JPWO2020095377A1 - 負荷駆動装置、冷凍サイクル装置及び空気調和機 - Google Patents

負荷駆動装置、冷凍サイクル装置及び空気調和機 Download PDF

Info

Publication number
JPWO2020095377A1
JPWO2020095377A1 JP2020556398A JP2020556398A JPWO2020095377A1 JP WO2020095377 A1 JPWO2020095377 A1 JP WO2020095377A1 JP 2020556398 A JP2020556398 A JP 2020556398A JP 2020556398 A JP2020556398 A JP 2020556398A JP WO2020095377 A1 JPWO2020095377 A1 JP WO2020095377A1
Authority
JP
Japan
Prior art keywords
current
motor
speed
command value
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020556398A
Other languages
English (en)
Other versions
JP7050951B2 (ja
Inventor
慎也 豊留
慎也 豊留
和徳 畠山
和徳 畠山
健治 ▲高▼橋
健治 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020095377A1 publication Critical patent/JPWO2020095377A1/ja
Application granted granted Critical
Publication of JP7050951B2 publication Critical patent/JP7050951B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

負荷駆動装置(300)の制御装置(100)は、電圧指令演算部(115)を備える。電圧指令演算部(115)は、速度制御器(135)の前段にフィルタ(134)を備える。フィルタ(134)は、モータ(7)の回転位置を示す機械角位相に基づいて速度指令値と速度推定値との偏差である第1の速度偏差に含まれる負荷変動による変動成分から、特定の周波数成分を除去する。特定の周波数成分は負荷によって決まる周波数成分であり、モータ(7)の回転速度を単位時間当たりの回転角で表した機械角周波数の自然数倍の周波数成分である。速度制御器(135)は、フィルタ(134)から出力される第2の速度偏差に基づいて電流指令値を生成する。電流制御器(138,139)は、機械角周波数の自然数倍の周波数成分が除去された電流指令値と、モータ電流とに基づいてモータに印加する電圧の指令値である電圧指令値を演算する。

Description

本発明は、交流電力をモータに供給して負荷を駆動する負荷駆動装置、負荷駆動装置を備えた冷凍サイクル装置、及び冷凍サイクル装置を備えた空気調和機に関する。
負荷駆動装置の駆動対象が例えば圧縮機である場合、負荷トルクは、モータの回転周期の1周期又は複数周期で変動する。このとき、圧縮機のモータに供給される電流も負荷トルクの変動に応じて脈動する。モータに供給される電流が脈動すると、負荷である圧縮機の運転効率が低下する。
下記特許文献1には、積分制御によって、q軸電流指令値の脈動成分がゼロとなるように制御する技術が開示されている。q軸電流指令値は、トルク電流指令値である。トルク電流指令値の脈動成分は、トルク電流指令値に含まれる交流成分である。
トルク電流指令値の脈動成分がゼロとなるように制御することで、モータの出力トルクと圧縮機の負荷トルクとの差が小さくなり、モータの速度変動が抑制される。これにより、圧縮機の運転効率が高められると考えられる。
特開2016−082636号公報
しかしながら、特許文献1に記載の技術は、積分制御に必要な制御ゲイン値の調整に時間を要するため、制御の過程で所望の制御ゲイン値が得られないことが想定される。その結果、トルク電流指令値の脈動成分を低減しきれず、高効率な駆動制御を確実に実施できないという課題が認められる。
本発明は、上記に鑑みてなされたものであって、高効率な駆動制御を確実に実施することができる負荷駆動装置を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、交流電力をモータに供給して負荷を駆動する負荷駆動装置である。負荷駆動装置は、交流電圧を整流して直流電圧に変換する整流回路と、整流回路から出力される直流電力を交流電力に変換するインバータと、インバータを制御する制御装置と、を備える。制御装置は、モータの回転速度の推定値である速度推定値を演算する速度推定器と、速度指令値と速度推定値との偏差である速度偏差に基づいて電流指令値を生成する速度制御器と、速度推定値に基づいてモータの回転位置を示す機械角位相を演算する機械角位相演算器と、を備える。制御装置は、速度偏差又は速度制御器から出力される電流指令値に含まれる負荷変動による変動成分から、特定の周波数成分を除去するフィルタを備える。制御装置は、特定の周波数成分が除去された電流指令値と、モータに流れるモータ電流とに基づいてモータに印加する電圧の指令値である電圧指令値を演算する電流制御器を備える。特定の周波数成分は負荷によって決まる周波数成分であり、モータの回転速度を単位時間当たりの回転角で表した機械角周波数の自然数倍の周波数成分である。
本発明に係る負荷駆動装置によれば、高効率な駆動制御を確実に実施することができるという効果を奏する。
実施の形態1に係る負荷駆動装置の構成例を示す回路図 図1に示すインバータの部分拡大図 実施の形態1における制御装置の構成例を示すブロック図 図3に示す電圧指令演算部の構成例を示すブロック図 実施の形態1の効果の説明に供する第1の波形図 実施の形態1の効果の説明に供する特性図 実施の形態1の効果の説明に供する第2の波形図 実施の形態1の効果の説明に供する第3の波形図 図4に示すフィルタをノッチフィルタとしたときの構成例を示すブロック図 実施の形態1における制御装置の機能を実現するハードウェア構成の一例を示すブロック図 実施の形態1における制御装置の機能を実現するハードウェア構成の他の例を示すブロック図 実施の形態2に係る冷凍サイクル装置の構成例を示す図
以下に添付図面を参照し、本発明の実施の形態に係る負荷駆動装置、冷凍サイクル装置及び空気調和機について詳細に説明する。なお、以下の実施の形態により、本発明が限定されるものではない。
実施の形態1.
まず、図1及び図2を参照して、実施の形態1に係る負荷駆動装置の構成及び機能について説明する。図1は、実施の形態1に係る負荷駆動装置300の構成例を示す回路図である。図2は、図1に示すインバータ30の部分拡大図である。
実施の形態1に係る負荷駆動装置300は、図1に示されるように、単相電源である交流電源1から出力される交流電圧を直流電圧に一旦変換し、負荷駆動装置300の内部で再度交流電圧に変換して、負荷に搭載されるモータ7を駆動するように構成される。モータ7は、冷凍サイクル装置に備えられる圧縮機の駆動用モータとして適用可能である。モータ7の一例は、三相の永久磁石同期モータである。
負荷駆動装置300は、図1に示されるように、リアクトル2と、整流回路3と、平滑コンデンサ5と、電圧検出器10と、インバータ30と、電流検出器40と、制御装置100と、を備える。整流回路3とインバータ30とは、直流母線12a,12bによって電気的に接続される。平滑コンデンサ5は、高電位側の直流母線12aと、低電位側の直流母線12bとの間に接続されている。
整流回路3は、4つのダイオードD1,D2,D3,D4を備える。4つのダイオードD1〜D4は、ブリッジ接続されて、ダイオードブリッジ回路を構成する。整流回路3は、交流電源1から出力される交流電圧を、リアクトル2を介して受電する。整流回路3は、交流電圧を整流して直流電圧に変換する。交流電圧及び直流電圧は、それぞれ「交流電力」及び「直流電力」と言い替えてもよい。
なお、図1に示す整流回路3は、4つのダイオードD1,D2,D3,D4がブリッジ接続される構成であるが、この構成は、単相電源である交流電源1に合わせたものである。交流電源1が三相電源の場合、整流回路3も三相電源に対応した構成とされる。具体的には、6つのダイオードがブリッジ接続される構成となる。
整流回路3の出力電圧は、平滑コンデンサ5の両端に印加される。平滑コンデンサ5は、整流回路3の出力電圧を平滑する。平滑コンデンサ5は、直流母線12a,12bに接続されており、平滑コンデンサ5で平滑された電圧を、適宜「母線電圧」と呼ぶ。
電圧検出器10は、母線電圧を検出する。図1の構成の場合、母線電圧は、インバータ30への入力電圧でもある。電圧検出器10によって検出された母線電圧の検出値Vdcは、制御装置100に入力される。
電流検出器40は、母線電流を検出する。図1の構成の場合、母線電流は、インバータ30に入力される電流である。なお、母線電流を、「インバータ30の入力電流」、もしくは単に「入力電流」と呼ぶ場合がある。電流検出器40によって検出された母線電流の検出値Idcは、制御装置100に入力される。
電流検出器40の一例は、シャント抵抗である。電流検出器40がシャント抵抗である場合、母線電流の検出値Idcは、アナログ信号である。アナログ信号は、制御装置100の内部で図示しないアナログデジタル(Analogue Digital)変換器によってデジタル信号に変換される。母線電圧の検出値Vdcについても同様である。即ち、母線電圧の検出値Vdcがアナログ信号である場合、制御装置100の内部でデジタル信号に変換される。
インバータ30には、母線電圧が印加される。インバータ30は、整流回路3から出力される直流電力を交流電力に変換し、変換した交流電力を負荷であるモータ7に供給することで、モータ7を駆動する。
インバータ30は、図2に示すように、主回路310と、駆動回路350と、を備える。
主回路310は、上アームスイッチング素子UPと下アームスイッチング素子UNとが直列に接続されたレグ310Aと、上アームスイッチング素子VPと下アームスイッチング素子VNとが直列に接続されたレグ310Bと、上アームスイッチング素子WPと下アームスイッチング素子WNとが直列に接続されたレグ310Cと、を備える。レグ310A、レグ310B及びレグ310Cは、互いに並列に接続されている。
図2では、上アームスイッチング素子UP,VP,WP及び下アームスイッチング素子UN,VN,WNが絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)である場合を例示している。このIGBTに代えて、金属酸化物半導体電界効果トランジスタ(Metal Oxide Semiconductor Field Effect Transistor:MOSFET)を用いてもよい。
上アームスイッチング素子UPは、トランジスタ311と、トランジスタ311に逆並列に接続されるダイオード312とを含む。逆並列とは、IGBTのエミッタに相当する第1端子にダイオードのアノード側が接続され、IGBTのコレクタに相当する第2端子にダイオードのカソード側が接続されることを意味する。他の上アームスイッチング素子VP,WP、及び下アームスイッチング素子UN,VN,WNも同様に接続される。
なお、上アームスイッチング素子UP,VP,WP、及び下アームスイッチング素子UN,VN,WNのトランジスタ311がMOSFETである場合、逆並列に接続されるダイオード312は、MOSFET自身が内部に有する寄生ダイオードを利用することができる。寄生ダイオードは、ボディダイオードとも呼ばれる。寄生ダイオードを利用すれば、逆並列に接続される個別のダイオードが不要になるので、部品点数を削減することができ、コスト低減につながる。
また、上アームスイッチング素子UP,VP,WP、及び下アームスイッチング素子UN,VN,WNのトランジスタ311がMOSFETである場合、各トランジスタ311のうちの少なくとも1つは、ワイドバンドギャップ半導体により形成されていてもよい。ワイドバンドギャップ半導体としては、炭化珪素(SiC)、窒化ガリウム(GaN)、酸化ガリウム(Ga)、ダイヤモンドなどを例示できる。
一般的にワイドバンドギャップ半導体は、シリコン半導体に比べて耐電圧及び耐熱性が高い。そのため、それぞれのトランジスタ311のうちの少なくとも1つにワイドバンドギャップ半導体により形成されたMOSFETを用いれば、耐電圧性及び耐熱性の効果を享受することができる。
また、図2は、上アームスイッチング素子と下アームスイッチング素子とが直列に接続されるレグを3つ備える構成であるが、この構成に限定されない。レグの数は4つ以上でもよい。また、図1及び図2の回路構成は、三相モータであるモータ7に合わせたものである。負荷が多相モータである場合、主回路310も多相モータに対応した構成とされる。なお、負荷が三相モータ及び多相モータの何れの場合も、1つのレグが複数対の上下アームスイッチング素子で構成されていてもよい。
また、インバータ30は、出力線331,332,333を有する。出力線331は、上アームスイッチング素子UPと下アームスイッチング素子UNとの接続点321から引き出される。出力線332は、上アームスイッチング素子VPと下アームスイッチング素子VNとの接続点322から引き出される。出力線333は、上アームスイッチング素子WPと下アームスイッチング素子WNとの接続点323から引き出される。インバータ30において、接続点321,322,323は、交流端子を成す。
出力線331は、モータ7の第1の相(例えばU相)に接続される。出力線332は、モータ7の第2の相(例えばV相)に接続される。出力線333は、モータ7の第3の相(例えばW相)に接続される。
制御装置100は、母線電圧の検出値Vdcと、入力電流の検出値Idcとに基づいて、インバータ30の動作を制御するためのパルス幅変調(Pulse Width Modulation:PWM)信号Sm1〜Sm6を生成する。
PWM信号Sm1〜Sm6は、主回路310の6つの上アームスイッチング素子UP,VP,WP及び下アームスイッチング素子UN,VN,WNのそれぞれに対応して出力される。
PWM信号Sm1〜Sm6は、インバータ30の駆動回路350に入力される。駆動回路350は、PWM信号Sm1〜Sm6に基づいて駆動信号Sr1〜Sr6を生成する。上アームスイッチング素子UP,VP,WP及び下アームスイッチング素子UN,VN,WNのそれぞれは、駆動信号Sr1〜Sr6のそれぞれによってオン又はオフに制御される。これにより、周波数及び電圧値のうちの少なくとも1つが制御された電圧、即ち周波数可変又は電圧可変の電圧がモータ7に印加され、モータ7を備えた負荷が駆動される。
なお、PWM信号Sm1〜Sm6は、論理回路を制御するのに必要な電圧レベルの信号である。電圧レベルの例は、0〜5Vである。PWM信号Sm1〜Sm6は、制御装置100の接地電位を基準電位とする。これに対し、駆動信号Sr1〜Sr6は、上アームスイッチング素子UP,VP,WP及び下アームスイッチング素子UN,VN,WNのオン動作及びオフ動作を制御するのに必要な電圧レベルの信号である。電圧レベルの例は、−15V〜+15Vである。駆動信号Sr1〜Sr6は、それぞれに対応するスイッチング素子の低電位側の端子の電位を基準電位とする。図1の例であれば、IGBTのエミッタ端子が基準電位となる。
次に、実施の形態1における制御装置100の構成及び機能について、図3を参照して説明する。図3は、実施の形態1における制御装置100の構成例を示すブロック図である。制御装置100は、図3に示すように、運転制御部102及びインバータ制御部110を備えている。
運転制御部102は、外部から指令情報Qeを受け、指令情報Qeに基づいて、速度指令値ω*及び停止信号Stを生成する。停止信号Stは、インバータ30の動作を停止するための信号である。速度指令値ω*は、モータ7に印加する電圧の指令値である電圧指令値を生成するための信号である。速度指令値ω*及び停止信号Stは、共にインバータ制御部110に入力される。
制御装置100が、空気調和機を制御するものである場合、指令情報Qeは、例えば温度センサで検出された温度である。指令情報Qeの他の例は、リモコンから指示される設定温度を示す情報、運転モードの選択情報、運転開始及び運転終了の指示情報などである。
インバータ制御部110は、電流復元部111と、座標変換部112と、電圧指令演算部115と、座標変換部116と、PWM信号生成部117と、電気角位相演算部118と、励磁電流指令制御部119とを備える。
電流復元部111は、電流検出器40により検出された母線電流の検出値Idcに基づいてモータ電流iu,iv,iwを復元する。モータ電流iu,iv,iwは、モータ7の各相に流れる電流、即ちモータ7の各相電流である。電流復元部111は、母線電流の検出値Idcを、PWM信号生成部117からの信号に基づいて定められるタイミングでサンプリングすることで、モータ電流iu,iv,iwを復元する。なお、以下の説明において、モータ電流iuを「U相電流」、モータ電流ivを「V相電流」、モータ電流iwを「W相電流」と呼ぶことがある。
座標変換部112は、UVW相の電流値をγ−δ軸の電流値に変換する変換部である。より詳細に説明すると、座標変換部112は、電流復元部111により復元されたモータ電流iu,iv,iwを、後述の電気角位相演算部118で生成される電気角位相θを用いてγ軸電流iγ及びδ軸電流iδに変換する。γ軸電流iγは、励磁電流成分であり、δ軸電流iδはトルク電流成分である。
励磁電流指令制御部119は、δ軸電流iδを基に、モータ7を高効率に駆動するのに適したγ軸電流指令値iγ*を演算する。より詳細に説明すると、励磁電流指令制御部119は、δ軸電流iδに基づいて、出力トルクが設定値以上もしくは最大値となる電流位相角を求め、求めた電流位相角に基づいてγ軸電流指令値iγ*を演算する。γ軸電流指令値iγ*は、励磁電流指令値である。なお、モータ電流が設定値以下もしくは最小値となる電流位相角に基づいてγ軸電流指令値iγ*が演算されてもよい。
また、図3においては、δ軸電流iδに基づいてγ軸電流指令値iγ*を求める構成を例示しているが、この構成に限定されない。δ軸電流iδに代えて、γ軸電流iγ及び速度指令値ω*に基づいて、γ軸電流指令値iγ*が演算されてもよい。
電圧指令演算部115は、γ軸電流指令値iγ*と、γ軸電流iγと、δ軸電流iδと、速度指令値ω*とに基づいて、γ軸電圧指令値Vγ*、δ軸電圧指令値Vδ*及び速度推定値ωestを演算する。γ軸電圧指令値Vγ*は励磁電圧指令値であり、δ軸電圧指令値Vδ*はトルク電圧指令値である。速度推定値ωestは、インバータ30を制御する1周期の速度の推定値を電気角で表したものである。電圧指令演算部115の詳細な構成については、後述する。
電気角位相演算部118は、速度推定値ωestを積分することで、インバータ制御部110の内部で使用する電気角位相θを生成する。
座標変換部116は、γ−δ軸の電圧指令値をUVW相の電圧指令値、即ち三相座標系の電圧指令値に変換する変換部である。より詳細に説明すると、座標変換部116は、γ軸電圧指令値Vγ*及びδ軸電圧指令値Vδ*を、電気角位相θを用いて三相座標系の電圧指令値である三相電圧指令値Vu*,Vv*,Vw*に変換する。
PWM信号生成部117は、三相電圧指令値Vu*,Vv*,Vw*に基づいてPWM信号Sm1〜Sm6を生成する。
前述した停止信号Stが運転制御部102で生成されると、生成された停止信号Stは、PWM信号生成部117に与えられる。PWM信号生成部117は、停止信号Stを受けると、PWM信号Sm1〜Sm6の出力を停止する。これにより、インバータ30のスイッチング素子は、スイッチング動作を停止する。
なお、図3の例では、インバータ30の入力電流の検出値Idcからモータ電流iu,iv,iwを復元する構成としているが、この構成に限定されない。インバータ30の出力線331,332,333のうちの少なくとも2箇所に電流検出器を設け、それらの電流検出器で相電流を直接検出してもよい。なお、この構成の場合、インバータ制御部110において、電流復元部111を省略することができる。
次に、電圧指令演算部115の構成について説明する。図4は、図3に示す電圧指令演算部115の構成例を示すブロック図である。電圧指令演算部115は、図4に示すように、速度推定器131、加減算器132,136,137,140,141、機械角位相演算器133、フィルタ134、速度制御器135、γ軸電流制御器138、δ軸電流制御器139、第1の非干渉制御器142及び第2の非干渉制御器143を備える。それぞれの加減算器では、脇に付されているプラス(+)又はマイナス(−)の符号に従って、加算又は減算の演算が行われる。
速度推定器131は、γ軸電流iγ、δ軸電流iδ、γ軸電圧指令値Vγ*及びδ軸電圧指令値Vδ*に基づいて、速度推定値ωestを演算する。速度推定値ωestは、モータ7の回転速度に対応する推定値である。モータ7の速度は、負荷変動によって変化する。このため、速度推定器131は、負荷変動によって変化するモータ7の回転速度を推定し、推定した回転速度に対応する速度推定値ωestを出力する。推定された速度推定値ωestは、後述する電圧指令値の演算に使用される。
なお、速度推定値ωestは、制御装置100の内部で用いられる推定値である。制御装置100の内部では、インバータ30の制御周期に対応させて、電気角の0から2πまでの変化が1周期として扱われる。このため、モータ7の回転速度の推定値が同じでも、モータ7の極対数Pによって速度推定値ωestの値は、異なる。例えば極対数Pが1であれば、モータ7の回転速度の推定値と速度推定値ωestとは一致する。また、極対数Pが2であれば、速度推定値ωestの値は、モータ7の回転速度の推定値の2倍となる。
速度推定器131によって演算された速度推定値ωestは、加減算器132に入力される。加減算器132は、速度指令値ω*と速度推定値ωestとの偏差である速度偏差Δωを演算する。
機械角位相演算器133は、積分器133a及び乗算器133bを備える。速度推定値ωestは積分器133aで積分されることにより、電気角で表した位相角の値となる。また、積分器133aの出力は、乗算器133bで、モータ7の極対数Pの逆数が乗算されることにより、機械角で表した位相角の値となる。このようにして、機械角位相演算器133は、速度推定値ωestに基づいて、モータ7の回転位置を示す機械角位相θmeを演算する。
フィルタ134は、機械角位相θmeに基づいて、速度偏差Δωに含まれる負荷変動成分を除去する。なお、ここで言う「除去」とは、負荷変動成分の一部が除去される、「低減」の概念を含むものである。以下、本明細書では、「低減」の概念を含めて「除去」という文言を使用する。
フィルタ134としては、ローパスフィルタ又はノッチフィルタを用いることができる。速度偏差Δωから負荷変動成分が除去された出力は、新たな速度偏差Δωfとして速度制御器135に入力される。なお、速度偏差Δωと、速度偏差Δωfを区別する際に、速度偏差Δωを「第1の速度偏差」と呼び、速度偏差Δωfを「第2の速度偏差」と呼ぶことがある。フィルタ134の機能及び構成については後述する。
速度制御器135は、速度偏差Δωfに基づいて、δ軸電流指令値iδ*を演算する。δ軸電流指令値iδ*は、速度偏差Δωが零となるδ軸電流iδの指令値、換言すると、速度指令値ω*と速度推定値ωestとを一致させるためのδ軸電流iδの指令値である。速度制御器135の一例は、比例積分(Proportional−Integral:PI)制御器である。
なお、図4では、速度制御器135の前段にフィルタ134を設けているが、速度制御器135の後段にフィルタ134を設けてもよい。速度制御器135の後段にフィルタ134を設ける場合、速度指令値ω*と速度推定値ωestとを一致させるためのδ軸電流指令値iδ*に含まれる負荷変動成分が除去される。
加減算器136は、γ軸電流指令値iγ*と、γ軸電流iγとの偏差を演算する。γ軸電流制御器138は、例えばPI制御器で構成され、γ軸電流指令値iγ*とγ軸電流iγとの偏差を零に収束させるように動作する。
加減算器137は、δ軸電流指令値iδ*と、δ軸電流iδとの偏差を演算する。δ軸電流制御器139は、例えばPI制御器で構成され、δ軸電流指令値iδ*とδ軸電流iδとの偏差を零に収束させるように動作する。
第1の非干渉制御器142は、乗算器142aを備える。第1の非干渉制御器142は、δ軸電流指令値iδ*及び速度推定値ωestに基づいて、γ軸電圧指令の補償値Vγff*を演算する。γ軸電圧指令の補償値Vγff*は、δ軸電流指令値iδ*によるγ軸への相互干渉を抑制するための補償値である。図4に示すように、γ軸電圧指令の補償値Vγff*は、δ軸電流指令値iδ*に、モータ7のδ軸インダクタンスLδと、速度推定値ωestとを乗算することで演算される。
第1の非干渉制御器142が存在しない場合、γ軸電流制御器138から出力される第1のγ軸電圧指令値Vγfb*が、電圧指令演算部115から出力されるγ軸電圧指令値Vγ*とされる。一方、第1の非干渉制御器142が存在する場合、加減算器140において、第1のγ軸電圧指令値Vγfb*から、第1の非干渉制御器142の出力であるγ軸電圧指令の補償値Vγff*が減算される。そして、加減算器140の出力である第2の電圧指令値(Vγfb*−Vγff*)が電圧指令演算部115から出力されるγ軸電圧指令値Vγ*とされる。
第2の非干渉制御器143は、乗算器143a,143c及び加減算器143bを備える。第2の非干渉制御器143は、γ軸電流指令値iγ*及び速度推定値ωestに基づいて、δ軸電圧指令の補償値Vδff*を演算する。δ軸電圧指令の補償値Vδff*は、γ軸電流指令値iγ*によるδ軸への相互干渉を抑制するための補償値である。図4に示すように、乗算器143aでは、γ軸電流指令値iγ*とモータ7のγ軸インダクタンスLγとが乗算される。加減算器143bでは、乗算器143aの出力にモータ7の磁束鎖交数ベクトルφfが加算される。乗算器143cでは、加減算器143bの出力に速度推定値ωestが乗算される。そして、乗算器143cの出力がδ軸電圧指令の補償値Vδff*として、加減算器141に入力される。
第2の非干渉制御器143が存在しない場合、δ軸電流制御器139から出力される第1のδ軸電圧指令値Vδfb*が、電圧指令演算部115から出力されるδ軸電圧指令値Vδ*とされる。一方、第2の非干渉制御器143が存在する場合、加減算器141において、第1のδ軸電圧指令値Vδfb*から、第2の非干渉制御器143の出力であるδ軸電圧指令の補償値Vδff*が減算される。そして、加減算器140の出力である第2の電圧指令値(Vδfb*−Vδff*)が電圧指令演算部115から出力されるδ軸電圧指令値Vδ*とされる。
次に、実施の形態1における電圧指令演算部115において、速度制御器135の前段又は後段にフィルタ134を設ける意義について説明する。なお、説明に際し、負荷が圧縮機である場合を想定する。
負荷が圧縮機である場合、モータ7では、モータ7が1回転する1周期内において、圧縮機構造により発生する負荷変動が1周期のn倍の回数(nは自然数)の頻度で起こることが知られている。圧縮機が、例えばシングルロータリ圧縮機及びスクロール圧縮機である場合、n=1である。また、圧縮機が、例えばツインロータリ圧縮機である場合、n=2である。
負荷変動があると、速度推定値ωestは、負荷変動に合わせて変動する。従って、フィルタ134が存在しない場合、速度偏差Δωに基づいて制御されるδ軸電流指令値iδ*は、モータ7の機械角周波数のn倍の周波数成分を含むものとなってしまう。ここで言うモータ7の機械角周波数とは、モータ7の回転速度を単位時間(1秒)当たりの回転角(ラジアン)で表したものである。この変動成分がδ軸電流指令値iδ*に含まれると、後述のように、モータ7の各相電流がばらつくので、高効率な運転ができない。
一方、フィルタ134によって、速度偏差Δω又はδ軸電流指令値iδ*から、特定の周波数成分を除去するように制御すれば、負荷変動の影響を抑制してδ軸電流指令値iδ*の値を小さくすることができる。なお、ここで言う「特定の周波数成分」とは、モータ7の回転速度を単位時間当たりの回転角で表した機械角周波数のn倍の周波数成分である。“n”は、上記で説明した自然数である。δ軸電流指令値iδ*の値を小さくできれば、モータ7の各相電流のばらつきを小さくすることができ、高効率な運転が可能となる。
次に、フィルタ134の有無による運転効率の改善効果について、図5から図8の図面を参照して説明する。図5は、実施の形態1の効果の説明に供する第1の波形図である。図6は、実施の形態1の効果の説明に供する特性図である。図7は、実施の形態1の効果の説明に供する第2の波形図である。図8は、実施の形態1の効果の説明に供する第3の波形図である。
まず、図5の波形の前提となる「振動抑制制御」について説明する。
冷凍サイクル装置では、モータ7の振動を低減するために、モータ7の速度変動が小さくなるように、換言すると速度偏差Δωが小さくなるように制御することが行われる。モータ7の速度変動が小さくなると、振動が小さくなる。このため、速度偏差Δωを小さくする制御は、一般的に「振動抑制制御」と呼ばれる。
速度偏差Δωは、モータ7の出力トルクτm、負荷トルクτL及びモータ7のイナーシャJを用いて、以下の(1)式で表すことができる。
Figure 2020095377
上記(1)式に示されるように、負荷トルクτLに対して出力トルクτmが小さければ、モータ7の回転速度は指令値に対して小さくなる。逆に、負荷トルクτLに対して出力トルクτmが大きければ、モータ7の回転速度は指令値に対して大きくなる。
図5には、振動抑制制御の実施時における各種の波形例が示されている。より詳細に説明すると、図5の上段部には、モータ7の回転速度(以下、単に「回転速度」と呼ぶ)ωmが細実線で示され、速度推定値ωestが太実線で示され、速度指令値ω*が破線で示されている。図5の中上段部には、U相電流iuが細実線で示され、V相電流ivが太実線で示され、W相電流iwが破線で示されている。図5の中下段部には、δ軸電流指令値iδ*が細実線で示され、δ軸電流iδが太実線で示されている。図5の下段部には、出力トルクτmが実線で示され、負荷トルクτLが破線で示されている。
図5の下段部によれば、負荷トルクτLの変動に対して、出力トルクτmが追従している様子が示されている。振動抑制制御では、図5の下段部に示される出力トルクτmをモータ7に出力させるため、モータ7の相電流の振幅は大きくなる。また、振動抑制制御では、図5の中上段部に示されるように、各相電流のピーク値が大きく、且つ、各相電流のピーク値の時間変化が大きく、且つ、各相電流のピーク値が相毎にばらついている。このため、振動抑制制御では、高効率な運転制御を行うことは望めない。
次に、図6について説明する。図6には、高効率制御の実施時におけるオーバーオール値の減衰率とフィルタの時定数との関係が示されている。なお、図6に示す特性は、図4に示すフィルタ134にローパスフィルタを用いた場合の例である。また、図6に示す特性は、負荷がシングルロータリ圧縮機の場合の例である。
図6の横軸には、モータ7の機械角周波数に基づいて定められるローパスフィルタの時定数(以下、「フィルタ時定数」と呼ぶ)の倍数が示されている。例えば、横軸における倍数10は、フィルタ時定数をモータ7の機械角周波数の逆数の10倍に設定したことを意味している。
また、図6の縦軸には、モータ電流のオーバーオール値の減衰率が示されている。ここで、オーバーオール値とは、モータ電流の周波数解析を行い、ある周波数帯までの周波数成分の合計値である。具体的に、図6では、0Hz〜1000Hzまでのオーバーオール値の減衰率を示している。なお、オーバーオール値が小さいことと、オーバーオール値の減衰率が大きいこととは等価である。また、オーバーオール値の減衰率が大きい程、モータ7の相電流のばらつきが小さくなるので、より高効率な運転が可能となる。
また、図6に示すオーバーオール値の減衰率は、図5に示す振動抑制制御時のオーバーオール値を基準としたものである。即ち、図5に示す振動抑制制御時のオーバーオール値を、図6において、減衰率“0%”としている。また、図6では、例えばローパスフィルタの時定数を機械角周波数の10倍に設定したときの減衰率が約29%であることが示されている。これは図5に示す振動抑制制御時のオーバーオール値に対して29%の改善効果があることを意味している。
また、図6では、モータ7の回転速度が37rpsの場合と、80rpsの場合の2つの例が示されている。これらの例によれば、モータ7の回転速度の差異は、フィルタ時定数の倍数に対する特性に大きな影響がないことが分かる。
また、図6において、フィルタ時定数の倍数を大きくすることは、フィルタのカットオフ周波数が低周波側に移動して、δ軸電流指令値iδ*が直流値に近づくことを意味する。フィルタ時定数を大きくしていくと、図6に示されるように、オーバーオール値の減衰率は33%程度の値で飽和する。このことから、以下のことが言える。
(1)モータ7の機械角周波数のn倍の周波数成分が十分減衰するようにフィルタ時定数を設定すれば、負荷変動の変動周波数成分が電流指令から除去される。
(2)ローパスフィルタを用いてδ軸電流指令値iδ*を直流値に近づけただけの制御では、オーバーオール値の減衰率の限界は33%程度である。
何れにしても、図6の波形は、フィルタ時定数をモータ7の機械角周波数の逆数の20倍以上に設定すれば、オーバーオール値の減衰率の限界値と考えられる33%の改善効果が得られることを示している。なお、制御の実態に即して考えると、必ずしも33%の改善効果が得られものでなくてもよく、例えば10%から15%減の効果、即ち、28%以上の効果が得られれば充分である。図6において、フィルタ時定数の倍数が10のときの減衰率は29%程度である。このため、フィルタ時定数の倍数が10以上であれば、本実施の形態で言う高効率制御に適したものであると言うことができる。
また、図7及び図8には、図6に示すフィルタ時定数が25倍に設定されたローパスフィルタを用いて高効率制御を実施したときの図5と同種の波形例が示されている。但し、図7では、図4に示す第1の非干渉制御器142及び第2の非干渉制御器143で使用する角速度の情報は、速度推定値ωestではなく、速度指令値ω*が用いられている。一方、図8では、図4に示す第1の非干渉制御器142及び第2の非干渉制御器143で使用する角速度の情報は、図4に示されるように速度推定値ωestが用いられている。なお、特許文献1では、非干渉制御器で使用する角速度の情報として、速度指令値ω*が用いられている。
図5の下段部に示されるように、負荷トルクτLの変動に対して出力トルクτmが追従するのが振動抑制制御の特徴である。これに対して、図8に示す高効率制御では、図8の中下段部に示されるように、δ軸電流指令値iδ*にδ軸電流iδが追従し、δ軸電流指令値iδ*とδ軸電流iδとは、ほぼ一致するように制御されている。
また、図8の下段部に示されるように、出力トルクτeは負荷トルクτLには追従せず、ほぼ一定値となる。これにより、図8の中上段部に示されるように、各相電流のピーク値は一定値となり、各相電流のピーク値の相毎のばらつきが図5に比べて極めて小さくなっている。計算結果のみを示すが、図8に示す波形例の場合のオーバーオール値の減衰率は、43.1%である。
図8に対し、図7では、中下段部に示されるように、δ軸電流指令値iδ*にδ軸電流iδが追従せず、δ軸電流指令値iδ*とδ軸電流iδとは一致していない。また、図7の下段部に示されるように、出力トルクτeには、機械角周波数のn倍の成分がより多く含まれている。これにより、図7の中上段部に示されるように、各相電流のピーク値は一定とはならず、高効率制御による改善効果は図8の場合の例よりも小さくなる。
なお、図8に示されるように、各相電流のピーク値が一定になるように制御されると、出力トルクτeは交流成分を含まない直流値となっている。従って、出力トルクτeが交流成分を含まない直流値であるほど、高効率な制御であると言える。但し、出力トルクも直流値となるため、負荷トルクと出力トルクが一致しない制御となり、速度変動は大きくなる。
次に、図5に示すフィルタ134をノッチフィルタとするときの構成及び着意事項について、図9を参照して説明する。図9は、図4に示すフィルタ134をノッチフィルタとしたときの構成例を示すブロック図である。
フィルタ134をノッチフィルタとする場合、機械角周波数のn倍の値がフィルタ中心周波数として設定される。これにより、負荷変動による変動周波数成分にフィルタ中心周波数が合わせられ、電流指令値から負荷変動による変動成分が除去される。
なお、ノッチフィルタの場合、一般的に除去帯域の狭いものが使用される。従って、負荷変動による変動成分の帯域だけが電流指令値から低レベルに減衰される。このため、モータ速度に応じてフィルタ中心周波数を可変する構成が望ましい。フィルタ中心周波数をモータ速度に応じて可変する構成とすれば、設定速度に応じて変化する変動成分を適切に除去することが可能となる。
ノッチフィルタであるフィルタ134は、例えば図9のように構成することができる。フィルタ134は、図9に示すように、乗算器161と、正弦値演算器162,166と、余弦値演算器163,167と、ローパスフィルタ164,165と、加減算器168,169とを備える。
フィルタ134には、加減算器132の出力である速度偏差Δωと、機械角位相演算器133の出力である機械角位相θmeとが入力される。
乗算器161は、機械角位相θmeをn倍した、n×θmeの値を正弦値演算器162と、余弦値演算器163とに出力する。
正弦値演算器162では、Δω×sin(n×θme)の演算処理が行われる。正弦値演算器162の出力は、時定数Tfのローパスフィルタ164に通される。ローパスフィルタ164を通すことにより、直流量が得られる。この直流量は、正弦値演算器166によって、sin(n×θme)の値が乗算され、複素平面上の虚軸方向の直流量として加減算器168に出力される。
また、余弦値演算器163では、Δω×cos(n×θme)の演算処理が行われる。余弦値演算器163の出力は、時定数Tfのローパスフィルタ165に通される。ローパスフィルタ165を通すことにより、直流量が得られる。この直流量は、余弦値演算器167によって、cos(n×θme)の値が乗算され、複素平面上の実軸方向の直流量として加減算器168に出力される。
加減算器168では、複素平面上の虚軸方向の直流量と、複素平面上の実軸方向の直流量とが加算される。これにより、加減算器168の出力は、機械角周波数のn倍成分に起因する交流量Δωnfとなる。そして、加減算器169では、速度偏差Δωと、交流量Δωnfとの偏差が演算される。加減算器169の出力は、速度偏差Δωから機械角周波数のn倍成分に起因する交流量Δωnfが除去された出力となり、第2の速度偏差Δωfとして速度制御器135に入力される。以後の動作は、前述した通りである。
次に、実施の形態1における制御装置100の機能を実現するためのハードウェア構成について、図10及び図11の図面を参照して説明する。図10は、実施の形態1における制御装置100の機能を実現するハードウェア構成の一例を示すブロック図である。図11は、実施の形態1における制御装置100の機能を実現するハードウェア構成の他の例を示すブロック図である。
制御装置100の機能の一部又は全部を実現するには、図10に示すように、演算を行うプロセッサ200、プロセッサ200によって読みとられるプログラムが保存されるメモリ202、及び信号の入出力を行うインタフェース204を含む構成とすることができる。
プロセッサ200は、演算装置、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)といった演算手段であってもよい。また、メモリ202には、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)を例示することができる。
メモリ202には、制御装置100の機能を実行するプログラムが格納されている。プロセッサ200は、インタフェース204を介して必要な情報を授受し、メモリ202に格納されたプログラムをプロセッサ200が実行することにより、制御装置100の機能を実現することができる。プロセッサ200による演算結果は、メモリ202に記憶することができる。
また、図10に示すプロセッサ200及びメモリ202は、図11のように処理回路203に置き換えてもよい。処理回路203は、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field−Programmable Gate Array)、又は、これらを組み合わせたものが該当する。
なお、制御装置100における一部の処理を処理回路203で実施し、処理回路203で実施しない処理をプロセッサ200及びメモリ202で実施してもよい。
以上説明したように、実施の形態1によれば、速度制御器の前段に設けられるフィルタは、モータの回転位置を示す機械角位相に基づいて、速度指令値と速度推定値との偏差である第1の速度偏差に含まれる負荷変動による変動成分を除去する。速度制御器は、フィルタから出力される第2の速度偏差に基づいて電流指令値を生成する。電流制御器は、特定の周波数成分が除去された電流指令値と、モータ電流とに基づいてモータに印加する電圧の指令値である電圧指令値を演算する。特定の周波数成分は、機械角周波数の自然数倍の周波数成分である。これにより、制御装置がモータを駆動するインバータを制御する過程において、電流指令値の脈動成分を低減することができる。これにより、モータに対する高効率な駆動制御を確実に実施することができる。
なお、前記フィルタは、速度制御器の後段に設けられていてもよい。この構成の場合、速度制御器は、速度指令値と速度推定値との偏差である速度偏差に基づいて電流指令値を生成する。フィルタは、モータの回転位置を示す機械角位相に基づいて、電流指令値に含まれる負荷変動による変動成分を除去する。電流制御器は、負荷変動による変動成分が除去された電流指令値と、モータ電流とに基づいてモータに印加する電圧の指令値である電圧指令値を演算する。この構成によっても、電流指令値の脈動成分を低減することができ、モータに対する高効率な駆動制御を確実に実施することができる。
従来の電流制御では、積分制御によりトルク電流指令値の脈動成分が零となるように制御を行っている。しかしながら、積分制御では位相の遅れが発生し、積分ゲインの値によっては制御が破綻するおそれがある。これに対し、実施の形態1の手法では、トルク電流指令値の脈動成分が零となるような積分制御を行わずに、速度制御器の前段又は後段にノッチフィルタを用いてトルク電流指令値を一定値に近づけるようにしている。これにより、制御の過程で所望の制御ゲイン値が得られないといった現象の生起は、確実に回避可能である。
また、従来の非干渉制御では、非干渉制御器で使用する角速度の情報には、速度指令値ω*が用いられている。非干渉制御器で使用する角速度を速度指令値ω*とした場合、非干渉制御器が有効に働かず、電流指令値に実電流を追従させる制御が遅延するおそれがある。これに対し、実施の形態1の手法では、非干渉制御器で使用する角速度の情報に速度推定値ωestを用いているので、電流指令値に実電流を追従させる制御を迅速に行うことができる。これにより、制御の迅速化を図りつつ、より高効率な駆動制御が可能となる。
実施の形態2.
図12は、実施の形態2に係る冷凍サイクル装置500の構成例を示す図である。実施の形態2に係る冷凍サイクル装置500は、実施の形態1で説明した負荷駆動装置300を備える。実施の形態2に係る冷凍サイクル装置500は、空気調和機、冷蔵庫、冷凍庫、ヒートポンプ給湯器といった冷凍サイクルを備える製品に適用することが可能である。なお、図12において、実施の形態1と同様の機能を有する構成要素には、実施の形態1と同一の符号を付している。
冷凍サイクル装置500は、実施の形態1におけるモータ7を内蔵した圧縮機501と、四方弁502と、室内熱交換器506と、膨張弁508と、室外熱交換器510とが冷媒配管512を介して取り付けられている。
圧縮機501の内部には、冷媒を圧縮する圧縮機構504と、圧縮機構504を動作させるモータ7とが設けられている。
冷凍サイクル装置500は、四方弁502の切替動作により暖房運転又は冷房運転をすることができる。圧縮機構504は、可変速制御されるモータ7によって駆動される。
暖房運転時には、実線矢印で示すように、冷媒が圧縮機構504で加圧されて送り出され、四方弁502、室内熱交換器506、膨張弁508、室外熱交換器510及び四方弁502を通って圧縮機構504に戻る。
冷房運転時には、破線矢印で示すように、冷媒が圧縮機構504で加圧されて送り出され、四方弁502、室外熱交換器510、膨張弁508、室内熱交換器506及び四方弁502を通って圧縮機構504に戻る。
暖房運転時には、室内熱交換器506が凝縮器として作用して熱放出を行い、室外熱交換器510が蒸発器として作用して熱吸収を行う。冷房運転時には、室外熱交換器510が凝縮器として作用して熱放出を行い、室内熱交換器506が蒸発器として作用し、熱吸収を行う。膨張弁508は、冷媒を減圧して膨張させる。
なお、以上の実施の形態に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
1 交流電源、2 リアクトル、3 整流回路、5 平滑コンデンサ、7 モータ、10 電圧検出器、12a,12b 直流母線、30 インバータ、40 電流検出器、100 制御装置、102 運転制御部、110 インバータ制御部、111 電流復元部、112,116 座標変換部、115 電圧指令演算部、117 PWM信号生成部、118 電気角位相演算部、119 励磁電流指令制御部、131 速度推定器、132,136,137,140,141,143b,168,169 加減算器、133 機械角位相演算器、133a 積分器、133b,142a,143a,143c,161 乗算器、134 フィルタ、135 速度制御器、138 γ軸電流制御器、139 δ軸電流制御器、142 第1の非干渉制御器、143 第2の非干渉制御器、162,166 正弦値演算器、163,167 余弦値演算器、164,165 ローパスフィルタ、200 プロセッサ、202 メモリ、203 処理回路、204 インタフェース、300 負荷駆動装置、310 主回路、310A,310B,310C レグ、311 トランジスタ、312 ダイオード、321,322,323 接続点、331,332,333 出力線、350 駆動回路、500 冷凍サイクル装置、501 圧縮機、502 四方弁、504 圧縮機構、506 室内熱交換器、508 膨張弁、510 室外熱交換器、512 冷媒配管、D1,D2,D3,D4 ダイオード、UP,VP,WP 上アームスイッチング素子、UN,VN,WN 下アームスイッチング素子。

Claims (9)

  1. 交流電力をモータに供給して負荷を駆動する負荷駆動装置であって、
    交流電圧を整流して直流電圧に変換する整流回路と、
    前記整流回路から出力される直流電力を前記交流電力に変換するインバータと、
    前記インバータを制御する制御装置と、を備え、
    前記制御装置は、
    前記モータの回転速度の推定値である速度推定値を演算する速度推定器と、
    速度指令値と前記速度推定値との偏差である速度偏差に基づいて電流指令値を生成する速度制御器と、
    前記速度推定値に基づいて、前記モータの回転位置を示す機械角位相を演算する機械角位相演算器と、
    前記速度偏差又は前記速度制御器から出力される電流指令値に含まれる負荷変動による変動成分から、特定の周波数成分を除去するフィルタと、
    前記特定の周波数成分が除去された電流指令値と、前記モータに流れるモータ電流とに基づいて前記モータに印加する電圧の指令値である電圧指令値を演算する電流制御器と、
    を備え、
    前記特定の周波数成分は前記負荷によって決まる周波数成分であり、前記モータの回転速度を単位時間当たりの回転角で表した機械角周波数の自然数倍の周波数成分である
    負荷駆動装置。
  2. 前記電流制御器は、前記モータ電流を前記電流指令値に一致させる制御を行う
    請求項1に記載の負荷駆動装置。
  3. 前記フィルタは、ローパスフィルタである
    請求項1又は2に記載の負荷駆動装置。
  4. 前記フィルタは、ノッチフィルタである
    請求項1又は2に記載の負荷駆動装置。
  5. 前記インバータの入力電流を検出する電流検出器を備え、
    前記モータ電流は、前記電流検出器の検出値に基づいて演算される
    請求項1から4の何れか1項に記載の負荷駆動装置。
  6. 前記モータ電流を検出する電流検出器を備えた
    請求項1から4の何れか1項に記載の負荷駆動装置。
  7. 励磁電流成分とトルク電流成分との間の相互干渉を抑制するための非干渉制御器を備え、
    前記非干渉制御器の処理では、前記速度推定値を用いる
    請求項1から6の何れか1項に記載の負荷駆動装置。
  8. 請求項1から7の何れか1項に記載の負荷駆動装置を備えた冷凍サイクル装置。
  9. 請求項8に記載の冷凍サイクル装置を備えた空気調和機。
JP2020556398A 2018-11-07 2018-11-07 負荷駆動装置、冷凍サイクル装置及び空気調和機 Active JP7050951B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/041314 WO2020095377A1 (ja) 2018-11-07 2018-11-07 負荷駆動装置、冷凍サイクル装置及び空気調和機

Publications (2)

Publication Number Publication Date
JPWO2020095377A1 true JPWO2020095377A1 (ja) 2021-04-30
JP7050951B2 JP7050951B2 (ja) 2022-04-08

Family

ID=70610940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020556398A Active JP7050951B2 (ja) 2018-11-07 2018-11-07 負荷駆動装置、冷凍サイクル装置及び空気調和機

Country Status (2)

Country Link
JP (1) JP7050951B2 (ja)
WO (1) WO2020095377A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024069811A1 (ja) * 2022-09-28 2024-04-04 三菱電機株式会社 モータ駆動装置及び冷凍サイクル機器
WO2024075210A1 (ja) * 2022-10-05 2024-04-11 三菱電機株式会社 電力変換装置、モータ駆動装置および冷凍サイクル適用機器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223600A (ja) * 2000-11-22 2002-08-09 Nissan Motor Co Ltd モータ制御装置
JP2010088200A (ja) * 2008-09-30 2010-04-15 Calsonic Kansei Corp 電動モータの制御装置
JP2013059205A (ja) * 2011-09-08 2013-03-28 Nissan Motor Co Ltd モータ制御装置
JP2016082790A (ja) * 2014-10-21 2016-05-16 ダイキン工業株式会社 電動機制御装置、電動機制御システム
JP2016189668A (ja) * 2015-03-30 2016-11-04 Juki株式会社 モータ制御装置、モータ制御方法、ミシン及びそのプログラム
WO2017022081A1 (ja) * 2015-08-04 2017-02-09 三菱電機株式会社 同期電動機制御装置、圧縮機駆動装置および空気調和機

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223600A (ja) * 2000-11-22 2002-08-09 Nissan Motor Co Ltd モータ制御装置
JP2010088200A (ja) * 2008-09-30 2010-04-15 Calsonic Kansei Corp 電動モータの制御装置
JP2013059205A (ja) * 2011-09-08 2013-03-28 Nissan Motor Co Ltd モータ制御装置
JP2016082790A (ja) * 2014-10-21 2016-05-16 ダイキン工業株式会社 電動機制御装置、電動機制御システム
JP2016189668A (ja) * 2015-03-30 2016-11-04 Juki株式会社 モータ制御装置、モータ制御方法、ミシン及びそのプログラム
WO2017022081A1 (ja) * 2015-08-04 2017-02-09 三菱電機株式会社 同期電動機制御装置、圧縮機駆動装置および空気調和機

Also Published As

Publication number Publication date
JP7050951B2 (ja) 2022-04-08
WO2020095377A1 (ja) 2020-05-14

Similar Documents

Publication Publication Date Title
US10658964B2 (en) Motor driving apparatus, vacuum cleaner, and hand dryer
JP5813934B2 (ja) 電力変換装置
JP7050951B2 (ja) 負荷駆動装置、冷凍サイクル装置及び空気調和機
US10270380B2 (en) Power converting apparatus and heat pump device
WO2020170379A1 (ja) 電動機駆動装置及び冷凍サイクル適用機器
JP6577665B2 (ja) モータ駆動装置、電気掃除機及びハンドドライヤー
JP6608031B2 (ja) 電力変換装置および空調装置
JP2020074662A (ja) モータ駆動装置、電気掃除機及びハンドドライヤー
JP7361933B2 (ja) 電動機駆動装置および冷凍サイクル適用機器
JP7166468B2 (ja) 電動機駆動装置および冷凍サイクル適用機器
JP2019057979A (ja) モータ制御装置及び空調機
JP7170858B2 (ja) 負荷駆動装置、空気調和機及び負荷駆動装置の運転方法
JP7308949B2 (ja) 電動機駆動装置及び冷凍サイクル適用機器
WO2023095311A1 (ja) 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
WO2023105761A1 (ja) 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
WO2023105689A1 (ja) 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
JP7361948B2 (ja) 電動機駆動装置、冷凍サイクル装置、及び空気調和機
WO2023067723A1 (ja) 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
US20210044223A1 (en) Motor driving apparatus and refrigeration cycle equipment
WO2023067724A1 (ja) 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
WO2023047486A1 (ja) 電力変換装置、電動機駆動装置及び冷凍サイクル適用機器
WO2024075163A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
JP7330401B2 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
WO2024075210A1 (ja) 電力変換装置、モータ駆動装置および冷凍サイクル適用機器
WO2023073994A1 (ja) 電動機駆動装置および冷凍サイクル適用機器

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201016

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220329

R150 Certificate of patent or registration of utility model

Ref document number: 7050951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150