JPH0258836A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0258836A
JPH0258836A JP21030388A JP21030388A JPH0258836A JP H0258836 A JPH0258836 A JP H0258836A JP 21030388 A JP21030388 A JP 21030388A JP 21030388 A JP21030388 A JP 21030388A JP H0258836 A JPH0258836 A JP H0258836A
Authority
JP
Japan
Prior art keywords
insulating film
film
substrate
sio2
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21030388A
Other languages
Japanese (ja)
Inventor
Kazuyuki Sawada
和幸 澤田
Yoji Masuda
洋司 益田
Hiroshi Yamamoto
浩 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21030388A priority Critical patent/JPH0258836A/en
Publication of JPH0258836A publication Critical patent/JPH0258836A/en
Pending legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To manufacture a semiconductor device excellent in closely filled up reliability and capable of high integration when the second insulating films are formed by a method wherein the first insulating films are processed so that the normals on the surface of the first insulating film at slopes may make specific angles with the normals of the main surface of a substrate. CONSTITUTION:A substrate is arranged in a dryetching device, where mixed gas of CH4 and Ar is introduced to etch away SiO2 films 6 by plasma for forming SiO2 films 8. At this time, the SiO2 films 6 can be anisotropically etched away by CF4 gas while etching the SiO2 films 6 by Ar gas making an angle of 45 deg. so that the SiO2 films 8 in the gaps between Al wirings 4A-4C may be etched away making an angle of 60 deg.-85 deg. down to the gap bottoms. Later, the other SiO2 film 10 as the second insulating film is deposited. At this time, the SiO2 films 8 are provided with no sides making angles perpendicular to or exceeding the same with the main surface of the substrate so that the gaps of Al wirings 4 (4A-4C) having the aspect ratio exceeding one may be closely filled with the SiO2 film 10.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は超LSIなどの高集積化に際し、多層配線にお
ける層間絶縁膜に用いられ、微細な凹凸を有する基板上
に絶縁膜を堆積するのに有効な半導体装置の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is used as an interlayer insulating film in multi-layer interconnections for highly integrated ultra-LSIs, etc., and is effective for depositing an insulating film on a substrate having fine irregularities. The present invention relates to a method of manufacturing a semiconductor device.

従来の技術 LSIの集積度が増すにつれ、配線を多層に積み重ねる
技術が用いられており、微細な配線間に絶縁膜を埋込む
とともに平坦な層間絶縁膜を形成する必要がある。そこ
で、従来では気相成長法(以下CVD法と記す)により
、微細な配線間へのSio2膜等の絶縁膜の埋込みの検
討が種々なされている。例えば、第4図に示すように、
第4(NAにおいて、Si基板100にA1配線パター
ン102 (102A〜102(2)が形成されている
上にテトラエトキシシラン(TE01)のような有機オ
キシシラン類を原料ガスとしてプラズマCVD法で酸素
と反応させ5in2膜104を堆積する。上記例に示し
たように、有機オキシシランを用いたSiO2膜はシラ
ン系ガスの反応による5in2膜に比ベオーバーハング
が少な(、良好な段差被覆性を有しているので、配線間
隙を埋込むのに適している。〔例えばVLS Iマルチ
レベル インターコネクション コンファレンス(I 
E E E  VM I (2) June15−16
.1987 M、J、Th。
BACKGROUND ART As the degree of integration of LSI increases, a technique of stacking interconnects in multiple layers is used, and it is necessary to bury an insulating film between fine interconnects and to form a flat interlayer insulating film. Therefore, conventionally, various studies have been made on embedding an insulating film such as an Sio2 film between fine interconnections using a vapor phase growth method (hereinafter referred to as CVD method). For example, as shown in Figure 4,
In the fourth (NA), an A1 wiring pattern 102 (102A to 102(2)) is formed on a Si substrate 100, and oxygen is added by plasma CVD using an organic oxysilane such as tetraethoxysilane (TE01) as a raw material gas. The reaction is carried out to deposit a 5in2 film 104. As shown in the above example, the SiO2 film using organic oxysilane has less overhang (and has good step coverage) compared to the 5in2 film made by the reaction of silane gas. Therefore, it is suitable for filling wiring gaps. [For example, VLS I Multilevel Interconnection Conference (I
E E E VM I (2) June15-16
.. 1987 M, J, Th.

ma″A 1.0μmCMO8LEVEL METAL
 TECtlNOLOGY  lNC0RPORATI
NG  PLASMA  ENHANCED  TE0
1”参照〕 また、その他の例では、第5図に示すように、Si基板
100にAI配線パターン102(102A〜102(
2)が形成されている上にTE01と02のプラズマ反
応によりSin、、膜104を堆積した後、Arスパッ
タ法によりSiO□膜104の角を45°の角度でエツ
チングしS r 02膜105を得る。そして、再びT
E01と02のプラズマ反応によりS iO2膜106
を堆積して層間絶縁膜を形成する。このように、Arス
パッタによりSiO2膜の角を45゛の角度でエツチン
グすることによって、より微細な間隙を埋め込むことが
できる(電子材料1987年9月P、 116−P、 
122rPREcIsION5000 CV Dとその
機能」参照)。
ma″A 1.0μmCMO8LEVEL METAL
TECtlNOLOGY lNC0RPORATI
NG PLASMA ENHANCED TE0
1”] In other examples, as shown in FIG. 5, AI wiring patterns 102 (102A to 102(
2) is formed by a plasma reaction between TE01 and TE02, and then the corners of the SiO□ film 104 are etched at an angle of 45° by Ar sputtering to form a Sr02 film 105. obtain. And again T
Due to the plasma reaction of E01 and 02, the SiO2 film 106
is deposited to form an interlayer insulating film. In this way, finer gaps can be filled by etching the corners of the SiO2 film at an angle of 45° using Ar sputtering (Electronic Materials, September 1987, P, 116-P,
122rPREcIsION5000 CV D and its functions).

発明が解決しようとする課題 しかし、第4図及び第5図に示す従来の製造方法におい
ては、下記のような問題点がある。
Problems to be Solved by the Invention However, the conventional manufacturing method shown in FIGS. 4 and 5 has the following problems.

微細な、特にアスペクト比が1以上の配線間隙を埋込む
ことができない。つまり第4図に示す例では、TE01
を原料としたプラズマCVD法によるS iO2膜はオ
ーバーハングか少ないという特徴を有しているが、平坦
部膜厚が凹部内の膜圧に比べ2倍程度厚いため、間隙の
アスペクト比が0.8以上になると、第4図Bに示すよ
うに空隙108 (108A〜108B)が生じてしま
う。
It is not possible to fill minute interconnect gaps, especially those with an aspect ratio of 1 or more. In other words, in the example shown in Fig. 4, TE01
The SiO2 film produced by the plasma CVD method using SiO2 as a raw material has a characteristic of having little overhang, but since the film thickness at the flat part is about twice as thick as the film thickness in the concave part, the aspect ratio of the gap is 0. If the number is 8 or more, voids 108 (108A to 108B) will occur as shown in FIG. 4B.

また、第5図に示すように、Arスパッタ法により5i
n2膜104の角を45°の角度でエツチングする例に
おいても、AI配線間隙のアスペクト比が1以上になる
と、素子特性の劣化を防止するためAI配線102 (
102A〜102(2)表面を直接Arスパッタしない
ようにした場合、間隙底部まで傾斜を有するように31
02膜104をエツチングすることができない。そのた
め5i02膜106を堆積した際、第5図Cに示すよう
に空隙108(108A〜108B)が生じてしまう。
In addition, as shown in FIG. 5, 5i
Even in the example where the corners of the N2 film 104 are etched at an angle of 45°, if the aspect ratio of the AI wiring gap becomes 1 or more, the AI wiring 102 (
102A to 102(2) When the surface is not directly sputtered with Ar, 31
02 film 104 cannot be etched. Therefore, when the 5i02 film 106 is deposited, voids 108 (108A to 108B) are generated as shown in FIG. 5C.

本発明は、このような従来の問題に鑑み、これらの問題
点を解決し、製造歩留り及び信頼性に優れ、高集積化を
可能とする半導体装置の製造方法を提供することを目的
とする。
In view of these conventional problems, it is an object of the present invention to provide a method for manufacturing a semiconductor device that solves these problems, has excellent manufacturing yield and reliability, and enables high integration.

課題を解決するための手段 本発明は、表面の少な(とも一部分に、その法線が基板
積面法線と80”以上の角度をなる傾斜部を有する半導
体基板上に第1の絶縁膜を形成する第1の工程と、前記
第1の絶縁膜の一部をエツチングし、前記傾斜部におけ
る絶縁膜表面の法線が基板主面法線と60”〜85°の
角度をなす様に加工する第2の工程と、前記第1の絶縁
膜上に気相反応により第2の絶縁膜を形成する第3の工
程を備えてなることを特徴とする半導体装置の製造方法
である。
Means for Solving the Problems The present invention provides a method for forming a first insulating film on a semiconductor substrate having a small portion of the surface having an inclined portion whose normal line makes an angle of 80” or more with the normal to the surface of the substrate. a first step of forming the first insulating film, and etching a part of the first insulating film so that the normal to the surface of the insulating film in the inclined portion forms an angle of 60'' to 85° with the normal to the principal surface of the substrate; This method of manufacturing a semiconductor device is characterized by comprising a second step of forming a second insulating film on the first insulating film by a vapor phase reaction.

作   用 本発明は上記構成により、次のように作用する。For production With the above configuration, the present invention operates as follows.

(1)傾斜部における第1の絶縁膜表面の法線が基板主
面法線と60゜〜85°の角度をなす様に第1の絶縁膜
を加工することにより、第2の絶縁膜を形成した際、ア
スペクト比が1以上の間隙を空隙な(埋込むことができ
る。
(1) By processing the first insulating film so that the normal to the surface of the first insulating film in the inclined part forms an angle of 60° to 85° with the normal to the main surface of the substrate, the second insulating film is When formed, gaps with an aspect ratio of 1 or more can be filled with voids.

(2)  空隙を生じることなく微細な間隙を埋めこむ
ことができるので、半導体基板表面の平坦化工程が容易
となり、上層の配線の形成が容易になる。
(2) Since minute gaps can be filled without creating voids, the process of planarizing the surface of the semiconductor substrate becomes easier, and the formation of upper layer wiring becomes easier.

また、下層の配線の断線が防止できる。Further, disconnection of the lower layer wiring can be prevented.

(3)有機オキシシランの熱分解反応による絶縁膜の形
成工程とプラズマ分解反応による絶縁膜の形成工程を組
合わせることによって、微細な凹部への絶縁膜の埋込み
を容易にできる。
(3) By combining the step of forming an insulating film by a thermal decomposition reaction of organic oxysilane and the step of forming an insulating film by a plasma decomposition reaction, it is possible to easily fill the insulating film into minute recesses.

実施例 実施例1 以下、本発明の製造方法を具体例に基づいて説明する。Example Example 1 Hereinafter, the manufacturing method of the present invention will be explained based on specific examples.

第1図A−Cは本発明による一実施例の製造工程で2層
配線の層間絶縁膜形成工程を示す。第1図Aに示す半導
体Si基板2に回路素子が形成され、基板主面に対して
ほぼ垂直な側面を有する第1のAII線4A〜4C(全
体を言うときはAII線4と記す)が形成された基板を
プラズマCVD装置内に設置し、基板温度を390℃に
保ち、TEOSと02の混合ガスを導入し、真空度がI
Q Torrの状態でブラズムを生成し、第1の絶縁膜
としてのSiO2膜6を0.6μm堆積する。しかる後
に、第1図Bに示すように、上記Aで示す基板をドライ
エツチング装置内に設置し、CF4とArの混合ガスを
導入し、真空度が0.05 T。
FIGS. 1A to 1C show a process for forming an interlayer insulating film for two-layer interconnection, which is a manufacturing process according to an embodiment of the present invention. Circuit elements are formed on the semiconductor Si substrate 2 shown in FIG. The formed substrate was placed in a plasma CVD apparatus, the substrate temperature was maintained at 390°C, a mixed gas of TEOS and 02 was introduced, and the degree of vacuum was reduced to I.
Blasm is generated in a Q Torr state, and a 0.6 μm thick SiO2 film 6 is deposited as a first insulating film. Thereafter, as shown in FIG. 1B, the substrate indicated by A above was placed in a dry etching apparatus, a mixed gas of CF4 and Ar was introduced, and the degree of vacuum was 0.05 T.

rrの状態でプラズマ生成し、5i02膜6を0.3μ
mエツチングして、SiO2膜8を得る。このとき、A
rガスによりS i O2膜6を45°の角度でエツチ
ングしながら、CF4ガスにより5i02膜6を異方性
エツチングすることによって、A1配線(4A〜4(2
)の間隙内のSin、、膜8が間隙底部まで60”〜8
5°の角度の傾斜をもつ様に加工することができる。こ
の後、第1図Cに示すように、上記Bで示す基板をプラ
ズマCVD装置内に設置し、基板温度を390℃に保ち
、TEOSと02の混合ガスを導入し、真空度が10T
orrの状態でプラズマ生成し、第2の絶縁膜としての
SiO2膜10を0.5μm堆積する。このとき、Si
n、、膜8は間隙底部まで60゜〜85°の傾斜を有し
、基板主面に対し垂直かあるいはそれ以上の角度を有す
る側面を持たないので、S iO2膜10によりアスペ
クト比が1以上のA1配線4(4A〜4(2)の間隙を
空隙な(埋込むことができる。
Plasma is generated in the state of rr, and the 5i02 film 6 is heated to 0.3μ.
A SiO2 film 8 is obtained by etching. At this time, A
The A1 wiring (4A to 4(2)
) in the gap, the membrane 8 is 60" to 8" to the bottom of the gap.
It can be machined to have an inclination of 5°. After that, as shown in Fig. 1C, the substrate indicated by B above was placed in a plasma CVD apparatus, the substrate temperature was maintained at 390°C, a mixed gas of TEOS and 02 was introduced, and the degree of vacuum was increased to 10T.
Plasma is generated in the orr state, and a 0.5 μm thick SiO2 film 10 is deposited as a second insulating film. At this time, Si
n,, the film 8 has an inclination of 60° to 85° to the bottom of the gap and does not have side surfaces that are perpendicular to the main surface of the substrate or at an angle greater than 1, so the aspect ratio is 1 or more due to the SiO2 film 10. The gap between the A1 wiring 4 (4A to 4(2)) can be filled as a void.

なお、上記第1の絶縁膜を形成するプラズマCVDにお
いて、TEOSと02の代りにSiH4とO2あるいは
SiH4とN20を用いても同様の結果が得られる。ま
た、上記ドライエツチングにおいて、CF4の代りにC
HF3を用いても同様の結果が得られる。また、上記第
1及び第2の絶縁膜を形成するプラズマCVDにおいて
、TEOSの代りにテトラメトキシシラン[S i (
OCH3)4〕を用いても同様の結果が得られる。
Note that similar results can be obtained by using SiH4 and O2 or SiH4 and N20 instead of TEOS and 02 in the plasma CVD for forming the first insulating film. In addition, in the above dry etching, C instead of CF4 is used.
Similar results are obtained using HF3. Furthermore, in the plasma CVD for forming the first and second insulating films, tetramethoxysilane [S i (
Similar results can be obtained using OCH3)4].

また、述べるまでもな(上記SiO2膜6をエツチング
してS + 02膜8を得る工程において、AI配配線
間間隙内5in2膜8の基板主面に対する傾斜が85°
に近いほど、より微細なAII線間隙を空隙なく埋込む
ことができる。また、このエツチング工程において、A
1配置&!J14(4A〜4(2)表面を直接Arプラ
ズマ雰囲気中にさらすことな(、間隙底部まで5in2
膜8に傾斜を形成することができるので、回路素子にA
rプラズマによる損傷を与えることがない。
It goes without saying that (in the process of etching the SiO2 film 6 to obtain the S+02 film 8, the inclination of the 5in2 film 8 in the gap between the AI interconnections with respect to the main surface of the substrate is 85°.
The closer it is, the finer the AII line gaps can be filled without any voids. Also, in this etching process, A
1 placement &! J14 (4A~4(2) Do not expose the surface directly to Ar plasma atmosphere (5in2 to the bottom of the gap)
Since the film 8 can be sloped, the A
rNo damage caused by plasma.

また、上記実施例は、基板主面に対してほぼ垂直な側面
を有するAII線上に層間絶縁膜を形成する場合につい
て述べたが、上記実施例の製造方法はAI配線が基板主
面に対して90゛以上の角度の側面を有する場合におい
ても、同様の効果を得ることができる。
Furthermore, in the above embodiment, a case was described in which an interlayer insulating film was formed on an AII line having a side surface substantially perpendicular to the main surface of the substrate. However, in the manufacturing method of the above embodiment, the AI wiring is A similar effect can be obtained even when the side surface has an angle of 90° or more.

実施例2 第1図を用いて、本発明による第2の製造工程実施例の
2層配線の層間絶縁膜形成工程を示す。
Embodiment 2 Referring to FIG. 1, the process of forming an interlayer insulating film for two-layer wiring in a second manufacturing process embodiment of the present invention will be described.

第1図AでSi基板2に回路素子が形成され、基板主面
に対してほぼ垂直な側面を有する。
In FIG. 1A, a circuit element is formed on a Si substrate 2, and has a side surface substantially perpendicular to the main surface of the substrate.

第1のA!配線4(4A〜4(2)が形成された基板に
実施例1と同様にプラズマCVD法を用いて、第1の絶
縁膜としての5in2膜6を0.6μm堆積する。そし
て、第1図Bに示すように、実施例1と同様にArおよ
び弗化物ガスを用いたドライエツチング法によって、5
in2膜6を0.3μmエツチングとして60゜〜85
°の傾斜を有するSiO膜8を得る。しかる後に、第1
図Cに示すように、基板を熱CVD装置内に設置し、基
板温度を390℃に保ち、TEOSと03の混合ガスを
導入し、真空度が60Torrの状態で熱反応により第
2の絶縁膜としてのSin、、膜10を0.5μm堆積
し、Al配線4の間隙を埋込む。
First A! A 5in2 film 6 as a first insulating film is deposited to a thickness of 0.6 μm on the substrate on which the wirings 4 (4A to 4(2)) are formed using the plasma CVD method in the same manner as in Example 1. Then, as shown in FIG. As shown in FIG.
The in2 film 6 is etched by 0.3 μm from 60° to 85°.
A SiO film 8 having an angle of .degree. is obtained. After that, the first
As shown in Figure C, the substrate is placed in a thermal CVD apparatus, the substrate temperature is maintained at 390°C, a mixed gas of TEOS and 03 is introduced, and the second insulating film is formed by thermal reaction at a vacuum level of 60 Torr. A film 10 of 0.5 μm of Sin is deposited to fill the gap between the Al interconnects 4.

なお、上記第2の絶縁膜を形成する熱CVDにおいて、
TEOSの代わりにテトラメトキシシラン(S i (
OCH3)4)を用いても同様の結果が得られる。
Note that in the thermal CVD for forming the second insulating film,
Tetramethoxysilane (S i (
Similar results are obtained using OCH3)4).

実施例3 第2図を用いて本発明による第3の実施例の製造工程で
2層配線の層間絶縁膜形成工程を示す。
Embodiment 3 Using FIG. 2, the process of forming an interlayer insulating film for two-layer wiring in the manufacturing process of a third embodiment of the present invention is shown.

第2図AでSi基板2に回路素子が形成され、基板主面
に対してほぼ垂直な側面を有する第1のAl配線4(4
A〜4(2)が形成された基板に実施例1と同様にプラ
ズマCVD法を用いて、第1の絶縁膜としての5in2
膜6を0.6μm堆積する。しかる後に第2図Bに示す
ように、基板上にレジスト膜7を1.5μm程度の厚さ
で塗布し、基板表面を平坦化する。その後、基板をドラ
イエツチング装置内に設置し、02ガスを導入し、真空
度が0. I Torrの状態でプラズマ生成し、前記
レジストIII 7を1.5μmエツチングし、第2図
Cに示すようにSin、、膜6上の凹部にレジスト膜7
(7A〜7D)を形成する。しかる後に、第2図りに示
すように、基板をドライエツチング装置内に設置し、0
2F6と02の混合ガスを導入し、真空度が2Torr
の状態でプラズマ生成し、前記レジスト膜7(7A〜7
D>及びS iO2膜6をエツチングして、Si○2膜
8を得る。このとき、02ガスによりレジスト1I7(
7A〜7D)をエツチングしながら、02F6と0゜の
混合ガスによりSiO2膜6を等方性エツチングするこ
とによって、Al配線4(4A〜4(2)の間隙内の5
in2膜8を間隙底部まで60”〜85゜の角度の傾斜
をもつ様に加工することができる。
In FIG. 2A, a circuit element is formed on a Si substrate 2, and a first Al wiring 4 (4
A 5in2 film as a first insulating film was formed on the substrate on which A to A4(2) was formed using the plasma CVD method in the same manner as in Example 1.
A film 6 is deposited to a thickness of 0.6 μm. Thereafter, as shown in FIG. 2B, a resist film 7 is applied onto the substrate to a thickness of about 1.5 μm to flatten the surface of the substrate. After that, the substrate is placed in a dry etching device, 02 gas is introduced, and the degree of vacuum is set to 0. Plasma is generated under the condition of I Torr, and the resist III 7 is etched by 1.5 μm, and as shown in FIG.
(7A to 7D) are formed. After that, as shown in the second diagram, the substrate is placed in a dry etching device and heated to zero.
A mixed gas of 2F6 and 02 is introduced, and the vacuum level is 2 Torr.
Plasma is generated in this state, and the resist film 7 (7A to 7
D> and the SiO2 film 6 is etched to obtain the SiO2 film 8. At this time, resist 1I7 (
By isotropically etching the SiO2 film 6 with a mixed gas of 02F6 and 0° while etching the Al wirings 4 (4A to 4(2)),
The in2 membrane 8 can be machined to have an inclination of 60'' to 85 degrees to the bottom of the gap.

このとき、5i02膜8には基板主面に対して垂直な側
面は残存しない。この後第2図Eのように、実施例1と
同様にプラズマCVD法を用いて、第2の絶縁膜として
の5in2膜10を0.5μm堆積し、Al配線4の間
隙を埋込む。
At this time, no side surface perpendicular to the main surface of the substrate remains in the 5i02 film 8. Thereafter, as shown in FIG. 2E, a 5in2 film 10 serving as a second insulating film is deposited to a thickness of 0.5 μm using the plasma CVD method as in Example 1, and the gap between the Al wirings 4 is filled.

なお、上記実施例3において、TEOSと02を用いた
プラズマCVD法により第2の絶縁膜を形成する代わり
に、実施例2のごと<TEOSと03を用いた熱CVD
法により第2の絶縁膜を形成しても同様の結果が得られ
る。
In Example 3, instead of forming the second insulating film by plasma CVD using TEOS and 02, the second insulating film was formed by thermal CVD using TEOS and 03 as in Example 2.
A similar result can be obtained even if the second insulating film is formed by the method.

実施例4 第3図を用いて本発明による第4の実施例の製造工程で
2層配線の層間絶縁膜の形成工程を示す。第3図AでS
i基板2に回路素子が作成され、基板主面に対してほぼ
垂直な側面を有する第1のAl配線4(4A〜4(2)
が形成された基板に実施例1と同様にプラズマCVD法
を用いて、第1の絶縁膜としてのSi○2ioを0.6
μm堆積する。しかる後に第3図Bに示すように、実施
例1と同様にArおよび弗化物ガスを用いたドライエツ
チング法によって、S l 02膜6を0.3μmエツ
チングして60゜〜85°の傾斜を有するS i02膜
8を得る。次に、第3図Cに示すように、実施例2と同
様にTEOSと03の混合ガスによる熱CVD法で5i
n2膜9を0.2μm堆積し、前記Al配線400.8
μm以下の間隙を埋込む。そして、第3図りに示すよう
に、実施例1と同様にTEOSと02の混合ガスによる
プラズマCVD法でS i02膜10を0.3 μm堆
積する。このとき、TEOSの熱反応による5in2膜
9はTEOSのプラズマ反応によるS jO2膜lOよ
りも段差被覆性が優れており、1μm以下の間隙を埋込
むのに適している。しかし、このTEOSの熱反応によ
るS io 2膜9は膜質が悪(、厚(堆積すると後の
熱処理の工程においてクラックが生じる恐れがあり、T
EOSのプラズマ反応による5in2膜10を堆積する
ことによって、クラックの発生を防止することができる
。また、TEOSの熱反応による5i02膜の堆積速度
が0.2μm/糟inであるのに比べ、TEOSのプラ
ズマ反応によるSin、、膜の堆積速度は0.8μm 
/ m i nと速いので、スルーブツトの向上が図れ
る。また、上記TEOSの熱反応によるSiO2膜厚と
上記TEOSのプラズマ反応による5i02膜厚を適当
に選び、これら各工程をくり返すことによって、任意の
寸法の前記A1配線4の間隙を埋込むことができる。
Embodiment 4 Using FIG. 3, a process for forming an interlayer insulating film for two-layer wiring in the manufacturing process of a fourth embodiment of the present invention will be described. Figure 3 A and S
A circuit element is formed on the i-board 2, and first Al wiring 4 (4A to 4(2)) having a side surface substantially perpendicular to the main surface of the board is formed.
Using the plasma CVD method in the same manner as in Example 1, Si○2io as the first insulating film was deposited on the substrate on which 0.6
μm deposits. Thereafter, as shown in FIG. 3B, the S102 film 6 was etched by 0.3 μm by dry etching using Ar and fluoride gas as in Example 1 to form an inclination of 60° to 85°. A Si02 film 8 having the following properties is obtained. Next, as shown in FIG. 3C, as in Example 2, 5i
An N2 film 9 was deposited to a thickness of 0.2 μm, and the Al wiring 400.8
Fills gaps of μm or less. Then, as shown in the third diagram, a SiO2 film 10 of 0.3 μm is deposited by plasma CVD using a mixed gas of TEOS and O2 as in Example 1. At this time, the 5in2 film 9 produced by thermal reaction of TEOS has better step coverage than the SjO2 film 1O produced by plasma reaction of TEOS, and is suitable for filling gaps of 1 μm or less. However, the S io 2 film 9 due to the thermal reaction of TEOS has poor film quality (and thickness).
The generation of cracks can be prevented by depositing the 5in2 film 10 by EOS plasma reaction. Furthermore, the deposition rate of the 5i02 film due to the thermal reaction of TEOS is 0.2 μm/in, whereas the deposition rate of the Sin film due to the plasma reaction of TEOS is 0.8 μm/in.
/min, so throughput can be improved. Further, by appropriately selecting the SiO2 film thickness due to the thermal reaction of the TEOS and the 5i02 film thickness due to the plasma reaction of the TEOS and repeating these steps, it is possible to fill the gap of the A1 wiring 4 of any size. can.

なお、上記実施例4において、Arおよび弗化物ガスを
用いたドライエツチング法により、60〜85°の傾斜
を有するようにSiO2膜6をエツチングする代りに、
実施例3のごとく、SiO2膜6の上の凹部にレジスト
膜を形成した後、02および弗化物ガスを用いたドライ
エツチング法によりSi○2膜6をエツチングしても同
様の結果が得られる。
In Example 4, instead of etching the SiO2 film 6 to have an inclination of 60 to 85 degrees by dry etching using Ar and fluoride gas,
Similar results can be obtained by forming a resist film in the recesses on the SiO2 film 6 and then etching the SiO2 film 6 by dry etching using O2 and fluoride gas as in Example 3.

発明の効果 以上述べてきたように本発明の半導体装置の製造方法に
よれば、次のような効果が得られる。
Effects of the Invention As described above, according to the method of manufacturing a semiconductor device of the present invention, the following effects can be obtained.

間隙に形成した第1の絶縁膜を間隙底部まで60〜85
“の傾斜を有し、基板主面に対し垂直な側面が残らない
ようにエツチングすることにより、第2の絶縁膜を形成
した際、アスペクト比が1以上の微細な間隙を空隙なく
埋込むことができる。
The first insulating film formed in the gap is 60 to 85 mm deep to the bottom of the gap.
By etching so that no side surfaces perpendicular to the main surface of the substrate remain, it is possible to fill minute gaps with an aspect ratio of 1 or more without any voids when forming the second insulating film. Can be done.

空隙を生じることな(微細な間隙を埋込むことができる
ので、半導体基板表面の平坦化工程が容易となり、多層
配線の層間絶縁膜の形成に適用すれば、上層の配線の形
式が用意になる。また、下層の配線の断線が防止できる
。さらには、多層配線を実現することにより、素子の高
集積化ならびに高速化が図れる。
Since it is possible to fill minute gaps without creating voids, the planarization process of the semiconductor substrate surface is facilitated, and when applied to the formation of interlayer insulating films for multilayer interconnections, the format of upper layer interconnections can be prepared. In addition, disconnection of lower-layer wiring can be prevented.Furthermore, by realizing multilayer wiring, higher integration and higher speed of elements can be achieved.

有機オキシシランの熱分解反応による絶縁膜の堆積工程
とプラズマ分解反応による絶縁膜の堆積工程を組合わせ
ることによって、微細な凹部への絶縁膜の埋込みを容易
にできる。
By combining the step of depositing an insulating film using a thermal decomposition reaction of organic oxysilane and the step of depositing an insulating film using a plasma decomposition reaction, it is possible to easily fill the insulating film into minute recesses.

以上のように、本発明は微細な凹部に空隙を生じること
なく絶縁膜を埋込むことができるため、素子の高集積化
ならびに信頼性の向上に大きく寄与するものである。
As described above, the present invention makes it possible to embed an insulating film into minute recesses without creating voids, and thus greatly contributes to higher integration and improved reliability of devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による半導体装置の製造方法の実施例1
及び2を説明するための工程断面図、第2図は本発明に
よる製造方法の実施例3を説明するための工程断面図、
第3図は本発明による製造方法の実施例4を説明するた
めの工程断面図、第4図は従来の製造方法の一実施例を
説明するための工程断面図、第5図は従来の製造方法の
他の実施例を説明するための工程断面図である。 2・・・・・・Si基板、4A、4B、4C,・・・・
・・AI配線、6,8,9.10・・・・・・CVD−
3in2膜、7.7A、7B、7C,?D・・・・・・
レジスト膜。 代理人の氏名 弁理士 粟野重孝 ほか1名第 図 ’7.7/4.7B、7Q−レジ”ズ14第 図 8−CVD−鼠0ご項 ?、10− CVD−Σ10♂履(、落どの瀬シ矛層υ
Embodiment 1 of the method for manufacturing a semiconductor device according to the present invention is shown in FIG.
FIG. 2 is a process cross-sectional view for explaining Example 3 of the manufacturing method according to the present invention,
FIG. 3 is a process sectional view for explaining Embodiment 4 of the manufacturing method according to the present invention, FIG. 4 is a process sectional view for explaining an example of the conventional manufacturing method, and FIG. FIG. 7 is a process cross-sectional view for explaining another example of the method. 2...Si substrate, 4A, 4B, 4C,...
・・AI wiring, 6, 8, 9.10・・・・・・CVD-
3in2 membrane, 7.7A, 7B, 7C,? D...
resist film. Name of agent: Patent attorney Shigetaka Awano and one other person Figure 7.7/4.7B, 7Q-Regis 14 Figure 8-CVD-Rice 0?, 10-CVD-Σ10♂(, Dropped) which ridge layer υ
Regret

Claims (4)

【特許請求の範囲】[Claims] (1)表面の少なくとも一部分に、その法線が基板主面
法線と80゜以上の角度をなす傾斜部を有する半導体基
板上に第1の絶縁膜を形成する第1の工程と、前記第1
の絶縁膜の一部をエッチングし、前記傾斜部における絶
縁膜表面の法線が基板主面法線と60゜〜85゜の角度
をなす様に加工する第2の工程と、前記第1の絶縁膜上
に気相反応により第2の絶縁膜を形成する第3の工程を
備えてなることを特徴とする半導体装置の製造方法。
(1) a first step of forming a first insulating film on a semiconductor substrate having, on at least a portion of the surface, an inclined portion whose normal line makes an angle of 80° or more with the normal to the main surface of the substrate; 1
a second step of etching a part of the insulating film so that the normal to the surface of the insulating film in the inclined portion forms an angle of 60° to 85° with the normal to the principal surface of the substrate; A method for manufacturing a semiconductor device, comprising a third step of forming a second insulating film on the insulating film by a gas phase reaction.
(2)第2の工程が第1の絶縁膜をアルゴンガスおよび
弗化物ガスを含むプラズマ中でエッチングすることを特
徴とする特許請求の範囲第1項記載の半導体装置の製造
方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the second step is etching the first insulating film in plasma containing argon gas and fluoride gas.
(3)第2の工程が、第1の絶縁膜を、その凹部内にレ
ジストを形成した後に、酸素および弗化物ガスを含むプ
ラズマ中でエッチングすることを特徴とする特許請求の
範囲第1項記載の半導体装置の製造方法。
(3) The second step is characterized in that the first insulating film is etched in plasma containing oxygen and fluoride gas after a resist is formed in the recessed portion of the first insulating film. A method of manufacturing the semiconductor device described above.
(4)第2の絶縁膜を形成する第3の工程が有機オキシ
シランとオゾンの熱分解反応が有機オキシシランと酸素
のプラズマ生成によるプラズマ分解反応のうち少なくと
もどちらかの反応か、または前記2反応のくり返しによ
って絶縁膜を形成する工程であることを特徴とする特許
請求の範囲第1から第3項のいずれかに記載の半導体装
置の製造方法。
(4) In the third step of forming the second insulating film, the thermal decomposition reaction of organic oxysilane and ozone is at least one of the plasma decomposition reactions due to plasma generation between organic oxysilane and oxygen, or one of the above two reactions. 4. The method of manufacturing a semiconductor device according to claim 1, wherein the step is to repeatedly form an insulating film.
JP21030388A 1988-08-24 1988-08-24 Manufacture of semiconductor device Pending JPH0258836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21030388A JPH0258836A (en) 1988-08-24 1988-08-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21030388A JPH0258836A (en) 1988-08-24 1988-08-24 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH0258836A true JPH0258836A (en) 1990-02-28

Family

ID=16587171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21030388A Pending JPH0258836A (en) 1988-08-24 1988-08-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH0258836A (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541127A (en) * 1991-04-17 1996-07-30 Mitsubishi Denki Kabushiki Kaisha Manufacturing method of sidewall insulating film
US6559026B1 (en) 2000-05-25 2003-05-06 Applied Materials, Inc Trench fill with HDP-CVD process including coupled high power density plasma deposition
US6596653B2 (en) 2001-05-11 2003-07-22 Applied Materials, Inc. Hydrogen assisted undoped silicon oxide deposition process for HDP-CVD
US6740601B2 (en) 2001-05-11 2004-05-25 Applied Materials Inc. HDP-CVD deposition process for filling high aspect ratio gaps
US6808748B2 (en) 2003-01-23 2004-10-26 Applied Materials, Inc. Hydrogen assisted HDP-CVD deposition process for aggressive gap-fill technology
US6812153B2 (en) 2002-04-30 2004-11-02 Applied Materials Inc. Method for high aspect ratio HDP CVD gapfill
US6821577B2 (en) 1998-03-20 2004-11-23 Applied Materials, Inc. Staggered in-situ deposition and etching of a dielectric layer for HDP CVD
US6869880B2 (en) 2002-01-24 2005-03-22 Applied Materials, Inc. In situ application of etch back for improved deposition into high-aspect-ratio features
US6908862B2 (en) 2002-05-03 2005-06-21 Applied Materials, Inc. HDP-CVD dep/etch/dep process for improved deposition into high aspect ratio features
US7052552B2 (en) 2000-08-24 2006-05-30 Applied Materials Gas chemistry cycling to achieve high aspect ratio gapfill with HDP-CVD
US7081414B2 (en) 2003-05-23 2006-07-25 Applied Materials, Inc. Deposition-selective etch-deposition process for dielectric film gapfill
US7087497B2 (en) 2004-03-04 2006-08-08 Applied Materials Low-thermal-budget gapfill process
US7097886B2 (en) 2002-12-13 2006-08-29 Applied Materials, Inc. Deposition process for high aspect ratio trenches
US7205240B2 (en) 2003-06-04 2007-04-17 Applied Materials, Inc. HDP-CVD multistep gapfill process
US7294588B2 (en) 2003-09-03 2007-11-13 Applied Materials, Inc. In-situ-etch-assisted HDP deposition
US7329586B2 (en) 2005-06-24 2008-02-12 Applied Materials, Inc. Gapfill using deposition-etch sequence
US7524750B2 (en) 2006-04-17 2009-04-28 Applied Materials, Inc. Integrated process modulation (IPM) a novel solution for gapfill with HDP-CVD
US7628897B2 (en) 2002-10-23 2009-12-08 Applied Materials, Inc. Reactive ion etching for semiconductor device feature topography modification
US7939422B2 (en) 2006-12-07 2011-05-10 Applied Materials, Inc. Methods of thin film process
US8414747B2 (en) 2005-01-08 2013-04-09 Applied Materials, Inc. High-throughput HDP-CVD processes for advanced gapfill applications
US9607856B2 (en) 2013-03-05 2017-03-28 Applied Materials, Inc. Selective titanium nitride removal
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9711366B2 (en) 2013-11-12 2017-07-18 Applied Materials, Inc. Selective etch for metal-containing materials
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9887096B2 (en) 2012-09-17 2018-02-06 Applied Materials, Inc. Differential silicon oxide etch
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9991134B2 (en) 2013-03-15 2018-06-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US10170282B2 (en) 2013-03-08 2019-01-01 Applied Materials, Inc. Insulated semiconductor faceplate designs
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5541127A (en) * 1991-04-17 1996-07-30 Mitsubishi Denki Kabushiki Kaisha Manufacturing method of sidewall insulating film
US6821577B2 (en) 1998-03-20 2004-11-23 Applied Materials, Inc. Staggered in-situ deposition and etching of a dielectric layer for HDP CVD
US7132134B2 (en) 1998-03-20 2006-11-07 Applied Materials, Inc. Staggered in-situ deposition and etching of a dielectric layer for HDP CVD
US7455893B2 (en) 1998-03-20 2008-11-25 Applied Materials, Inc. Staggered in-situ deposition and etching of a dielectric layer for HDP-CVD
US6559026B1 (en) 2000-05-25 2003-05-06 Applied Materials, Inc Trench fill with HDP-CVD process including coupled high power density plasma deposition
US7052552B2 (en) 2000-08-24 2006-05-30 Applied Materials Gas chemistry cycling to achieve high aspect ratio gapfill with HDP-CVD
US6740601B2 (en) 2001-05-11 2004-05-25 Applied Materials Inc. HDP-CVD deposition process for filling high aspect ratio gaps
US6596653B2 (en) 2001-05-11 2003-07-22 Applied Materials, Inc. Hydrogen assisted undoped silicon oxide deposition process for HDP-CVD
US6914016B2 (en) 2001-05-11 2005-07-05 Applied Materials, Inc. HDP-CVD deposition process for filling high aspect ratio gaps
US7399707B2 (en) 2002-01-24 2008-07-15 Applied Materials, Inc. In situ application of etch back for improved deposition into high-aspect-ratio features
US6869880B2 (en) 2002-01-24 2005-03-22 Applied Materials, Inc. In situ application of etch back for improved deposition into high-aspect-ratio features
US6812153B2 (en) 2002-04-30 2004-11-02 Applied Materials Inc. Method for high aspect ratio HDP CVD gapfill
US7064077B2 (en) 2002-04-30 2006-06-20 Applied Materials Method for high aspect ratio HDP CVD gapfill
US6908862B2 (en) 2002-05-03 2005-06-21 Applied Materials, Inc. HDP-CVD dep/etch/dep process for improved deposition into high aspect ratio features
US7628897B2 (en) 2002-10-23 2009-12-08 Applied Materials, Inc. Reactive ion etching for semiconductor device feature topography modification
US7097886B2 (en) 2002-12-13 2006-08-29 Applied Materials, Inc. Deposition process for high aspect ratio trenches
US6808748B2 (en) 2003-01-23 2004-10-26 Applied Materials, Inc. Hydrogen assisted HDP-CVD deposition process for aggressive gap-fill technology
US7691753B2 (en) 2003-05-23 2010-04-06 Applied Materials, Inc. Deposition-selective etch-deposition process for dielectric film gapfill
US7799698B2 (en) 2003-05-23 2010-09-21 Applied Materials, Inc. Deposition-selective etch-deposition process for dielectric film gapfill
US7081414B2 (en) 2003-05-23 2006-07-25 Applied Materials, Inc. Deposition-selective etch-deposition process for dielectric film gapfill
US7205240B2 (en) 2003-06-04 2007-04-17 Applied Materials, Inc. HDP-CVD multistep gapfill process
US7294588B2 (en) 2003-09-03 2007-11-13 Applied Materials, Inc. In-situ-etch-assisted HDP deposition
US7087497B2 (en) 2004-03-04 2006-08-08 Applied Materials Low-thermal-budget gapfill process
US8414747B2 (en) 2005-01-08 2013-04-09 Applied Materials, Inc. High-throughput HDP-CVD processes for advanced gapfill applications
US7329586B2 (en) 2005-06-24 2008-02-12 Applied Materials, Inc. Gapfill using deposition-etch sequence
US7524750B2 (en) 2006-04-17 2009-04-28 Applied Materials, Inc. Integrated process modulation (IPM) a novel solution for gapfill with HDP-CVD
US7939422B2 (en) 2006-12-07 2011-05-10 Applied Materials, Inc. Methods of thin film process
US9887096B2 (en) 2012-09-17 2018-02-06 Applied Materials, Inc. Differential silicon oxide etch
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9607856B2 (en) 2013-03-05 2017-03-28 Applied Materials, Inc. Selective titanium nitride removal
US10170282B2 (en) 2013-03-08 2019-01-01 Applied Materials, Inc. Insulated semiconductor faceplate designs
US9991134B2 (en) 2013-03-15 2018-06-05 Applied Materials, Inc. Processing systems and methods for halide scavenging
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9711366B2 (en) 2013-11-12 2017-07-18 Applied Materials, Inc. Selective etch for metal-containing materials
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9847289B2 (en) 2014-05-30 2017-12-19 Applied Materials, Inc. Protective via cap for improved interconnect performance
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current

Similar Documents

Publication Publication Date Title
JPH0258836A (en) Manufacture of semiconductor device
KR100265256B1 (en) Semiconductor device and fabrication process thereof
US6424044B1 (en) Use of boron carbide as an etch-stop and barrier layer for copper dual damascene metallization
US7811926B2 (en) Multilayer hardmask scheme for damage-free dual damascene processing of SiCOH dielectrics
US7304386B2 (en) Semiconductor device having a multilayer wiring structure
US5607880A (en) Method of fabricating multilevel interconnections in a semiconductor integrated circuit
US6800940B2 (en) Low k dielectric composite layer for integrated circuit structure which provides void-free low k dielectric material between metal lines while mitigating via poisoning
US6277764B1 (en) Interlayered dielectric layer of semiconductor device and method of manufacturing the same
JPH01185945A (en) Manufacture of semiconductor device
US6403470B1 (en) Method for fabricating a dual damascene structure
JPH02205030A (en) Manufacture of semiconductor device
JP2982475B2 (en) Method for manufacturing semiconductor device
JP2969680B2 (en) Method for manufacturing semiconductor device
JP2586705B2 (en) Semiconductor device and manufacturing method thereof
JP3315907B2 (en) Method for manufacturing semiconductor device
KR100434713B1 (en) Method of manufacturing semiconductor device with corrosion-free metal line and defect-free via hole
KR100752177B1 (en) Method for Forming Inter Metal Dielectrics
KR20010063640A (en) Method for forming interlayer dielectric of semiconductor device
JP2000223486A (en) Insulation film and formation thereof, semiconductor device and fabrication thereof
JPH06283528A (en) Manufacture of semiconductor device
JPH06275614A (en) Manufacture of semiconductor device
JPH02166751A (en) Manufacture of semiconductor device
JPH09199503A (en) Semiconductor device and its manufacture
JPH05304219A (en) Deposition of insulation layer in semiconductor device
KR19990065101A (en) Method of forming interlayer insulating film of semiconductor device