KR100324475B1 - 광학적으로 순수한 (s)-3,4-디히드록시-부티르산 유도체의 연속적 제조방법 - Google Patents

광학적으로 순수한 (s)-3,4-디히드록시-부티르산 유도체의 연속적 제조방법 Download PDF

Info

Publication number
KR100324475B1
KR100324475B1 KR1019990030066A KR19990030066A KR100324475B1 KR 100324475 B1 KR100324475 B1 KR 100324475B1 KR 1019990030066 A KR1019990030066 A KR 1019990030066A KR 19990030066 A KR19990030066 A KR 19990030066A KR 100324475 B1 KR100324475 B1 KR 100324475B1
Authority
KR
South Korea
Prior art keywords
dihydroxy
butyric acid
acid
acid derivatives
reaction
Prior art date
Application number
KR1019990030066A
Other languages
English (en)
Other versions
KR20000011942A (ko
Inventor
노경록
천종필
조익행
박영미
유호성
황대일
Original Assignee
박영구
삼성정밀화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박영구, 삼성정밀화학 주식회사 filed Critical 박영구
Priority to KR1019990030066A priority Critical patent/KR100324475B1/ko
Publication of KR20000011942A publication Critical patent/KR20000011942A/ko
Application granted granted Critical
Publication of KR100324475B1 publication Critical patent/KR100324475B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms
    • C07D307/33Oxygen atoms in position 2, the oxygen atom being in its keto or unsubstituted enol form
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P17/00Preparation of heterocyclic carbon compounds with only O, N, S, Se or Te as ring hetero atoms
    • C12P17/02Oxygen as only ring hetero atoms
    • C12P17/04Oxygen as only ring hetero atoms containing a five-membered hetero ring, e.g. griseofulvin, vitamin C
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/22Preparation of compounds containing saccharide radicals produced by the action of a beta-amylase, e.g. maltose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/04Supports for telephone transmitters or receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/60Substation equipment, e.g. for use by subscribers including speech amplifiers
    • H04M1/6033Substation equipment, e.g. for use by subscribers including speech amplifiers for providing handsfree use or a loudspeaker mode in telephone sets
    • H04M1/6041Portable telephones adapted for handsfree use
    • H04M1/6058Portable telephones adapted for handsfree use involving the use of a headset accessory device connected to the portable telephone
    • H04M1/6066Portable telephones adapted for handsfree use involving the use of a headset accessory device connected to the portable telephone including a wireless connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M19/00Current supply arrangements for telephone systems
    • H04M19/02Current supply arrangements for telephone systems providing ringing current or supervisory tones, e.g. dialling tone or busy tone
    • H04M19/04Current supply arrangements for telephone systems providing ringing current or supervisory tones, e.g. dialling tone or busy tone the ringing-current being generated at the substations
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/07Optical isomers

Abstract

본 발명은 다음 화학식 1로 표시되는 광학적으로 순수한 (S)-3,4-디히드록시-부티르산 유도체의 연속적 제조방법에 관한 것으로서, 더욱 상세하게는 천연물로부터 쉽게 얻을 수 있는 아밀로펙틴을 특정 조건하에서 효소와 반응시켜 목적화합물 제조에 최적합한 당 분포를 가지면서 α-(1,4) 결합으로 연결된 올리고당을 제조하고, 이 올리고당을 염기성 음이온 교환 수지를 통과시키면서 동시에 산화제로 산화반응시켜 이온 교환 수지에 흡착된 상태의 (S)-3,4-디히드록시-부티르산을 얻은 후, 이를 탈착하여 에스터화반응시킴으로써 광학적으로 순수한 (S)-3,4-디히드록시-부티르산 유도체를 연속적으로 제조하는 방법에 관한 것이다.
상기 화학식에서 : R은 C1∼C5의 선형 또는 가지형 알킬기를 나타낸다.

Description

광학적으로 순수한 (S)-3,4-디히드록시-부티르산 유도체의 연속적 제조방법{Continuous process for preparing optically pure (S)-3,4-dihydroxy-butyric acid derivatives}
본 발명은 다음 화학식 1로 표시되는 광학적으로 순수한 (S)-3,4-디히드록시-부티르산 유도체의 연속적 제조방법에 관한 것으로서, 더욱 상세하게는 천연물로부터 쉽게 얻을 수 있는 아밀로펙틴을 특정 조건하에서 효소와반응시켜 목적화합물 제조에 최적합한 당 분포를 가지면서 α-(1,4) 결합으로 연결된 올리고당을 제조하고, 이 올리고당을 염기성 음이온 교환 수지를 통과시키면서 동시에 산화제로 산화반응시켜 이온 교환 수지에 흡착된 상태의 (S)-3,4-디히드록시-부티르산을 얻은 후, 이를 탈착하여 에스터화반응시킴으로써 광학적으로 순수한 (S)-3,4-디히드록시-부티르산 유도체를 연속적으로 제조하는 방법에 관한 것이다.
화학식 1
상기 화학식에서 : R은 C1∼C5의 선형 또는 가지형 알킬기를 나타낸다.
(S)-3,4-디히드록시-부티르산 및 이의 유도체, 그리고 (S)-3-히드록시-감마-부티로락톤 등은 다양한 키랄 화합물의 제조를 위한 중간체 합성용 원료로 사용되고 있다. 예를들면, 신경 전달제 (R)-GABOB[Tetrahedron.,46, 4277(1990)], 고지혈증 치료제(Atorvastatin; HMG-CoA reductase inhibitor)[Tetrahedron. Lett.,33, 2279(1992)], 에이즈 치료제(Agenerase; HIV protease inhibitor)의 핵심중간체 원료인 (S)-3-히드록시테트라히드로퓨란[J. Am. Chem. Soc.,117, 1181(1995); 국제특허공개 WO94/05,639호], 뇌대사개선제인 (S)-옥시라세탐[국제특허공개 WO93/06,826호], 건강보조제인 L-카르니틴[국제특허공개 WO99/05,092호], (S)-모노-베타락탐[일본특허공개 소64-13,069호(1989)], (S)-3-히드록시-4-브로모-부티르산 에스터[일본특허공개 평4-149,151호(1992); 일본특허공개평6-172,256호(1994)], 포만제(satiety agent) 핵심 중간체 원료[Bull. Chem. Soc. Jpn.,61, 2025(1988)], 신경 이완제(Neuroleptic drug)의 핵심 중간체 원료[미국특허 제4,138,484호], 그리고 천연물을 합성하는데 필요한 중간체[J. Org. Chem.,50, 1144(1985),Can. J. Chem.,65, 195(1987),Tetrahedron Lett.,507, (1992)] 등의 여러 종류의 키랄 화합물 제조에 광범위하게 사용되는 매우 중요한 화합물로서 이에 대한 연구가 많이 진행되어져 왔다. 이들 키랄화합물의 제조에 있어서 가장 중요한 요인은 광학적으로 매우 순수한 화합물의 제조기술에 있다.
상기에서 언급한 키랄 화합물 제조용 중간체로서 유용한 (S)-3,4-디히드록시-부티르산 및 이의 유도체, 그리고 (S)-3-히드록시-감마-부티로락톤의 제조에 관련된 종래의 기술을 살펴보면 다음과 같다.
β-케토에스터를 효소 또는 촉매를 이용한 환원반응에 의해 (S)-3-히드록시-부티르산 유도체를 얻는 방법이 알려져 있다[J. Am. Chem. Soc.,105, 5925∼5926(1983);Tetrahedron Lett.,31, 267∼270(1990); 유럽공개특허 제452,143A2호]. 이와 같은 방법은 키랄 중심 탄소의 도입에 있어 한쪽방향으로만 선택적인 환원반응을 보내야하는 어려움이 있고, 값비싼 금속 촉매를 사용하여야 하는 단점이 있다.
(L)-사과산을 에스터화반응시킨 후 선택적 환원반응에 의해 (S)-3,4-디히드록시-부티르산 에스터 및 (S)-3-히드록시-감마-부티로락톤을 합성하는 기술이 알려져 있다[Chem. Lett., 1389∼1392(1984), 미국특허 제5,808,107호]. 이 기술은 두 개의 에스터 작용기중 한쪽만을 선택적으로 환원시켜야만 하는 어려움이 존재한다.
이와 다른 방법으로서, 탄수화물로부터 화학적인 방법을 이용하여 (S)-3,4-디히드록시-부티르산 및 이의 유도체, 그리고 (S)-3-히드록시-감마-부티로락톤을 합성하는 기술이 다수 보고되어 있다.
J. Chem. Soc., 1924∼1931(1960) 문헌에 의하면, C-4 위치에 글루코스 치환체를 갖는 탄수화물, 예를 들면, 4-O-메틸-(D)-글루코스, 맥아당, 아밀로오스, 셀룰로스 등을 염기하에서 반응시켜 C-4 위치의 치환체를 이탈기로 제거시킴으로써 다음 반응식 1과 같은 디카르보닐 화합물(A; 4-Deoxy-2,3-hexodiulose)을 생성시키고, 생성된 디카르보닐 화합물을 염기와 반응시켜 이소사카린산(B) 또는 (S)-3,4-디히드록시-부티르산(C)을 제조하는 기술이 보고되어 있으나, 이 경우 낮은 수율로 (S)-3,4-디히드록시-부티르산(C)을 얻고 있다.
또한, 상기한 바와 같은 C-4 위치에 글루코스 치환체를 갖는 탄수화물을 염기존재하에 반응시켜 디카르보닐 화합물(A)을 형성시킨 후, 디카르보닐 화합물(A)을 분리하여 과산화수소와 반응시켜 (S)-3,4-디히드록시-부티르산(C)과 글리콜산(D)을 주생성물로 얻은 바도 있다[J. Chem. Soc., 1932∼1938(1960)]. 이 방법의 경우, 반응 혼합물로부터 디카르보닐 화합물(A)을 분리함에 있어 이성화현상(토토머화 현상)에 의해 이성체(Isomer)로 존재하거나 또는 고리화물과 수화물이 생성되어 디카르보닐 화합물(A)을 대량으로 분리할 수 없는 문제점이 있다. 또한, 과도한 산화로 인하여 생성된 (S)-3,4-디히드록시-부티르산은 개미산 및 글리콜산 등으로 분해되는 문제점이 발생된다.
이와 유사한 기술로는 탄수화물을 염기 단독 사용하거나 또는 염기존재하 산소에 의해 (S)-3,4-디히드록시-부티르산을 합성하고 있다. 이러한 방법의 반응은 상기 반응식 1에 나타낸 바와 같이 디카르보닐 화합물(A)을 중간체로 하여 (S)-3,4-디히드록시-부티르산이 30% 내외의 낮은 수율로 생성되는 것이 보고되었다[J. Res. Natl. Bur. Stand.,32, 45(1944),J. Am. Chem. Soc., 2245∼2247(1953),J. Am. Chem. Soc., 1431∼1435(1955),Carbohyd. Res.,11, 17∼25(1969),J. Chromatography.,549, 113∼125(1991)]. 이 방법의 경우, 글리콜산(D), 이소사카린산(B), 개미산, 케톤, 디케톤, 글리세린산 등의 여러 산(acid) 혼합물이 주로 생성됨과 동시에 (S)-3,4-디히드록시-부티르산(C)이 생성된다. 그러나, 이 경우 (S)-3,4-디히드록시-부티르산(C)을 매우 낮은 수율로 얻는데 그치고 있으므로 상기한 방법은 (S)-3,4-디히드록시-부티르산의 제조를 위한 방법으로서는 산업적인 기술가치가 없는 것으로 판단된다.
또한, 이당류(젖당)으로부터 염기와 산화제를 사용하여 (S)-3,4-디히드록시-부티르산을 제조한 후 (S)-3-히드록시-감마-부티로락톤으로 고리화 시키고, 이를 다시 개환반응에 의해 메틸 (S)-3,4-O-이소프로필리덴-3,4-디히드록시부타노에이트로 분리하는 방법이 보고되어 있다[국제특허공개 WO 98/04543호]. 이 방법은 반응 혼합물중의 (S)-3-히드록시-감마-부티로락톤을 정제함에 있어 개환반응에 의해 두개의 히드록시 작용기가 보호된 아세토나이드 에스터로 전환시킨 후, 이를 분리하여 얻은 다음 분리된 아세토나이드 에스터를 산촉매하에 고리화시켜 (S)-3-히드록시-감마-부티로락톤을 얻는 추가적인 정제과정을 거치게 된다.
C-4 위치에 글루코스 치환체를 갖는 탄수화물을 염기존재하에 산화제로 산화반응시키는 과정이 포함되는 (S)-3,4-디히드록시-부티르산 및 이의 유도체의 제조방법이 알려져 있다[미국특허 제5,292,939호, 제5,319,110호와 제5,374,773호 (1994)]. 그러나, 이 방법의 경우도 중간체인 디카르보닐 화합물(A)을 형성한 후 산화제에 의해 (S)-3,4-디히드록시-부티르산(C)과 글리콜산(D)이 합성된 것으로 기술되었으나, 키랄화합물에서 가장 중요한 물성인 광학순도에 대한 언급이 전혀 없다. 그 뿐만 아니라 반응 메카니즘적으로 볼 때, 출발물질이 맥아당 또는 젖당과 같은 이당류를 사용하는 경우는 원료의 이당(二糖)중 하나의 당만이 (S)-3,4-디히드록시-부티르산 및 이의 염을 생성시키고, 나머지 한 당은 이탈기로서 작용되므로 결국 목적화합물과 이탈기가 1:1로 존재하게 되어 반응 혼합물로부터 (S)-3,4-디히드록시-부티르산과 (S)-3-히드록시-감마-부티로락톤의 분리정제가 매우 어렵다. 상기한 방법에서의 경우, 사용한 원료무게 대비 생성되는 (S)-3-히드록시-감마-부티로락톤의 이론적인 최대 수율이 28.3 중량%인 바, 상대적인 수율이 낮은 한계점이 있다. 다시말하면, 이당류(맥아당 또는 젖당) 100 g으로부터 생성되는 (S)-3-히드록시-감마-부티로락톤의 이론적인 최대량이 28.3 g인 것이다. 그러나, 상기 특허에서 언급된 말토덱스트린, 전분 및 셀룰로스와 같은 다당류의 경우는 글루코스 연결단위가 (1,4)결합 그리고/또는 (1,6)결합이 그물처럼 연결되어 있으며, (1,4)결합으로 이루어진 당환원기(Reducing end units)로부터 단계적인(step by step) 산화반응이 진행되다가 (1,6)결합으로 이루어진 부분에서 산화반응이 종결되어 더 이상 원하는 목적화합물이 생성되지 않는 문제점이 있다. 그리고, 상기와 같은 다당류의 고분자당의 경우, 염기 존재하에 산화제(과산화수소)로 산화반응하게 되면 당환원기(Reducing end units)의 과도한 산화로 인해 개미산, 옥살산, 글리콜산, 에리스론산 등의 산 혼합물로 분해되는 것으로 알려져있다[J. Am. Chem. Soc. 81, 3136, 1959; Starch41Nr. 8, S. 303∼309(1989);Synthesis, 597∼613(1997)].
한편, 다당류의 경우 반응 수율을 높이기 위해 고분자당을 산 또는 염기를 이용한 화학적 가수분해 반응에 의해 상대적인 저분자당으로 분해시켜 수율을 증가시키려고 한 바도 있다. 그러나, 반응성은 일부 증가되지만 (1,4)결합과 (1,6)결합의 선택적인 가수분해반응이 불가능하여 다당류가 불규칙적으로 분해되기 때문에 (S)-3,4-디히드록시-부티르산 및 이의 유도체를 높은 수율로 제조하기에는 근본적으로 어려운 문제가 있다[Encyclopedia of Chemical Technology, 3th edition, 492∼507].
일반적으로 (1,4)결합인 다당류를 사용하여 (S)-3-히드록시-감마-부티로락톤을 제조하는 경우, 이론적으로 당환원기(Reducing end units)로부터 단계적인(step by step) 산화반응에 의해 연속적으로 반응이 진행되어, 사슬 길이의 마지막 하나의 당(이탈기)을 제외한 모든 당이 (S)-3,4-디히드록시-부티르산 및 이의 염으로 생성된다. 즉, (1,4)결합인 다당류를 원료로하여 (S)-3-히드록시-감마-부티로락톤을 합성하는 경우, 사용한 원료 무게에 대비되는 이론적인 최대 수율이 63 중량%이므로 이당류의 사용에 비해 2배 정도 우수성이 있다. 다시말하면, (1,4)결합인 다당류 100 g으로부터 생성되는 (S)-3-히드록시-감마-부티로락톤의 이론적인 최대량이 63 g인 것이다. 또한, 이당류를 사용할 때와 비교하여 이탈기의 잔존율이 적어서 목적화합물을 쉽게 정제할 수 있는 장점이 있으므로 원료물질을 (1,4)결합인 다당류로 사용하는 것이 이당류의 탄수화물을 사용하는 경우보다 높은 생산성을 얻을 수 있다. 그러나, 일반적인 다당류의 경우 단계적인 산화반응에 있어서 목적화합물과 부생성물(개미산, 옥살산, 글리콜산, 에리스론산 등의 산)의 생성이 서로 경쟁반응하기 때문에, (1,4) 결합으로 연결된 적절한 당 분포 범위로 분해하는 기술이 추가로 요구된다.
한편, 고분자당을 저분자당으로 변화시켜 산업적으로 유용한 물질로 변형하는 방법으로서, 생물학적인 효소 처리과정을 이용하는 문헌이 많이 보고되어져 왔다.
문헌에 의거한 기술을 살펴보면, 전분에 효소를 처리하여 포도당 혹은 맥아당을 제조하는 기술, 알콜의 발효원료로 사용하는 기술[미국특허 제3,791,865호(1974); 미국특허 제3,922,200호(1975); 미국특허제4,855,232호(1989); 일본특허공개 평4-158,795호(1992);Methods Carbohydr. Chem. 10, 231∼239(1994);Methods Carbohydr. Chem. 10, 245∼248(1994)], 그리고 적절한 포도당 당량(Dextrose Equivalent; DE)을 갖는 말토덱스트린을 제조하는 기술[미국특허 제3,986,890호(1976), 미국특허 제4,447,532호(1984), 미국특허 제4,612,284호(1986), 미국특허 제5,506,353호(1996)] 등이 있다. 이들 문헌에서는 주로 고분자당을 분해 및 변형시켜 의약품, 식품 첨가제, 진단시약의 원료물질 등으로 사용하기 위해 연구가 진행되었다.
그러나, 적합한 당분포와 α-(1,4)결합을 가지는 올리고당을 광학적으로 순수한 (S)-3,4-디히드록시-부티르산 유도체의 제조용 원료물질로 사용한 예는 없다.
이에, 본 발명의 발명자들은 상업적으로 용이하게 수득이 가능한 아밀로펙틴으로부터 광학적으로 순수한 (S)-3,4-디히드록시-부티르산 유도체를 경제적인 방법에 의해 연속적으로 제조할 수 있는 방법을 개발하고자 노력하였다. 그 결과, 아밀로펙틴을 특정 조건하에 순차적으로 효소반응시켜 다음의 산화반응에서 부생성물의 생성을 최대한 억제할 수 있는 구조적 특이성을 가지는 올리고당을 제조하였고, 상기한 올리고당의 산화반응을 염기성 음이온 교환 수지하에서 수행하여 이온 교환 수지에 흡착된 상태로 (S)-3,4-디히드록시-부티르산을 얻었으며, 제조된 (S)-3,4-디히드록시-부티르산을 탈착한 후에 연속하여 에스터화반응을 수행하여 (S)-3,4-디히드록시-부티르산 유도체를 제조하는 방법을 개발하였다. 특히, 상기한산화반응에서 이탈기로 존재하는 당 화합물(glucose)은 염기성 음이온 교환 수지에 흡착되지 않고 증류수로 세척하는 과정에서 모두 제거되므로 통상의 당 산화반응에서 발생하는 글루코스 부산물을 용이하게 제거할 수 있는 우수성이 있다. 또한, 상기한 (S)-3,4-디히드록시-부티르산의 탈착과정에서는 사용된 염기성 이온교환수지도 동시에 재생되므로 올리고당의 산화반응에 다시 사용할 수 있는 또다른 우수성이 있다.
따라서, 본 발명은 생물학적 효소처리에 의해 제조된 특정 구조의 올리고당을 염기성 음이온 교환 수지를 사용하여 산화반응함으로써 별도의 정제 과정 없이 (S)-3,4-디히드록시-부티르산을 순수한 상태로 분리할 수 있으며, 또한 에스터화반응을 연속적으로 수행하여 경제적이고 진보된 기술에 의해 높은 수율로 간편하게 광학적으로 순수한 (S)-3,4-디히드록시-부티르산 유도체를 대량으로 제조하는 방법을 제공하는데 그 목적이 있다.
도 1a는 라세믹 3-히드록시-감마-부티로락톤의 광학순도를 가스 크로마토그래피(GC)로 분석한 결과이고,
도 1b는 종래방법의 원료물질(이당류)에 의해 제조된 (S)-3-히드록시-감마-부티로락톤의 광학순도를 가스 크로마토그래피(GC)로 분석한 결과이고,
도 1c는 본 발명의 원료물질(올리고당)에 의해 제조된 (S)-3-히드록시-감마-부티로락톤의 광학순도를 가스 크로마토그래피(GC)로 분석한 결과이다.
본 발명은 다음 화학식 2로 표시되는 α-(1,4) 결합으로 연결된 올리고당을 염기성 음이온 교환 수지를 통과시키면서 동시에 산화제로 산화반응시켜 다음 화학식 3으로 표시되는 (S)-3,4-디히드록시-부티르산을 제조한 후 연속적으로 산촉매하에 알콜에 의한 에스터화반응을 수행하여 다음 화학식 1로 표시되는 (S)-3,4-디히드록시-부티르산 유도체를 연속적으로 제조하는 방법을 그 특징으로 한다.
화학식 1
상기 화학식에서 : M은 수소원자, 알카리금속원자 또는 알카리토금속원자를 나타내고, R은 C1∼C5의 선형 또는 가지형 알킬기를 나타낸다.
이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.
본 발명은 아밀로펙틴을 원료물질로 사용하여 (S)-3,4-디히드록시-부티르산 유도체를 제조하는 방법에서 보다 효율적으로 산화반응을 수행하기 위하여, 특정의 효소를 사용하여 아밀로펙틴내에 α-(1,4) 결합과 α-(1,6) 결합을 선택적으로 분해시켜 목적화합물 제조에 최적합한 당의 분포를 가지면서 α-(1,4) 결합으로 연결된 올리고당으로 전환시키고, 이 올리고당을 염기성 음이온 교환 수지를 통과시키면서 동시에 산화제로 산화반응시켜 통상의 당의 산화반응 부산물로 생성되는 글루코스를 효과적으로 제거하며, 또한 연속적으로 에스터화반응을 수행하는데 기본적인 발명의 사상이 있다.
즉, 본 발명은 각 사용효소의 특이성에 착안한 것으로 특정 효소들의 순차적 사용에 의해 아밀로펙틴을 분해시켜 목적화합물 제조에 최적합한 당의 분포를 가지면서 α-(1,4) 결합으로 연결되어 있는 올리고당으로 전환하고, 상기 전환된 올리고당을 염기성 음이온 교환 수지를 통과시키면서 동시에 산화반응을 수행함으로써 반응 부산물을 효과적으로 제거하고, 또한 그 다음으로 수행하게 되는 에스터화반응 을 연속적으로 수행하여 고수율로 광학적으로 순수한 (S)-3,4-디히드록시-부티르산 유도체를 제조하는 방법에 관한 것이다.
본 발명이 원료물질로 사용하고 있는 올리고당은 아밀로펙틴의 생물학적 효소처리에 의해 합성한 것이다. 또한, 올리고당 제조를 위해 사용된 아밀로펙틴은 상업적으로 쉽게 구입이 가능하다. 특히, 아밀로펙틴은 전분이나 셀룰로스와 같은 다른 다당류에 비하여 본 발명에 따른 효소반응에서의 반응용매로 사용하고 있는 물 또는 pH 4.0 ∼ 8.0의 완충용액에 대한 용해도가 높은 바, 이로 인해 효소반응에 대한 상대적 활성이 증가되어 (S)-3,4-디히드록시-부티르산 유도체의 제조에 적합한 당의 분포를 가지는 올리고당의 제조에 매우 효과적이다.
본 발명에 따른 제조방법을 설계하는 과정에서, 상기한 아밀로펙틴을 적절한 당의 분포를 가지는 올리고당으로 전환시키기 위하여 아밀로펙틴의 α-(1,6) 결합을 선택적으로 분해하는 효소로 플루라네이즈(Pullulanase)를 적용해 보았으나, 아밀로펙틴의 용해도 저하 및 플루라네이즈 효소 활성 감소의 문제가 제기되었다. 이에 플루라네이즈 한 종류의 효소만을 적용시키는 대신에 α-아밀라아제 효소를반응시켜 적절한 당의 분포로 저분자화시켜 반응성을 증가시킨 후에 플루라네이즈를 순차적으로 처리하는 방법을 선택하였다. 이와 같은 효소반응의 경우에 플루라네이즈의 효소반응중에 잔존하는 α-아밀라아제의 활성이 계속해서 이루어지고, α-아밀라아제의 특성상 장시간동안 효소반응이 진행되면 아밀로펙틴이 과도하게 저당으로 전환되어 목적하는 올리고당을 제조할 수 없다. 따라서, 본 발명에서는 플루라네이즈 효소반응에 앞서서 α-아밀라아제 효소 반응후 잔존하는 α-아밀라아제를 불활성화하는 기술을 도입하였다.
이와 같은 본 발명의 제조방법을 세분화하면, 특정 효소를 이용한 생물학적 방법에 의하여 아밀로펙틴을 선택적으로 분해하여 제조된 상기 화학식 2로 표시되는 특성적인 α-(1,4) 결합을 가진 올리고당을 염기성 음이온 교환 수지를 통과시키면서 동시에 산화제로 산화반응시켜 이온 교환 수지에 흡착된 상태의 (S)-3,4-디히드록시-부티르산을 얻고, 이를 탈착하는 과정과, 그리고 탈착용액을 에스터화반응하여 상기 화학식 1로 표시되는 (S)-3,4-디히드록시-부티르산 유도체를 제조하는 과정으로 구성된다. 상기한 본 발명에 따른 제조방법에서는 반응중간에 생성되는 올리고당 및 (S)-3,4-디히드록시-부티르산의 분리 정제 과정없이 연속적으로 수행하여도 고 광학순도의 (S)-3,4-디히드록시-부티르산 유도체를 고 수율로 얻을 수 있다.
본 발명에 따른 효소반응에서는 아밀라아제 반응후 플루라네이즈를 순차적으로 사용한다. 아밀라아제(Amylase)는 α-(1,4) 결합을 분해하고, 플루라네이즈(Pullulanase)는 α-(1,6) 결합을 선택적으로 분해하는 것이 특징인효소이다.
일반적인 화학적 가수분해 반응이 α-(1,4) 결합, α-(1,6) 결합의 분해에 대한 선택성이 없이 아밀로펙틴을 불규칙적으로 분해시키는데 반하여, 본 발명의 가수분해 반응에서는 α-(1,4) 결합 혹은 α-(1,6) 결합에 선택적으로 작용하는 효소를 선정하여 사용함으로써 온화한 조건으로 아밀로펙틴을 목적화합물 제조에 최적합한 당 분포를 가지는 올리고당으로 변형시켜 높은 수율로 광학적으로 순수한 (S)-3,4-디히드록시-부티르산 유도체를 제조하는데 그 우수성이 있다할 것이다.
본 발명에 따른 효소반응은 물 단독용매 또는 pH 4.0 ∼ 8.0 완충용액 하에서 40 ∼ 120℃ 조건으로 수행한다. 아밀라아제 효소는 아밀로펙틴의 중량에 대하여 0.001 ∼ 10 중량% 범위내에서 사용하며, 아밀라아제로 효소반응을 30분 ∼ 4시간 처리한 후 잔존하는 아밀라아제는 불활성화시킨다. 이때 불활성 조건은 산성(pH 2.0 ∼ 4.5) 및 고온(60 ∼ 150℃) 조건에서 10분 ∼ 4시간 동안 유지하도록 하여야 한다. 상기한 아밀라아제에 의한 효소반응 후에 플루라네이즈 효소를 아밀로펙틴의 중량에 대하여 0.001 ∼ 10 중량% 범위내에서 사용하며, 플루라네이즈로 효소반응을 10시간 ∼ 40시간 처리하여 얻은 올리고당은 대부분 3 ∼ 50당 범위로 분포된다. 생성된 올리고당은 광학분석기를 이용해 당환원기(Reducing end units 및 Dextrose Equivalent)분석, HPLC분석과 겔 투과-크로마토그래피(GPC) 분석을 통해 상대적인 당환원기와 분자량 분포를 분석하였다.
본 발명의 올리고당은 아밀로펙틴을 선택적으로 효소반응시켜 얻은 것으로서, 대부분이 3 ∼ 50당 범위 바람직하기로는 5 ∼ 50당 범위내에서 분포하고, 또한 당과 당 사이는 대부분 α-(1,4) 결합으로 연결되어 있어 다음으로 수행되는 산화반응에서의 부생성물(예를 들면 개미산, 옥살산, 글리콜산, 에리스론산 등의 산 혼합물)의 생성을 최소화하면서도 단계적 반응을 연속적으로 진행시킬 수 있어 고 수율로 (S)-3,4-디히드록시-부티르산 유도체를 얻을 수 있는 장점이 있다. 또한, 이때 얻어지는 (S)-3,4-디히드록시-부티르산 유도체는 광학적으로 매우 순수함을 확인할 수 있었다(99.9 %ee 이상).
한편, 본 발명의 산화 반응에서는 상기 효소 반응결과로 얻어진 올리고당 용액을 염기성 음이온 교환 수지를 통과시키면서 동시에 산화제를 사용하여 산화반응을 수행하여 이온 교환 수지에 흡착된 상태의 (S)-3,4-디히드록시-부티르산을 제조하며, 알카리금속 또는 알카리토금속의 수용액을 수지에 통해줌으로써 (S)-3,4-디히드록시-부티르산을 탈착시킨다.
이상에서 설명한 바와 같은, 올리고당의 산화반응은 다음 반응식 2로 나타낼 수 있다.
상기 반응식 2에서 :
는 고분자 지지체를 나타내고; M은 수소원자, 알카리금속원자 또는 알카리토금속원자를 나타낸다.
상기 반응식 2에 의하면, 올리고당 용액의 산화반응에서는 염기성 음이온 교환 수지가 염기로 작용하고, 함께 사용되는 산화제에 의해 올리고당이 산화되어 (S)-3,4-디히드록시-부티르산과 글리콜산을 생성하며, 이러한 산화반응 생성물들이염기성 음이온 교환 수지에 흡착되는 반응이 연속적으로 진행된다. 그리고, 올리고당 사슬 길이의 마지막 당(이탈기)은 반응액 상에 존재하게 된다.
상기 산화반응후, 이온 교환 수지를 증류수로 세척하여 이탈기로 존재하는당(글루코스) 및 기타 불순물을 제거하고 나서, 이온 교환 수지에 2 ∼ 50 중량% 의 알카리금속 또는 알카리토금속의 수용액을 2BV/hr의 속도로 흘려주어 (S)-3,4-디히드록시-부티르산을 탈착시킨다. 특히나, 상기 탈착 과정에서 산화반응에 이용된 이온 교환 수지가 염기성 음이온 교환 수지로 재생되는 효과를 가지는 바, 이에 본 발명이 사용하는 염기성 음이온 교환 수지는 반 영구적으로 재생하여 사용할 수 있어 산업적인 가치가 매우 크다.
본 발명에 따른 올리고당의 산화반응은 30 ∼ 65℃ 조건하에서 6 ∼ 36시간 동안 수행한다. 이때 산화제는 과산화수소, 과산화알카리금속, 과산화알카리토금속 및 과산화알킬 중에서 선택하여 사용하고, 바람직하게는 과산화수소 또는 t-부틸하이드로 퍼옥사이드를 사용하는 것이다. 상기한 산화제는 아밀로펙틴의 포도당 단위 몰수에 대해서 1 ∼ 3 당량 범위내에서 사용한다. 또한, 염기로서는 염기성 음이온 교환 수지가 사용되며, 바람직하게는 4급 암모늄 작용기를 지닌 수산화물 형태의 강염기성 음이온 교환 수지를 사용하는 것이다. 상기한 염기성 음이온 교환 수지는 아밀로펙틴의 포도당 단위 몰수에 대해서 2 ∼ 4 당량 범위내에서 사용한다.
이상의 산화반응 결과로 얻어진 (S)-3,4-디히드록시-부티르산 및 이의 염이 함유된 탈착용액을 에스터화반응하여 (S)-3,4-디히드록시-부티르산 유도체를 합성한다. 본 발명의 에스터화반응은 산촉매하에서 반응용매겸 에스터화제로서 알콜을 사용하여 30 ∼ 80℃의 온도범위내에서 수행한다. 이때, 산촉매로서는 염산, 황산, 인산, 질산 등의 무기산, 또는 플루오로알킬 술폰산, 아랄킬 술폰산, 아랄킬 술폰산 수화물, 트리플루오로아세트산 등의 유기산을 사용한다. 알콜로는 선형 또는 가지형의 C1∼C5알콜을 사용한다.
한편, 산화반응에 적용되는 원료물질의 선택 사용에 따른 수율 비교를 위하여, 제조된 (S)-3,4-디히드록시-부티르산 유도체를 산촉매하에서 고리화반응하여 (S)-3-히드록시-감마-부티로락톤으로서 수득하여 제조 수율을 서로 비교해 보았다[시험예 1 참조]. 즉, 상기 화학식 1로 표시되는 (S)-3,4-디히드록시-부티르산 유도체를 산촉매하에 30 ∼ 80℃의 온도범위내에서 2 ∼ 5시간 교반하여 고리화반응을 수행하며, 그 결과로 (S)-3-히드록시-감마-부티로락톤을 합성하였다. 이때, 산촉매로서는 염산, 황산, 인산, 질산 등의 무기산, 또는 플루오로알킬 술폰산, 아랄킬 술폰산, 아랄킬 술폰산 수화물, 트리플루오로아세트산 등의 유기산을 사용한다. 그 결과, 맥아당(2당) 또는 치즈부산물로부터 얻은 젖당(2당)을 원료물질로 사용하는 경우, 사용된 원료무게를 대비하여 (S)-3-히드록시-감마-부티로락톤의 최고 수율이 28.3 중량%를 넘지 못한다. 이에 반하여, 50당을 초과하는 다당류 중에서 α-(1,4) 결합으로 연결된 순수한 아밀로오스를 원료물질로하여 (S)-3-히드록시-감마-부티로락톤을 제조하는 경우, 이론적인 수율은 아밀로펙틴과 동일하지만 아주 강한 분자내 수소결합에 의해 이중나선구조(Double Helix)를 이루고 있어 단계적 산화반응이 제약을 받아 이 또한 수율이 이론적 수율에 못미치는 매우 낮은 결과를 보인다. 그러나, 본 발명의 올리고당을 원료물질로 사용하여 (S)-3-히드록시-감마-부티로락톤을 제조하는 경우, 사용된 원료무게를 대비한 수율이 57.2 중량%로 매우 높다.
이상에서 설명한 바와 같이, 본 발명에서는 특이성있게 효소를 적용시켜 아밀로펙틴을 올리고당으로 전환시킴으로써 산화반응에 대한 아밀로펙틴의 낮은 반응성의 한계를 극복하고 부반응물의 생성을 최소화하며, 또한 이온 교환 수지하에서의 산화반응을 시도함으로써 당 산화반응에서 필연적으로 생성되는 부산물을 효과적으로 제거하고 있는 바, 본 발명은 광학적으로 순수한 (S)-3,4-디히드록시-부티르산 유도체의 생산성을 극대화시킬 수 있다는 점에 그 우수성이 있다.
이와 같은 본 발명을 다음의 실시예에 의거하여 더욱 상세히 설명하면 다음과 같은 바, 본 발명이 이에 한정되는 것은 아니다.
실시예 1 : 메틸 (S)-3,4-디히드록시-부타노에이트의 제조
50 L 반응기에 물 10 L 및 건조된 아밀로펙틴 5 kg을 넣고 55℃까지 온도를 올린 후에 α-아밀라아제(BAN ; EC 3.2.1.1 fromBacillus licheniformis, Novo Nordisk) 12 g을 가하였다. 그리고 이 반응액을 75℃까지 온도를 상승시키고, 동온도에서 2시간 교반후 0.1N-HCl 5 mL를 이용하여 반응액의 pH를 3.0 ∼ 3.5로 맞춘 후에 90℃에서 1시간동안 교반하여 잔존하는 α-아밀라아제를 불활성시켰다. 반응액을 30℃로 서서히 냉각시키고 4M 아세트산 완충용액(pH 5) 3.7 L 및 물 1.3 L를 넣고 pH를 5로 맞추었다. 그 후 반응액을 60℃까지 상승시키고 동온도에서 플루라네이즈(Promozyme; EC 3.2.1.4 fromBacillus acidopullulyticus, Novo Nordisk) 62.5 g를 넣고 22시간 교반하였다.
다른 100 L 반응기에 4급 암모늄 수산화물을 함유하는 이온 교환 수지 (Amberlite IRA 402 OH; 0.95 eq/L, Rohm and Hass, 75 L)를 넣고 50℃로 가열한 후에 상기 효소반응으로 제조한 올리고당 용액과 30% H2O2(5.25 kg) 용액을 24시간동안 적가한 다음 1시간 동안 같은 온도에서 교반시켰다. 반응액을 상온으로 냉각한 후에 칼럼에 충진하고 100 kg의 증류수를 흘려주어 이탈기로 잔존하는 당화합물을 제거하였다. 그런 다음, 이 컬럼에 3 중량% NaOH (110 kg) 수용액으로 흘려주어 이온 교환 수지에 흡착되어 있는 (S)-3,4-디히드록시-부티르산 나트륨염을 탈착시켰다. 이때, 생성된 (S)-3,4-디히드록시-부티르산 나트륨염은 핵자기 공명 분석을 통해 확인 하였다.
1H-NMR(D2O, ppm) δ 2.27(dd, 1H), 2.39(dd, 1H), 3.41(dd, 1H), 3.51(dd, 1H), 3.8-3.9(m, 1H)
상기 탈착용액을 농축한 후 메탄올 10 L를 넣고 진한황산을 가하여 pH 4∼5로 맞춘 후 50℃에서 3시간동안 교반하였다. 이 용액에 탄산나트륨을 넣어 산을 중화한 다음 여과하고 메탄올을 농축하여 메틸 (S)-3,4-디히드록시-부타노에이트를 얻었다. 이를 핵자기 공명의 분석을 통해 내부표준물질과 비교하여 메틸 (S)-3,4-디히드록시-부타노에이트(전환율: 91%)의 생성을 확인 하였다.
1H-NMR(CDCl3, ppm) δ 2.5(dd, 2H), 3.5(dd, 1H), 3.6(dd, 1H), 3.7(s, 3H), 4.1(m, 1H)
실시예 2 : (S)-3-히드록시-감마-부티로락톤의 제조
50 L 반응기에 물 10 L 및 건조된 아밀로펙틴 5 kg을 넣고 55℃까지 온도를 올린 후에 α-아밀라아제(Teramyl; EC 3.2.1.1 fromBacillus amyloliquefaciens, Novo Nordisk) 12 g을 가하였다. 그리고 이 반응액을 85℃까지 온도를 상승시키고, 동온도에서 2시간 교반후 0.1N-HCl 5 mL를 이용하여 반응액의 pH를 3.0 ∼ 3.5로 맞춘 후에 90℃에서 1시간동안 교반하여 잔존하는 α-아밀라아제를 불활성시켰다. 반응액을 30℃로 서서히 냉각시키고 4M 아세트산 완충용액(pH 5) 3.7 L 및 물 1.3 L를 넣고 pH를 5로 맞추었다. 그 후 반응액을 60℃까지 상승시키고 동온도에서 플루라네이즈(Promozyme; EC 3.2.1.4 fromBacillus acidopullulyticus, Novo Nordisk) 62.5 g을 넣고 22시간 교반하였다. 지름 20 cm, 높이 100 cm의 칼럼형태의 반응기에 염기성 음이온 교환 수지(Amberlite IRA 402 OH; 0.95 eq/L, Rohm and Hass, 75 L)를 채우고 칼럼을 50℃로 가열하고 상기 효소반응으로 제조한 올리고당 용액과 30% H2O2(5.25 kg) 용액을 24시간동안 적가하였다. 칼럼을 상온으로 냉각하고 100 kg의 증류수를 흘려 이탈기로 존재하는 당 화합물을 제거하였다. 3 중량% NaOH(110 kg) 수용액을 흘려주어 이온 교환 수지에 흡착되어 있는 (S)-3,4-디히드록시-부티르산 나트륨염을 탈착시켰다.
상기 탈착용액을 농축한 후 메탄올 10 L를 넣고 메탄술폰산을 가하여 pH 4∼5로 맞춘 후 상온에서 3시간동안 교반하였다. 이 용액에 탄산나트륨을 넣어산을 중화한다음 여과하고 메탄올을 농축하여 메틸 (S)-3,4-디히드록시-부타노에이트를 얻었다. 이를 핵자기 공명의 분석을 통해 내부표준물질과 비교하여 메틸 (S)-3,4-디히드록시-부타노에이트(전환율: 92%)의 생성을 확인 하였다.
상기 생성된 메틸 (S)-3,4-디히드록시-부타노에이트를 별도로 분리하지 않은 상태에서 진한염산 0.5 중량%를 넣고 65℃온도 및 감압 조건하에서 고리화반응시켰다. 이 생성액을 에틸 아세테이트에 녹인 후 탄산나트륨으로 중화하고 여과 농축하여 (S)-3-히드록시-감마-부티로락톤(2.83 kg, 사용한 아밀로펙틴 무게대비 56.6 중량%)을 얻었다.
1H-NMR(CDCl3, ppm) δ 2.28(dd, 1H), 2.74(dd, 1H), 4.13(dd, 1H), 4.32(dd, 1H), 4.4∼4.5(m, 1H)
실시예 3 : (S)-3-히드록시-감마-부티로락톤의 제조
상기 실시예 2의 방법으로 제조된 메틸 (S)-3,4-디히드록시-부타노에이트의 고리화 반응에 있어 진한 염산 대신에 메탄술폰산 1 중량%를 넣고 65℃온도 및 감압 조건하에서 고리화반응시켰다. 이 생성액을 에틸 아세테이트에 녹인 후 탄산나트륨으로 중화하고 여과 농축하여 (S)-3-히드록시-감마-부티로락톤(2.80 kg, 사용한 아밀로펙틴 무게대비 56 중량%)을 얻었다.
실시예 4 : 메틸 (S)-3,4-디히드록시-부타노에이트의 제조
상기 실시예 1의 제조방법에서 산화제를 과산화수소 대신에 t-부틸하이드로퍼옥사이드 (4.16 kg)를 넣고 동일한 제조과정에 의해 메틸 (S)-3,4-디히드록시-부타노에이트를 얻었다. 이를 핵자기 공명의 분석을 통해 내부표준물질과 비교하여 메틸 (S)-3,4-디히드록시-부타노에이트(전환율: 91%)의 생성을 확인 하였다.
1H-NMR(CDCl3, ppm) δ 2.5(dd, 2H), 3.5(dd, 1H), 3.6(dd, 1H), 3.7(s, 3H), 4.1(m, 1H)
비교예 1 : 전분으로부터 (S)-3-히드록시-감마-부티로락톤의 제조
50 L 반응기에 물 20 L 및 건조된 전분 5 kg를 넣고 온도를 70℃까지 올렸다. 이 반응액에 40% NaOH(8.64 kg)와 30% H2O2(5.25 kg) 용액을 48시간 동안 적가한 다음, 1시간동안 동온도에서 교반하였다. 그리고나서, 상기 실시예 2와 동일한 방법으로 에스터화반응 및 고리화반응시켜 (S)-3-히드록시-감마-부티로락톤(1.1 kg, 사용한 전분 대비 22.0 중량%)을 얻었다.
비교예 2 : 전분으로부터 (S)-3-히드록시-감마-부티로락톤의 제조
50 L 반응기에 건조된 전분 5 kg와 0.5N-HCl 용액 10 L을 넣고 100℃에서 20분동안 반응시켜 전분을 가수분해시킨 다음 20℃로 냉각시키고 40% NaOH 100 mL로 중화한 후 온도를 70℃까지 올렸다. 이 반응액에 40% NaOH(8.64 kg)와 30% H2O2(5.25 kg) 용액을 48시간동안 적가한 다음 1시간 동안 동온도에서 교반하였다.그리고나서, 상기 실시예 2와 동일한 방법으로 에스터화반응 및 고리화반응시켜 (S)-3-히드록시-감마-부티로락톤(1.22 kg, 사용한 전분 대비 24.4 중량%)을 얻었다.
비교예 3 : 아밀로오스로부터 (S)-3-히드록시-감마-부티로락톤의 제조
50 L 반응기에 물 20 L 및 건조된 아밀로오스 5 kg을 넣고 온도를 70℃까지 올렸다. 이 반응액에 40% NaOH(8.64 kg)와 30% H2O2(5.25 kg) 용액을 48시간 동안 적가한 다음 1시간동안 동온도에서 교반하였다. 그리고나서, 상기 실시예 2와 동일한 방법으로 에스터화반응 및 고리화반응시켜 (S)-3-히드록시-감마-부티로락톤(1.35 kg, 사용한 아밀로오스 대비 27.0 중량%)을 얻었다.
시험예 1: 원료물질에 따른 (S)-3-히드록시-감마-부티로락톤의 생성량 비교
다음 표 1에 나타낸 바와 같은 탄수화물 각각이 함유되어 있는 반응액을 상기 실시예 2와 동일한 방법으로 산화반응 및 에스터화반응을 수행하여 (S)-3,4-디히드록시-부티르산 유도체를 제조하였고, 이어서 고리화반응을 수행하여 (S)-3-히드록시-감마-부티로락톤을 얻었다. 탄수화물 사용량에 대비되는 (S)-3-히드록시-감마-부티로락톤의 생성량을 다음 표 1에 나타내었다.
상기 표 1에 의하면, 이당류 사용시에는 사용한 원료의 무게 대비 상대적인 수율이 23.7 중량%로 낮다. 이에 반하여, 본 발명에서와 같이 아밀로펙틴을 적절히 효소 처리하여 올리고당으로 변형시킨 경우에는 이당류 사용에 비해 원료물질 사용 무게 대비 상대적 수율이 56.6 중량%로 2배 정도로 상승하는 우수한 결과를 얻을 수 있다. 효소 처리하지 않은 아밀로펙틴의 경우에는 원료의 무게 대비 상대적인 수율이 20.2 중량% 정도로 비교적 낮다.
실험예 2 : (S)-3-히드록시-감마-부티로락톤의 광학순도 분석
본 발명 및 종래방법에 의해 제조된 (S)-3-히드록시-감마-부티로락톤에 대한 광학순도를 분석하기 위하여 다음과 같은 방법으로 (S)-3-아세톡시-감마-부티로락톤을 합성하였다.
각각의 방법으로 합성한 (S)-3-히드록시-감마-부티로락톤 102 mg(1 mmol)을메틸렌 클로라이드 3 mL에 녹인 다음, 피리딘 0.4 mL(5 mmol)와 무수 아세트산 0.47 mL(5 mmol)을 넣고 상온에서 3시간 반응시킨 후, 1N-HCl로 반응을 종결시켰다. 생성된 (S)-3-아세톡시-감마-부티로락톤을 유기층으로 추출하여 얻고 이를 농축하여 실리카겔 컬럼 크로마토그래피로 분리하였다. 얻어진 (S)-3-아세톡시-감마-부티로락톤을 메틸렌 클로라이드에 녹인 뒤, 주사기로 0.5 ㎕를 취하여 GC로 분석한 결과를 다음 표 2 및 도 1a ∼ 1c에 나타내었다.
키랄화합물의 경우, 약효증진 및 부작용을 최소화하기 위해서는 99.5%ee 이상의 고 광학순도가 요구된다. 상기 표 2 및 도 1a ∼ 1c의 결과에 의하면, 종래 제조방법에 비교하여 본 발명의 제조방법으로 합성된 (S)-3-히드록시-감마-부티로락톤은 광학순도가 99.9 %ee로서 매우 순수하므로 다른 키랄화합물의 합성시에 중간체로 유용하다.
이상에서 설명한 바와 같이, 본 발명에 따른 제조방법은 아밀로펙틴으로부터 제조한 올리고당의 구조적 특이성으로 인하여 당 산화반응에서의 부반응물의 생성을 최대한 억제하며, 염기성 음이온 교환 수지하에서 산화반응을 수행하므로 당 산화반응에서 필연적으로 생성되는 부반응물을 효과적으로 제거할 수 있으며, 또한 반응 중간 생성물의 분리 정제공정없이 연속적으로 반응을 수행하므로 (S)-3,4-디히드록시-부티르산 유도체의 대량 생산이 가능하여 산업적인 가치가 매우 유용하다.
또한, 본 발명이 원료물질로 이용하고 있는 아밀로펙틴은 다른 당류 예를 들면 젖당 또는 맥아당에 비해 천연물로부터 쉽게 얻을 수 있어 원료확보가 수월하고 가격이 저렴하며 광학적으로 순수하게 얻을 수 있는 장점이 있으며, 사용한 원료의 무게 대비 상대적인 수율이 이당류 사용에 비해 2배정도 높아 생산성이 극대화되는 효과를 가진다.
따라서, 본 발명은 값비싼 금속 촉매를 사용한 선택적 환원반응과 같은 종래의 기술의 단점을 극복하였고, 값싼 천연물로부터 광학활성 물질을 용이하게 제조할 수 있어 여러 의약품의 키랄 중간체로써 산업적인 유용성을 더욱 극대화시킬 수 있다.

Claims (14)

  1. 다당류의 탄수화물로부터 다음 화학식 1로 표시되는 (S)-3,4-디히드록시-부티르산 유도체를 제조하는 방법에 있어서,
    α-(1,4) 결합으로 연결된 다음 화학식 2로 표시되는 올리고당을 염기성 음이온 교환 수지를 통과시키면서 동시에 과산화수소, 과산화알카리금속, 과산화알카리토금속 및 과산화알킬 중에서 선택된 산화제로 산화반응시켜 다음 화학식 3으로 표시되는 (S)-3,4-디히드록시-부티르산을 제조한 후 연속적으로 산촉매하에 C1∼C5의 알킬알콜에 의한 에스터화반응을 수행하여 제조하는 것을 특징으로 하는 다음 화학식 1로 표시되는 (S)-3,4-디히드록시-부티르산 유도체의 연속적 제조방법.
    화학식 1
    화학식 2
    화학식 3
    상기 화학식에서 : M은 수소원자, 알카리금속원자 또는 알카리토금속원자를 나타내고, R은 C1∼C5의 선형 또는 가지형 알킬기를 나타낸다.
  2. 제 1 항에 있어서, 상기 올리고당은 3 ∼ 50당의 분포를 가지는 것을 특징으로 하는 (S)-3,4-디히드록시-부티르산 유도체의 연속적 제조방법.
  3. 제 1 항에 있어서, 상기 산화반응은 30 ∼ 65℃ 범위에서 수행하는 것을 특징으로 하는 (S)-3,4-디히드록시-부티르산 유도체의 연속적 제조방법.
  4. 삭제
  5. 제 1 항에 있어서, 상기 산화제가 과산화수소인 것을 특징으로 하는 (S)-3,4-디히드록시-부티르산 유도체의 연속적 제조방법.
  6. 제 1 항에 있어서, 상기 산화제가 t-부틸하이드로 퍼옥사이드인 것을 특징으로 하는 (S)-3,4-디히드록시-부티르산 유도체의 연속적 제조방법.
  7. 제 1 항, 제 5 항 또는 제 6 항에 있어서, 상기 산화제는 사용된 아밀로펙틴에 대한 포도당 단위의 몰수에 대하여 1 ∼ 3 당량 범위내에서 사용하는 것을 특징으로 하는 (S)-3,4-디히드록시-부티르산 유도체의 연속적 제조방법.
  8. 제 1 항에 있어서, 상기 산화반응에 사용되는 염기성 음이온 교환 수지는 4급 암모늄을 함유하는 강염기성 음이온 교환 수지인 것을 특징으로 하는 (S)-3,4-디히드록시-부티르산 유도체의 연속적 제조방법.
  9. 제 1 항 또는 제 8 항에 있어서, 상기 염기성 음이온 교환 수지는 사용된 아밀로펙틴에 대한 포도당 단위의 몰수에 대하여 2 ∼ 4 당량 범위내에서 사용하는 것을 특징으로 하는 (S)-3,4-디히드록시-부티르산 유도체의 연속적 제조방법.
  10. 제 1 항에 있어서, 상기 산화반응이 완료된 이온 교환 수지에 2 ∼ 50 중량%의 알카리금속 또는 알카리토금속의 수용액을 통과시켜 (S)-3,4-디히드록시-부티르산을 탈착시키는 것을 특징으로 하는 (S)-3,4-디히드록시-부티르산 유도체의연속적 제조방법.
  11. 제 10 항에 있어서, 상기 수용액이 수산화나트륨 수용액인 것을 특징으로 하는 (S)-3,4-디히드록시-부티르산 유도체의 연속적 제조방법.
  12. 제 1 항에 있어서, 상기 에스터화반응에 사용되는 산촉매가 염산, 황산, 인산 및 질산 중에서 선택된 무기산인 것을 특징으로 하는 (S)-3,4-디히드록시-부티르산 유도체의 연속적 제조방법.
  13. 제 1 항에 있어서, 상기 에스터화반응에 사용되는 산촉매가 플루오로알킬 술폰산, 아랄킬 술폰산, 아랄킬 술폰산 수화물 및 트리플루오르 아세트산 중에서 선택된 유기산인 것을 특징으로 하는 (S)-3,4-디히드록시-부티르산 유도체의 연속적 제조방법.
  14. 제 1 항에 있어서, 상기 에스터화반응은 30 ∼ 80℃범위에서 수행하는 것을 특징으로 하는 (S)-3,4-디히드록시-부티르산 유도체의 연속적 제조방법.
KR1019990030066A 1998-07-24 1999-07-23 광학적으로 순수한 (s)-3,4-디히드록시-부티르산 유도체의 연속적 제조방법 KR100324475B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990030066A KR100324475B1 (ko) 1998-07-24 1999-07-23 광학적으로 순수한 (s)-3,4-디히드록시-부티르산 유도체의 연속적 제조방법

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR19980029912 1998-07-24
KR1019980029912 1998-07-24
KR1019990030066A KR100324475B1 (ko) 1998-07-24 1999-07-23 광학적으로 순수한 (s)-3,4-디히드록시-부티르산 유도체의 연속적 제조방법

Publications (2)

Publication Number Publication Date
KR20000011942A KR20000011942A (ko) 2000-02-25
KR100324475B1 true KR100324475B1 (ko) 2002-02-27

Family

ID=19545119

Family Applications (5)

Application Number Title Priority Date Filing Date
KR1019990030066A KR100324475B1 (ko) 1998-07-24 1999-07-23 광학적으로 순수한 (s)-3,4-디히드록시-부티르산 유도체의 연속적 제조방법
KR1019990030065A KR100310935B1 (ko) 1998-07-24 1999-07-23 광학적으로 순수한 (s)-3-히드록시-감마-부티로락톤의 연속적 제조방법
KR1019990030063A KR100324476B1 (ko) 1998-07-24 1999-07-23 광학적으로 순수한 (s)-3,4-디히드록시-부티르산 유도체의 제조방법
KR1019990030064A KR20000011940A (ko) 1998-07-24 1999-07-23 α-(1,4)결합으로연결된올리고당의제조방법
KR1019990030062A KR100308524B1 (ko) 1998-07-24 1999-07-23 광학적으로 순수한 (s)-3-히드록시-감마-부티로락톤의 제조방법

Family Applications After (4)

Application Number Title Priority Date Filing Date
KR1019990030065A KR100310935B1 (ko) 1998-07-24 1999-07-23 광학적으로 순수한 (s)-3-히드록시-감마-부티로락톤의 연속적 제조방법
KR1019990030063A KR100324476B1 (ko) 1998-07-24 1999-07-23 광학적으로 순수한 (s)-3,4-디히드록시-부티르산 유도체의 제조방법
KR1019990030064A KR20000011940A (ko) 1998-07-24 1999-07-23 α-(1,4)결합으로연결된올리고당의제조방법
KR1019990030062A KR100308524B1 (ko) 1998-07-24 1999-07-23 광학적으로 순수한 (s)-3-히드록시-감마-부티로락톤의 제조방법

Country Status (10)

Country Link
US (4) US6251642B1 (ko)
EP (5) EP1100953B1 (ko)
JP (5) JP3614367B2 (ko)
KR (5) KR100324475B1 (ko)
CN (5) CN1316008A (ko)
AU (5) AU5067699A (ko)
CA (5) CA2338756A1 (ko)
DE (4) DE69903444T2 (ko)
ES (4) ES2183586T3 (ko)
WO (5) WO2000005401A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6713290B2 (en) * 1998-07-24 2004-03-30 Samsung Fine Chemicals Co., Ltd. Process for preparing optically pure (S)-3-hydroxy-γ-butyrolactone
CN1316008A (zh) * 1998-07-24 2001-10-03 三星精密化学株式会社 制备α-(1,4)-连接的寡糖的方法
US6239311B1 (en) * 2000-04-24 2001-05-29 Board Of Trustees Operating Michigan State University Process for the preparation of 3,4-dihydroxybutanoic acid and salts and lactones derived therefrom
KR100645665B1 (ko) * 2000-07-27 2006-11-13 에스케이 주식회사 (s)-베타-하이드록시-감마-부티로락톤의 연속 제조방법
FR2819123B1 (fr) * 2000-12-29 2003-04-11 St Microelectronics Sa Pompe de charge a faible bruit pour boucle a verrouillage de phase
JP4824874B2 (ja) 2001-07-19 2011-11-30 高砂香料工業株式会社 光学活性γ−ブチロラクトンの製造方法
JP2005539078A (ja) * 2002-09-18 2005-12-22 エス ケー コーポレイション 光学的に純粋な(S)−β−ヒドロキシ−γ−ブチロラクトンの連続製造方法
US6713639B1 (en) 2002-10-28 2004-03-30 Council Of Scientific And Industrial Research Process for preparing enantiomerically pure (S)-3-hydroxy-gamma-butyrolactone
JP4545487B2 (ja) * 2004-05-28 2010-09-15 イハラケミカル工業株式会社 アニリド化合物の製造方法
KR100590857B1 (ko) 2005-02-05 2006-06-19 엔자이텍 주식회사 양이온교환수지를 이용한 3-히드록시-감마-부티로락톤의 제조 방법
KR20070090833A (ko) * 2006-03-02 2007-09-06 주식회사 엘지화학 가수분해효소를 이용한 s-hgb의 제조방법
JP2008162902A (ja) * 2006-12-27 2008-07-17 Central Glass Co Ltd ジフルオロ酢酸エステルの製造方法
CN102325563A (zh) 2008-12-22 2012-01-18 昆士兰大学 贴剂制备
CN105669423B (zh) * 2016-01-08 2018-06-29 江西科技师范大学 4-(4-(苯甲氧基)苯基)-2-羟基丁酸的两种对映异构体的新合成方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3791865A (en) * 1969-05-12 1974-02-12 Staley Mfg Co A E High maltose syrups
US3986890A (en) * 1972-02-21 1976-10-19 Akademie Der Wissenschaften Der Ddr Method of producing starch hydrolysis products for use as food additives
US3922200A (en) 1974-03-18 1975-11-25 Cpc International Inc Enzymatic hydrolysis of granular starch
US4138484A (en) 1976-08-16 1979-02-06 Nelson Research & Development Company Method for treating schizophrenia and method and composition for potentiating neuroleptic drugs
AT362526B (de) * 1977-09-13 1981-05-25 Boehringer Mannheim Gmbh Verfahren und reagens zur bestimmung von alpha- -amylase
US4447532A (en) * 1982-04-29 1984-05-08 H. J. Heinz Company Process for the manufacture of low D.E. maltodextrins
US4612284A (en) 1984-09-28 1986-09-16 A. E. Staley Manufacturing Company Process for the enzymatic hydrolysis of non-gelatinized granular starch material directly to glucose
US4963479A (en) * 1986-10-07 1990-10-16 Hoechst Celanese Corporation Reagent system for an alpha-amylase assay containing aromatic substituted glycoside
JPS6413069A (en) * 1987-07-03 1989-01-17 Shiseido Co Ltd Optically active mono-beta-lactam ring derivative and production thereof
JPH01202294A (ja) * 1988-02-09 1989-08-15 Agency Of Ind Science & Technol グルコースの増収法
US4912272A (en) 1988-06-23 1990-03-27 Mobil Oil Corporation Lubricant blends having high viscosity indices
WO1990000500A2 (en) * 1988-07-07 1990-01-25 John Earp Packaged food recovery apparatus
JP2825604B2 (ja) 1990-04-11 1998-11-18 三井化学株式会社 メチレン架橋されたポリアリールアミンの製造方法
JPH04121197A (ja) * 1990-09-11 1992-04-22 Shin Etsu Chem Co Ltd マルトオリゴ糖の製造方法
JP2710688B2 (ja) * 1990-10-09 1998-02-10 鐘淵化学工業株式会社 4―ブロモ―3―ヒドロキシ酪酸エステル誘導体の製造法
JP3030073B2 (ja) 1990-10-11 2000-04-10 コベルコ健機株式会社 ホイールクレーン
JP3072433B2 (ja) * 1990-10-19 2000-07-31 東和化成工業株式会社 高純度マルトースの製造方法
CA2049536C (en) 1991-05-13 1999-07-06 Rawle I. Hollingsworth Process for the preparation of 3,4-dihydroxybutanoic acid and salts thereof
GB9121289D0 (en) 1991-10-08 1991-11-20 Isf Spa Composition and use
IS2334B (is) 1992-09-08 2008-02-15 Vertex Pharmaceuticals Inc., (A Massachusetts Corporation) Aspartyl próteasi hemjari af nýjum flokki súlfonamíða
JP3351563B2 (ja) * 1992-12-03 2002-11-25 鐘淵化学工業株式会社 3−ヒドロキシ酪酸誘導体の製造法
US5506353A (en) 1994-03-21 1996-04-09 Firmenich Sa Particulate hydrogenated starch hydrolysate based flavoring materials and use of same
JP3855033B2 (ja) * 1995-09-08 2006-12-06 高砂香料工業株式会社 光学活性3−ヒドロキシ−γ−ブチロラクトンの製造方法
CN1093126C (zh) 1996-07-29 2002-10-23 沃尼尔·朗伯公司 合成被保护的(s)-3,4-二羟基丁酸酯的改进方法
KR100255039B1 (ko) * 1997-07-28 2000-05-01 박영구 L-카르니틴의제조방법
US5808107A (en) * 1997-10-31 1998-09-15 Board Of Trustees Operating Michigan State University Process for the preparation of hydroxy substituted gamma butyrolactones
CN1316008A (zh) * 1998-07-24 2001-10-03 三星精密化学株式会社 制备α-(1,4)-连接的寡糖的方法

Also Published As

Publication number Publication date
CN1166781C (zh) 2004-09-15
CN1316012A (zh) 2001-10-03
US6288272B1 (en) 2001-09-11
ES2183586T3 (es) 2003-03-16
WO2000005401A1 (en) 2000-02-03
CA2338757A1 (en) 2000-02-03
KR20000011942A (ko) 2000-02-25
KR20000011939A (ko) 2000-02-25
CN1166782C (zh) 2004-09-15
JP2002521031A (ja) 2002-07-16
KR100310935B1 (ko) 2001-10-18
US6124122A (en) 2000-09-26
JP2002521395A (ja) 2002-07-16
EP1100951A1 (en) 2001-05-23
EP1100952B1 (en) 2002-10-09
EP1100948A1 (en) 2001-05-23
CA2338527A1 (en) 2000-02-03
DE69903444T2 (de) 2003-07-10
DE69903443D1 (de) 2002-11-14
CN1144878C (zh) 2004-04-07
DE69903443T2 (de) 2003-06-18
KR100308524B1 (ko) 2001-09-26
ES2183587T3 (es) 2003-03-16
WO2000005400A1 (en) 2000-02-03
JP2002521033A (ja) 2002-07-16
DE69903442T2 (de) 2003-06-18
JP3614367B2 (ja) 2005-01-26
WO2000005402A1 (en) 2000-02-03
EP1100954A1 (en) 2001-05-23
AU5067799A (en) 2000-02-14
ES2183584T3 (es) 2003-03-16
AU5067899A (en) 2000-02-14
CN1316013A (zh) 2001-10-03
KR100324476B1 (ko) 2002-02-27
EP1100953A1 (en) 2001-05-23
CA2338756A1 (en) 2000-02-03
JP3512741B2 (ja) 2004-03-31
DE69903444D1 (de) 2002-11-14
AU5068099A (en) 2000-02-14
WO2000005398A1 (en) 2000-02-03
CN1316011A (zh) 2001-10-03
WO2000005399A1 (en) 2000-02-03
DE69903442D1 (de) 2002-11-14
CN1160468C (zh) 2004-08-04
EP1100954B1 (en) 2002-10-09
US6251642B1 (en) 2001-06-26
KR20000011938A (ko) 2000-02-25
JP2002521394A (ja) 2002-07-16
CN1316008A (zh) 2001-10-03
US6221639B1 (en) 2001-04-24
ES2183585T3 (es) 2003-03-16
JP3364482B2 (ja) 2003-01-08
DE69903441D1 (de) 2002-11-14
CN1316010A (zh) 2001-10-03
EP1100952A1 (en) 2001-05-23
EP1100953B1 (en) 2002-10-09
EP1100951B1 (en) 2002-10-09
CA2338752A1 (en) 2000-02-03
CA2338755A1 (en) 2000-02-03
JP3614366B2 (ja) 2005-01-26
DE69903441T2 (de) 2003-08-14
JP2002521032A (ja) 2002-07-16
AU5067999A (en) 2000-02-14
KR20000011941A (ko) 2000-02-25
AU5067699A (en) 2000-02-14
KR20000011940A (ko) 2000-02-25

Similar Documents

Publication Publication Date Title
KR100324475B1 (ko) 광학적으로 순수한 (s)-3,4-디히드록시-부티르산 유도체의 연속적 제조방법
US6713290B2 (en) Process for preparing optically pure (S)-3-hydroxy-γ-butyrolactone

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20040831

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee