JP2008202194A - Ultra fine filament nonwoven fabric and method for producing ultra fine filament nonwoven fabric - Google Patents

Ultra fine filament nonwoven fabric and method for producing ultra fine filament nonwoven fabric Download PDF

Info

Publication number
JP2008202194A
JP2008202194A JP2007042709A JP2007042709A JP2008202194A JP 2008202194 A JP2008202194 A JP 2008202194A JP 2007042709 A JP2007042709 A JP 2007042709A JP 2007042709 A JP2007042709 A JP 2007042709A JP 2008202194 A JP2008202194 A JP 2008202194A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
fiber
polymer
separation
ultra
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007042709A
Other languages
Japanese (ja)
Inventor
Kazuhiro Morishima
一博 森島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Cordley Ltd
Original Assignee
Teijin Cordley Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Cordley Ltd filed Critical Teijin Cordley Ltd
Priority to JP2007042709A priority Critical patent/JP2008202194A/en
Publication of JP2008202194A publication Critical patent/JP2008202194A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Nonwoven Fabrics (AREA)
  • Multicomponent Fibers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an ultra fine filament nonwoven fabric which has good antistaticity, has an improved uniform opening property in a sheet-forming process, prevents the generation of static electricity in a post process, and can easily be peeled and split by a mechanical impact treatment in a splitting process. <P>SOLUTION: This method for producing the ultra fine filament nonwoven fabric including finely splitting peel-split type conjugated fibers composed of a polyamide-based polymer and a polyester-based polymer, includes adding 0.3 to 3.0 wt.% of a polyalkylene glycol and 0.5 to 3.0 wt.% of an organic metal salt represented by formula: R-SO<SB>3</SB>M to at least one of the polymers to produce the peel-split type conjugated fibers, producing a nonwoven fabric from the peel-splitting type conjugated fibers, and then subjecting the nonwoven fabric to a splitting treatment in the presence of water. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ポリアミド系重合体とポリエステル系重合体とで構成される剥離分割型複合繊維を分割処理してなる極細長繊維不織布の製造方法、および該極細繊維不織布に関するものである。さらに詳しくは、該剥離分割型複合繊維を分割処理して成る極細長繊維不織布を製造する際の帯電性や紡糸安定性などの工程安定性及び分割性向上に関するものである。   TECHNICAL FIELD The present invention relates to a method for producing an ultra-thin fiber nonwoven fabric obtained by splitting a separation-dividing composite fiber composed of a polyamide polymer and a polyester polymer, and the ultra-fine fiber nonwoven fabric. More specifically, the present invention relates to process stability such as charging property and spinning stability and improvement of splitting properties when manufacturing an ultra-thin fiber non-woven fabric obtained by splitting the release split composite fiber.

従来より極細繊維不織布の製造方法としては、複数種の高分子重合体から構成される複合繊維の一方の重合体成分を溶出除去する方法、または剥離分割型複合繊維に機械的外力を与え、極細繊維に分割して不織布を製造する方法が知られている。
なかでも2成分貼り合わせ剥離分割型複合繊維(以後単に剥離分割型複合繊維と略称する)をスパンボンド法と組み合わせることにより得られる不織布を、一方の重合体成分を溶出しないで極細繊維化する方法は、エネルギーコストや環境面への配慮の点でも優れた方法である。
Conventionally, a method for producing an ultrafine fiber nonwoven fabric includes a method of eluting and removing one polymer component of a composite fiber composed of a plurality of types of polymer polymers, or applying a mechanical external force to a peel-off split composite fiber to provide an ultrafine fiber. A method of manufacturing a nonwoven fabric by dividing into fibers is known.
In particular, a method of making a non-woven fabric obtained by combining a two-component bonded release split composite fiber (hereinafter simply abbreviated as a split split composite fiber) with a spunbond method into an ultrafine fiber without eluting one polymer component. Is an excellent method in terms of energy costs and environmental considerations.

この紡糸直結型のスパンボンド法において、紡糸された剥離分割型複合繊維をできるだけ均一に開繊させ、繊維同士の局所的な絡みを少なくして、シート状に補集することが、均一な不織布を製造する上で必須である。しかし、高分子重合体からなる剥離分割型複合繊維は製糸中に静電気の発生が多く、シート化工程で均一に開繊することが極めて難しい。従来、コロナ放電装置や接触帯電装置等特殊な装置を設けて走行繊維を処理する方法が採用されているが、静電気を抑制して均一な開繊を達成するには到っていないのが現状である。   In this direct-spun type spunbond method, the spun peelable split composite fibers can be opened as uniformly as possible, and the local entanglement between the fibers can be reduced and collected in a sheet form to form a uniform nonwoven fabric. It is essential in manufacturing. However, the split-divided composite fiber made of a high molecular polymer generates a lot of static electricity during yarn production, and it is extremely difficult to spread it uniformly in the sheet forming process. Conventionally, a method of treating the traveling fiber by providing a special device such as a corona discharge device or a contact charging device has been adopted, but it has not yet been achieved to achieve uniform opening by suppressing static electricity It is.

また剥離分割型複合繊維の分割処理方法、分割率を向上する方法に関しても様々な試みが提案されている。例えば、特開平4−300351号公報、特開平10−53948号公報等には、剥離分割型複合繊維からなる長繊維不織布を、高圧水流機で処理して該剥離分割型複合繊維を極細繊維に剥離分割して極細繊維不織布を得る方法が提案されている。しかし、これらの機械的方法だけでは簡単に分割されるものではなく、繊維の分割斑が生じやすく、均一な不織布は得られにくいという問題点や、また特殊な高圧柱状水流を必要とし、高目付のものでは水流が不織布厚み中心部まで到達せず分割困難となり、さらにより易分割可能なものが望まれている。   Various trials have also been proposed regarding a method for splitting a split split composite fiber and a method for improving the split rate. For example, in JP-A-4-300311, JP-A-10-53948, etc., a long-fiber non-woven fabric made of a peelable split composite fiber is treated with a high-pressure water flow machine to convert the split splittable composite fiber into an ultrafine fiber. A method has been proposed in which an ultrafine fiber nonwoven fabric is obtained by peeling and dividing. However, these mechanical methods alone are not easy to divide, but the problem is that fiber unevenness is likely to occur, and it is difficult to obtain a uniform nonwoven fabric, and a special high-pressure columnar water flow is required. In this case, it is difficult to divide the water flow because it does not reach the center of the nonwoven fabric thickness.

剥離分割型複合繊維の分割性を改良する試みとして、例えば特開平5−331758号公報には、ポリエステル成分からなる剥離分割型複合繊維の一成分にポリアルキレングリコール類を含有させ、該複合繊維からなる不織布に水存在下で機械的応力を負荷させ、剥離分割を行い極細繊維とする方法が提示されている。しかし、この方法では、剥離分割を十分に発現させるためには重合体に対して数十%という大量のポリアルキレングリコール類を含有させる必要があるため、繊維物性が低下するという問題がある。   As an attempt to improve the splitting property of the peelable split composite fiber, for example, JP-A-5-331758 includes a polyalkylene glycol in one component of the split splittable composite fiber composed of a polyester component, and the composite fiber. There has been proposed a method in which a mechanical stress is applied to a nonwoven fabric to be made into ultrafine fibers by separation and separation. However, this method has a problem in that the physical properties of the fiber are lowered because it is necessary to contain a large amount of polyalkylene glycols of several tens of percent with respect to the polymer in order to sufficiently exhibit the separation of peeling.

本発明者らは、上記問題を鑑み、特開2003−3359号公報にて、ポリエステルとポリアミドからなる剥離分割型繊維からなる長繊維不織布において、剥離分割型繊維の外周に占めるポリアミドの割合を規定し、かつ少なくとも一方の重合体にポリアルキレングリコール類を0.3〜3.0重量%含有させることにより、開繊性と分割性を向上させる方法を提案したが、この方法によりある程度制電性が得られてシート化工程での開繊性や分割性は向上するものの、乾燥している冬場などでは不織布工程以降の分割工程や搬送時、又シートの巻き取り巻き出し時に多大な静電気が発生し、工程の安定性を著しく阻害しているのが現状であり、分割性も十分と言えず更なる向上が必要であった。   In view of the above problems, the present inventors have specified the ratio of polyamide occupying the outer periphery of the peelable split fibers in Japanese Unexamined Patent Publication No. 2003-3359 in the long-fiber nonwoven fabric made of peelable split fibers made of polyester and polyamide. In addition, a method has been proposed in which at least one polymer contains 0.3 to 3.0% by weight of polyalkylene glycols to improve the spreadability and splitting ability. However, in the dry winter season, a large amount of static electricity is generated when the sheet is split and transported after the nonwoven fabric process, and when the sheet is unwound and unwound. However, the current situation is that the stability of the process is remarkably hindered, and it cannot be said that the separability is sufficient, and further improvement is necessary.

このように、制電性が良好で、シート化工程での均一開繊性が良く、後工程での静電気発生を防止し、又分割工程で機械的衝撃処理により容易に剥離分割されて、極細繊維となる剥離分割型複合繊維を使った極細長繊維不織布の製造方法の開発が大いに望まれていた。   In this way, the antistatic property is good, the uniform spreadability in the sheeting process is good, the generation of static electricity in the subsequent process is prevented, and the film is easily separated and divided by mechanical impact treatment in the dividing process. There has been a great demand for the development of a method for producing an ultra-thin fiber non-woven fabric using a peelable split composite fiber.

特開平4−300351号公報JP-A-4-30031 特開平10−53948号公報JP-A-10-53948 特開平5−331758号公報JP-A-5-331758 特開2003−3359号公報JP 2003-3359 A

本発明は、上記従来技術を背景になされたもので、制電性が良好で、シート化工程での均一開繊性が向上し、後工程での静電気発生を防止し、又分割工程で機械的衝撃処理により容易に剥離分割される極細長繊維不織布の製造方法を提供する。   The present invention has been made against the background of the above-described prior art, has good antistatic properties, improved uniform spreadability in the sheeting process, prevents generation of static electricity in the subsequent process, and machine in the dividing process. Provided is a method for producing an ultra-thin long fiber nonwoven fabric that can be easily separated by mechanical impact treatment.

本発明者等は、上記課題を解決するために鋭意検討を重ねた結果、ポリアミド系重合体とポリエステル系重合体とからなる剥離分割型複合繊維を分割極細化してなる極細長繊維不織布の製造方法において、少なくとも一方の重合体中に、ポリアルキレングリコール類を0.3〜3.0重量%及びRSOMで表される有機金属塩を0.5〜3.0重量%含有する剥離分割型複合繊維とし、不織布化後水存在下で分割処理する。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have produced a method for producing an ultra-thin fiber non-woven fabric obtained by splitting ultrafine release split composite fibers composed of a polyamide polymer and a polyester polymer. In which at least one polymer contains 0.3 to 3.0% by weight of a polyalkylene glycol and 0.5 to 3.0% by weight of an organometallic salt represented by RSO 3 M A composite fiber is formed, and after being made into a nonwoven fabric, it is divided in the presence of water.

本発明によれば、ポリアミド系重合体とポリエステル系重合体からなる剥離分割型複合繊維を分割極細化してなる極細長繊維不織布の製造工程において、少なくとも一方の繊維成分にポリアルキレングリコール類とR−SOMで表される有機金属塩を特定量存在させることにより、紡糸安定性や制電性に基づく工程安定性が改良され、又予想外にも剥離分割性にも大きな効果があり、優れた品質、品位の極細繊維不織布を得ることができる。 According to the present invention, in the production process of an ultra-thin fiber non-woven fabric obtained by splitting ultrafine separation-type composite fibers composed of a polyamide-based polymer and a polyester-based polymer, at least one fiber component contains polyalkylene glycols and R- The presence of a specific amount of the organic metal salt represented by SO 3 M improves the process stability based on the spinning stability and antistatic property, and has an unexpectedly great effect on the separation of the separation. Quality and quality ultra-fine fiber nonwoven fabric can be obtained.

以下本発明の実施形態について詳細に説明する。
本発明で用いられる剥離分割型複合繊維は、繊維形成性ポリエステル系重合体と繊維形成性ポリアミド系重合体とから構成され、機械的処理などで各成分に剥離分割できるものであれば特に限定されない。好ましく用いられるポリアミド系重合体としては、例えばナイロン−6、ナイロン−66、ナイロン−610、ナイロン−11、ナイロン−12等があげられる。一方ポリエステル系重合体としては、例えばポリエチレンテレフタレート、ポリトリエチレングテレフタレート、ポリブチレンテレフタレート及びこれらを主成分とする共重合ポリエステル等があげられる。中でもナイロン−6/ポリエチレンテレフタレートの組合わせが生産安定性、コスト等の面から好ましい。
Hereinafter, embodiments of the present invention will be described in detail.
The release-dividing composite fiber used in the present invention is not particularly limited as long as it is composed of a fiber-forming polyester polymer and a fiber-forming polyamide-based polymer and can be separated into each component by mechanical treatment or the like. . Examples of polyamide polymers that are preferably used include nylon-6, nylon-66, nylon-610, nylon-11, nylon-12, and the like. On the other hand, examples of the polyester-based polymer include polyethylene terephthalate, polytriethylene terephthalate, polybutylene terephthalate, and copolymer polyesters containing these as main components. Among these, a combination of nylon-6 / polyethylene terephthalate is preferable from the viewpoints of production stability and cost.

剥離分割型複合繊維の複合形態としては、ポリエステル系重合体とポリアミド系重合体の接合界面の少なくとも一部分が繊維断面円周に到達しており、機械的処理等により各成分に剥離分割できる形態となっていることが必要である。また、お互いに一方成分が他方成分によって所定数に分割されている形態であることが、剥離分割性の点で望ましい。なかでも、1成分が他成分間に放射状に配置されている断面形状が好ましい。このような複合形態は、例えば特開昭54−38914号公報記載の複合紡糸口金を用いて、ポリエステル系重合体とポリアミド系重合体とを複合紡糸することによって得られる。   As the composite form of the peelable split type composite fiber, at least a part of the joint interface between the polyester polymer and the polyamide polymer has reached the circumference of the fiber cross section and can be peeled and split into each component by mechanical treatment or the like It is necessary to become. In addition, it is desirable from the viewpoint of the separation property that one component is divided into a predetermined number by the other component. Among these, a cross-sectional shape in which one component is arranged radially between other components is preferable. Such a composite form can be obtained by, for example, composite spinning a polyester polymer and a polyamide polymer using a composite spinneret described in JP-A-54-38914.

本発明では、繊維断面円周に占めるポリエステル系重合体の円弧長(B)に対するポリアミド系重合体の円弧長(A)の比率(以下、重合体成分円弧長比(A/B)と称する)を0.1〜2.0の範囲、さらに好ましくは0.2〜1.5の範囲となるよう2成分を配置することが望ましい。   In the present invention, the ratio of the arc length (A) of the polyamide polymer to the arc length (B) of the polyester polymer occupying the fiber cross-section circumference (hereinafter referred to as polymer component arc length ratio (A / B)). It is desirable to arrange the two components so that is in the range of 0.1 to 2.0, more preferably in the range of 0.2 to 1.5.

重合体成分円弧長比(A/B)が2.0を超えると、開繊性が大幅に低下し、不織布の目付け斑および強度低下が発生する。ポリアミド系重合体は比較的ガラス転移点が低く、固化が遅く、また水分を吸着しやすいことなどによって繊維同士が密着し易くなり、開繊不良が起こるものと推測される。一方、重合体成分円弧長比(A/B)が0.1未満であると、剥離分割処理時、外部応力が2成分の接合界面へ充分に負荷されなくなり剥離分割が困難となる。   When the polymer component arc length ratio (A / B) exceeds 2.0, the opening property is significantly lowered, and the nonwoven fabric weight and the strength are reduced. It is presumed that the polyamide-based polymer has a relatively low glass transition point, is slow to solidify, easily adsorbs moisture, and the fibers tend to adhere to each other, resulting in poor opening. On the other hand, when the polymer component arc length ratio (A / B) is less than 0.1, the external stress is not sufficiently applied to the two-component bonding interface during the separation process, and the separation process becomes difficult.

なお、各重合体成分の円弧長は、複合紡糸口金内での各重合体成分の合流方法、重量比、あるいは口金内合流部での粘度比を変更することで任意に設定できる。特に、溶融押出しされた重合体がスピンブロックに流入する直前の溶融体温度(以下導管ポリマー温度と称する)を各々設定することによって、各々の重合体の溶融粘度を変更し、重合体成分円弧長比(A/B)を設定する方法が簡易であり好ましい。   The arc length of each polymer component can be arbitrarily set by changing the method of joining the polymer components in the composite spinneret, the weight ratio, or the viscosity ratio at the confluence portion in the die. In particular, by setting the melt temperature (hereinafter referred to as the conduit polymer temperature) immediately before the melt-extruded polymer flows into the spin block, the melt viscosity of each polymer is changed, and the polymer component arc length is changed. A method of setting the ratio (A / B) is simple and preferable.

このように成分配置された剥離分割複合繊維の分割数は、2成分を溶融後紡糸口金内で合流させる方法により任意に設定できる。安定して紡糸できる複合繊維の単糸繊度を考慮すると、分割数を4〜48個、より好ましくは8〜24個に設定するのが望ましい。   The number of divisions of the peeled-divided composite fibers in which the components are arranged in this way can be arbitrarily set by a method in which the two components are melted and merged in the spinneret. Considering the single yarn fineness of the composite fiber that can be stably spun, it is desirable to set the number of divisions to 4 to 48, more preferably 8 to 24.

なお、剥離分割型複合繊維の一方成分の全体に対する複合割合を、30〜70重量%の範囲、特に40〜60重量%の範囲とすれば、紡糸工程がより安定となり、安定した断面の剥離分割型複合繊維の適当である。この範囲を外れる場合には、両重合体の粘度バランスの調整が困難となり、紡糸時セクション不良が発生しやすくなり、また、剥離分割効率が低下しやすくなる。   In addition, if the composite ratio with respect to the whole of one component of the peelable split type composite fiber is in the range of 30 to 70% by weight, particularly in the range of 40 to 60% by weight, the spinning process becomes more stable and the cross section of the cross section is stabilized. Type composite fiber is suitable. When outside this range, it is difficult to adjust the viscosity balance of both polymers, section defects during spinning are likely to occur, and the separation efficiency is liable to decrease.

このような剥離型複合繊維全体の断面形状は、丸断面形状、多葉断面形状、多角形形状等任意であり、また中空部を有する形態であってもよい。中空部を有する断面形状のものでは2成分の接合界面長さが短くなるので、剥離分割性がより向上する。   The cross-sectional shape of the whole peelable conjugate fiber is arbitrary, such as a round cross-sectional shape, a multi-leaf cross-sectional shape, and a polygonal shape, and may have a hollow portion. In the case of a cross-sectional shape having a hollow part, the length of the two-component bonding interface is shortened, so that the separation of separation is further improved.

さらに、本発明においては、上記2成分の重合体の少なくとも一成分に、開繊前に、0.3〜3.0重量%、好ましくは0.5〜2.0重量%のポリアルキレングリコール類を含有させると共にR−SOMで表される有機金属塩を0.5〜3.0重量%含有させなければならない。 Further, in the present invention, at least one component of the two-component polymer is 0.3 to 3.0% by weight, preferably 0.5 to 2.0% by weight of polyalkylene glycols before opening. It must be contained 0.5 to 3.0% by weight of organic metal salts represented by R-SO 3 M with the inclusion of.

ポリアルキレングリコール類を少なくとも1成分の重合体へ配合することにより、紡糸工程細化時および繊維補集時に発生する多大な静電気を大幅に抑制し、均一な開繊状態で繊維をウェブ状に捕集することができる。しかしながら静電気を抑制する効果はポリアルキレングリコール類の添加のみでは十分でなく、本発明ではR−SOMで表される有機金属塩を共に添加することにより著しく静電気が抑制される。R−SOMで表される有機金属塩は制電効果を有することが知られており、これを添加することにより不織布の帯電性が防止できることは予想の範囲内であるが、ポリアルキレングリコール類とR−SOMで表される有機金属塩を共存させることにより、制電性と共に分割性が大幅に向上することは予想を超えた効果である。ポリアルキレングリコール類を使用することによりポリアミドとポリエステル成分の界面剥離性が向上するが、更にR−SOMで表される有機金属塩を共存させることにより相乗効果として界面剥離が易化し、分割性の向上が発現する。特に水存在化で機械的応力をかけると良好な分割性を示す。その理由としては明らかではないが、極性の大きいR−SOMで表される有機金属塩による繊維重合体と水との親和性が向上するだけでなく、繊維重合体中でのポリアルレングリコール類の分散性が向上し、ポリエステル/ナイロン界面に存在する界面剥離を易化するポリアルキレングリコール類粒子の存在確率が増えて分割性が大きく向上するものと考えている。 By blending polyalkylene glycols with at least one polymer, a great deal of static electricity generated when the spinning process is thinned and when fibers are collected is greatly suppressed, and the fibers are captured in a web-like form in a uniform open state. Can be collected. However, the addition of polyalkylene glycols is not sufficient for the effect of suppressing static electricity, and in the present invention, static electricity is remarkably suppressed by adding together an organometallic salt represented by R-SO 3 M. The organometallic salt represented by R—SO 3 M is known to have an antistatic effect, and it is within the expectation that the addition of this can prevent the non-woven fabric from being charged. It is an effect beyond expectation that the splitting property is greatly improved together with the antistatic property by coexisting the organic metal salt represented by R-SO 3 M with the alkenyl group. By using polyalkylene glycols, the interfacial releasability of polyamide and polyester components is improved. However, the coexistence of an organometallic salt represented by R—SO 3 M facilitates interfacial exfoliation as a synergistic effect, resulting in separation. Improves sex. In particular, when a mechanical stress is applied in the presence of water, good splitting properties are exhibited. Although the reason for this is not clear, not only the affinity between the fiber polymer and water by the organometallic salt represented by the highly polar R-SO 3 M is improved, but also polyarylene in the fiber polymer. It is considered that the dispersibility of glycols is improved, and the probability of existence of polyalkylene glycol particles that facilitate interfacial peeling at the polyester / nylon interface is increased, thereby greatly improving the resolution.

ポリアルキレングリコール類の添加量が0.3重量%未満では、静電気抑制効果が無く、又成分剥離効果が減失し2成分の剥離分割が困難となる。ポリアルキレングリコール類の添加量が3.0重量%を超える場合、または有機金属塩の添加量が3.0重量%を超える場合被添加重合体の粘度低下を来たし、紡糸が困難となり、重合体のフィブリル化による不織布の物性劣化などの問題が発生する。   When the amount of polyalkylene glycol added is less than 0.3% by weight, there is no static electricity suppressing effect, the component peeling effect is lost, and separation of the two components becomes difficult. When the addition amount of polyalkylene glycol exceeds 3.0% by weight, or when the addition amount of organometallic salt exceeds 3.0% by weight, the viscosity of the polymer to be added is lowered and spinning becomes difficult, and the polymer Problems such as deterioration of the physical properties of the non-woven fabric due to fibrillation occur.

本発明で使用するポリアルキレングリコール類としては、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコール、エチレンオキサイド/プロピレンオキサイドブロックまたはランダム共重合体などを挙げる事ができる。これらはアルキル基、アリール基、アシル基などで末端が封鎖されていても良く、また各種グリコール成分もしくはアミン成分並びに酸成分を反応させたブロックポリエーテルエステルまたはブロックポリエーテルアミドであっても良い。なかでも末端をアルキル基で封鎖したものは、耐光性が良好となるのでより好ましい。   Examples of the polyalkylene glycols used in the present invention include polyethylene glycol, polytrimethylene glycol, polytetramethylene glycol, ethylene oxide / propylene oxide block, and random copolymer. These may be blocked with an alkyl group, an aryl group, an acyl group or the like, or may be a block polyether ester or a block polyether amide obtained by reacting various glycol components, amine components, and acid components. Among these, those whose ends are blocked with an alkyl group are more preferable because light resistance is improved.

ポリアルキレングリコール類の平均分子量としては2000〜600000のものが使用可能である。4000〜100000、なかでも5000〜50000の平均分子量のものが容易に入手でき、紡糸安定性も良いので好ましい。   Polyalkylene glycols having an average molecular weight of 2000 to 600000 can be used. Those having an average molecular weight of 4,000 to 100,000, particularly 5,000 to 50,000 are easily available, and are preferable because they have good spinning stability.

有機金属塩としては、R−SOMで示されるスルホン酸金属塩が好ましく用いられる。ここで、Rは炭素数が8〜15のアルキル基、Mはアルカリ金属あるいはアルカリ土類金属であり、その中でもNaが好ましい。ドデシルベンゼンスルホン酸、トリデシルベンゼンスルホン酸、ノニルベンゼンスルホン酸、ジブチルナフタレンスルホン酸、ヘキサデシルスルホン酸、ドデシルスルホン酸などが挙げられ、他にジステアリルリン酸ナトリウムなどのリン酸エステルのアルカリ金属塩なども好ましく用いられる。該有機金属塩は1種でも、2種以上併用してもよい。その配合量は0.5〜3重量%の範囲が好ましい。 As the organic metal salt, a sulfonic acid metal salt represented by R—SO 3 M is preferably used. Here, R is an alkyl group having 8 to 15 carbon atoms, M is an alkali metal or an alkaline earth metal, and among these, Na is preferable. Examples include dodecyl benzene sulfonic acid, tridecyl benzene sulfonic acid, nonyl benzene sulfonic acid, dibutyl naphthalene sulfonic acid, hexadecyl sulfonic acid, and dodecyl sulfonic acid, and other alkali metal salts of phosphate esters such as sodium distearyl phosphate. Etc. are also preferably used. The organometallic salt may be used alone or in combination of two or more. The blending amount is preferably in the range of 0.5 to 3% by weight.

ポリアルキレングリーコール類および有機金属塩の各繊維形成重合体への添加は、成分形成重合体の重合工程で添加する方法、複合繊維を溶融紡糸する際に該繊維形成重合体とポリアルキレングリコール類および有機金属塩とを混合した後に溶融混練する方法、別々に溶融した該繊維形成重合体とポリアルキレングリコール類および有機金属塩とを溶融紡糸する前に混練する方法等任意の方法を採用することができる。なかでも、ポリアルキレングリコール類および有機金属塩の耐熱性の点、溶融紡糸の作業が容易であること等の点から、繊維形成重合体チップとポリアルキレングリコール類と有機金属塩を混合後溶融紡糸する方法が望ましい。   The polyalkylene glycols and organometallic salts are added to each fiber-forming polymer by a method of adding them in the polymerization step of the component-forming polymer, and when the composite fiber is melt-spun, the fiber-forming polymer and the polyalkylene glycols are added. Adopting any method such as a method of melt kneading after mixing the organic metal salt and a method of kneading the melted fiber-forming polymer, polyalkylene glycols and organic metal salt before melt spinning Can do. Among them, fiber spinning polymer chips, polyalkylene glycols and organometallic salts are mixed and melt-spun from the viewpoints of heat resistance of polyalkylene glycols and organometallic salts and ease of melt spinning. The method to do is desirable.

次に、紡糸口金より吐出された剥離分割型複合繊維は、エジェクターやエアサッカーなど高速牽引流体により1500〜8000m/分、より好ましくは2000〜6000m/分、の速度で索引・細化され、開繊しながら多孔補集面上に補集され、ウェブ状のシートとして巻き取られる。その際、コロナ放電や接触帯電等の処理を行うと、開繊性はより向上する。   Next, the peelable split type composite fibers discharged from the spinneret are indexed and refined at a speed of 1500 to 8000 m / min, more preferably 2000 to 6000 m / min, by a high-speed traction fluid such as an ejector or air soccer, and opened. The fiber is collected on the porous collecting surface while being finely wound and wound up as a web-like sheet. At that time, if treatment such as corona discharge or contact charging is performed, the spreadability is further improved.

このようにして得られた複合繊維の不織布は、必要に応じて複数枚を積層、又は単独で、必要に応じて熱接着され、一旦巻き取られた後に、又は、連続してニードルパンチ処理等の交絡処理を施し、剥離分割処理に供される。   The nonwoven fabric of the composite fiber obtained in this manner is laminated as needed, or alone, thermally bonded as necessary, once wound up, or continuously after needle punching, etc. The entanglement process is applied to the separation separation process.

剥離分割方法は、成分の剥離分割が確実に遂行できる方法であれば任意であり、特に限定されず、また複数の方法を組合わせても良い。例えば機械的な剥離分割処理方法としては、ローラー間で加圧する方法、超音波処理方法、衝撃を与える方法、揉み処理をする方法を例示することができる。これらの中で、シート状物打撃式揉み機による方法が最も効果的であり好ましい。なお、ここでいうシート状物打撃式揉み機とは、シートの厚み方向に剪断力を効率よく加えることができるものである。本方式は剥離分割型複合繊維の剥離分割を効率よく行なうことができる。   The separation method is not particularly limited as long as the separation and separation of components can be reliably performed, and a plurality of methods may be combined. For example, examples of the mechanical separation and division method include a method of applying pressure between rollers, an ultrasonic treatment method, an impact applying method, and a stagnation treatment method. Among these, the method using a sheet-like object striking type grinder is the most effective and preferable. In addition, the sheet-like object striking-type squeezing machine here can efficiently apply a shearing force in the thickness direction of the sheet. This method can efficiently perform the separation and division of the separation-dividing composite fiber.

本発明においては、上記剥離分割型複合繊維の分割極細繊維化処理に先立って、該長繊維不織布に予め水を付与した後水存在下で分割処理することが好ましい。ここで、付与する水には該剥離分割型繊維の少なくとも一方成分を膨潤させる薬品が混合されていてもよく、また付与方法は、水中への浸漬処理する等、従来公知の方法を採用すればよい。但し、緻密化などを目的としている場合は、分割処理に引き続いて収縮熱処理を施すのが好ましいので、繊維の分割が遂行する前に熱がかかる分割処理方法は避けた方が好ましい。   In the present invention, prior to the split ultrafine fiber processing of the above split split composite fiber, it is preferable that the long fiber nonwoven fabric is preliminarily given water and then split in the presence of water. Here, the water to be applied may be mixed with a chemical that swells at least one component of the separation-divided fiber, and the application method may be a conventionally known method such as immersion in water. Good. However, in the case of aiming at densification or the like, it is preferable to perform shrinkage heat treatment subsequent to the division treatment, so it is preferable to avoid a division treatment method in which heat is applied before fiber division is performed.

剥離分割処理後の単糸繊度は、0.01〜0.60dtexの範囲が適当である。0.01dtex未満のものは、剥離分割が困難となったり、剥離分割後の繊維があまりにも細いため繊維間で膠着が生じたりする傾向が出てくる。また0.60dtexを超えると繊維が太すぎるため均一で微細な不織布が得られ難くなる。   The range of 0.01 to 0.60 dtex is appropriate for the single yarn fineness after the separation treatment. Those having a thickness of less than 0.01 dtex tend to be difficult to separate by peeling, or the fibers after the separation and separation are so thin that sticking occurs between the fibers. On the other hand, if it exceeds 0.60 dtex, the fiber is too thick, making it difficult to obtain a uniform and fine nonwoven fabric.

このような剥離分割後の細い繊度は、剥離分割型複合繊維の単糸繊度と成分分割数とから決定される。剥離分割型複合繊維の単糸繊度は1〜10dtexとするのが好ましい。剥離分割型複合繊維の単糸繊度が1dtex未満であると紡糸時に糸切れが発生し易くなる。剥離分割型複合繊維の単糸繊度が10dtexより大きくなると、剥離分割後の繊度をより細くするのが難しくなる。   Such fine fineness after separation by separation is determined from the single yarn fineness and the number of component divisions of the separation-division type composite fiber. The single yarn fineness of the peelable split composite fiber is preferably 1 to 10 dtex. If the single yarn fineness of the peelable split composite fiber is less than 1 dtex, yarn breakage is likely to occur during spinning. If the single yarn fineness of the peelable split composite fiber is greater than 10 dtex, it becomes difficult to make the fineness after the peel splitting finer.

得られた不織布は人工皮革の基布用途や衣料用途、内装材、インテリア材などの産業資材用途、工業用ワイパーやワイピングクロスなどのワイパー用途、バグフィルターや濾過布などのフィルター等の用途、医療衛生材料などの用途に好ましく用いることができる。   The obtained non-woven fabric can be used for artificial leather base fabrics, clothing, interior materials, interior materials and other industrial materials, industrial wipers and wipes such as wipes, bag filters and filter cloths, medical It can be preferably used for applications such as sanitary materials.

以下、実施例により、本発明を更に具体的に説明する。
なお、実施例における各項目は次の方法で測定した。
(1)分割率
不織布の断面を電子顕微鏡にて200倍で撮影し、50本の繊維の断面積を測定し、全体の面積と未分割(完全に剥離分割していない、例えば、2個や3個程度に剥離分割したものも含む)の繊維の断面積の差を全体の面積で除して求めた。
(2)分割後の単糸繊度
口金より紡出され、空気流により高速牽引された直後の複合繊維をサンプリングし、繊度測定器(SERCH CO.LTD、型式DC−21)を用いて試長2.5cm、荷重0.3gにて測定し、10本の平均単糸繊度から複合繊維繊度を求め、下記式により算出して求めた。
分割後の単糸繊度=複合繊維の平均単糸繊度/分割数/(剥離分割率/100)
(3)紡糸性
不織布を連続的に3日間製造し、その際の口金からの吐出安定性を次の通り評価した。
○・・・問題なく良好
△・・・吐出孔周辺での異物付着が見られ、単糸切れが時々発生
×・・・吐出孔周辺での異物付着量が多く、ベンディングが発生し、単糸切れが頻発する。
(4)静電気発生量
空気流により高速牽引され、補集ネット上に堆積された直後の不織布、熱接着後、ワインダーで巻き取る前の不織布、および3000m巻き取った後、2時間後解除した時の不織布表面静電気量を、静電電位測定器(シシド静電気株式会社製 STATIRON DZ3)にて測定した。
(5)開繊性:不織布目付斑(CV%)で評価
不織布を幅2cm、長さ20cmの小片に、幅が不織布の幅方向となるように切り取って重量を測定し、その標準偏差を重量の平均値で除したものを%で表し不織布目付斑とした。
Hereinafter, the present invention will be described more specifically with reference to examples.
In addition, each item in an Example was measured with the following method.
(1) Division ratio The cross section of the nonwoven fabric was photographed at 200 times with an electron microscope, the cross-sectional area of 50 fibers was measured, and the entire area and undivided (not completely separated by separation, such as 2 The difference in the cross-sectional area of the fibers (including those separated and divided into about three) was divided by the total area.
(2) Single yarn fineness after splitting The composite fiber immediately after being spun from the base and pulled at high speed by an air flow is sampled, and a test length 2 using a fineness measuring instrument (SERCH CO. LTD, model DC-21). Measured at 0.5 cm and a load of 0.3 g, the composite fiber fineness was determined from the 10 average single yarn finenesses, and calculated by the following formula.
Single yarn fineness after division = average single yarn fineness of composite fiber / number of divisions / (exfoliation division ratio / 100)
(3) Spinnability Nonwoven fabric was produced continuously for 3 days, and the discharge stability from the die at that time was evaluated as follows.
○: Good without problems △: Foreign matter adhesion around the discharge hole is observed, and single yarn breakage sometimes occurs ×: A large amount of foreign matter adheres around the discharge hole, causing bending, and single yarn Cut frequently.
(4) Amount of static electricity generated by high-speed traction by air flow, immediately after being deposited on the collection net, after thermal bonding, before unwinding with a winder, and after 3000 m is unwound after 2 hours The amount of static electricity on the surface of the non-woven fabric was measured with an electrostatic potential measuring device (STATIRON DZ3 manufactured by Sisid Electric Co., Ltd.).
(5) Opening property: evaluated by non-woven fabric weight spot (CV%) The non-woven fabric is cut into small pieces having a width of 2 cm and a length of 20 cm so that the width is in the width direction of the non-woven fabric, and the weight is measured. What was divided by the average value of was expressed in% as non-woven fabric weight spots.

[実施例1]
120℃で乾燥したナイロン−6(m−クレゾール中の極限粘度1.2)に対して、分子量20000のポリエチレングリコール(日本油脂株製)を2.0重量%、ドデシルベンゼンスルホン酸ナトリウムを1重量%ブレンドした混合体を、エクストルーダーに供給し溶融した。別途160℃で乾燥したポリエチレンテレフタレート(o−クロロフェノール中の極限粘度0.64)を、前述とは別個のエクストルーダーにて溶融した。
[Example 1]
Polyethylene glycol (manufactured by Nippon Oil & Fats Co., Ltd.) having a molecular weight of 20,000 and 2.0% by weight of sodium dodecylbenzenesulfonate with respect to nylon-6 (intrinsic viscosity 1.2 in m-cresol) dried at 120 ° C. % Blended mixture was fed to an extruder and melted. Separately dried polyethylene terephthalate (at an intrinsic viscosity of 0.64 in o-chlorophenol) at 160 ° C. was melted with an extruder separate from the foregoing.

引き続き、上記ポリエチレングリコール/有機金属塩/ナイロン−6混合体溶融流は導管ポリマー温度245℃で、ポリエチレンテレフタレート溶融流は300℃で、275℃に保温されたスピンブロックへ導入し、特開昭54−38914号公報記載の合流部を有し、幅100cm×20cmの範囲に3200個の丸断面吐出孔を格子状配列で有する矩形の紡糸口金を用いて両重合体溶融流を流量比で50/50となる様合流させ複合し1g/分・孔の量で吐出し、120cm幅のスリット形状を有するエアサッカーで空気圧力230kPa(吐出量と複合繊維繊度から換算した紡速で約3200m/分)にて高速牽引した。   Subsequently, the polyethylene glycol / organometallic salt / nylon-6 mixture melt flow was introduced into a spin block maintained at 275 ° C. at a conduit polymer temperature of 245 ° C. and a polyethylene terephthalate melt flow at 300 ° C. No. 38914 and a rectangular spinneret having 3200 round cross-section discharge holes in a grid arrangement in a range of 100 cm × 20 cm in width, the both polymer melt flows at a flow rate ratio of 50 / 50 g of air and a 120 cm wide slit, air pressure of 230 kPa (spinning speed converted from the discharge rate and fineness of the composite fiber, about 3200 m / min) Towed at high speed.

牽引された複合繊維の繊度は、空気流とともに補集ネット上に、図1に示すような16分割の多層貼合せ型断面をもつ剥離分割型複合繊維からなるウェブとしてネットコンベアー上に幅1mで開繊、補集した。引き続き、得られたウェブを100℃に加熱された上下一対のエンボスカレンダーロールに通し熱接着を行った。   The fineness of the pulled composite fiber is 1 m wide on the net conveyor as a web of peeled split composite fibers having a 16-layer multi-layer laminated cross section as shown in FIG. Opened and collected. Subsequently, the obtained web was passed through a pair of upper and lower embossed calender rolls heated to 100 ° C. and thermally bonded.

該複合繊維の単糸繊度は3.1dtex、ナイロン−6成分とポリエチレンテレフタレートは互いに相手成分によって16剥離分割されていた。また、重合体成分円弧長比(A/B)は0.70であった。
得られたウェブをニードルパンチにて交絡処理を施した後、水に浸漬し、軽くマングルで絞った後シート状物打撃式揉み機にて剥離分割処理を行い目付150g/mの極細繊維不織布を得た。本例の実施条件と得られた結果の集約を表1に示す。
The single yarn fineness of the composite fiber was 3.1 dtex, and the nylon-6 component and the polyethylene terephthalate were separated from each other by 16 parts by the partner component. The polymer component arc length ratio (A / B) was 0.70.
The resulting web is entangled with a needle punch, then immersed in water, lightly squeezed with a mangle, and then subjected to a separation-splitting treatment with a sheet-like material strike-type squeezing machine, and an ultrafine fiber nonwoven fabric having a basis weight of 150 g / m 2 Got. Table 1 shows a summary of the implementation conditions and the results obtained in this example.

[実施例2]
120℃で乾燥したナイロン−6(m−クレゾール中の極限粘度1.2)に対して、分子量25000のポリトリメチレングリコールを0.7重量%、ドデシルベンゼンスルホン酸ナトリウムを0.5重量%ブレンドした混合体を、エクストルーダーに供給し溶融した。別途160℃で乾燥したポリエチレンテレフタレート(o−クロロフェノール中の極限粘度0.62)を、前述とは別個のエクストルーダーにて溶融した。
[Example 2]
A blend of 0.7% by weight of polytrimethylene glycol having a molecular weight of 25000 and 0.5% by weight of sodium dodecylbenzenesulfonate to nylon-6 (intrinsic viscosity 1.2 in m-cresol) dried at 120 ° C. The resulting mixture was fed to an extruder and melted. Separately dried polyethylene terephthalate (1602 intrinsic viscosity in o-chlorophenol) was melted with an extruder separate from the above.

以下、実施例1と同様な条件、方法で吐出、高速牽引、捕集、熱接着、交絡処理および剥離分割処理を行い目付150g/mの極細繊維不織布を得た。
該複合繊維の単糸繊度は3.1dtex、両成分は互いに相手成分によって16剥離分割されていた。また、重合体成分円弧長比(A/B)は2.0であった。
本例の実施条件と得られた結果の集約を表1に示す。
Thereafter, discharging, high-speed traction, collection, thermal bonding, entanglement treatment, and separation / separation treatment were performed under the same conditions and methods as in Example 1 to obtain an ultrafine fiber nonwoven fabric having a basis weight of 150 g / m 2 .
The single yarn fineness of the composite fiber was 3.1 dtex, and both components were divided into 16 layers by the other component. The polymer component arc length ratio (A / B) was 2.0.
Table 1 shows a summary of the implementation conditions and the results obtained in this example.

[比較例1〜5]
ポリエチレングリコール、および有機金属塩の添加量を変更した以外は、実施例1と同様の方法で極細繊維不織布を得た。
本例の実施条件と得られた結果の集約を表1に示す。
[Comparative Examples 1-5]
An ultrafine fiber nonwoven fabric was obtained in the same manner as in Example 1 except that the addition amounts of polyethylene glycol and organic metal salt were changed.
Table 1 shows a summary of the implementation conditions and the results obtained in this example.

表1に示す通り、本発明の範囲内の実施例1、2により得られた不織布は良好な紡糸性、分割性を示し、静電気の発生も少なく布帛の均一性も優れたものであったのに対し、ポリアルキレングリコールおよび有機金属塩の添加量が本発明の範囲を外れる比較例1〜5においては、紡糸性または分割性が不良となった。特に有機金属塩の添加量の少ない比較例2および3では静電気発生量が多くワインダーで巻き取った布帛の解除時にシワが発生するなど工程安定性に不具合が見られるものであった。実施例1と比較例4、5では全添加量はほぼ同じであっても分割率は実施例1が大幅に良好で両者を共存させることによる相乗効果といえる。   As shown in Table 1, the non-woven fabrics obtained in Examples 1 and 2 within the scope of the present invention showed good spinnability and splitting properties, and generated little static electricity and excellent fabric uniformity. On the other hand, in Comparative Examples 1 to 5 in which the addition amount of the polyalkylene glycol and the organic metal salt is out of the range of the present invention, the spinnability or splitting property is poor. In Comparative Examples 2 and 3 where the addition amount of the organic metal salt was particularly small, there was a problem in process stability, for example, the amount of static electricity generated was large and wrinkles were generated when the fabric wound with the winder was released. In Example 1 and Comparative Examples 4 and 5, even though the total addition amount is almost the same, the division ratio is much better in Example 1 and it can be said that it is a synergistic effect due to the coexistence of both.

Figure 2008202194
Figure 2008202194

本発明の不織布は人工皮革の基布用途や衣料用途、内装材、インテリア材などの産業資材用途、工業用ワイパーやワイピングクロスなどのワイパー用途、バグフィルターや濾過布などのフィルター等の用途、医療衛生材料などの用途に好ましく用いることができる。   Non-woven fabrics of the present invention are used for artificial leather base fabrics and clothing, industrial materials such as interior materials and interior materials, wipers such as industrial wipers and wiping cloth, uses such as filters such as bag filters and filter cloths, medical It can be preferably used for applications such as sanitary materials.

本発明の剥離分割型複合繊維の繊維断面を示した模式図。The schematic diagram which showed the fiber cross section of the peeling division | segmentation type | mold composite fiber of this invention.

符号の説明Explanation of symbols

1 :ポリアミド系重合体成分
2 :ポリエステル重合体成分
1: Polyamide polymer component 2: Polyester polymer component

Claims (4)

ポリアミド系重合体とポリエステル系重合体とで構成される剥離分割型複合繊維を分割処理してなる極細長繊維不織布の製造方法において、少なくとも一方の重合体中にポリアルキレングリコール類を0.3〜3.0重量%及びR−SOMで表される有機金属塩を0.5〜3.0重量%含有する剥離分割型複合繊維を長繊維不織布となし、水存在下で分割処理することを特徴とする極細長繊維不織布の製造方法。
(ここで、Rは炭素数8〜15のアルキル基、Mはアルカリ金属あるいはアルカリ土類金属である。)
In the method for producing an ultra-thin fiber non-woven fabric obtained by splitting a separation-dividing composite fiber composed of a polyamide-based polymer and a polyester-based polymer, a polyalkylene glycol is added in an amount of 0.3 to 0.3 in at least one polymer. A release split type composite fiber containing 3.0 wt% and an organometallic salt represented by R—SO 3 M in an amount of 0.5 to 3.0 wt% is made into a long fiber nonwoven fabric and split in the presence of water. A method for producing an ultra-fine long-fiber nonwoven fabric characterized by the following.
(Here, R is an alkyl group having 8 to 15 carbon atoms, and M is an alkali metal or alkaline earth metal.)
極細繊維化後の単糸繊度が、0.01〜0.60dtexである請求項1記載の極細長繊維不織布の製造方法。   The method for producing an ultra-fine long-fiber non-woven fabric according to claim 1, wherein the single yarn fineness after making the ultra-fine fiber is 0.01 to 0.60 dtex. ポリアミド系重合体とポリエステル系重合体とで構成される剥離分割型複合繊維を分割処理してなる極細長繊維不織布において、該剥離分割型複合繊維の少なくとも一方の重合体中にポリアルキレングリコール類を0.3〜3.0重量%及びR−SOMで表される有機金属塩を0.5〜3.0重量%含有することを特徴とする極細長繊維不織布。
(ここで、Rは炭素数8〜15のアルキル基、Mはアルカリ金属あるいはアルカリ土類金属である。)
An ultra-thin fiber non-woven fabric obtained by dividing a separation-dividing composite fiber composed of a polyamide-based polymer and a polyester-based polymer, wherein polyalkylene glycols are contained in at least one polymer of the separation-dividing composite fiber An ultra-fine fiber nonwoven fabric characterized by containing 0.3 to 3.0% by weight and an organic metal salt represented by R-SO 3 M in an amount of 0.5 to 3.0% by weight.
(Here, R is an alkyl group having 8 to 15 carbon atoms, and M is an alkali metal or alkaline earth metal.)
ポリアミド系重合体とポリエステル系重合体とで構成される剥離分割型複合繊維からなる長繊維不織布において、少なくとも一方の重合体中に、ポリアルキレングリコール類を0.3〜3.0重量%及びR−SOMで表される有機金属塩を0.5〜3.0重量%含有することを特徴とする長繊維不織布。
(ここで、Rは炭素数8〜15のアルキル基、Mはアルカリ金属あるいはアルカリ土類金属である。)
In a long-fiber nonwoven fabric composed of a release-divided composite fiber composed of a polyamide polymer and a polyester polymer, 0.3 to 3.0% by weight of polyalkylene glycols and R in at least one polymer long-fiber nonwoven fabric, characterized in that it contains an organic metal salt represented by -SO 3 M 0.5 to 3.0 wt%.
(Here, R is an alkyl group having 8 to 15 carbon atoms, and M is an alkali metal or alkaline earth metal.)
JP2007042709A 2007-02-22 2007-02-22 Ultra fine filament nonwoven fabric and method for producing ultra fine filament nonwoven fabric Pending JP2008202194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007042709A JP2008202194A (en) 2007-02-22 2007-02-22 Ultra fine filament nonwoven fabric and method for producing ultra fine filament nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007042709A JP2008202194A (en) 2007-02-22 2007-02-22 Ultra fine filament nonwoven fabric and method for producing ultra fine filament nonwoven fabric

Publications (1)

Publication Number Publication Date
JP2008202194A true JP2008202194A (en) 2008-09-04

Family

ID=39779981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007042709A Pending JP2008202194A (en) 2007-02-22 2007-02-22 Ultra fine filament nonwoven fabric and method for producing ultra fine filament nonwoven fabric

Country Status (1)

Country Link
JP (1) JP2008202194A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11349820A (en) * 1998-06-03 1999-12-21 Teijin Ltd Antistatic agent for thermoplastic resin
JP2000110029A (en) * 1998-09-30 2000-04-18 Kanebo Ltd Splitting type conjugate fiber having excellent antistatic performance
JP2003003359A (en) * 2001-06-22 2003-01-08 Teijin Ltd Method for producing ultrafine fiber nonwoven fabric

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11349820A (en) * 1998-06-03 1999-12-21 Teijin Ltd Antistatic agent for thermoplastic resin
JP2000110029A (en) * 1998-09-30 2000-04-18 Kanebo Ltd Splitting type conjugate fiber having excellent antistatic performance
JP2003003359A (en) * 2001-06-22 2003-01-08 Teijin Ltd Method for producing ultrafine fiber nonwoven fabric

Similar Documents

Publication Publication Date Title
JP5082192B2 (en) Method for producing nanofiber synthetic paper
JP5272229B2 (en) Split type composite fiber, aggregate thereof, and fiber molded body using the split type composite fiber
JP5027688B2 (en) Flexible nonwoven fabric
JP4950472B2 (en) Method for producing short cut nanofibers
JP5284889B2 (en) Fiber products
JP4994313B2 (en) Method for producing short cut nanofiber and method for producing wet nonwoven fabric
JP5069431B2 (en) Composite fiber and multi-slit fiber
JP4677919B2 (en) Tow and short fiber bundles and pulp and liquid dispersions and papers composed of polyphenylene sulfide nanofibers
KR102184471B1 (en) Organic resin non-crimped staple fiber
JP2007084946A (en) Splittable conjugate fiber
KR20180127653A (en) High molecular weight and low molecular weight fine fibers and TPU fine fibers
JP3827962B2 (en) Method for producing ultrafine fiber nonwoven fabric
JP4298186B2 (en) Method for producing ultra-thin fiber nonwoven fabric
JP2008202194A (en) Ultra fine filament nonwoven fabric and method for producing ultra fine filament nonwoven fabric
JP2009028503A (en) Cleaning sheet material
JP4453179B2 (en) Split fiber and fiber molded body using the same
JP2010133042A (en) Splittable conjugate fiber
CN113056578B (en) Ultrafine fibers and fiber dispersions
JP2008200424A (en) Manufacturing method of ultrafine nonwoven fabric for wiping cloth and ultrafine nonwoven fabric for wiping cloth
JP3920157B2 (en) Method for producing ultrafine fiber nonwoven fabric
JP4468025B2 (en) Split composite fiber and polyamide fiber structure
JP4316783B2 (en) Manufacturing method of long fiber nonwoven fabric
JP2004008501A (en) Ultrafine fiber nonwoven fabric for wiping cloth
JP2005171430A (en) Method for producing filament nonwoven fabric
JP2018100459A (en) Split type composite fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110707

RD04 Notification of resignation of power of attorney

Effective date: 20110707

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Effective date: 20111028

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120313