KR100434713B1 - Method of manufacturing semiconductor device with corrosion-free metal line and defect-free via hole - Google Patents

Method of manufacturing semiconductor device with corrosion-free metal line and defect-free via hole Download PDF

Info

Publication number
KR100434713B1
KR100434713B1 KR1019960072798A KR19960072798A KR100434713B1 KR 100434713 B1 KR100434713 B1 KR 100434713B1 KR 1019960072798 A KR1019960072798 A KR 1019960072798A KR 19960072798 A KR19960072798 A KR 19960072798A KR 100434713 B1 KR100434713 B1 KR 100434713B1
Authority
KR
South Korea
Prior art keywords
imo
metal line
forming
via hole
semiconductor device
Prior art date
Application number
KR1019960072798A
Other languages
Korean (ko)
Other versions
KR19980053670A (en
Inventor
장창원
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1019960072798A priority Critical patent/KR100434713B1/en
Publication of KR19980053670A publication Critical patent/KR19980053670A/en
Application granted granted Critical
Publication of KR100434713B1 publication Critical patent/KR100434713B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76819Smoothing of the dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: A method of manufacturing a semiconductor device is provided to prevent the corrosion of a metal line and the defect of a via hole due to the moisture contained in an SOG(Spin On Glass) layer by forming a second IMO(InterMetal Oxide) made of TEOS(TetraEthylOrtho Silicate) oxide layer on a first IMO made of SiO2-Si3N4 instead of an SOG layer forming process. CONSTITUTION: A first IMO(13) is formed on a semiconductor substrate(11) with a lower metal line(12). The first IMO is planarized. A second IMO(14) is formed on the first IMO. A via hole for exposing the lower metal line to the outside is formed by performing selectively photo-etching on the second and first IMOs. An upper metal line(15) for contacting the lower metal line is formed on the second IMO.

Description

반도체 소자의 제조 방법Manufacturing Method of Semiconductor Device

본 발명은 반도체 소자의 제조 방법에 관한 것으로, 보다 상세하게는, SOG막으로 인하여 금속 배선의 부식 및 비아홀의 결함이 발생되는 것을 방지할 수 있는 반도체 소자의 제조 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device capable of preventing corrosion of metal wiring and defects of via holes due to SOG film.

최근, 반도체 소자의 집적도가 증가함에 따라, 반도체 소자의 고집적도를 달성하기 위하여 다층 금속 배선 및 고밀도의 상호연결(interconnection) 구조 등이이용되고 있다. 또한, 이러한 다층 금속 배선 기술에서는 하부층의 표면 요철로 인하여 다층 금속 배선을 형성한 후에 금속 배선들 사이의 단선 및 쇼트 문제가 발생되는 것을 최소화하기 위하여 하부층 상에 평탄화물로서 SOG(Spin On Glass) 또는 BPSG(Boro Phospho Silicate Glass)등과 같은 복합 수지 물질들을 플로우(flow)시켜 하부층의 표면 요철을 감소시키는 방법이 실시되고 있다.In recent years, as the degree of integration of semiconductor devices has increased, in order to achieve high integration of semiconductor devices, multilayer metal interconnections and high-density interconnect structures have been used. In addition, in this multilayer metal wiring technology, in order to minimize the occurrence of disconnection and short problems between the metal wirings after forming the multilayer metal wiring due to the surface irregularities of the underlying layer, spin on glass (SOG) or as a flattening material on the underlying layer is minimized. A method of reducing surface irregularities of the lower layer by flowing composite resin materials such as Boro Phospho Silicate Glass (BPSG) has been implemented.

상기와 같은 SOG를 이용한 종래의 반도체 소자의 제조 방법을 도 1A 및 도 1B를 참조하여 설명하면 다음과 같다.A method of manufacturing a conventional semiconductor device using the SOG as described above will be described with reference to FIGS. 1A and 1B.

도 1A를 참조하면, 반도체 기판(1) 상에 공지의 방법으로 하부 금속 배선(2)을 형성한 후, 전체 상부에 제 1 층간절연막(Inter Metal Oxide : 이하 IMO, 3)으로서 약 1,000Å 두께의 SiO2막을 형성한다. 하부 금속 배선(2)으로 인한 토폴로지의 악화를 방지하기 위하여 제 1 IMO(3) 상에 평탄화막인 SOG 복합 수지 물질을 도포 및 큐어링하여 SOG막(4)을 형성한다.Referring to FIG. 1A, after forming the lower metal wirings 2 on the semiconductor substrate 1 by a known method, about 1,000 kW thick as a first interlayer insulating film (IMO, 3) thereon. To form a SiO 2 film. In order to prevent deterioration of the topology due to the lower metal wiring 2, the SOG composite resin material, which is a flattening film, is coated and cured on the first IMO 3 to form the SOG film 4.

도 1B를 참조하면, SOG막(4) 상에 SiO2로 이루어진 제 2 IMO(5)을 형성한다. 그런다음, 하부 금속 배선(2)이 노출되도록 상기 제 2 IMO(5), SOG막(4) 및 제 1 IMO(3)을 사진식각하여 비아홀을 형성한 후, 상기 비아홀 및 그에 인접된 제 2 IMO(5) 상에 상부 금속 배선(6)을 형성한다.Referring to FIG. 1B, a second IMO 5 made of SiO 2 is formed on the SOG film 4. Thereafter, via holes are formed by photo etching the second IMO 5, the SOG film 4, and the first IMO 3 to expose the lower metal wires 2, and then the via holes and the second adjacent ones thereof. The upper metal wiring 6 is formed on the IMO 5.

그러나, 상기와 같은 종래 기술은, 다량의 수분을 함유하고 있는 SOG 복합 수지 물질을 도포 및 큐어링할 때, 상기 SOG막에 함유된 수분이 제 1 IMO를 통과하여 하부 금속 배선을 부식시키는 문제점이 발생되고, 상부 금속 배선을 형성하기 위한 비아홀의 형성시 SOG막의 빠른 식각 속도로 인하여 언더 컷(under cut : 7)이 발생됨으로써, 소자의 신뢰성이 저하되는 문제점이 있었다.However, the prior art as described above has a problem in that when the SOG composite resin material containing a large amount of moisture is applied and cured, moisture contained in the SOG film passes through the first IMO to corrode the lower metal wiring. And an under cut (7) occurs due to the fast etching speed of the SOG film when the via hole for forming the upper metal wiring is formed, thereby lowering the reliability of the device.

따라서, 본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, SiO2-Si3N4막으로 이루어진 제 1 IMO을 형성하여 평탄화 특성을 확보한 후, TEOS 산화막으로된 제 2 IMO을 형성함으로써, SOG막의 형성 공정을 생략하여 SOG막에 함유된 수분으로 인하여 금속 배선의 부식 및 비아홀의 결함이 발생되는 것을 방지할 수 있는 반도체 소자의 제조 방법을 제공함에 그 목적이 있다.Accordingly, the present invention has been made to solve the above problems, by forming a first IMO made of SiO 2 -Si 3 N 4 film to ensure the planarization characteristics, by forming a second IMO made of TEOS oxide film It is an object of the present invention to provide a method for manufacturing a semiconductor device which can prevent corrosion of metal wiring and defects of via holes due to moisture contained in the SOG film by omitting the step of forming the SOG film.

도 1A 및 도 1B는 종래 기술에 따른 반도체 소자의 제조 방법을 설명하기 위한 공정별 단면도.1A and 1B are cross-sectional views of processes for explaining a method of manufacturing a semiconductor device according to the prior art.

도 2A 내지 도 2C는 본 발명에 따른 반도체 소자의 제조 방법을 설명하기 위한 공정별 단면도.2A to 2C are cross-sectional views for each process for describing a method of manufacturing a semiconductor device according to the present invention.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

11 : 반도체 기판 12 : 하부 금속 배선11 semiconductor substrate 12 lower metal wiring

13 : 제 1 IMO 14 : 제 2 IMO13: 1st IMO 14: 2nd IMO

15 : 상부 금속 배선15: upper metal wiring

상기와 같은 목적을 달성하기 위하여, 본 발명은, 하부 금속 배선이 형성된 반도체 기판 상에 제 1 IMO를 형성하는 단계; 상기 제 1 IMO를 평탄화시키는 단계; 상기 평탄화된 제 1 IMO 상에 제 2 IMO을 형성하는 단계; 하부 금속 배선이 노출되도록 상기 제2 및 제 1 IMO를 사진식각하여 비아홀을 형성하는 단계; 및 상기 비아홀 및 그에 인접된 제 2 IMO 상에 상부 금속 배선을 형성하는 단계를 포함하는 반도체 소자의 제조 방법을 제공한다.In order to achieve the above object, the present invention, forming a first IMO on a semiconductor substrate formed with a lower metal wiring; Planarizing the first IMO; Forming a second IMO on the planarized first IMO; Forming a via hole by photolithography the second and first IMO to expose a lower metal line; And forming an upper metal interconnection on the via hole and a second IMO adjacent thereto.

본 발명에 따르면, 평탄화막인 SOG막 형성 공정을 제거함으로써 수분으로 인한 금속 배선의 부식 및 비아홀의 결함 발생을 방지할 수 있다.According to the present invention, by removing the SOG film forming process, which is a planarization film, it is possible to prevent corrosion of the metal wiring and defect generation of via holes due to moisture.

(실시예)(Example)

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세하게 설명하도록 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2A 내지 도 2C는 본 발명에 따른 반도체 소자의 제조 방법을 설명하기 위한 공정 단면도이다.2A to 2C are cross-sectional views illustrating a method of manufacturing a semiconductor device according to the present invention.

도 2A를 참조하면, 반도체 기판(11) 상에 통상의 방법으로 Al-1%Si 로 이루어진 하부 금속 배선(12)을 형성한다. 그런다음, 약 330 내지 370℃ 온도의 챔버내에 반응 가스로서 SiH4, NH3및 N2O를 주입하여 PECVD(Plasma Enhanced Chemical Vapor Deposition) 방식으로 듀얼 프리컨시(Dual Frequency), 즉, 하이 프리컨시 및 로우 프리컨시를 이용하여 전체 상부에 약 1,800 내지 2,200Å 두께의 실리콘 옥시-나이트라이드(SiO2-Si3N4)로 이루어진 제 1 IMO(13)을 형성한다. 여기서, 상기 제 1 IMO(13)의 증착 온도를 약 330 내지 370℃로 하는 것은 하부 금속 배선(12)의 열적 스트레스로 인하여 입자 크기 및 비대화를 방지하기 위함이다.Referring to FIG. 2A, a lower metal wiring 12 made of Al-1% Si is formed on a semiconductor substrate 11 by a conventional method. Then, SiH 4 , NH 3 and N 2 O are injected into the chamber at a temperature of about 330 to 370 ° C. and dual frequency, ie, high-free, by Plasma Enhanced Chemical Vapor Deposition (PECVD). Concierge and low pre-conciliation are used to form a first IMO 13 made of silicon oxy-nitride (SiO 2 -Si 3 N 4 ) of about 1,800 to 2,200 microns thick on top of it. Here, the deposition temperature of the first IMO 13 is about 330 to 370 ° C. to prevent particle size and hypertrophy due to thermal stress of the lower metal wiring 12.

상기 PECVD 방식에 의한 실리콘 옥시-나이트라이드(SiO2-Si3N4)막은 실리콘산화막에 비하여 평탄화 특성이 우수하기 때문에 증착 두께를 약 1,800 내지 2,200Å으로 하여 필요한 평탄화 특성을 막의 유동성에 의해 확보한다. 또한, 막의 응력은 하부 금속 배선(12)과 이후에 형성될 제 2 IMO의 응력 차이로 인하여 상기 제 1 IMO(13)에 균열이 발생되는 것을 방지하기 위하여 압축 응력을 -1.0×109dyne/cm2으로 조절한다.Since the silicon oxy-nitride (SiO 2 -Si 3 N 4 ) film by the PECVD method has superior planarization characteristics compared to the silicon oxide film, the deposition thickness is about 1,800 to 2,200 kPa to secure necessary planarization characteristics by the fluidity of the film. . In addition, the stress of the film has a compressive stress of −1.0 × 10 9 dyne / to prevent cracking in the first IMO 13 due to the difference in stress between the lower metal wiring 12 and the second IMO to be formed later. Adjust to cm 2 .

도 2B를 참조하면, 챔버의 온도를 약 400℃ 정도로 하고, 약 1 분 동안 챔버내의 압력을 200mTorr 이하의 진공 상태를 유지시켜 제 1 IMO(13)의 유동으로 인한평탄화를 진행한다. 그런다음, 대기중의 수분 및 불순물로 인한 제 1 IMO(13)의 결함 발생을 최소화하기 위하여 인-시튜 방식으로 동일 챔버 내에 반응 가스로서 TEOS 가스 및 O2가스를 주입하여 상기 제 1 IMO(13) 상에 TEOS 산화막으로된 제 2 IMO(14)를 증착한다. 이때, 상기 제 2 IMO(14)의 증착 온도는 금속 배선의 특성을 변하시키지 않는 약 400℃ 정도로 하고, 증착 두께는 약 6,500 내지 7,500Å으로 하며, 증착과정에서 발생되는 응력은 압축 응력을 [-1.0±0.5]×109dyne/cm2로 조절하여 상·하부층의 응력차에 의한 균열을 방지한다.Referring to FIG. 2B, the chamber temperature is about 400 ° C., and the pressure in the chamber is maintained at a vacuum of 200 mTorr or less for about 1 minute, thereby leveling the flow of the first IMO 13. Then, in order to minimize the occurrence of defects in the first IMO 13 due to moisture and impurities in the atmosphere, TEOS gas and O 2 gas are injected into the same chamber in the same chamber in an in-situ manner so that the first IMO 13 A second IMO 14 made of a TEOS oxide film is deposited on the C. At this time, the deposition temperature of the second IMO 14 is about 400 ° C. which does not change the characteristics of the metal wiring, and the deposition thickness is about 6,500 to 7,500 kPa, and the stress generated in the deposition process is a compressive stress [- 1.0 ± 0.5] × 10 9 dyne / cm 2 to prevent cracking due to stress difference between upper and lower layers.

도 2C를 참조하면, 하부 금속 배선(12)이 노출되도록 상기 제 2 IMO(14) 및 제 1 IMO(13)를 사진식각하여 금속 배선들 사이를 연결하기 위한 비아홀(도시되지 않음)을 형성한다. 그런다음, 상기 비아홀 및 그에 인접된 제 2 IMO(14) 상에 상부 금속 배선(15)을 형성한다.Referring to FIG. 2C, the second IMO 14 and the first IMO 13 are photo-etched to expose the lower metal lines 12 to form via holes (not shown) for connecting the metal lines. . Then, an upper metal line 15 is formed on the via hole and the second IMO 14 adjacent thereto.

이상에서와 같이, 본 발명의 반도체 소자의 제조 방법은 평탄화막인 SOG막의 형성 공정을 생략함으로써 SOG막에 함유된 수분으로 인하여 금속 배선의 부식 및 비아홀의 결함이 발생되는 것을 방지할 수 있으며, SOG막 대신에 PECVD 방식으로 실리콘 옥시-나이트라이드 및 TEOS 산화막을 인-시튜 방식으로 증착함으로써 평탄화 특성이 저하되는 것을 방지하여 토폴로지로 인한 단선 문제를 방지할 수 있다.As described above, the method of manufacturing the semiconductor device of the present invention can prevent the corrosion of the metal wiring and the defect of the via hole due to the moisture contained in the SOG film by omitting the process of forming the SOG film as the planarization film. Instead of the film, the silicon oxy-nitride and the TEOS oxide film are deposited in-situ by PECVD to prevent the planarization property from being lowered, thereby preventing the disconnection problem due to the topology.

한편, 여기에서는 본 발명의 특정 실시예에 대하여 설명하고 도시하였지만, 당업자에 의하여 이에 대한 수정과 변형을 할 수 있다. 따라서, 이하, 특허청구의범위는 본 발명의 진정한 사상과 범위에 속하는 한 모든 수정과 변형을 포함하는 것으로 이해할 수 있다.Meanwhile, although specific embodiments of the present invention have been described and illustrated, modifications and variations can be made by those skilled in the art. Accordingly, the following claims are to be understood as including all modifications and variations as long as they fall within the true spirit and scope of the present invention.

Claims (13)

하부 금속 배선이 형성된 반도체 기판 상에 제 1 IMO를 형성하는 단계;Forming a first IMO on the semiconductor substrate on which the lower metal wirings are formed; 상기 제 1 IMO를 평탄화시키는 단계;Planarizing the first IMO; 상기 평탄화된 제 1 IMO 상에 제 2 IMO을 형성하는 단계;Forming a second IMO on the planarized first IMO; 하부 금속 배선이 노출되도록 상기 제2 및 제 1 IMO를 사진식각하여 비아홀을 형성하는 단계; 및Forming a via hole by photolithography the second and first IMO to expose a lower metal line; And 상기 비아홀 및 그에 인접된 제 2 IMO 상에 상부 금속 배선을 형성하는 단계를 포함하는 것을 특징으로 하는 반도체 소자의 제조 방법.Forming an upper metal wiring on the via hole and a second IMO adjacent thereto. 제 1 항에 있어서, 상기 제 1 IMO는 옥시-나이트라이드(SiO2-Si3N4)인 것을 특징으로 하는 반도체 소자의 제조 방법.The method of claim 1, wherein the first IMO is oxy-nitride (SiO 2 —Si 3 N 4 ). 제 2 항에 있어서, 상기 옥시-나이트라이드는 SiH4, NH3및 N2O를 반응 가스로 하여 PECVD 방식으로 형성하는 것을 특징으로 하는 반도체 소자의 제조 방법.The method of claim 2, wherein the oxy-nitride is formed by PECVD using SiH 4 , NH 3, and N 2 O as reaction gases. 제 2 항에 있어서, 상기 옥시-나이트라이드는 330 내지 370℃ 온도에서 형성하는 것을 특징으로 하는 반도체 소자의 제조 방법.The method of claim 2, wherein the oxy-nitride is formed at a temperature of 330 to 370 ° C. 4. 제 2 항에 있어서, 상기 옥시-나이트라이드는 1,800 내지 2,200Å 두께로 형성하는 것을 특징으로 하는 반도체 소자의 제조 방법.The method of claim 2, wherein the oxy-nitride is formed to a thickness of 1,800 to 2,200 Å. 제 2 항에 있어서, 상기 옥시-나이트라이드는 -1.0×109dyne/cm2정도의 압축 응력을 갖도록 조절하는 것을 특징으로 하는 반도체 소자의 제조 방법.The method of claim 2, wherein the oxy-nitride is controlled to have a compressive stress of about −1.0 × 10 9 dyne / cm 2 . 제 1 항에 있어서, 상기 제 1 IMO를 형성한 후에 약 400℃ 정도의 온도 및 약 200mTorr의 압력하에서 약 1분 동안 평탄화 공정을 실시하는 것을 특징으로 하는 반도체 소자의 제조 방법.The method of claim 1, wherein after forming the first IMO, the planarization process is performed for about 1 minute at a temperature of about 400 ° C. and a pressure of about 200 mTorr. 제 1 항에 있어서, 상기 제 2 IMO는 제 1 IMO를 평탄화시킨 후에 인시튜 방식으로 형성하는 것을 특징으로 하는 반도체 소자의 제조 방법.The method of claim 1, wherein the second IMO is formed in-situ after planarizing the first IMO. 제 1 항에 있어서, 상기 제 2 IMO는 TEOS 산화막인 것을 특징으로 하는 반도체 소자의 제조 방법.The method of manufacturing a semiconductor device according to claim 1, wherein the second IMO is a TEOS oxide film. 제 9 항에 있어서, 상기 TEOS 산화막은 TEOS 가스 및 O2가스를 반응시켜 형성하는 것을 특징으로 하는 반도체 소자의 제조 방법.10. The method of claim 9, wherein the TEOS oxide film is formed by reacting a TEOS gas and an O 2 gas. 제 9 항에 있어서, 상기 TEOS 산화막은 약 400℃ 정도의 온도에서 형성하는 것을 특징으로 하는 반도체 소자의 제조 방법.The method of claim 9, wherein the TEOS oxide film is formed at a temperature of about 400 ° C. 11. 제 9 항에 있어서, 상기 TEOS 산화막은 약 6,500 내지 7,500Å 두께로 형성하는 것을 특징으로 하는 반도체 소자의 제조 방법.10. The method of claim 9, wherein the TEOS oxide film is formed to a thickness of about 6,500 to 7,500 kPa. 제 9 항에 있어서, 상기 TEOS 산화막은 [-1.0±0.5]×109dyne/cm2정도의 압축 응력을 갖도록 조절하는 것을 특징으로 하는 반도체 소자의 제조 방법.The method of claim 9, wherein the TEOS oxide film is controlled to have a compressive stress of about [−1.0 ± 0.5] × 10 9 dyne / cm 2 .
KR1019960072798A 1996-12-27 1996-12-27 Method of manufacturing semiconductor device with corrosion-free metal line and defect-free via hole KR100434713B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960072798A KR100434713B1 (en) 1996-12-27 1996-12-27 Method of manufacturing semiconductor device with corrosion-free metal line and defect-free via hole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960072798A KR100434713B1 (en) 1996-12-27 1996-12-27 Method of manufacturing semiconductor device with corrosion-free metal line and defect-free via hole

Publications (2)

Publication Number Publication Date
KR19980053670A KR19980053670A (en) 1998-09-25
KR100434713B1 true KR100434713B1 (en) 2004-09-01

Family

ID=37341064

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960072798A KR100434713B1 (en) 1996-12-27 1996-12-27 Method of manufacturing semiconductor device with corrosion-free metal line and defect-free via hole

Country Status (1)

Country Link
KR (1) KR100434713B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910013464A (en) * 1989-12-30 1991-08-08 김광호 Contact hole formation method for multilayer wiring
JPH03255630A (en) * 1990-03-05 1991-11-14 Oki Electric Ind Co Ltd Manufacture of semiconductor device
US5231054A (en) * 1989-12-20 1993-07-27 Fujitsu Limited Method of forming conductive material selectively
JPH0697162A (en) * 1992-09-16 1994-04-08 Fuji Electric Co Ltd Deposition of planarization film for integrated circuit device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5231054A (en) * 1989-12-20 1993-07-27 Fujitsu Limited Method of forming conductive material selectively
KR910013464A (en) * 1989-12-30 1991-08-08 김광호 Contact hole formation method for multilayer wiring
JPH03255630A (en) * 1990-03-05 1991-11-14 Oki Electric Ind Co Ltd Manufacture of semiconductor device
JPH0697162A (en) * 1992-09-16 1994-04-08 Fuji Electric Co Ltd Deposition of planarization film for integrated circuit device

Also Published As

Publication number Publication date
KR19980053670A (en) 1998-09-25

Similar Documents

Publication Publication Date Title
US7304386B2 (en) Semiconductor device having a multilayer wiring structure
KR100265256B1 (en) Semiconductor device and fabrication process thereof
JPH0258836A (en) Manufacture of semiconductor device
CN101593689A (en) The formation method and the double mosaic structure manufacture method of photoengraving pattern
US20060211240A1 (en) Method of enhancing adhesion between dielectric layers
JPH11260815A (en) Manufacture of semiconductor device
JP2003303880A (en) Wiring structure using insulating film structure between laminated layers and manufacturing method therefor
KR100434713B1 (en) Method of manufacturing semiconductor device with corrosion-free metal line and defect-free via hole
KR940005723B1 (en) Semiconductor device
JP4747755B2 (en) Organic insulating film, manufacturing method thereof, and semiconductor device using organic insulating film
KR100447983B1 (en) METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE TO PREVENT CORROSION OF LOWER METAL LINE USING SiON LAYER INSTEAD OF SiO2 LAYER
KR20020010807A (en) Method of forming interdielectric layer in semiconductor device
JP2646878B2 (en) Semiconductor device and manufacturing method thereof
KR100367499B1 (en) Method for manufacturing semiconductor device
KR100497206B1 (en) Method for smoothing inter-metal dielectric layer of semiconductor device
KR100588636B1 (en) Method for manufacturing inter-metal dielectric layer of the semiconductor device
KR100519509B1 (en) Method of forming interlayer insulating film of semiconductor device_
KR100315026B1 (en) Metal wiring formation method of semiconductor device
JPH01135044A (en) Semiconductor device
KR100717823B1 (en) Method for forming inter metal dielectric layer in semiconductor device
KR19980056091A (en) Method of forming interlayer insulating film in semiconductor device
KR19980025800A (en) Planar Dielectric Layer Formation Method and Multilevel Wiring Patterns
KR20010063640A (en) Method for forming interlayer dielectric of semiconductor device
JPS6227745B2 (en)
JPH07169765A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110429

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee