KR100291180B1 - Method for forming gate-electrode in semiconductor device - Google Patents

Method for forming gate-electrode in semiconductor device Download PDF

Info

Publication number
KR100291180B1
KR100291180B1 KR1019970075070A KR19970075070A KR100291180B1 KR 100291180 B1 KR100291180 B1 KR 100291180B1 KR 1019970075070 A KR1019970075070 A KR 1019970075070A KR 19970075070 A KR19970075070 A KR 19970075070A KR 100291180 B1 KR100291180 B1 KR 100291180B1
Authority
KR
South Korea
Prior art keywords
gate electrode
film
forming
silicide
electrode pattern
Prior art date
Application number
KR1019970075070A
Other languages
Korean (ko)
Other versions
KR19990055158A (en
Inventor
김현수
Original Assignee
박종섭
현대전자산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 현대전자산업주식회사 filed Critical 박종섭
Priority to KR1019970075070A priority Critical patent/KR100291180B1/en
Publication of KR19990055158A publication Critical patent/KR19990055158A/en
Application granted granted Critical
Publication of KR100291180B1 publication Critical patent/KR100291180B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28247Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon passivation or protection of the electrode, e.g. using re-oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28035Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities
    • H01L21/28044Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer
    • H01L21/28052Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor the final conductor layer next to the insulator being silicon, e.g. polysilicon, with or without impurities the conductor comprising at least another non-silicon conductive layer the conductor comprising a silicide layer formed by the silicidation reaction of silicon with a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4933Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE: A method for forming gate electrode of a semiconductor devices is provided to improve a thermal stability of a silicide as the gate electrode by preventing an agglomeration of the silicide. CONSTITUTION: A gate insulating layer(11) and a polysilicon gate electrode(12) are formed on a silicon substrate(10). In order to recover a damage of the gate insulating layer(11), a re-oxidation processing is carried out. After forming an interlayer dielectric(14) on the resultant structure, the surface of the polysilicon gate electrode(12) is exposed by etch-back the interlayer dielectric. A metal film is formed on the entire surface of the resultant structure. A silicide film(16) is formed on the polysilicon gate electrode(12) by annealing. Then, the remaining metal film is removed.

Description

반도체 장치의 게이트 전극 형성방법{METHOD FOR FORMING GATE-ELECTRODE IN SEMICONDUCTOR DEVICE}METHODE FOR FORMING GATE-ELECTRODE IN SEMICONDUCTOR DEVICE

본 발명은 반도체 제조 분야에 관한 것으로, 특히 반도체 장치를 구성하는 가장 기본적인 소자(element)인 모스 트랜지스터의 게이트 전극 형성에 관한 것이며, 더 자세히는 실리사이드막을 적용한 게이트 전극 형성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the field of semiconductor manufacturing, and more particularly, to a gate electrode formation of a MOS transistor, which is the most basic element constituting a semiconductor device, and more particularly, to a gate electrode formation method using a silicide film.

일반적으로 실리사이드(Silicide) 게이트 공정은 소오스/드레인 영역 및 게이트 전극 상부를 동시에 실리사이드화하는 자기정렬(Self-aligned) 방식으로 진행되어 왔다. 그러나 최근 DRAM에서는 이러한 자기정렬 방식이 DRAM 설계 및 공정 상의 어려움을 수반하기 때문에 게이트 전극 상에만 실리사이드막을 형성시키는 기술 쪽으로 관심이 옮겨가고 있다.In general, the silicide gate process has been performed in a self-aligned manner in which silicides of the source / drain region and the gate electrode are simultaneously silicided. However, in recent years, since the self-alignment method is accompanied by difficulties in DRAM design and process, attention has shifted to a technology of forming a silicide film only on a gate electrode.

티타늄 실리사이드막(TiSi)을 예로 들어 그 공정을 간략히 살펴보면, 우선, 게이트 산화막 상부에 폴리실리콘막을 증착하고, 그 상부에 티타늄막을 증착한 다음, 열공정을 실시하여 티타늄 실리사이드막을 형성한다. 계속하여, 사진 및 식각 공정을 진행하여 티타늄 실리사이드막 및 폴리실리콘막을 차례로 선택 식각함으로써 게이트 전극 패턴을 형성한다.Taking a brief description of the process using a titanium silicide film (TiSi) as an example, first, a polysilicon film is deposited on the gate oxide film, a titanium film is deposited on the top thereof, and then a thermal process is performed to form a titanium silicide film. Subsequently, the gate electrode pattern is formed by sequentially etching the titanium silicide film and the polysilicon film by sequentially performing a photo and etching process.

이후, 게이트 전극 패턴 형성시의 식각에 의한 기판 및 게이트 산화막의 손상을 회복시키기 위한 재열산화 공정(re-oxidation)을 실시한다. 이러한 열산화 공정은 비교적 고온 공정으로 진행되므로 티타늄 실리사이드막 내에서 응집(agglomeration) 현상이 발생하거나, 티타늄 실리사이드막 내의 Ti의 이상산화현상이 발생하는 문제점이 있었다.Thereafter, a re-oxidation process is performed to recover damages to the substrate and the gate oxide film due to etching during the formation of the gate electrode pattern. Since the thermal oxidation process is performed at a relatively high temperature process, there is a problem in that an agglomeration phenomenon occurs in the titanium silicide film or an abnormal oxidation phenomenon of Ti in the titanium silicide film occurs.

이러한 문제점은 티타늄 실리사이드막 외에 텅스텐(W), 코발트(Co), 몰리브덴(Mo) 등의 리프렉토리(refractory) 금속을 사용한 실리사이드막을 적용한 게이트 전극 형성 공정에도 발생하는 것이다.This problem also occurs in a gate electrode forming process in which a silicide film using a refractory metal such as tungsten (W), cobalt (Co), molybdenum (Mo), etc. is used in addition to the titanium silicide film.

본 발명은 실리사이드막을 적용한 게이트 전극 형성시 열적 안정성을 확보할 수 있는 반도체 장치의 게이트 전극 형성방법을 제공하는데 그 목적이 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming a gate electrode of a semiconductor device capable of securing thermal stability when forming a gate electrode to which a silicide film is applied.

도 1a 내지 도 1d는 본 발명의 일실시예에 따른 반도체 장치의 게이트 전극 형성 공정도.1A to 1D are diagrams illustrating a process of forming a gate electrode of a semiconductor device according to an embodiment of the present invention.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

10 : 실리콘 기판 11 : 게이트 산화막10 silicon substrate 11 gate oxide film

12 : 폴리실리콘막 13 : 산화막 스페이서12 polysilicon film 13 oxide film spacer

14 : 층간 절연막 15 : 티타늄막14 interlayer insulation film 15 titanium film

16 : 티타늄 실리사이드막16: titanium silicide film

상기의 목적을 달성하기 위한 본 발명의 반도체 장치의 게이트 전극 형성방법은 반도체 기판 상에 게이트 절연막 및 폴리실리콘 게이트 전극 패턴을 형성하는 단계; 상기 폴리실리콘 게이트전극 패턴 형성으로 인한 상기 게이트절연막의 손상을 회복시키기 위한 재열산화 공정을 실시하는 단계; 상기 구조 전면에 층간절연막을 형성하는 단계; 상기 층간절연막을 에치백하여 상기 폴리실리콘 게이트 전극 패턴의 표면을 노출시키는 단계; 전체 구조 상부에 금속막을 형성하는 단계; 실리사이드반응을 위한 열처리를 실시하여 상기 폴리실리콘 게이트전극 패턴상에 실리사이드막을 형성하는 단계; 및 상기 실리사이드반응 후 잔류하는 상기 금속막을 제거하는 단계를 포함하여 이루어짐을 특징으로 한다.A gate electrode forming method of a semiconductor device of the present invention for achieving the above object comprises the steps of forming a gate insulating film and a polysilicon gate electrode pattern on a semiconductor substrate; Performing a re-thermal oxidation process for recovering damage to the gate insulating layer due to the polysilicon gate electrode pattern formation; Forming an interlayer insulating film over the entire structure; Etching back the interlayer insulating film to expose a surface of the polysilicon gate electrode pattern; Forming a metal film on the entire structure; Performing a heat treatment for silicide reaction to form a silicide film on the polysilicon gate electrode pattern; And removing the metal film remaining after the silicide reaction.

즉, 본 발명은 게이트 전극 패턴 식각후 기판 및 게이트 산화막의 손상 회복을 위한 재열산화 공정 진행 후에 실리사이드 공정을 진행하는 게이트 전극 형성 공정을 제공하여 고온의 재열산화 공정시 발생하는 실리사이드막의 응집 현상 및 이상산화현상을 방지할 수 있다.That is, the present invention provides a gate electrode forming process for performing a silicide process after a rethermal oxidation process for recovering damage to a substrate and a gate oxide film after etching the gate electrode pattern, thereby causing a phenomenon of aggregation and abnormality of the silicide film generated during a high temperature rethermal oxidation process Oxidation can be prevented.

이하, 첨부된 도면을 참조하여 본 발명을 상술한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

첨부된 도면 도 1a 내지 도 1d는 본 발명의 일실시예에 따른 반도체 장치의게이트 전극 형성 공정을 도시한 것이다.1A to 1D illustrate a process of forming a gate electrode of a semiconductor device according to an embodiment of the present invention.

우선, 도 1a에 도시된 바와 같이 실리콘 기판(10) 상에 게이트 산화막(11)을 성장시키고, 그 상부에 게이트 전극용 폴리실리콘막(도시 생략)을 증착한 다음, 폴리실리콘막 및 게이트 산화막(11)을 선택 식각하여 게이트 전극(12)을 형성한다.First, as shown in FIG. 1A, a gate oxide film 11 is grown on a silicon substrate 10, and a polysilicon film for a gate electrode (not shown) is deposited thereon, and then a polysilicon film and a gate oxide film ( 11) is selectively etched to form the gate electrode 12.

다음으로, 도 1b에 도시된 바와 같이 상게 게이트전극(12) 식각으로 발생된 실리콘 기판(10) 및 게이트 산화막(11)의 손상을 회복시키기 위해 게이트산화막(11)의 재열산화 공정을 실시한다. 이어, 상기 게이트전극(12)을 포함한 전체구조 상부에 산화막을 증착한 후, 이를 전면 식각하여 게이트 전극(12)의 측벽에 접하는 산화막 스페이서(13)를 형성한 다음, 전체구조 상부에 게이트 전극(12)을 덮도록 충분한 두께로 층간절연막(14)을 증착한다. 이 때, 산화막 스페이서(13) 형성 이후에 게이트산화막(11)의 재열산화 공정을 실시할 수도 있다.Next, as shown in FIG. 1B, a rethermal oxidation process of the gate oxide layer 11 is performed to recover damages of the silicon substrate 10 and the gate oxide layer 11 generated by etching the gate electrode 12. Subsequently, an oxide film is deposited on the entire structure including the gate electrode 12, and then etched to form an oxide film spacer 13 contacting the sidewall of the gate electrode 12. An interlayer insulating film 14 is deposited to a thickness sufficient to cover 12). At this time, after the oxide film spacers 13 are formed, a re-thermal oxidation process of the gate oxide film 11 may be performed.

계속하여, 도 1c에 도시된 바와 같이, 화학적기계적연마(Chemical Mechanical Polishing) 방식 또는 일반적인 전면성 에치백(Etchback) 방식을 사용하여 상기 층간절연막(14)을 부분적으로 제거하여 게이트 전극(12)의 표면을 노출시키고, 전체구조 상부에 통상 이용되는 RF(Radio Frequency) 스퍼터링법(Sputtering), DC스퍼터링법 또는 전자빔(Electron beam) 증착법을 이용하여 티타늄막(15)을 증착한다.Subsequently, as shown in FIG. 1C, the interlayer insulating layer 14 is partially removed by using a chemical mechanical polishing method or a general front etchback method. The titanium film 15 is deposited by exposing the surface and using a radio frequency (RF) sputtering method, a DC sputtering method, or an electron beam deposition method which is commonly used on the entire structure.

이어서, 도 1d에 도시된 바와 같이 질소가스 분위기에서 열공정을 실시하여 티타늄막(15)을 열처리하면 티타늄막(15)과 게이트전극(12)을 이루는 폴리실리콘과의 실리사이드반응으로 인해 상기 게이트전극(12) 상에 준안정상태의 티타늄실리사이드막(16)이 형성되며, 층간절연막(14)상에 증착되어 실리사이드 반응에 참여하지 않은 티타늄막(15)은 습식 식각 방식을 사용하여 제거함으로써 티타늄실리사이드막(16)을 적용한 게이트 전극 형성 공정을 완료한다.Subsequently, when the titanium film 15 is heat-treated by performing a thermal process in a nitrogen gas atmosphere as shown in FIG. 1D, the gate electrode may be formed due to a silicide reaction between the titanium film 15 and polysilicon forming the gate electrode 12. A metastable titanium silicide film 16 is formed on (12), and the titanium film 15 deposited on the interlayer insulating film 14 and not participating in the silicide reaction is removed by using a wet etching method. The gate electrode forming process to which the film 16 is applied is completed.

전술한 바와 같이, 게이트산화막 손상 회복을 위한 재열산화공정을 먼저 실시하고 실리사이드막을 형성하므로써, 고온 공정에 의한 실리사이드막의 응집현상 및 이상산화 현상을 방지할 수 있다.As described above, by performing a re-thermal oxidation process for recovering damage to the gate oxide film and forming a silicide film, it is possible to prevent aggregation and abnormal oxidation of the silicide film by the high temperature process.

본 발명의 다른 실시예는 상술한 일실시예에서 티타늄막 증착을 대신하여 코발트(Co)막, 몰리브덴(Mo)막 또는 텅스텐(W)막을 이용할 수 있다.According to another embodiment of the present invention, a cobalt (Co) film, a molybdenum (Mo) film, or a tungsten (W) film may be used instead of the titanium film deposition in the above-described embodiment.

특히, 선택적 텅스텐막(Selective-W)을 이용하는 경우, 게이트 전극 상부에서만 텅스텐막의 증착이 일어나기 때문에 후속 텅스텐 실리사이드막 형성후 잉여 텅스텐막이 남지 않도록 할 수 있어 텅스텐막 제거 공정을 필요로 하지 않는다. 물론 전면성 텅스텐막 증착 방식을 사용할 경우에는 상술한 제거 공정을 실시해야 한다.In particular, in the case of using the selective tungsten film (Selective-W), since the tungsten film is deposited only on the gate electrode, it is possible to prevent excess tungsten film from remaining after the formation of the subsequent tungsten silicide film, thus eliminating the need for a tungsten film removal process. Of course, when the full-tungsten film deposition method is used, the above-described removal process should be performed.

이상에서 설명한 본 발명은 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 명백할 것이다.The present invention described above is not limited to the above-described embodiments and the accompanying drawings, and various substitutions, modifications, and changes can be made in the art without departing from the technical spirit of the present invention. It will be apparent to those of ordinary knowledge.

이상에서와 같이 본 발명은 게이트산화막 손상회복을 위한 재열산화공정을먼저 실시하므로써 재열산화 공정시의 고온에 의한 실리사이드막의 응집 현상 및 이상 산화 현상을 효과적으로 방지하여 반도체 장치의 특성 및 신뢰성을 향상시킬 수 있다.As described above, the present invention can improve the characteristics and reliability of the semiconductor device by effectively preventing the agglomeration and abnormal oxidation of the silicide film due to the high temperature during the re-oxidation process by performing the re-thermal oxidation process for the gate oxide film damage recovery first. have.

Claims (5)

반도체 기판 상에 게이트 절연막 및 폴리실리콘 게이트 전극 패턴을 형성하는 단계;Forming a gate insulating film and a polysilicon gate electrode pattern on the semiconductor substrate; 상기 폴리실리콘 게이트전극 패턴 형성으로 인한 상기 게이트절연막의 손상을 회복시키기 위한 재열산화 공정을 실시하는 단계;Performing a re-thermal oxidation process for recovering damage to the gate insulating layer due to the polysilicon gate electrode pattern formation; 상기 구조 전면에 층간절연막을 형성하는 단계;Forming an interlayer insulating film over the entire structure; 상기 층간절연막을 에치백하여 상기 폴리실리콘 게이트 전극 패턴의 표면을 노출시키는 단계;Etching back the interlayer insulating film to expose a surface of the polysilicon gate electrode pattern; 전체 구조 상부에 금속막을 형성하는 단계;Forming a metal film on the entire structure; 실리사이드반응을 위한 열처리를 실시하여 상기 폴리실리콘 게이트전극 패턴상에 실리사이드막을 형성하는 단계; 및Performing a heat treatment for silicide reaction to form a silicide film on the polysilicon gate electrode pattern; And 상기 실리사이드반응 후 잔류하는 상기 금속막을 제거하는 단계Removing the metal film remaining after the silicide reaction 를 포함하여 이루어짐을 특징으로 하는 반도체 장치의 게이트 전극 형성방법.Gate electrode forming method of a semiconductor device, characterized in that comprises a. 제 1 항에 있어서,The method of claim 1, 상기 재열산화 공정을 실시하는 단계후,After the step of performing the re-thermal oxidation process, 상기 폴리실리콘 게이트 전극 패턴 측벽 부분에 절연막 스페이서를 형성하는단계를 더 포함하여 이루어진 반도체 장치의 게이트 전극 형성방법.And forming an insulating film spacer on the sidewall portion of the polysilicon gate electrode pattern. 제 1 항에 있어서,The method of claim 1, 상기 재열산화 공정을 실시하는 단계 수행 전에Before performing the step of performing the rethermal oxidation process 상기 폴리실리콘 게이트 전극 패턴의 측벽 부분에 절연막 스페이서를 형성하는 단계를 더 포함하여 이루어진 반도체 장치의 게이트 전극 형성방법.And forming an insulating film spacer on the sidewall portion of the polysilicon gate electrode pattern. 제 1 항에 있어서,The method of claim 1, 상기 금속막은,The metal film, 티타늄막, 선택적 텅스텐막, 코발트막 또는 몰리브덴막 중 어느 하나를 이용함을 특징으로 하는 반도체 장치의 게이트 전극 형성방법.A method of forming a gate electrode of a semiconductor device, using any one of a titanium film, a selective tungsten film, a cobalt film, and a molybdenum film. 제 1 항에 있어서,The method of claim 1, 상기 층간절연막은 전면성 건식 식각 또는 화학·기계적 연마 방식 중 어느 하나를 사용하여 제거되는 것을 특징으로 하는 반도체 장치의 게이트 전극 형성방법.And the interlayer insulating film is removed using any one of a dry dry etching method and a chemical mechanical polishing method.
KR1019970075070A 1997-12-27 1997-12-27 Method for forming gate-electrode in semiconductor device KR100291180B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970075070A KR100291180B1 (en) 1997-12-27 1997-12-27 Method for forming gate-electrode in semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970075070A KR100291180B1 (en) 1997-12-27 1997-12-27 Method for forming gate-electrode in semiconductor device

Publications (2)

Publication Number Publication Date
KR19990055158A KR19990055158A (en) 1999-07-15
KR100291180B1 true KR100291180B1 (en) 2001-07-12

Family

ID=37525984

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970075070A KR100291180B1 (en) 1997-12-27 1997-12-27 Method for forming gate-electrode in semiconductor device

Country Status (1)

Country Link
KR (1) KR100291180B1 (en)

Also Published As

Publication number Publication date
KR19990055158A (en) 1999-07-15

Similar Documents

Publication Publication Date Title
KR100302894B1 (en) Integrated circuit structure with dual thickness cobalt silicide layers and method for its manufacture
JP2874626B2 (en) Method for manufacturing semiconductor device
JP3009979B2 (en) Semiconductor device and manufacturing method thereof
JP2004140315A (en) Manufacturing method for semiconductor device using salicide process
JP3163996B2 (en) Method for manufacturing semiconductor device
JP2738371B2 (en) Method for manufacturing semiconductor device
KR100291180B1 (en) Method for forming gate-electrode in semiconductor device
JP3616122B2 (en) Manufacturing method of semiconductor device
KR20000041456A (en) Method of forming titanium polycide gate electrode
KR20030013882A (en) Method for manufacturing a silicide layer of semiconductor device
KR100630769B1 (en) Semiconductor device and method of fabricating the same device
JP2821613B2 (en) Method for manufacturing semiconductor device
KR100190060B1 (en) Silicide forming method
JPH05109757A (en) Manufacture of semiconductor device
KR100291276B1 (en) Silicide forming method of semiconductor devices
KR20010084501A (en) Method for manufacturing a semiconductor device
KR100276876B1 (en) How to compensate silicide lost after contact etching
JPH07142424A (en) Fabrication of semiconductor device
KR100604916B1 (en) Forming method for PVD cobalt salicide layer and manufacturing method for a semiconductor device using the forming method
KR100265349B1 (en) Method for fabricating mosfet having polycide gate
KR20010026811A (en) Method of manufacturing a transistor in a semiconductor device
JP2004319567A (en) Process for fabricating semiconductor device, and semiconductor device
KR20060071509A (en) Method for process ti-salicide of deep submicron cmos with damascene gate structure
KR19980086195A (en) Manufacturing Method of Semiconductor Device Using Salicide Process
KR19980040641A (en) Gate electrode formation method of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110222

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee