KR100433093B1 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
KR100433093B1
KR100433093B1 KR10-1999-0067973A KR19990067973A KR100433093B1 KR 100433093 B1 KR100433093 B1 KR 100433093B1 KR 19990067973 A KR19990067973 A KR 19990067973A KR 100433093 B1 KR100433093 B1 KR 100433093B1
Authority
KR
South Korea
Prior art keywords
insulating film
forming
pattern
gate electrode
polysilicon layer
Prior art date
Application number
KR10-1999-0067973A
Other languages
Korean (ko)
Other versions
KR20010059977A (en
Inventor
허용진
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR10-1999-0067973A priority Critical patent/KR100433093B1/en
Publication of KR20010059977A publication Critical patent/KR20010059977A/en
Application granted granted Critical
Publication of KR100433093B1 publication Critical patent/KR100433093B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823468MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823475MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type interconnection or wiring or contact manufacturing related aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

본 발명은 반도체소자의 제조방법에 관한 것으로, 고집적 반도체소자의 제조공정에서 게이트전극과 콘택플러그가 형성될 부분을 미리 형성하되, 그 사이에 절연막 스페이서를 형성하여 서로 분리시켜 놓은 다음, 다결정실리콘층을 형성하고 화학적 기계적 연마공정으로 상기 다결정실리콘층을 식각하여 게이트전극과 다결정실리콘층패턴을 형성하되, 상기 절연막 스페이서에 의해 서로 절연되도록 형성한 후 마스크공정으로 필요없는 부분에 형성된 다결정실리콘층패턴을 제거하여 콘택플러그를 형성함으로써 단순한 공정으로 접합영역에 손상을 주지않고 게이트전극 및 콘택플러그를 형성하여 소자의 전기적 특성 및 공정수율을 향상시키고 그에 따른 반도체소자의 고집적화를 가능하게 하는 기술이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device. In the manufacturing process of a highly integrated semiconductor device, a portion in which a gate electrode and a contact plug are to be formed is formed in advance, and insulating film spacers are formed therebetween to separate each other, and then a polysilicon layer is formed. And forming a gate electrode and a polysilicon layer pattern by etching the polysilicon layer by a chemical mechanical polishing process, and insulated from each other by the insulating film spacer, and then forming a polysilicon layer pattern formed on an unnecessary portion by a mask process. By removing the contact plug by removing the contact plug, the gate electrode and the contact plug are formed without damaging the junction region in a simple process, thereby improving the electrical characteristics and the process yield of the device, and thereby enabling high integration of the semiconductor device.

Description

반도체소자의 제조방법{Manufacturing method of semiconductor device}Manufacturing method of semiconductor device

본 발명은 반도체소자의 제조방법에 관한 것으로서, 특히 고집적 반도체소자의 게이트전극과 콘택플러그를 동시에 형성하는 반도체소자의 제조방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for manufacturing a semiconductor device in which a gate electrode and a contact plug of a highly integrated semiconductor device are simultaneously formed.

최근의 반도체장치의 고집적화 추세는 미세 패턴 형성 기술의 발전에 큰 영향을 받고 있으며, 반도체장치의 제조공정 중에서 식각 또는 이온주입 공정 등의마스크로 매우 폭 넓게 사용되는 감광막 패턴의 미세화가 필수 요건이다.The recent trend of high integration of semiconductor devices has been greatly influenced by the development of fine pattern formation technology, and the miniaturization of photoresist patterns, which are widely used as masks such as etching or ion implantation processes, are essential in the manufacturing process of semiconductor devices.

상기 감광막 패턴의 분해능(R)은 축소노광장치의 광원의 파장(λ) 및 공정 변수(k)에 비례하고, 노광 장치의 렌즈 구경(numerical aperture : NA, 개구수)에 반비례한다.The resolution R of the photoresist pattern is proportional to the wavelength λ of the light source of the reduction exposure apparatus and the process variable k, and inversely proportional to the numerical aperture NA of the exposure apparatus.

[ R = k*λ/NA, R = 해상도, λ = 광원의 파장, NA = 개구수][R = k * λ / NA, R = resolution, λ = wavelength of light source, NA = numerical aperture]

여기서, 상기 축소노광장치의 광분해능을 향상시키기 위하여 광원의 파장을 감소시키게 되며, 예를 들어 파장이 436 및 365nm인 G-라인 및 i-라인 축소노광장치는 공정 분해능이 각각 약 0.5, 0.3㎛ 정도가 한계이고, 0.3㎛이하의 미세 패턴을 형성하기 위해 파장이 작은 원자외선(deep ultra violet : DUV), 예를 들어 파장이 248㎚인 KrF 레이저나 193㎚인 ArF 레이저를 광원으로 사용하는 노광장치를 이용하거나, 공정상의 방법으로는 노광마스크(photo mask)를 위상 반전 마스크(phase shift mask)를 사용하는 방법과, 이미지 콘트라스트를 향상시킬 수 있는 별도의 박막을 웨이퍼 상에 형성하는 씨.이.엘.(contrast enhancement layer, 이하 CEL이라 함)방법이나 두 층의 감광막 사이에 SOG 등의 중간층을 개재시킨 삼층레지스트(tri layer resist, TLR) 방법 또는 감광막의 상측에 선택적으로 실리콘을 주입시키는 실리레이션 방법 등이 개발되어 분해능 한계치를 낮추고 있다.Here, the wavelength of the light source is reduced in order to improve the optical resolution of the reduced exposure apparatus. For example, the G-line and i-line reduced exposure apparatus having wavelengths of 436 and 365 nm have a process resolution of about 0.5 and 0.3 µm, respectively. Exposure is limited using a deep ultra violet (DUV) light, for example, a KrF laser having a wavelength of 248 nm or an ArF laser having a wavelength of 193 nm as a light source to form a fine pattern of 0.3 μm or less. As an apparatus or process method, a photo mask is used as a phase shift mask, and a separate thin film is formed on the wafer to improve image contrast. L. (contrast enhancement layer, CEL) method, tri-layer resist (TLR) method in which an intermediate layer such as SOG is interposed between two layers of photoresist, or selectively on top of the photoresist. Silicate methods for injecting cones have been developed to lower the resolution limit.

또한, 상하의 도전배선을 연결하는 콘택홀은 소자가 고집적화되어감에 따라 자체의 크기와 주변배선과의 간격이 감소되고, 콘택홀의 지름과 깊이의 비인 에스펙트비(aspect ratio)가 증가하기 때문에 다층의 도전배선을 구비하는 고집적 반도체소자에서는 콘택을 형성하기 위하여 제조 공정에서의 마스크들간의 정확하고 엄격한 정렬이 요구되어 공정 여유도가 감소되는 문제점이 있다.In addition, the contact holes connecting the upper and lower conductive wirings have a multi-layered structure due to the high integration of devices, and the gap between the size of the contact holes and the peripheral wirings is reduced and the aspect ratio, which is the ratio of the diameter and depth of the contact holes, is increased. In the highly integrated semiconductor device having the conductive wiring of, a precise and rigid alignment between the masks in the manufacturing process is required to form a contact, thereby reducing the process margin.

상기와 같이 소자의 고집적화에 따른 문제점을 해결하기 위하여 도전배선을 서로 연결시키고, 공정 여유도를 증가시키기 위하여 비트라인과 저장전극 콘택을 형성하는 경우 콘택플러그를 사용하게 된다. 상기 콘택플러그는 게이트전극을 형성한 다음 비트라인 콘택과 저장전극 콘택으로 예정되는 부분을 노출시키는 콘택홀이 구비된 층간절연막을 형성한 후, 전면에 다결정실리콘층을 형성한 다음, 화학적 기계적 연마(chemical mechanical polishing, 이하 CMP 라 함)공정으로 제거하여 비트라인 콘택과 저장전극 콘택으로 예정되는 부분과 접속되는 콘택플러그를 형성한다.In order to solve the problem caused by the high integration of the device as described above, the contact plug is used when the conductive lines are connected to each other and the bit line and the storage electrode contact are formed to increase the process margin. The contact plug forms a gate electrode and then forms an interlayer insulating film having a contact hole exposing a portion intended as a bit line contact and a storage electrode contact, and then forms a polysilicon layer on the front surface, followed by chemical mechanical polishing ( chemical mechanical polishing (hereinafter referred to as " CMP ") process to form a contact plug that is connected to a portion intended as a bit line contact and a storage electrode contact.

그러나, 상기와 같이 종래기술에 따른 반도체소자의 제조방법은, 소오스/드레인접합영역에 접속되는 비트라인 또는 저장전극의 콘택플러그를 형성하는 경우 게이트전극 측벽의 절연막 스페이서에 의해 콘택이 형성될 공간을 충분히 확보하는 것이 어렵고, 자기정렬콘택(self aligned contact, SAC)공정에 의한 콘택식각으로 접합영역이 손상되어 소자의 전기적 특성 및 공정수율을 저하시키는 문제점이 있다.However, in the semiconductor device manufacturing method according to the related art as described above, when forming a contact plug of a bit line or a storage electrode connected to a source / drain junction region, a space for forming a contact is formed by an insulating layer spacer on the sidewall of the gate electrode. It is difficult to secure enough, and there is a problem in that the junction region is damaged by contact etching by a self aligned contact (SAC) process, thereby lowering the electrical characteristics and process yield of the device.

본 발명은 상기한 종래기술의 문제점들을 해결하기 위하여, 게이트전극 형상의 희생절연막 패턴을 형성하고, 희생절연막 패턴의 측벽에 절연막 스페이서를 형성한 다음, 상기 희생절연막 패턴을 제거하여 절연막 스페이서만 남기고, 전체표면 상부에 도전층을 형성한 다음 CMP공정을 실시하여 게이트전극 및 상기 절연막 스페이서에 의해 분리된 다결정실리콘층패턴을 형성한 한 후 마스크공정을 실시하여 필요없는 부분에 형성된 다결정실리콘층패턴을 제거하여 콘택플러그를 형성함으로써 미스얼라인 또는 과도식각으로 발생하는 반도체기판의 손상을 최소화하고, 소자 간에 단락되는 현상을 방지하는 반도체소자의 제조방법을 제공하는데 그 목적이 있다.According to the present invention, in order to solve the problems of the prior art, a sacrificial insulating film pattern having a gate electrode shape is formed, an insulating film spacer is formed on sidewalls of the sacrificial insulating film pattern, and the sacrificial insulating film pattern is removed to leave only the insulating film spacer, A conductive layer is formed on the entire surface, followed by a CMP process to form a polysilicon layer pattern separated by the gate electrode and the insulating film spacer, followed by a mask process to remove the polysilicon layer pattern formed on the unnecessary portion. The purpose of the present invention is to provide a method of manufacturing a semiconductor device by minimizing damage to a semiconductor substrate caused by misalignment or overetching by forming a contact plug and preventing a short circuit between the devices.

도 1 내지 도 7 은 본 발명에 따른 반도체소자의 제조방법을 도시한 단면도.1 to 7 are cross-sectional views showing a method of manufacturing a semiconductor device according to the present invention.

<도면의 주요부분에 대한 부호 설명><Description of Signs of Major Parts of Drawings>

11 : 반도체기판 13 : 소자분리절연막11: semiconductor substrate 13: device isolation insulating film

15 : 게이트절연막 패턴 17 : 희생절연막 패턴15: gate insulating film pattern 17: sacrificial insulating film pattern

19 : LDD영역 21 : 절연막 스페이서19: LDD region 21: insulating film spacer

23 : 고농도불순물영역 25 : 홈23: high concentration impurity area 25: home

27 : 다결정실리콘층 28 : 다결정실리콘층패턴27 polycrystalline silicon layer 28 polycrystalline silicon layer pattern

29 : 게이트전극 31 : 감광막 패턴29 gate electrode 31 photosensitive film pattern

이상의 목적을 달성하기 위하여 본 발명에 따른 반도체소자의 제조방법은,셀영역과 주변회로영역이 구비되는 반도체기판 상부에 게이트절연막 패턴과 희생절연막패턴으로 이루어지는 게이트전극 형상의 적층구조를 형성하는 공정과,상기 적층구조 양측 반도체기판에 LDD영역을 형성하는 공정과,상기 적층구조의 양측에 절연막 스페이서를 형성하는 공정과,상기 주변회로영역의 절연막 스페이서 양측에 고농도불순물영역을 형성하는 공정과,상기 희생절연막 패턴을 제거하여 홈을 형성하는 공정과,상기 구조 상부에 도전층을 형성하는 공정과,상기 도전층은 상기 절연막 스페이서를 연마장벽으로 사용한 화학적 기계적 연마공정으로 평탄화시켜 게이트전극 및 다결정실리콘층패턴을 형성하는 공정과,상기 다결정실리콘층패턴을 비트라인 콘택 및 저장전극 콘택으로 예정되는 부분을 보호하는 콘택마스크를 이용한 사진식각공정으로 제거하여 콘택플러그를 형성하는 공정을 포함하는 것을 특징으로 한다.In order to achieve the above object, a method of manufacturing a semiconductor device according to the present invention includes a process of forming a gate electrode shape stacked structure including a gate insulating film pattern and a sacrificial insulating film pattern on a semiconductor substrate having a cell region and a peripheral circuit region; Forming an LDD region on both sides of the multilayer structure, forming an insulating layer spacer on both sides of the laminated structure, and forming a high concentration impurity region on both sides of the insulating layer spacer in the peripheral circuit region. Forming a groove by removing the insulating film pattern, forming a conductive layer on the structure, and flattening the conductive layer by a chemical mechanical polishing process using the insulating film spacer as a polishing barrier to form a gate electrode and a polysilicon layer pattern. Forming a polysilicon layer pattern with a bit line contact and a low And forming a contact plug by removing the photolithography process using a contact mask that protects a predetermined portion of the long electrode contact.

이하, 첨부된 도면을 참고로 하여 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1 내지 도 7 은 본 발명에 따른 반도체소자의 제조방법을 도시한 단면도이다.1 to 7 are cross-sectional views illustrating a method of manufacturing a semiconductor device according to the present invention.

먼저, 셀영역(Ⅰ)과 주변회로영역(Ⅱ)이 구비되는 반도체기판(11)에서 소자분리영역으로 예정되는 부분에 소자분리절연막(13)을 형성한다.First, an element isolation insulating film 13 is formed on a portion of the semiconductor substrate 11 including the cell region I and the peripheral circuit region II, which is intended to be an element isolation region.

다음, 전체표면 상부에 게이트절연막(도시안됨)과 희생절연막(도시안됨)을 형성하고, 게이트전극마스크를 식각마스크로 상기 희생절연막과 게이트절연막을 식각하여 게이트전극 형상의 희생절연막 패턴(17)과 게이트절연막 패턴(15)의 적층구조를 형성한다. 이때, 상기 희생절연막은 후속공정에서 습식식각공정으로 제거되기 쉬운 PSG막으로 형성한다. (도 1 참조)Next, a gate insulating layer (not shown) and a sacrificial insulating layer (not shown) are formed on the entire surface, and the sacrificial insulating layer and the gate insulating layer are etched using a gate electrode mask as an etch mask, and the sacrificial insulating pattern 17 having a gate electrode shape is formed. A stack structure of the gate insulating film pattern 15 is formed. In this case, the sacrificial insulating film is formed of a PSG film which is easily removed by a wet etching process in a subsequent process. (See Figure 1)

그 다음, 상기 적층구조의 양측 반도체기판(11)에 저농도의 불순물을 이온주입하여 LDD영역(19)을 형성한다.Next, the LDD region 19 is formed by ion implanting impurities of low concentration into both semiconductor substrates 11 of the stacked structure.

다음, 상기 적층구조의 측벽에 절연막 스페이서(21)를 형성한다. 이때, 상기 절연막 스페이서(21)는 상기 희생절연막 패턴(17)과 식각선택비 차이를 갖는 질화막으로 형성한다. (도 2 참조)Next, an insulating film spacer 21 is formed on the sidewall of the stacked structure. In this case, the insulating film spacer 21 is formed of a nitride film having a difference in etching selectivity from the sacrificial insulating film pattern 17. (See Figure 2)

그 다음, 상기 주변회로영역(Ⅱ) 상에 형성되는 적층구조의 양측 반도체기판(11)에 고농도의 불순물을 이온주입하여 고농도 불순물영역(23)을 형성한다. (도 3 참조)Next, a high concentration impurity region 23 is formed by ion implantation of high concentration impurities into both semiconductor substrates 11 of the stacked structure formed on the peripheral circuit region II. (See Figure 3)

다음, 상기 희생절연막 패턴(17)을 제거하여 상기 절연막 스페이서(21)로 둘러싸인 홈(25)을 형성한다. 상기 홈(25)은 게이트전극이 형성될 영역으로 그 저부에는 게이트절연막 패턴(15)이 형성되어 있다. (도 4 참조)Next, the sacrificial insulating film pattern 17 is removed to form the groove 25 surrounded by the insulating film spacer 21. The groove 25 is a region where a gate electrode is to be formed, and a gate insulating film pattern 15 is formed at a bottom thereof. (See Figure 4)

그 다음, 전체표면 상부에 다결정실리콘층(27)을 형성하되, 상기 홈(25)이 완전히 매립되도록 형성한다. (도 5 참조)Next, a polysilicon layer 27 is formed on the entire surface, and the groove 25 is formed to be completely buried. (See Figure 5)

다음, 상기 다결정실리콘층(27)과 절연막 스페이서(21)를 CMP공정으로 제거하여 게이트전극(29)과 다결정실리콘층패턴(28)을 형성하되, 상기 게이트전극(29)과 다결정실리콘층패턴(28)은 상기 절연막 스페이서(21)에 의해 절연되도록 형성한다. (도 6 참조)Next, the polysilicon layer 27 and the insulating layer spacer 21 are removed by a CMP process to form the gate electrode 29 and the polysilicon layer pattern 28, but the gate electrode 29 and the polysilicon layer pattern ( 28 is formed to be insulated by the insulating film spacer 21. (See Figure 6)

그 다음, 전체표면 상부에 상기 셀영역(Ⅰ)에서 소자분리절연막(13) 상에 형성된 다결정실리콘층패턴(28)과 주변회로영역(Ⅱ)에서 게이트전극 이외의 부분을 노출시키는 감광막 패턴(31)을 형성한다. (도 7 참조)Next, the polysilicon layer pattern 28 formed on the device isolation insulating film 13 in the cell region I and the photoresist pattern 31 exposing portions other than the gate electrode in the peripheral circuit region II over the entire surface. ). (See Figure 7)

그 후, 도시되어 있지는 않지만 상기 감광막 패턴(31)에 노출되는 다결정실리콘층패턴, 즉 필요하지 않은 다결정실리콘층패턴(28)을 제거하여 게이트전극(29)과 비트라인 및 저장전극과 접속될 콘택플러그를 형성한다.Thereafter, although not shown, the polysilicon layer pattern exposed to the photoresist pattern 31, that is, the polysilicon layer pattern 28 which is not necessary, is removed to contact the gate electrode 29, the bit line and the storage electrode. Form a plug.

이상에서 설명한 바와 같이 본 발명에 따른 반도체소자의 제조방법은, 고집적 반도체소자의 제조공정에서 게이트전극과 콘택플러그가 형성될 부분을 미리 형성하되, 그 사이에 절연막 스페이서를 형성하여 서로 분리시켜 놓은 다음, 다결정실리콘층을 형성하고 화학적 기계적 연마공정으로 상기 다결정실리콘층을 식각하여 게이트전극과 다결정실리콘층패턴을 형성하되, 상기 절연막 스페이서에 의해 서로 절연되도록 형성한 후 마스크공정으로 필요없는 부분에 형성된 다결정실리콘층패턴을 제거하여 콘택플러그를 형성함으로써 단순한 공정으로 접합영역에 손상을 주지않고 게이트전극 및 콘택플러그를 형성하여 소자의 전기적 특성 및 공정수율을 향상시키고 그에 따른 반도체소자의 고집적화를 가능하게 하는 이점이 있다.As described above, in the method of manufacturing a semiconductor device according to the present invention, a portion in which a gate electrode and a contact plug are to be formed in the manufacturing process of a highly integrated semiconductor device is formed in advance, and an insulating film spacer is formed therebetween to be separated from each other. And forming a polysilicon layer and etching the polysilicon layer by a chemical mechanical polishing process to form a gate electrode and a polysilicon layer pattern, which are formed to be insulated from each other by the insulating film spacer, and then formed in a portion which is not necessary by a mask process. By removing the silicon layer pattern to form the contact plug, the gate electrode and the contact plug are formed without damaging the junction area in a simple process, thereby improving the electrical characteristics and the process yield of the device, and thereby the high integration of the semiconductor device. There is this.

Claims (3)

셀영역과 주변회로영역이 구비되는 반도체기판 상부에 게이트절연막 패턴과 희생절연막패턴으로 이루어지는 게이트전극 형상의 적층구조를 형성하는 공정과,Forming a gate electrode stacked structure including a gate insulating film pattern and a sacrificial insulating film pattern on a semiconductor substrate including a cell region and a peripheral circuit region; 상기 적층구조 양측 반도체기판에 LDD영역을 형성하는 공정과,Forming an LDD region on both sides of the laminated structure; 상기 적층구조의 양측에 절연막 스페이서를 형성하는 공정과,Forming insulating film spacers on both sides of the laminated structure; 상기 주변회로영역의 절연막 스페이서 양측에 고농도불순물영역을 형성하는 공정과,Forming a high concentration impurity region on both sides of the insulating film spacer of the peripheral circuit region; 상기 희생절연막 패턴을 제거하여 홈을 형성하는 공정과,Forming a groove by removing the sacrificial insulating layer pattern; 상기 구조 상부에 도전층을 형성하는 공정과,Forming a conductive layer on the structure; 상기 도전층은 상기 절연막 스페이서를 연마장벽으로 사용한 화학적 기계적 연마공정으로 평탄화시켜 게이트전극 및 다결정실리콘층패턴을 형성하는 공정과,Forming a gate electrode and a polysilicon layer pattern by planarizing the conductive layer by a chemical mechanical polishing process using the insulating layer spacer as a polishing barrier; 상기 다결정실리콘층패턴을 비트라인 콘택 및 저장전극 콘택으로 예정되는 부분을 보호하는 콘택마스크를 이용한 사진식각공정으로 제거하여 콘택플러그를 형성하는 공정을 포함하는 반도체소자의 제조방법.And forming a contact plug by removing the polysilicon layer pattern by a photolithography process using a contact mask that protects a portion intended as a bit line contact and a storage electrode contact. 제 1 항에 있어서,The method of claim 1, 상기 희생절연막패턴은 PSG막으로 형성되는 것을 특징으로 하는 반도체소자의 제조방법.And the sacrificial insulating film pattern is formed of a PSG film. 제 1 항에 있어서,The method of claim 1, 상기 절연막 스페이서는 질화막으로 형성되는 것을 특징으로 하는 반도체소자의 제조방법.And the insulating film spacer is formed of a nitride film.
KR10-1999-0067973A 1999-12-31 1999-12-31 Manufacturing method of semiconductor device KR100433093B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-1999-0067973A KR100433093B1 (en) 1999-12-31 1999-12-31 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-1999-0067973A KR100433093B1 (en) 1999-12-31 1999-12-31 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
KR20010059977A KR20010059977A (en) 2001-07-06
KR100433093B1 true KR100433093B1 (en) 2004-05-27

Family

ID=19635061

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-1999-0067973A KR100433093B1 (en) 1999-12-31 1999-12-31 Manufacturing method of semiconductor device

Country Status (1)

Country Link
KR (1) KR100433093B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940016877A (en) * 1992-12-16 1994-07-25 김주용 Manufacturing method of highly integrated semiconductor connection device
KR19980077340A (en) * 1997-04-18 1998-11-16 김영환 Method for forming storage electrode of semiconductor device
JPH1126757A (en) * 1997-06-30 1999-01-29 Toshiba Corp Semiconductor device and manufacture thereof
JPH11145305A (en) * 1997-11-07 1999-05-28 Toshiba Corp Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940016877A (en) * 1992-12-16 1994-07-25 김주용 Manufacturing method of highly integrated semiconductor connection device
KR19980077340A (en) * 1997-04-18 1998-11-16 김영환 Method for forming storage electrode of semiconductor device
JPH1126757A (en) * 1997-06-30 1999-01-29 Toshiba Corp Semiconductor device and manufacture thereof
JPH11145305A (en) * 1997-11-07 1999-05-28 Toshiba Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
KR20010059977A (en) 2001-07-06

Similar Documents

Publication Publication Date Title
KR100474546B1 (en) Fabricating method for semiconductor device
KR100535030B1 (en) Fabricating method for semiconductor device
KR100350764B1 (en) Manufacturing method of semiconductor device
KR20010063761A (en) Fabricating method for semiconductor device
KR100546144B1 (en) Manufacturing method of semiconductor device
KR100420413B1 (en) Manufacturing method for semiconductor device
KR100307556B1 (en) Manufacturing method of semiconductor device
KR100433093B1 (en) Manufacturing method of semiconductor device
KR100307558B1 (en) Manufacturing method of semiconductor device
KR100345367B1 (en) Fabricating method for semiconductor device
KR100337204B1 (en) Method of Forming Semiconductor Device
KR100307560B1 (en) Manufacturing method of semiconductor device
KR100345368B1 (en) Manufacturing method for semiconductor device
KR100333548B1 (en) Fabricating method for semiconductor device
KR100324025B1 (en) Manufacturing method of semiconductor device
KR100359159B1 (en) Forming method for bit line of semiconductor device
KR100465604B1 (en) Manufacturing method of semiconductor device
KR20010005156A (en) Fabricating method for semiconductor device
KR100304440B1 (en) Manufacturing method of semiconductor device
KR100527589B1 (en) Manufacturing method for semiconductor device
KR20030058635A (en) Manufacturing method for semiconductor device
KR20020002013A (en) Manufacturing method for semiconductor device
KR20000043205A (en) Method for forming contact hole of semiconductor device
KR20000027639A (en) Method for manufacturing contact plug of semiconductor devices
KR20010059981A (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
J201 Request for trial against refusal decision
AMND Amendment
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20020822

Effective date: 20040227

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110429

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee