine fiber nonwoven fabric for wiping cloth was obtained in the same manner as in Example 1 except that the addition amounts of polyethylene glycol and organic metal salt were changed. The evaluation results obtained in this example are shown in Table 1.

Figure 2008200424
Figure 2008200424

表1に示す通り、本発明の範囲内の実施例1、2により得られたワイピングクロスは良好な制電性、拭き取り性を示したのに対し、ポリエチレングリコールおよび有機金属塩の添加量が本発明の範囲を外れる比較例1〜4においては、比較例1は制電性や拭き取り性は優れるものの、紡糸工程における単糸切れが多く安定的に生産不可であり、比較例2〜4においては分割性が十分でなく、拭き取り性が不良となった。特に有機金属塩の添加量の少ない比較例2では静電気発生量が多く埃を拭き取る際十分に除去不可であった。   As shown in Table 1, the wiping cloths obtained in Examples 1 and 2 within the scope of the present invention showed good antistatic properties and wiping properties, whereas the addition amounts of polyethylene glycol and organometallic salt were the same. In Comparative Examples 1 to 4 that deviate from the scope of the invention, although Comparative Example 1 is excellent in antistatic and wiping properties, there are many single yarn breaks in the spinning process, and stable production is not possible. In Comparative Examples 2 to 4, The splitting property was not sufficient and the wiping property was poor. In particular, in Comparative Example 2 in which the amount of the organic metal salt added was small, the amount of static electricity generated was large and could not be sufficiently removed when wiping dust.

本発明の極細繊維不織布はポリアミド系重合体とポリエステル系重合体とからなり、良好な制電性、拭き取り性を有するので家庭用〜電気、電子用等のワイピングクロス用として有用である。   The ultrafine fiber nonwoven fabric of the present invention comprises a polyamide polymer and a polyester polymer, and has good antistatic properties and wiping properties, so that it is useful for wiping cloths for household use, electricity use, and electronic use.

本発明の剥離分割型複合繊維の繊維断面を示した模式図。The schematic diagram which showed the fiber cross section of the peeling division | segmentation type | mold composite fiber of this invention.

符号の説明Explanation of symbols

1 :ポリアミド系重合体成分
2 :ポリエステル重合体成分
1: Polyamide polymer component 2: Polyester polymer component

Claims (2)

ポリアミド系重合体とポリエステル系重合体の2成分で構成され、分割後の単糸繊度が0.01〜0.30dtexである剥離分割型複合繊維からなる不織布を分割極細化処理してなるワイピングクロス用極細不織布の製造方法において、少なくとも一方の重合体中に、ポリアルキレングリコール類を0.3〜3.0重量%及びR−SOMで示される有機金属塩を0.5〜3.0重量%含有する剥離分割型複合繊維とし、不織布となした後に水存在下で分割処理することを特徴とするワイピングクロス用極細不織布の製造方法。
(ここで、Rは炭素数8〜15のアルキル基、Mはアルカリ金属あるいはアルカリ土類金属である。)
A wiping cloth that is composed of two components of a polyamide polymer and a polyester polymer, and is obtained by splitting and thinning a nonwoven fabric made of a split split composite fiber having a split single yarn fineness of 0.01 to 0.30 dtex. In the method for producing an ultrafine nonwoven fabric, 0.3 to 3.0% by weight of polyalkylene glycols and 0.5 to 3.0% of an organometallic salt represented by R—SO 3 M are contained in at least one polymer. A method for producing an ultrafine nonwoven fabric for wiping cloth, characterized in that it is made into a split split-type composite fiber containing% by weight, and after being made into a nonwoven fabric, it is split in the presence of water.
(Here, R is an alkyl group having 8 to 15 carbon atoms, and M is an alkali metal or alkaline earth metal.)
ポリアミド系重合体とポリエステル系重合体の2成分で構成され、分割後の単糸繊度が0.01〜0.30dtexである剥離分割型複合繊維からなる不織布を分割極細化処理してなるワイピングクロス用極細不織布であって、剥離分割型複合繊維の少なくとも一方の重合体中に、ポリアルキレングリコール類を0.3〜3.0重量%及びR−SOMで示される有機金属塩を0.5〜3.0重量%含有することを特徴とするワイピングクロス用極細不織布。
(ここで、Rは炭素数8〜15のアルキル基、Mはアルカリ金属あるいはアルカリ土類金属である。)
A wiping cloth that is composed of two components of a polyamide polymer and a polyester polymer, and is obtained by splitting and thinning a nonwoven fabric made of a split split composite fiber having a split single yarn fineness of 0.01 to 0.30 dtex. An ultrafine nonwoven fabric for use, wherein at least one polymer of the release-partitioned composite fiber contains 0.3 to 3.0% by weight of a polyalkylene glycol and an organometallic salt represented by R—SO 3 M in an amount of 0. An ultrafine nonwoven fabric for wiping cloth, comprising 5 to 3.0% by weight.
(Here, R is an alkyl group having 8 to 15 carbon atoms, and M is an alkali metal or alkaline earth metal.)
JP2007042708A 2007-02-22 2007-02-22 Manufacturing method of ultrafine nonwoven fabric for wiping cloth and ultrafine nonwoven fabric for wiping cloth Pending JP2008200424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007042708A JP2008200424A (en) 2007-02-22 2007-02-22 Manufacturing method of ultrafine nonwoven fabric for wiping cloth and ultrafine nonwoven fabric for wiping cloth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007042708A JP2008200424A (en) 2007-02-22 2007-02-22 Manufacturing method of ultrafine nonwoven fabric for wiping cloth and ultrafine nonwoven fabric for wiping cloth

Publications (1)

Publication Number Publication Date
JP2008200424A true JP2008200424A (en) 2008-09-04

Family

ID=39778498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007042708A Pending JP2008200424A (en) 2007-02-22 2007-02-22 Manufacturing method of ultrafine nonwoven fabric for wiping cloth and ultrafine nonwoven fabric for wiping cloth

Country Status (1)

Country Link
JP (1) JP2008200424A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03159627A (en) * 1989-11-20 1991-07-09 Mitsubishi Rayon Co Ltd Nonwoven fabric for cleaning
JPH0491224A (en) * 1990-07-27 1992-03-24 Kuraray Co Ltd Nonwoven fabric having excellent water absorbing performance
JP2004008501A (en) * 2002-06-07 2004-01-15 Teijin Ltd Ultrafine fiber nonwoven fabric for wiping cloth

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03159627A (en) * 1989-11-20 1991-07-09 Mitsubishi Rayon Co Ltd Nonwoven fabric for cleaning
JPH0491224A (en) * 1990-07-27 1992-03-24 Kuraray Co Ltd Nonwoven fabric having excellent water absorbing performance
JP2004008501A (en) * 2002-06-07 2004-01-15 Teijin Ltd Ultrafine fiber nonwoven fabric for wiping cloth

Similar Documents

Publication Publication Date Title
JP5272229B2 (en) Split type composite fiber, aggregate thereof, and fiber molded body using the split type composite fiber
CN104066491B (en) Filter filter material and manufacture method thereof and filter
JP2005264420A (en) Nano-fiber synthetic paper and method for producing the same
JP2007084946A (en) Splittable conjugate fiber
JP2014231650A (en) Ultra-fine fiber, substrate for artificial leather and artificial leather
JP6090156B2 (en) Composite fiber, artificial leather substrate and artificial leather
JP3827962B2 (en) Method for producing ultrafine fiber nonwoven fabric
JP2008200424A (en) Manufacturing method of ultrafine nonwoven fabric for wiping cloth and ultrafine nonwoven fabric for wiping cloth
JP4298186B2 (en) Method for producing ultra-thin fiber nonwoven fabric
JP2007254942A (en) Nonwoven fabric
JP2004008501A (en) Ultrafine fiber nonwoven fabric for wiping cloth
JP2010133042A (en) Splittable conjugate fiber
JP6897085B2 (en) Split type composite fiber
JP4316783B2 (en) Manufacturing method of long fiber nonwoven fabric
JP4468025B2 (en) Split composite fiber and polyamide fiber structure
JP2008202194A (en) Ultra fine filament nonwoven fabric and method for producing ultra fine filament nonwoven fabric
JP4485824B2 (en) Split type composite fiber and fiber structure
JP4453179B2 (en) Split fiber and fiber molded body using the same
JP3920157B2 (en) Method for producing ultrafine fiber nonwoven fabric
JP2010133044A (en) Hollow splittable conjugate fiber and method for producing ultrafine fiber nonwoven fabric using the same
JP2005171430A (en) Method for producing filament nonwoven fabric
JPH07138863A (en) Polyester ultrafine fiber nonwoven web and its production
CN113056578B (en) Ultrafine fibers and fiber dispersions
JP2010133045A (en) Method for producing splittable fiber
JP2001115337A (en) Splittable conjugated fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20091221

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110613

A131 Notification of reasons for refusal

Effective date: 20110621

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD02 Notification of acceptance of power of attorney

Effective date: 20110707

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Effective date: 20110707

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111206