JPWO2020240948A1 - 空気電池及びその使用方法 - Google Patents

空気電池及びその使用方法 Download PDF

Info

Publication number
JPWO2020240948A1
JPWO2020240948A1 JP2021522636A JP2021522636A JPWO2020240948A1 JP WO2020240948 A1 JPWO2020240948 A1 JP WO2020240948A1 JP 2021522636 A JP2021522636 A JP 2021522636A JP 2021522636 A JP2021522636 A JP 2021522636A JP WO2020240948 A1 JPWO2020240948 A1 JP WO2020240948A1
Authority
JP
Japan
Prior art keywords
air battery
lithium
charging
positive electrode
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021522636A
Other languages
English (en)
Other versions
JP7190669B2 (ja
Inventor
麻紗子 横山
藤本 正久
日比野 光宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2020240948A1 publication Critical patent/JPWO2020240948A1/ja
Application granted granted Critical
Publication of JP7190669B2 publication Critical patent/JP7190669B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/691Arrangements or processes for draining liquids from casings; Cleaning battery or cell casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Cells (AREA)

Abstract

本開示は、空気電池の充電時間を短縮するための技術を提供する。本開示は、正極(13)と、負極(12)と、前記正極(13)と前記負極(12)との間に介在しかつ非水溶媒にリチウム塩を溶解した非水電解液と、を備えた空気電池の充放電方法であって、(1)前記空気電池を放電させ、(2)前記空気電池の外部から前記空気電池の内部に前記非水電解液とは異なる充電液を供給して前記放電による放電生成物を固体のまま正極から脱離させる、空気電池の充放電方法である。

Description

本開示は、空気電池及びその使用方法に関する。
空気電池は、正極活物質として空気中の酸素を用い、負極活物質として金属イオンを吸蔵及び放出可能な金属又は化合物を用いた電池である。空気電池は、エネルギー密度が高い、小型化が容易である、軽量化が容易であるといった利点を有している。したがって、空気電池は、現在最もエネルギー密度が高いと考えられているリチウムイオン電池を超えるエネルギー密度を有する電池として注目されている。
空気電池では、放電反応で放電生成物が析出し、充電反応で放電生成物が分解される。放電生成物が分解しにくいために充電反応が進みにくい。充放電サイクル特性が良くないことが二次電池としての空気電池の課題である。例えば、負極活物質として金属リチウムを用いたリチウム空気電池では、放電反応で過酸化リチウムが析出する。過酸化リチウムは電子伝導性に乏しいため、リチウム空気電池は充電に多大な時間を要する。
特許文献1は、外部から負極活物質を供給するための供給口を有するメカニカルチャージ方式の金属空気電池を開示している。
非特許文献1は、レドックスメディエータの酸化体を含む電解液を充電液として電池外部から注入することによって過酸化リチウムを化学的に分解する方法を提案している。
特許文献2は、放電反応を行う第1正極と、レドックスメディエータを酸化させる第2正極とを備えた空気電池を開示している。第1正極に充電電流を流すことなく、かつ、外部からの液注入を行うことなく、充電操作が行われる。
特開2017−174771号公報 特許第6233335号公報
Yoko Hase et al., A highly efficient Li2O2 oxidation system in Li-O2 batteries, Chem. Commun., 2016, 52, 12151-12154
本開示は、空気電池の充電時間を短縮するための技術を提供する。
本開示は、正極と、負極と、前記正極と前記負極との間に介在しかつ非水溶媒にリチウム塩を溶解した非水電解液と、を備えた空気電池の充放電方法であって、
(1)前記空気電池を放電させ、
(2)前記空気電池の外部から前記空気電池の内部に前記非水電解液とは異なる充電液を供給して前記放電による放電生成物を固体のまま正極から脱離させる、
空気電池の充放電方法を提供する。
本開示の技術によれば、空気電池の充電時間を短縮することができる。
図1は、本開示の空気電池の構成を示す断面図である。 図2は、変形例に係る空気電池の構成図である。 図3は、本開示の空気電池の使用方法を示す工程図である。 図4は、サンプル1で使用した充電液の7Li−NMRスペクトルである。
(本開示の基礎となった知見)
負極メカニカルチャージ方式の空気電池では、正極に析出した放電生成物の量が上限に達すると放電反応が止まるため、負極活物質の供給に加えて正極の交換も必要となる。
レドックスメディエータと過酸化リチウムとの反応を利用した充電にかかる時間は、両者の反応速度に依存し、最短でも数時間程度必要である(非特許文献1の図1参照)。そのため、充電時間の更なる短縮が望まれている。
本開示は、空気電池の充電時間を短縮するための技術を提供する。
(本開示に係る一態様の概要)
本開示の第1態様に係る空気電池の使用方法は、
正極と、負極と、前記正極と前記負極との間に介在しかつ非水溶媒にリチウム塩を溶解した非水電解液と、を備えた空気電池の充放電方法であって、
(1)前記空気電池を放電させ、
(2)前記空気電池の外部から前記空気電池の内部に前記非水電解液とは異なる充電液を供給して前記放電による放電生成物を固体のまま正極から脱離させることと、
を含む。
第1態様によれば、放電生成物を完全に分解させる必要が無いので、放電生成物を電気化学的又は化学的に分解させることによる充電と比較して、大幅に短い時間で充電を完了させることができる。正極に電流を流す必要がないので、正極の劣化及び炭酸リチウム等の副生成物の産生も抑制される。
本開示の第2態様は、例えば、第1態様に係る空気電池の使用方法において、
(3)前記ステップ(1)の後でかつ前記ステップ(2)の前に、前記空気電池の内部から前記空気電池の外部に電解液を排出させることをさらに含んでいてもよい。
これにより、充電液を充填するためのスペースを確保することができるとともに、正極に析出した放電生成物に充電液を確実に接触させることができる。
本開示の第3態様は、例えば、第1態様に係る空気電池の使用方法において、
(4)前記ステップ(1)の後、前記ステップ(2)と並行して、前記空気電池の内部から前記空気電池の外部に電解液を排出させることをさらに含んでいてもよい。
これにより、充電液を充填しながら、空気電池の外部に電解液を排出させることで、充放電の時間短縮を図ることができる。
本開示の第4態様は、例えば、第1態様から第3態様のいずれか1つに係る空気電池の使用方法において、
(5)前記ステップ(2)にて正極から脱離した前記放電生成物を前記充電液とともに前記空気電池の外部に排出させることをさらに含んでいてもよい。これにより、正極から放電生成物が除去され、正極の細孔構造が再生される。
本開示の第5態様は、例えば、第4態様に係る空気電池の使用方法において、前記ステップ(5)の後に、前記空気電池の内部に電解液を供給することをさらに含んでいてもよい。これにより、リチウム空気電池の充電が完了し、リチウム空気電池を再び放電させることが可能となる。
本開示の第6態様は、例えば、第5態様に係る空気電池の使用方法において、前記ステップ(5)にて供給される電解液は、前記ステップ(2)にて排出された電解液であってもよい。これにより、同一の電解液を再利用することができる。
本開示の第7態様は、例えば、第1から第6態様のいずれか1つに係る空気電池の使用方法において、前記充電液は、下記式(1)で表される化合物、下記式(2)で表される化合物、及び、下記式(3)で表される化合物からなる群より選ばれる少なくとも1つを含んでいてもよい。これらの化合物を含む充電液によれば、正極に析出した放電生成物を正極から速やかに脱離させることができる。すなわち、空気電池を短時間で充電することができる。
Figure 2020240948
式(1)、式(2)及び式(3)中、R1、R2及びR3は、それぞれ独立して、炭素数
1から5のフッ化アルキル基である。
本開示の第8態様は、例えば、第7態様に係る空気電池の使用方法において、前記充電液は、前記式(1)で表される化合物、前記式(2)で表される化合物及び前記式(3)で表される化合物からなる群より選ばれる少なくとも1つとして、亜リン酸トリス(2,2,2−トリフルオロエチル)、リン酸トリス(2,2,2−トリフルオロエチル)、亜リン酸トリス(1,1,1,3,3,3−ヘキサフルオロ−2−プロピル)、ホウ酸トリス(2,2,2−トリフルオロエチル)、及び、ホウ酸トリス(ヘキサフルオロイソピロピル)からなる群より選ばれる少なくとも1つを含んでいてもよい。これらの化合物によれば、空気電池をより短時間で充電することができる。
本明細書では、充電に必要な時間、及び、充電に費やされる時間を「充電時間」と称する。
以下、本開示の実施形態について、図面を参照しながら説明する。本開示は、以下の実施形態に限定されない。
(実施形態)
図1は、本開示の一実施形態に係るリチウム空気電池の概略断面図である。図1に示すように、本実施形態のリチウム空気電池1は、電池ケース11と、負極12と、正極13と、非水系リチウムイオン伝導体としての電解質層14とを備えている。電池ケース11は、上面側及び底面側の両方が開口した筒状部11aと、筒状部11aの底面側の開口を塞ぐように設けられた底部11bと、筒状部11aの上面側の開口を塞ぐように設けられた蓋部11cとを備えている。蓋部11cには、空気を電池ケース11内に取り込むための空気取り込み孔15が設けられている。負極12は、電池ケース11の底部11bの内底面上に配置された負極層12aを備えている。電池ケース11の底部11bは、負極12の負極集電体の機能を兼ね備えている。すなわち、負極集電体を兼ねる底部11bと負極層12aとによって、負極12が構成されている。正極13は、炭素材料を含む正極層13aと、正極層13aと電池ケース11の蓋部11cとの間に配置された正極集電体13bとで構成されている。
リチウム空気電池1の電解質層14は、セパレータを含んでいてもよい。底部11bとは別に負極集電体を設けてもよい。リチウム空気電池1は、電解質層14に含まれた固体電解質をさらに備えていてもよい。リチウム空気電池1は、電解質層14又は負極層12aに含まれた負極保護膜をさらに備えていてもよい。リチウム空気電池1は、電池ケース11の蓋部11cの上部又は蓋部11cと正極集電体13bとの間に配置された酸素透過膜をさらに備えていてもよい。
電池ケース11には、開口部17(第1開口部)が設けられている。開口部17は、電解質層14が収容された筒状部11aに設けられている。開口部17は、電池ケース11の内部に外部から液体を供給するため供給口である。開口部17を通じて電池ケース11の内部に導入されるべき液体は、電解液及び充電液でありうる。充電液は、放電生成物を正極13から脱離させるための処理液である。開口部17から電池ケース11の内部に充電液を充填してリチウム空気電池1の充電を行うことができる。このような構成は、充電時間の短縮に資する。リチウム空気電池1において、放電生成物は、正極13に析出した過酸化リチウムである。
開口部17には、第1経路20が接続されている。第1経路20には、第1弁23が設けられている。第1経路20は、電池ケース11の内部に電解液及び充電液を供給するための流路である。第1経路20は、1又は複数の配管によって構成されている。第1弁23によれば、電解液又は充電液を電池ケース11に封じ込めることができる。第1弁23は、逆止弁であってもよく、開閉弁であってもよい。
電池ケース11には、さらに、開口部18(第2開口部)が設けられている。開口部18は、電解質層14が収容された筒状部11aに設けられている。開口部18は、電池ケース11の内部から外部に液体を排出するための排出口である。開口部18を通じて電池ケース11の内部から外部に排出されるべき液体は、電解液及び使用後の充電液でありうる。
開口部18には、第2経路21が接続されている。第2経路21には、第2弁24が設けられている。第2経路21は、電池ケース11の内部から外部に電解液及び充電液を排出するための流路である。第2経路21は、1又は複数の配管によって構成されている。第2弁24は、電解液又は充電液をリチウム空気電池1の電池ケース11に閉じ込める役割を担う。第2弁24は、例えば、開閉弁である。
開口部17及び開口部18を使用すれば、電池ケース11の内部に電解液及び充電液を充填して封じ込めることができるとともに、電池ケース11から電解液及び充電液を排出することができる。電解液と充電液との混合を極力避けることもできる。
第2弁24が逆止弁によって構成されている場合、放電生成物を含む充電液を回収する際に、充電液が電池ケース11の内部に逆流することを防止できる。その結果、放電生成物が電池ケース11の内部に残存しにくい。
第1経路20及び第1弁23は、それぞれ独立して、リチウム空気電池1の充電を行うための機器の一部であってもよい。開口部17が栓を有している場合、第1経路20及び第1弁23は省略されうる。ただし、第1弁23は、開口部17に直接取り付けられていてもよい。
第2経路21及び第2弁24は、それぞれ独立して、リチウム空気電池1の充電を行うための機器の一部であってもよい。開口部18が栓を有している場合、第2経路21及び第2弁24は省略されうる。ただし、第2弁24は、開口部18に直接取り付けられていてもよい。
開口部17が充電液の供給及び排出に使用され、開口部18が電解液の排出及び供給に使用されてもよい。
開口部17が供給口及び排出口の両方の機能を有している場合、開口部18は省略されうる。つまり、開口部17を用いて、電解液の排出、充電液の供給、充電液の排出、及び、電解液の供給を含む一連の工程を行うことも可能である。
図2は、変形例に係るリチウム空気電池1aの構成を示している。リチウム空気電池1aは、単一の開口部17を備えている。開口部18が設けられていないことを除き、リチウム空気電池1aの構成は、図1に示すリチウム空気電池1と同一である。開口部17には、流路30が接続されている。流路30は、例えば、開口部17に着脱可能であり、リチウム空気電池1aの充電時に開口部17に接続され、リチウム空気電池1aの使用時に開口部17から取り外される。流路30は、充電液貯留部26とリチウム空気電池1aとを接続する、あるいは、電解液貯留部27とリチウム空気電池1aとを接続するための流路である。充電液貯留部26は、充電液を貯留するための容器である。電解液貯留部27は、電解液を貯留するための容器である。流路30には三方弁などの切換弁28が設けられている。切換弁28を操作することによって、充電液貯留部26及び電解液貯留部27のいずれかが選択的にリチウム空気電池1aに接続される。流路30には、必要に応じて、ポンプなどの機器が設けられていてもよい。切換弁28の操作によって、電解液の排出、充電液の供給、充電液の排出、及び、電解液の供給を含む一連の工程を行うことが可能である。
上記のような構成を有するリチウム空気電池1における電池反応は以下のとおりである。
放電反応(すなわち、リチウム空気電池1の使用時の反応)
負極:2Li → 2Li++2e- (A1)
正極:2Li++2e-+O2 → Li22 (A2)
充電反応(すなわち、リチウム空気電池1の充電時の反応)
負極:2Li++2e- → 2Li (A3)
正極:Li22 → 2Li++2e-+O2 (A4)
放電時には、式(A1)及び(A2)に示すように、負極12から電子とリチウムイオンとが放出される。正極13に電子が取り込まれると同時に、正極13において、リチウム空気電池1の外部から取り込まれた酸素とリチウムイオンとが反応してリチウム酸化物が生成する。充電時には、式(A3)及び(A4)に示すように、負極12に電子とリチウムイオンとが取り込まれる。正極13から電子、リチウムイオン及び酸素が放出される。
次に、このようなリチウム空気電池1の各構成について詳細に説明する。
1.正極
前述のとおり、正極13は、正極層13aを含んでおり、さらに正極集電体13bを含んでいてもよい。以下に、正極層13a及び正極集電体13bについてそれぞれ説明する。
(正極層)
正極層13aは、空気中の酸素を正極活物質として該酸素を酸化還元可能とする材料を含んでいる。そのような材料として、本実施形態における正極層13aは、炭素を含む導電性多孔質体を含んでいる。炭素を含む導電性多孔質体として用いられる炭素材料は、高い電子伝導性を有していてもよい。具体的には、アセチレンブラック及びケッチェンブラックなどの、一般的に導電助剤として用いられている炭素材料を用いることができる。比表面積及び一次粒子のサイズの観点から、ケッチェンブラックなどの導電性カーボンブラックを用いてもよい。炭素材料は、通常、粉末である。炭素材料の比表面積は、例えば800m2/g以上2000m2/g以下であり、1200m2/g以上1600m2/g以下であってもよい。炭素材料の比表面積がこのような範囲にあると、細孔構造を有する正極層13aを形成しやすい。比表面積は、BET法により測定される値である。
正極層13aは、上記の導電性多孔質体を固定化するバインダをさらに含有していてもよい。バインダとしては、リチウム空気電池1の正極層13aのバインダとして公知の材料を用いることができる。バインダとして、例えば、ポリフッ化ビニリデン(PVdF)及びポリテトラフルオロエチレン(PTFE)などが挙げられる。正極層13aにおけるバインダの含有量は、特に限定されず、例えば1質量%以上40質量%以下の範囲にある。
正極層の厚さ13aは、リチウム空気電池1の用途などに応じて変わるので特に限定されない。正極層13aの厚さは、例えば2μm以上500μm以下の範囲にあり、5μm以上300μm以下の範囲にあってもよい。
正極層13aは、例えば、以下に説明する方法によって作製することができる。炭素材料と溶媒とを混合し、混合物を調製する。必要に応じて、バインダなどの添加剤が混合物に含まれていてもよい。得られた混合物(塗布液として用いられる)をドクターブレード法などの塗布方法によって正極集電体13b上に塗布し、塗膜を乾燥させる。これにより、正極13が得られる。混合物の塗膜を乾燥させ、乾燥した塗膜をロールプレスなどの方法によって圧延することによって、正極集電体13bを有さないシート状の正極層13aを作製してもよい。炭素材料を圧着プレスによって直接成形することによってシート状の正極層13aを作製してもよい。
(正極集電体)
正極集電体13bは、正極層13aの集電を行う部材である。正極集電体13bの材料としては、導電性を有する材料であれば特に限定されない。正極集電体13bの材料として、例えばステンレス鋼、ニッケル、アルミニウム、鉄、チタン及びカーボンなどが挙げられる。正極集電体13bの形状としては、例えば箔状、板状及びメッシュ(例えば、グリッド)状などが挙げられる。本実施形態においては、正極集電体13bの形状がメッシュ状であってもよい。メッシュ状の正極集電体13bは、集電効率に優れているからである。この場合、正極層13aの内部にメッシュ状の正極集電体13bが配置されうる。本実施形態のリチウム空気電池1は、メッシュ状の正極集電体13bによって集電された電荷を集電する別の正極集電体13b(例えば箔状の集電体)をさらに有していてもよい。本実施形態においては、後述する電池ケース11が正極集電体13bの機能を兼ね備えていてもよい。正極集電体13bの厚さは、例えば10μm以上1000μm以下の範囲にあり、20μm以上400μm以下の範囲にあってもよい。
2.負極
前述のとおり、負極12は、負極集電体を含んでおり、さらに負極層12aを含んでいてもよい。以下に、負極層12a及び負極集電体についてそれぞれ説明する。
(負極層)
本実施形態における負極層12aは、リチウムイオンを吸蔵及び放出可能な負極活物質を含有していてもよい。このような負極活物質としては、リチウム元素を含有する物質であれば特に限定されず、例えば金属単体である金属リチウム、リチウム元素を含有する合金、リチウム元素を含有する酸化物及びリチウム元素を含有する窒化物などが挙げられる。リチウム元素を含有する合金としては、例えばリチウムアルミニウム合金、リチウムスズ合金、リチウム鉛合金及びリチウムケイ素合金などが挙げられる。リチウム元素を含有する金属酸化物としては、例えばリチウムチタン酸化物などが挙げられる。リチウム元素を含有する金属窒化物としては、例えばリチウムコバルト窒化物、リチウム鉄窒化物及びリチウムマンガン窒化物などが挙げられる。
負極層12aは、負極活物質のみを含有していてもよく、負極活物質の他にバインダを含有していてもよい。負極活物質が箔状である場合には、負極層12aは、負極活物質のみを含有しうる。負極活物質が粉末状である場合には、負極層12aは、負極活物質及びバインダを含有しうる。バインダとしては、リチウム空気電池1の負極層12aのバインダとして公知の材料を用いることができ、例えばPVdF及びPTFEなどが挙げられる。負極層12aにおけるバインダの含有量は、特に限定されず、例えば1質量%以上40質量%以下の範囲にある。粉末状の負極活物質を用いて負極層12aを作製する方法としては、上記の正極層13aの作製方法と同様に、ドクターブレード法又は圧着プレスによる成形方法などを用いることができる。
(負極集電体)
負極集電体は、負極層12aの集電を行う部材である。負極集電体の材料としては、導電性を有する材料であれば特に限定されない。リチウム空気電池1の負極集電体として公知の材料を用いることができる。負極集電体の材料として、例えば銅、ステンレス鋼、ニッケル及びカーボンなどが挙げられる。負極集電体の形状としては、例えば箔状、板状及びメッシュ(例えば、グリッド)状などが挙げられる。負極集電体は、表面に凹凸を有する多孔質体であってもよい。後述する電池ケース11が負極集電体の機能を兼ね備えていてもよい。
3.セパレータ
本実施形態のリチウム空気電池1は、正極13と負極12との間に配置されたセパレータを備えていてもよい。正極13と負極12との間にセパレータが配置されることにより、安全性の高い電池を得ることができる。セパレータは、正極層13aと負極層12aとを電気的に分離する機能を有するものであれば特に限定されない。セパレータとして、多孔質絶縁材料が使用されうる。多孔質絶縁材料としては、多孔膜、樹脂不織布、ガラス繊維不織布、紙製の不織布などが挙げられる。多孔膜としては、ポリエチレン(PE)多孔膜及びポリプロピレン(PP)多孔膜が挙げられる。樹脂不織布としては、PE不織布及びPP不織布などが挙げられる。
セパレータの多孔度は、例えば30%以上90%以下の範囲にある。多孔度がこのような範囲にあれば、十分な量の電解質がセパレータに保持されるとともに、セパレータが十分な強度を有する。セパレータの多孔度は、35%以上60%以下の範囲にあってもよい。多孔度は、材料の真密度、細孔を含む総体積及び重量から算出されうる。
4.電解質層
電解質層14は、負極12と正極13との間に配置され、リチウムイオンの伝導を行う層である。電解質層14は、非水電解質によって構成され、負極12と正極13との間に介在している。非水電解質は、リチウムイオン伝導性を有するリチウムイオン伝導体である。電解質層14は、例えば、液体電解質で構成されている。電解質層14は、液体電解質と固体電解質との組み合わせによって構成されていてもよく、液体電解質とゲル電解質との組み合わせによって構成されていてもよい。
一例において、非水溶媒にリチウム塩を溶解することによって調製された非水電解液を電解質層14として用いることができる。非水電解液は、負極12に含浸されていてもよく、正極13に含浸されていてもよい。
非水電解液に含まれたリチウム塩としては、例えば、リチウムビス(トリフルオロメタンスルホニル)イミド(LiN(SO3CF32)、過塩素酸リチウム(LiClO4)、六フッ化リン酸リチウム(LiPF6)、四フッ化硼酸リチウム(LiBF4)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)及びビストリフルオロメタンスルホニルアミドリチウム(LiN(CF3SO22)などが挙げられるが、これらに限定されない。リチウム空気電池1の非水電解液の電解質塩として公知のリチウム塩を用いることができる。
非水電解液における電解質塩の濃度は、例えば0.5mol/リットル以上2.5mol/リットル以下である。電解質層14として非水電解液を用いる場合、非水電解液をセパレータに含浸させて保持することにより、電解質層14が形成されうる。
非水溶媒として、エーテルを用いることができる。エーテルは、カーボネートと比較して、正極13内での酸素の酸化還元反応以外の副反応を起こしにくい。言い換えれば、エーテルは、優れた酸素ラジカル耐性を有する。そのため、エーテルは、リチウム空気電池1の非水電解液の溶媒として適している。放電反応において発生する酸素ラジカルに対して十分な耐性を持つエーテルが用いられる場合、リチウム空気電池1の正極13に電解液の分解物が堆積することを抑制できる。リチウム空気電池1の抵抗の増大を抑制できるので、リチウム空気電池1のサイクル特性も改善する。
エーテルは、鎖状エーテルであってもよく、環状エーテルであってもよく、これらの混合物であってもよい。鎖状エーテルは、揮発しにくく、酸素ラジカルに対して特に安定であるため、リチウム空気電池1の非水電解液の溶媒として適している。環状エーテルとしては、2−メチルテトラヒドロフラン、テトラヒドロフランが挙げられる。鎖状エーテルとしては、ジアルキルエーテル、対称グリコールジエーテル、及び、非対称グリコールジエーテルが挙げられる。ジアルキルエーテルとしては、ジブチルエーテルが挙げられる。対称グリコールジエーテルは、グライムとも呼ばれる。グライムとしては、モノグライム、ジグライム、トリグライム、テトラグライム、ペンタグライム、及び、ヘキサグライムが挙げられる。非水電解液には、非水溶媒として、エーテルのみが含まれていてもよい。
グライムは、優れた酸素ラジカル耐性を持つ。グライムを溶媒として用いることによって、非水電解液の分解を抑制できるとともに、リチウム空気電池1の抵抗の増大を抑制できる。非水電解液には、非水溶媒として、グライムのみが含まれていてもよい。
グライムは、トリグライム及びテトラグライムからなる群より選ばれる少なくとも1つであってもよい。トリグライム及びテトラグライムは、低揮発性と低粘度とを両立する。トリグライム及び/又はテトラグライムを電解液の溶媒として用いることによって、リチウム空気電池1の液枯れを防ぎながら、リチウムイオン及び酸素の輸送をスムーズに行うことができ、放電容量を増加させることができる。液枯れ防止の観点では、テトラグライムは、トリグライムよりも優れている。リチウムイオン及び酸素の輸送の観点では、トリグライムは、テトラグライムよりも優れている。
非水電解液に使用できる他の非水溶媒として、ジメチルスルホキシドが挙げられる。他の非水溶媒は、N−メチル−N−プロピルピペリジニウムビス(トリフルオロメタンスルホニル)イミドなどのイオン液体であってもよい。
5.電池ケース
本実施形態のリチウム空気電池1の電池ケース11は、前述したような正極13、負極12及び電解質層14を収納できれば、形状などは特に限定されない。本実施形態のリチウム空気電池1の電池ケース11は、図1に示す形状には限定されず、コイン型、平板型、円筒型及びラミネート型などの様々な形状を用いることができる。電池ケース11は、大気開放型の電池ケースであってもよく、密閉型の電池ケースであってもよい。大気開放型の電池ケースとは、大気が出入りできる通風口を有しており、大気が正極と接触可能なケースである。密閉型電池ケースの場合、密閉型電池ケースに、気体の供給管及び排出管が設けられていてもよい。この場合、供給及び排出される気体は、乾燥気体であってもよい。供給及び排出される気体は、高い酸素濃度を有していてもよく、純酸素(酸素濃度99.99%)であってもよい。放電時には酸素濃度が高く、充電時には酸素濃度が低くてもよい。
次に、リチウム空気電池1の使用方法について説明する。
図3は、リチウム空気電池1の使用方法を示す工程図である。図3に示すように、ステップS1において、リチウム空気電池1に負荷を接続して放電させる。ステップS1は、リチウム空気電池1の通常の使用に相当する。
リチウム空気電池1の放電後、充電液の供給の前に、ステップS2において、第2弁24を開き、開口部18及び第2経路21を通じて、リチウム空気電池1の内部からリチウム空気電池1の外部に電解質(液体電解質)を排出させる。これにより、充電液を充填するためのスペースを確保することができるとともに、正極13に析出した放電生成物に充電液を確実に接触させることができる。リチウム空気電池1において、正極13から放電生成物は、過酸化リチウムである。
次に、ステップS3において、第2弁24を閉じ、第1弁23を開き、開口部17及び第1経路20を通じて、リチウム空気電池1の外部からリチウム空気電池1の内部に充電液を供給する。第1弁23が逆止弁である場合、第1弁23の開閉操作は省略される。充電液の働きによって、放電生成物を正極13から脱離させる。充電液をリチウム空気電池1の内部に充填したまま、所定時間待つ。所定時間は、放電生成物を正極13から脱離させるために必要な時間であり、例えば、数秒間から1時間である。これは、レドックスメディエータを用いて過酸化リチウムを分解するのに必要な時間を大幅に下回る。
正極13に析出した放電生成物に充電液が接触すると、放電生成物が固体状態のまま正極13から脱離する。脱離した放電生成物は、充電液とともにリチウム空気電池1の外部に排出される。本実施形態によれば、放電生成物を完全に分解させる必要が無いので、過酸化リチウムを電気化学的に分解させることによる充電と比較して、大幅に短い時間で充電を完了させることができる。正極13に電流を流す必要がないので、正極13の劣化及び炭酸リチウム等の副生成物の産生も抑制される。
ステップS2の工程は、リチウム空気電池1の内部(詳細には、電池ケース11の内部)に充電液を供給する前に実施してもよいし、ステップS3の工程と並行して実施してもよい。つまり、第1弁23及び第2弁24を開き、リチウム空気電池1の内部に充電液を供給しながら、充電液の圧力によって電解液をリチウム空気電池1の外部に押し出してもよい。
次に、ステップS4において、第1弁23を閉じ、第2弁24を開き、正極13から脱離した固体状態の放電生成物を充電液とともにリチウム空気電池1の外部に排出させる。これにより、正極13から放電生成物が除去され、正極13の細孔構造が再生される。
次に、放電生成物及び充電液の排出後、ステップS5において、リチウム空気電池1の内部に電解質を供給する。第1弁23及び第2弁24を閉じる。これにより、リチウム空気電池1の充電が完了し、リチウム空気電池1を再び放電させることが可能となる。
本実施形態によれば、正極13に析出した放電生成物を正極から脱離させることによって除去する。そのため、短時間で充電を完了することができるとともに、長期間安定的に電気エネルギーを供給可能なリチウム空気電池1を提供することができる。また、正極13の交換も不要である。
ステップS2においてリチウム空気電池1の外部に排出された電解質は、ステップS5において、リチウム空気電池1の内部に戻されてもよい。このようにすれば、電解液の繰り返し使用が可能になり、長期間安定的に電気エネルギーを供給可能なリチウム空気電池1を実現できる。
ステップS4においてリチウム空気電池1の外部に排出された充電液も再利用可能である。充電液を再利用することによって、長期間安定的に電気エネルギーを供給可能なリチウム空気電池1を実現できる。
次に、充電液の組成について説明する。
充電液は、放電生成物と反応して分解する機能、放電生成物を溶解させる機能、及び、放電生成物と相互作用して放電生成物を充電液中に分散させる機能の少なくとも1つを有する。
放電生成物を溶解させる機能を有する充電液としては、アニオンレセプターを含む有機溶液が挙げられる。例えば、トリプロピルホウ酸、トリス(ペンタフルオロフェニル)ボラン、トリス(ペンタフルオロフェニル)ホスフィンなどのアニオンレセプターが放電生成物を溶解させる。
放電生成物と相互作用して放電生成物を液中に分散させる機能を有する充電液としては、リン酸エステルのフッ化物、リン酸エステルの部分フッ化物、ホウ酸エステルのフッ化物、ホウ酸エステルの部分フッ化物などの化合物を含む充電液が挙げられる。これらの化合物によれば、正極13に析出した放電生成物を分解することなく正極13から脱離させることができる。すなわち、短時間でリチウム空気電池1を充電することができる。
具体的には、充電液は、下記式(1)で表される化合物、下記式(2)で表される化合物、及び、下記式(3)で表される化合物からなる群より選ばれる少なくとも1つを含んでいてもよい。式(1)、式(2)又は式(3)で表される化合物は、放電生成物と相互作用して放電生成物を充電液中に分散させる機能を有する。したがって、これらの化合物を含む充電液によれば、正極13に析出した放電生成物を正極13から速やかに脱離させることができる。すなわち、リチウム空気電池1を短時間で充電することができる。
Figure 2020240948
式(1)、式(2)及び式(3)中、R1、R2及びR3は、それぞれ独立して、炭素数1から5のフッ化アルキル基である。
充電液は、式(1)で表される化合物、式(2)で表される化合物及び式(3)で表される化合物からなる群より選ばれる少なくとも1つとして、亜リン酸トリス(2,2,2−トリフルオロエチル)(TFEPi:Tris(2,2,2-trifluoroethyl)phosphite)、リン酸トリス(2,2,2−トリフルオロエチル)(TFEPa:Tris(2,2,2-trifluoroethyl)phosphate)、亜リン酸トリス(1,1,1,3,3,3−ヘキサフルオロ−2−プロピル)(TFPP:Tris(1,1,1,3,3,3-hexafluoro-2-propyl)phosphite)、ホウ酸トリス(2,2,2−トリフルオロエチル)(TFEB:Tris(2,2,2-trifluoroethyl)borate)、及び、ホウ酸トリス(ヘキサフルオロイソピロピル)(TFPB:Tris(hexafluoroisopropyl)borateからなる群より選ばれる少なくとも1つを含む。
これらの化合物は、式(1)、式(2)及び式(3)におけるR1、R2及びR3の炭素数が3以下の化合物である。この場合、放電生成物との相互作用部位である中心原子(リン原子又はホウ素原子)周辺の立体障害が大きすぎない。適度な炭素数を有しているので、これらの化合物は、放電生成物と液体(充電液の溶媒)との間の界面活性剤としての機能も十分に発揮する。よって、これらの化合物を含む充電液によれば、正極13に析出した放電生成物をより短時間で正極13から脱離させることができる。すなわち、リチウム空気電池1をより短時間で充電することができる。
放電生成物と反応して分解する機能を有する液体としては、レドックスメディエータを含む有機溶液が挙げられる。レドックスメディエータが酸化してカチオン体に変化し、放電生成物である過酸化リチウムが分解する。
レドックスメディエータとしては、テトラチアフルバレン、フェロセン、2,2,6,6−テトラメチルピペリジン−1−オキシル、2−アザアダマンタン−N−オキシル、9−アザノルアダマンタン−N−オキシル、1,5−ジメチル−9−アザノルアダマンタン−N−オキシル、9−アザビシクロ[3.3.1]ノナン−N−オキシル、4−アセトアミド−2,2,6,6−テトラメチルピペリジン−1−オキシル、ヨウ化リチウム、臭化リチウム、10−メチルフェノチアジン、N,N,N,N−テトラメチル−p−フェニレンジアミン、5,10−ジヒドロ−5,10−ジメチルフェナジン、トリス[4−(ジエチルアミノ)フェニル]アミン、鉄フタロシアニンなどが挙げられる。これらから選ばれる1種又は2種以上をレドックスメディエータとして用いることができる。
充電液におけるレドックスメディエータの濃度は、例えば、0.01mmol/リットル以上500mmol/リットル以下である。
充電液は、有機溶媒を含む。有機溶媒としては、リチウム空気電池1の電解質層14に使用された溶媒と同じ有機溶媒を使用できる。例えば、リチウム空気電池1の電解質層14を構成する電解液にグライムが使用されている場合、充電液の溶媒として同種のグライムが使用される。これにより、リチウム空気電池1の特性に対する充電液の影響を減らすことができる。
式(1)で表される化合物、式(2)で表される化合物及び式(3)で表される化合物からなる群より選ばれる少なくとも1つの化合物は、例えば、0.1wt%以上100wt%以下の範囲で充電液に含まれている。
本実施形態において、負極12は、リチウムイオンを吸蔵及び放出可能な負極活物質を含む。電解質は、リチウムイオン伝導体を含む。リチウム空気電池1に本開示の技術を適用することによって、より大きい容量の二次電池を提供することが可能である。式(1)(2)又は(3)で表される化合物は、電解液に混入したとしても、負極12におけるリチウムの吸蔵、負極12におけるリチウムの放出、及び、電解質のリチウムイオン伝導を妨げない。
充電液は、過酸化リチウムに含まれる酸素原子と相互作用して過酸化リチウムを電解液に分散させうる。そのため、リチウム以外の金属を用いた空気電池でも同じ効果が得られることが予測される。
(実施例)
以下、実施例によって本開示をさらに詳細に説明する。以下の実施例は一例であり、本開示は以下の実施例に限定されない。
(リチウム空気電池の作製)
炭素材料としてケッチェンブラック(ライオン株式会社製)の粉末を用いた。バインダとしてPTFE(ダイキン工業株式会社製)の粉末を用いた。炭素材料及びバインダを質量比90:10でエタノール溶媒を用いて混練し、混合物を得た。混合物をロールプレスによって圧延し、電極シートを作製した。得られた電極シートを切断して正極(正極層)を得た。
テトラグライム(キシダ化学株式会社製)にLiN(SO3CF32(キシダ化学株式会社製)を1mol/リットルの濃度となるように溶解させ、非水電解液を得た。
セパレータとして、ガラス繊維セパレータを準備した。金属リチウム箔(本荘ケミカル株式会社製)に集電体としてのSUS304メッシュ(株式会社ニラコ製)を貼付し、負極を得た。正極、セパレータ、非水電解液及び負極を用い、図1に示す構造を有するリチウム空気電池を作製した。
(サンプル1)
酸素雰囲気下で、作製したリチウム空気電池の放電試験を行った。放電時における電流密度は0.4mA/cm2であり、カットオフ電圧は2.0Vであった。
放電後、電池ケースから正極を取り出し、TFEBを10wt%の濃度で含むテトラグライム溶液(充電液)に正極を30分間浸漬させた。その後、炭酸エチルメチルで正極を洗浄して充電液を落とし、誘導結合プラズマ発光分光分析法(ICP−AES)によって、正極に残存するリチウムの量を定量した。検出されたリチウムの全てが放電生成物(過酸化リチウム)に由来するリチウムであるものとみなし、充電液への浸漬後に正極に残存する過酸化リチウムの割合を算出した。結果を表1に示す。正極に残存する過酸化リチウムの割合は、放電容量に基づいて算出した。
(サンプル2)
浸漬液(充電液)がTFEBを含まなかったことを除き、サンプル1と同じ方法によって、正極を充電液に浸漬させた後、正極に残存した過酸化リチウムの割合を調べた。
Figure 2020240948
表1に示すように、TFEBを含むテトラグライム溶液(充電液)に正極を接触させることによって、過酸化リチウムを正極からほぼ完全に脱離させることができた。この結果は、本開示の方法によって、短時間で充電を行うことが可能であることを示唆している。
図4は、サンプル1で使用した充電液の7Li−NMRスペクトルを示している。2.5ppm付近のシャープなピークは、充電液に溶解した過酸化リチウムのLi+に対応するピークである。LiCl水溶液を用いてLi+の検量線を作成し、図4のピーク強度から充電液に溶解した過酸化リチウムを定量した。充電液に溶解した過酸化リチウムの割合は、放電容量の僅か0.5mol%であった。この結果は、過酸化リチウムが充電液に殆ど溶解せず、放電によって析出した過酸化リチウムのほぼ全てが固体のまま正極から剥離し、充電液中に移動したことを示している。
一方、サンプル2において、正極に残存した過酸化リチウムの割合は97%であった。
(サンプル3)
酸素雰囲気下で、作製したリチウム空気電池の1サイクル目の放電試験を行った。放電時における電流密度は0.4mA/cm2であり、カットオフ電圧は2.0Vであった。
放電後、リチウム空気電池の電解液を充電液に入れ替えて、正極を充電液に接触させた。充電液として、TFEPa又はTFEBを10wt%の濃度で含むテトラグライム溶液を用いた。その後、充電液をリチウム空気電池の外部に排出させ、再度、上記電解液をリチウム空気電池の内部に戻し、2サイクル目の放電試験を行った。放電時における電流密度は0.4mA/cm2であり、カットオフ電圧は2.0Vであった。1サイクル目の放電容量に対する2サイクル目の放電容量(容量維持率)を算出した。結果を表2に示す。
(サンプル4)
浸漬液(充電液)としてテトラグライムを用いたことを除き、サンプル3と同じ方法で容量維持率を調べた。
(サンプル5)
充電液を用いた充電を行わず、正極と負極との間に電流を流して充電を行った。つまり、過酸化リチウムを電気化学的に分解させた。充電時における電流密度は0.1mA/cm2であり、カットオフ電圧は4.5Vであった。その後、2サイクル目の放電試験を行い、容量維持率を調べた。
Figure 2020240948
表2に示すように、サンプル3においては、1サイクル目と2サイクル目とで同じ放電容量が得られた。サンプル3においては、充電時に電流を流さなかった。そのため、過酸化リチウムが全て除去されながらも正極の表面の酸化劣化が生じず、優れた充放電サイクル特性が発揮されたと推察される。
一方、テトラグライムのみの充電液を用いたサンプル4の容量維持率は低かった。つまり、サンプル4では、過酸化リチウムは殆ど除去されなかった。すなわち、充電が殆ど進まなかった。サンプル5の容量維持率は、サンプル3の容量維持率を大幅に下回った。
本開示の技術によれば、空気電池の充電時間を短縮することができる。本開示の空気電池は二次電池として有用である。
1 リチウム空気電池
11 電池ケース
11a 筒状部
11b 底部
11c 蓋部
12 負極
12a 負極層
13 正極
13a 正極層
13b 正極集電体
14 電解質層
15 空気取り込み孔
17,18 開口部
20 第1経路
21 第2経路
23 第1弁
24 第2弁

Claims (8)

  1. 正極と、負極と、前記正極と前記負極との間に介在しかつ非水溶媒にリチウム塩を溶解した非水電解液と、を備えた空気電池の充放電方法であって、
    (1)前記空気電池を放電させ、
    (2)前記空気電池の外部から前記空気電池の内部に前記非水電解液とは異なる充電液を供給して前記放電による放電生成物を固体のまま正極から脱離させる、
    空気電池の充放電方法。
  2. (3)前記ステップ(1)の後でかつ前記ステップ(2)の前に、前記空気電池の内部から前記空気電池の外部に電解液を排出させる、
    請求項1に記載の空気電池の充放電方法。
  3. (4)前記ステップ(1)の後、前記ステップ(2)と並行して、前記空気電池の内部から前記空気電池の外部に電解液を排出させる、
    請求項1に記載の空気電池の充放電方法。
  4. (5)前記ステップ(2)にて正極から脱離した前記放電生成物を前記充電液とともに前記空気電池の外部に排出させる、
    請求項1から3のいずれか1項に記載の空気電池の充放電方法。
  5. 前記ステップ(5)の後に、前記空気電池の内部に電解液を供給する、
    請求項4に記載の空気電池の充放電方法。
  6. 前記ステップ(5)にて供給される電解液は、前記ステップ(2)にて排出された電解液である、
    請求項5に記載の空気電池の充放電方法。
  7. 前記充電液は、下記式(1)で表される化合物、下記式(2)で表される化合物、及び、下記式(3)で表される化合物からなる群より選ばれる少なくとも1つを含む、
    請求項1から6のいずれか1項に記載の空気電池の充放電方法。
    Figure 2020240948
  8. 前記充電液は、前記式(1)で表される化合物、前記式(2)で表される化合物及び前記式(3)で表される化合物からなる群より選ばれる少なくとも1つとして、亜リン酸トリス(2,2,2−トリフルオロエチル)、リン酸トリス(2,2,2−トリフルオロエチル)、亜リン酸トリス(1,1,1,3,3,3−ヘキサフルオロ−2−プロピル)、ホウ酸トリス(2,2,2−トリフルオロエチル)、及び、ホウ酸トリス(ヘキサフルオロイソピロピル)からなる群より選ばれる少なくとも1つを含む、
    請求項7に記載の空気電池の充放電方法。
JP2021522636A 2019-05-30 2020-02-20 空気電池及びその使用方法 Active JP7190669B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019101768 2019-05-30
JP2019101768 2019-05-30
PCT/JP2020/006739 WO2020240948A1 (ja) 2019-05-30 2020-02-20 空気電池及びその使用方法

Publications (2)

Publication Number Publication Date
JPWO2020240948A1 true JPWO2020240948A1 (ja) 2021-10-14
JP7190669B2 JP7190669B2 (ja) 2022-12-16

Family

ID=73553168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021522636A Active JP7190669B2 (ja) 2019-05-30 2020-02-20 空気電池及びその使用方法

Country Status (3)

Country Link
US (1) US11901593B2 (ja)
JP (1) JP7190669B2 (ja)
WO (1) WO2020240948A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086526A (ja) * 2009-10-16 2011-04-28 Toyota Motor Corp リチウム空気電池システム
JP2011222412A (ja) * 2010-04-13 2011-11-04 Aisin Seiki Co Ltd リチウム−空気電池システム
JP2012028017A (ja) * 2010-07-20 2012-02-09 Aisin Seiki Co Ltd 金属−空気電池システム
WO2013058035A1 (ja) * 2011-10-21 2013-04-25 日産自動車株式会社 注液式空気電池
JP2016076391A (ja) * 2014-10-07 2016-05-12 シャープ株式会社 金属空気電池
JP2016170965A (ja) * 2015-03-12 2016-09-23 古河電池株式会社 空気電池システム
US20170309981A1 (en) * 2014-10-07 2017-10-26 Phinergy Ltd. A shutdown system for metal-air batteries and methods of use thereof
JP2018078082A (ja) * 2016-11-11 2018-05-17 トヨタ自動車株式会社 金属空気電池システム
JP2018181419A (ja) * 2017-04-03 2018-11-15 山洋電気株式会社 マグネシウム空気電池システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7858238B2 (en) * 2005-05-26 2010-12-28 California Insitute Of Technology High voltage and high specific capacity dual intercalating electrode Li-ion batteries
US8795868B1 (en) * 2013-03-13 2014-08-05 Melvin H. Miles Rechargeable lithium-air and other lithium-based batteries using molten nitrates
JP6233335B2 (ja) 2015-03-04 2017-11-22 株式会社豊田中央研究所 非水電解液空気電池及びその使用方法
US9466857B1 (en) * 2015-06-22 2016-10-11 Wildcat Discovery Technologies, Inc. Electrolyte formulations for lithium ion batteries
US11621438B2 (en) * 2018-12-05 2023-04-04 Honda Motor Co., Ltd. Solid electrolyte interphase (SEI) application on anode of fluoride ion/shuttle batteries
CN105609898B (zh) * 2016-01-28 2018-05-08 四川康成博特机械制造有限公司 一种空气电池
CN205335398U (zh) * 2016-01-28 2016-06-22 四川康成博特机械制造有限公司 一种空气电池
JP6766368B2 (ja) * 2016-02-15 2020-10-14 株式会社豊田中央研究所 フロー電池、蓄電池及び給電システム
JP6716308B2 (ja) 2016-03-25 2020-07-01 株式会社日本触媒 金属空気電池
KR102664381B1 (ko) * 2016-06-21 2024-05-08 삼성전자주식회사 리튬 전지
US10741895B2 (en) * 2017-09-28 2020-08-11 Panasonic Intellectual Property Management Co., Ltd. Lithium air battery that includes nonaqueous lithium ion conductor
US11462761B2 (en) * 2018-01-10 2022-10-04 Raytheon Technologies Corporation Regeneration of flow battery
CN108511745A (zh) * 2018-05-09 2018-09-07 哈尔滨工业大学 一种碱性铝空气电池组用电解液及其配套使用的电解液箱
CN208548434U (zh) * 2018-07-26 2019-02-26 广州道动新能源有限公司 一种铝空气电池、供电系统
KR20200110902A (ko) * 2019-03-18 2020-09-28 현대자동차주식회사 안정성이 우수한 리튬 공기 전지용 양극, 그 제조방법 및 이를 포함하는 리튬 공기 전지

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086526A (ja) * 2009-10-16 2011-04-28 Toyota Motor Corp リチウム空気電池システム
JP2011222412A (ja) * 2010-04-13 2011-11-04 Aisin Seiki Co Ltd リチウム−空気電池システム
JP2012028017A (ja) * 2010-07-20 2012-02-09 Aisin Seiki Co Ltd 金属−空気電池システム
WO2013058035A1 (ja) * 2011-10-21 2013-04-25 日産自動車株式会社 注液式空気電池
JP2016076391A (ja) * 2014-10-07 2016-05-12 シャープ株式会社 金属空気電池
US20170309981A1 (en) * 2014-10-07 2017-10-26 Phinergy Ltd. A shutdown system for metal-air batteries and methods of use thereof
JP2016170965A (ja) * 2015-03-12 2016-09-23 古河電池株式会社 空気電池システム
JP2018078082A (ja) * 2016-11-11 2018-05-17 トヨタ自動車株式会社 金属空気電池システム
JP2018181419A (ja) * 2017-04-03 2018-11-15 山洋電気株式会社 マグネシウム空気電池システム

Also Published As

Publication number Publication date
JP7190669B2 (ja) 2022-12-16
WO2020240948A1 (ja) 2020-12-03
US20210344065A1 (en) 2021-11-04
US11901593B2 (en) 2024-02-13

Similar Documents

Publication Publication Date Title
KR101522638B1 (ko) 유해 물질을 흡수하는 수단을 포함하는 재충전 가능한 배터리
JP5104942B2 (ja) 空気二次電池
JP5383954B1 (ja) 金属酸素電池
WO2010100752A1 (ja) 空気極および非水空気電池
JP5396185B2 (ja) リチウムイオン二次電池
EP3168916B1 (en) Electrolytic solution and electrochemical device
JP2012084379A (ja) 金属空気電池システム、及び金属空気電池の充電方法
JP5215146B2 (ja) リチウム空気二次電池及びリチウム空気二次電池の製造方法
JP2017010865A (ja) 二次電池
JP5556618B2 (ja) リチウム空気電池
US10741895B2 (en) Lithium air battery that includes nonaqueous lithium ion conductor
WO2020240948A1 (ja) 空気電池及びその使用方法
JP7012237B2 (ja) リチウム空気電池
US10629970B2 (en) Lithium air battery including negative electrode, positive electrode, nonaqueous lithium ion conductor, and copper ion
JP5669405B2 (ja) リチウム空気電池
JP7122544B2 (ja) リチウム空気電池
CN113508486A (zh) 基于氟化离子液体的稳定电解质及其在高电流速率Li-空气蓄电池的应用
KR101790245B1 (ko) 액체 촉매가 포함된 충전가능한 리튬-이산화황 전지
WO2014116814A2 (en) Potassium-oxygen batteries based on potassium superoxide
JP7008196B2 (ja) リチウム空気電池
JP2018133168A (ja) リチウム空気電池及びその使用方法
JP2020198150A (ja) 空気電池
CN103843192A (zh) 空气电池、具备该空气电池的移动体和空气电池的使用方法
JP2020198149A (ja) リチウム空気電池
JP2017010776A (ja) リチウム空気二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220517

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221124

R151 Written notification of patent or utility model registration

Ref document number: 7190669

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151