JPWO2020003805A1 - 多孔性フィルム、二次電池用セパレータおよび二次電池 - Google Patents

多孔性フィルム、二次電池用セパレータおよび二次電池 Download PDF

Info

Publication number
JPWO2020003805A1
JPWO2020003805A1 JP2019527469A JP2019527469A JPWO2020003805A1 JP WO2020003805 A1 JPWO2020003805 A1 JP WO2020003805A1 JP 2019527469 A JP2019527469 A JP 2019527469A JP 2019527469 A JP2019527469 A JP 2019527469A JP WO2020003805 A1 JPWO2020003805 A1 JP WO2020003805A1
Authority
JP
Japan
Prior art keywords
porous
porous layer
film
less
porous film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019527469A
Other languages
English (en)
Other versions
JPWO2020003805A5 (ja
JP7331692B2 (ja
Inventor
信康 甲斐
信康 甲斐
慶一 加門
慶一 加門
佃 明光
佃  明光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2020003805A1 publication Critical patent/JPWO2020003805A1/ja
Publication of JPWO2020003805A5 publication Critical patent/JPWO2020003805A5/ja
Application granted granted Critical
Publication of JP7331692B2 publication Critical patent/JP7331692B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

【課題】本発明の目的は、電極との接着性が高く、かつ優れた電池特性を有する多孔性フィルムを提供することにある。【解決手段】多孔質基材の少なくとも片面に、電極に対して接着性を有する多孔質層Aが積層された多孔性フィルムであって、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、の少なくとも1種から構成された溶媒に25℃24時間浸漬した後の透気度が浸漬前の0.95倍以下であり、かつ1000sec/100cm3以下である、多孔性フィルム。【選択図】なし

Description

本発明は、電極との接着性を有し、かつ優れた電池特性を有する多孔性フィルム、二次電池用セパレータおよび二次電池に関するものである。
リチウムイオン電池のような二次電池は、スマートフォン、タブレット、携帯電話、ノートパソコン、デジタルカメラ、デジタルビデオカメラ、携帯ゲーム機などのポータブルデジタル機器、電動工具、電動バイク、電動アシスト補助自転車などのポータブル機器、および電気自動車、ハイブリッド車、プラグインハイブリッド車などの自動車用途など、幅広く使用されている。
リチウムイオン電池は、一般的に、正極活物質を正極集電体に積層した正極と、負極活物質を負極集電体に積層した負極との間に、二次電池用セパレータと電解質が介在した構成を有している。
二次電池用セパレータとしては、ポリオレフィン系多孔質基材が用いられている。二次電池用セパレータに求められる特性としては、多孔構造中に電解液を含み、イオン移動を可能にする特性と、リチウムイオン電池が異常発熱した場合に、熱で溶融することで多孔構造が閉鎖され、イオン移動を停止させることで、発電を停止させるシャットダウン特性が挙げられる。
さらに、二次電池の製造工程において、正極、セパレータ、負極を積層した積層体を運搬する際に、積層体を維持するため、または、捲回した正極、セパレータ、負極の積層体を円筒型、角型などの缶に挿入する場合、積層体を熱プレスしてから挿入するが、その際に形が崩れないようにするため、もしくは、積層体を熱プレスすることで、より多くの積層体を缶の中に入れ、エネルギー密度を上げるため、さらにはラミネート型において、外装材に挿入した後に形状が変形しないようにするために、電解液を含浸する前のセパレータと電極との接着性が求められている。
また一方では、リチウムイオン電池には、高出力化、長寿命化といった優れた電池特性も求められており、電池特性を低下させることなく、良好な電池特性を発現することが求められている。
これらの要求に対して、特許文献1では、粒子状の有機バインダーおよび無機フィラーを含む耐熱性多孔質層を積層することで、イオン透過性と電極との接着性の両立を図っている。特許文献2では、耐熱層上に形成された接着層を積層することで電極との接着性と耐ブロッキング性との両立を図っている。また、特許文献3では、原子間力顕微鏡(AFM)を用い、押し付け力に基づくフォースカーブを作成したときに、前記フォースカーブから算出されたカンチレバーのたわみ量を規定した熱可塑性層を積層することで、電極との接着性、高温保存特性が向上するとされている。
特許第564378号公報 特許第6191597号公報 特開2017−147050号公報
前述のとおり、二次電池の製造工程における熱プレス工程によって電極とセパレータの接着性が求められる。また優れた電池特性も求められており、接着性と電池特性(放電負荷特性、充放電サイクル特性)の両立が必要である。
本発明の目的は、上記問題に鑑み、電極との接着性を有し、かつ優れた電池特性を有する多孔性フィルム、二次電池用セパレータおよび二次電池を提供することである。
そこで、本発明者らは、電極との接着性を有し、かつ優れた電池特性を有する多孔性フィルムを提供するために、鋭意検討を重ねた。その結果、特許文献1〜3のような従来技術では、接着層を設けることで、電極活物質との接着性は有しているが、熱プレスを行うことで接着層が膨潤し、電極活物質やセパレータの空隙を埋めることで空隙率が低下し、イオン輸送率が下がるために電池特性も低下してしまうことを見出し、本発明に想到した。 上記課題を解決するため本発明の多孔性フィルムは次の構成を有する。
(1)多孔質基材の少なくとも片面に、電極に対して接着性を有する多孔質層Aが積層された多孔性フィルムであって、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートの少なくとも1種から構成された溶媒に25℃24時間浸漬した後の透気度が浸漬前の0.95倍以下であり、かつ1000sec/100cm以下である、多孔性フィルム。
(2)前記多孔質層Aが、前記溶媒に25℃24時間浸漬する前後の二乗平均粗さ(Rq)の変化率が10%以上90%以下である、(1)に記載の多孔性フィルム。
(3)前記溶媒に25℃24時間浸漬後の二乗平均粗さ(Rq)が20nm以上80nm以下である、(1)または(2)に記載の多孔性フィルム。
(4)前記多孔質層Aの表面開孔率が50%以下である、(1)から(3)のいずれかに記載の多孔性フィルム。
(5)前記多孔質層Aがアクリル樹脂、スチレン樹脂、フッ素樹脂、およびオレフィン樹脂からなる群より選択される少なくとも1種の樹脂を含有する、(1)から(4)のいずれかに記載の多孔性フィルム。
(6)前記多孔質層Aの膜厚が0.05μm以上5μm以下である、(1)から(5)のいずれかに記載の多孔性フィルム。
(7)前記多孔質層Aが無機粒子を含む、(1)から(6)のいずれかに記載の多孔性フィルム。
(8)前記多孔質基材と前記多孔質層Aとの間に、無機粒子を含む多孔質層Bが積層された、(1)から(6)のいずれかに記載の多孔性フィルム。
(9)前記多孔質層Aが前記多孔質基材の両面に積層されている(1)から(8)のいずれかに記載の多孔性フィルム。
(10)(1)から(9)のいずれかに記載の多孔性フィルムを用いてなる二次電池用セパレータ。
(11)(10)に記載の二次電池用セパレータを用いてなる二次電池。
本発明によれば、多孔質基材の少なくとも片面に、電極に対して接着性を有する多孔質層Aが積層された多孔性フィルムであって、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートの少なくとも1種から構成された溶媒に25℃24時間浸漬した後の透気度が浸漬前の0.95倍以下であり、かつ1000sec/100cm以下である、多孔性フィルムにすることで、電極との接着性を有し、かつ優れた電池特性を有する多孔性フィルムを提供することができる。本発明の多孔性フィルムを用いることで、高生産性、高容量、高出力、長寿命の二次電池用セパレータおよび二次電池を提供することが可能となる。
多孔質基材の少なくとも片面に、電極に対して接着性を有する多孔質層Aが積層された多孔性フィルムであって、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートの少なくとも1種から構成された溶媒に25℃24時間浸漬した後の透気度が浸漬前の0.95倍以下であり、かつ1000sec/100cm以下である、多孔性フィルムである。以下、本発明について詳細に説明する。
[多孔性フィルム]
(透気度)
本発明の多孔性フィルムは、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートの少なくとも1種から構成された溶媒に25℃24時間浸漬した後の透気度が浸漬前の0.95倍以下である。好ましくは0.7倍以下、より好ましくは0.5倍以下、さらに好ましくは0.3倍以下である。0.95倍以下とすることにより、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、の少なくとも1種から構成された溶媒の浸漬による多孔化が十分となり、十分なイオン移動性が得られるとともに、電池特性の低下を防止することができる。また、上記溶媒に浸漬後の多孔性フィルムの透気度は1000sec/100cm以下である。より好ましくは500sec/100cm以下、さらに好ましくは300sec/100cm以下である。1000sec/100cm以下であると、十分なイオン移動性が得られるとともに、電池特性の低下を防止することができる。1000sec/100cmよりも大きい場合、十分なイオン移動性が得られず、電池特性が低下してしまう場合がある。
浸漬する溶媒の種類は、二次電池の非水電解液を構成する鎖状カーボネートである、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートである。1種類を単独で用いてもよく、2種類以上を用途に合わせて組み合わせてもよい。さらにプロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート等の環状カーボネートと組み合わせてもよい。その場合、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートの鎖状カーボネートの合計体積比率は、20%以上であることが好ましい。さらに好ましくは、35%以上、より好ましくは50%以上である。前記体積比率が20%以上であると、多孔質層Aの溶解性と電池特性を両立させることができる。
また、溶媒に浸漬する前の透気度は、好ましくは100sec/100cm以上、より好ましくは500sec/100cm以上、さらに好ましくは1000sec/100cm以上である。溶媒に浸漬する前の透気度が100sec/100cm以上であることで、接着性を有する部分と電極との接触面積が大きくなるため、二次電池の製造工程(電解液注液前)における熱プレス工程によって、十分な電極との接着性が得られる。
[多孔質層A]
(多孔質構造)
多孔質層Aは多孔質構造を有する。多孔質構造とは、構造内に空隙を有する構造のことをいう。多孔質層Aは、前記溶媒に25℃24時間浸漬前後の二乗平均粗さ(Rq)変化率が10%以上90%以下であることが好ましい。溶媒に25℃24時間浸漬前後の二乗平均粗さ(Rq)変化率が10%以上であると、十分なイオン移動性が得られるとともに、電池特性の低下を防止することができる。一方、前記変化率が90%以下であると、溶媒に多孔質層Aが過剰に溶解することなく、イオン輸送率の低下を防ぎ、電池特性を向上させることができる。二乗平均粗さ(Rq)変化率は、前記溶媒に25℃24時間浸漬する前の二乗平均粗さをRq、浸漬後の二乗平均粗さをRqとしたときの比率{1−(Rq/Rq)}×100(%)と規定する。二乗平均粗さ(Rq)変化率は、前記溶媒に25℃24時間浸漬した場合の構造変化を示す数値となるため、多孔質層Aの膨潤および溶解程度を表すことができる。二乗平均粗さ(Rq)変化率は、好ましくは20%以上80%以下、さらに好ましくは30%以上70%以下である。
また、前記溶媒に25℃24時間浸漬後の二乗平均粗さ(Rq)が20nm以上80nm以下であることが好ましい。より好ましくは30nm以上70nm以下、さらに好ましくは40nm以上60nm以下である。20nm以上とすることにより、多孔質層Aが過剰に溶媒に溶解することがなくなるとともに、イオン輸送率の低下を防ぎ、電池特性を向上させることができる。一方、80nm以下であると、多孔質層Aの表面構造を均一にでき、電池特性を向上させることができる。二乗平均粗さ(Rq)は後述する実施例に記載の手法を用いて測定される。
多孔質層Aの表面開孔率は、50%以下であることが好ましい。より好ましくは40%以下、さらに好ましくは30%以下である。多孔質層Aの表面開孔率が50%以下の場合、有機樹脂と電極との接触面積が増大することで、十分な電極との接着性が得られる場合がある。多孔質層の表面開孔率は以下の手法を用いて求める。多孔質層の表面に対して、イオンコートを行い、電界放射型走査電子顕微鏡(FE−SEM)より表面の画像データを得る。得られた画像データから画像解析を行い、画像全体から開孔していない部分を引くことで開孔部の面積を算出し、表面開孔率を得ることができる。
多孔質層Aの膜厚は、0.05μm以上5μm以下であることが好ましい。より好ましくは、0.2μm以上3μm以下である。さらに好ましくは0.5μm以上2μm以下である。ここでいう多孔質層Aの膜厚とは、多孔質基材の片面に多孔質層Aを有する多孔性フィルムの場合は、当該多孔質層Aの膜厚をいい、多孔質基材の両面に多孔質層Aを有する多孔性フィルムの場合は、当該両方の多孔質層Aの膜厚の合計をいう。多孔質層Aの膜厚が0.05μm以上であると、十分な電極との接着性が得られる。また、5μm以下であると、多孔質層Aの膜厚を薄くでき、電池特性を向上させることができる。また、コスト面でも有利である。
(有機樹脂)
本発明における多孔質層Aは有機樹脂を主成分とするものである。本発明における有機樹脂は、熱処理によって有機樹脂自体を造膜させる造膜樹脂であることが好ましい。ここでいう造膜樹脂としては、最低造膜温度が−20℃以上100℃以下、かつガラス転移温度が−30℃以上100℃以下である樹脂であることが好ましい。より好ましくは、最低造膜温度が0℃以上90℃以下、かつガラス転移温度が0℃以上90℃以下、さらに好ましくは最低造膜温度が30℃以上80℃以下、かつガラス転移温度が15℃以上80℃以下である。ここで最低造膜温度とは、例えば「JIS K6828−2 白化温度及び最低造膜温度の求め方」の規定に準じ、樹脂エマルジョンを乾燥させたとき、き裂のない均一皮膜が形成される最低温度とする。また、ガラス転移温度とは、例えば「JIS K7121:2012 プラスチックの転移温度測定方法」の規定に準じた示差走査熱量測定(DSC)において、初めに昇温、冷却した後の2回目の昇温時の低温側のベースラインを高温側に延長した直線と、ガラス転移の階段状変化部分の曲線のこう配が最大になるような点で引いた接線との交点をガラス転移温度とする。
最低造膜温度が−20℃以上100℃以下、かつガラス転移温度が−30℃以上100℃以下である樹脂であることで、電極との高い接着性が得られるため好ましい。電極と多孔性フィルムとを接着させる工程は熱プレス工程が用いられることが多いが、その際、最低造膜温度が−20℃以上100℃以下、かつガラス転移温度が−30℃以上100℃以下である樹脂であると、熱またはプレスにより多孔質層の一部が電極の活物質間の隙間に入り込み、アンカー効果を発現することで電極との接着が可能となるため好ましい。100℃を超える最低造膜温度を有する樹脂の場合、十分な電極との接着性が得られない場合がある。
多孔質層Aを構成する有機樹脂としては、アクリル樹脂、ポリエチレン、ポリプロピレンなどのオレフィン樹脂、スチレン樹脂、架橋ポリスチレン、メチルメタクリレート−スチレン共重合体、ポリイミド、フッ素樹脂、メラミン樹脂、フェノール樹脂、ポリアクリロニトリル、シリコン樹脂、ウレタン樹脂、ポリカーボネート、カルボキシメチルセルロース樹脂などが挙げられ、これらのうち1種類だけを用いてもよく、複数組み合わせて用いてもよい。これらのうち、電極との接着性の点から、例えば、アクリル樹脂、オレフィン樹脂、スチレン樹脂、フッ素樹脂、およびウレタン樹脂、ポリアクリロニトリルを用いることが好ましく、アクリル樹脂、スチレン樹脂、フッ素樹脂がさらに好ましい。これらの有機樹脂は、1種または必要に応じ2種以上を混合して用いてもよい。
多孔質層Aを構成する有機樹脂の形状は特に制限されるものではないが、多孔化による電池性能向上の観点より粒子形状であると好ましい。その粒子の形状は、特に制限されず、球状、多角形状、扁平状、繊維状等のいずれであっても良いが、本発明では表面修飾性、分散性、塗工性の観点より、球状が好ましく、特に真球に近いほど好ましい。粒子形状である場合、粒子の平均粒径は0.01μm以上5μm以下が好ましく、より好ましくは0.05μm以上3μm以下、さらに好ましくは0.1μm以上1μm以下である。平均粒径が0.01μm以上場合、多孔質構造が緻密になることを防ぎ、透気度を低くすることができる。また、空孔径が大きくなることから電解液の含浸性の低下を防ぎ、生産性を向上させることができる。また、5μm以下場合、多孔質層の膜厚を薄くでき、電池特性を向上させることができる。
なお、粒子の平均粒径は、多孔質層表面の顕微鏡観察により観察された粒子を完全に囲む面積が最も小さい正方形または長方形を描き、すなわち、正方形または長方形の4辺に粒子の端部が接している正方形または長方形を描き、正方形の場合は1辺の長さ、長方形の場合は長辺の長さ(長軸径)を粒径として、無作為に抽出した100個の粒子についてそれぞれの粒径を測定し、その平均値を平均粒径とした。
多孔質層Aにおける有機樹脂の含有量は、多孔質層全体100質量%中、1質量%以上100質量%以下であることが好ましく、より好ましくは5質量%以上100質量%以下である。さらに好ましくは、10質量%以上100質量%以下である。多孔質層Aにおける有機樹脂の含有量が1質量%以上とすることにより、十分な電極との接着性を得ることができる。
(無機粒子)
多孔質層Aは無機粒子を含有してもよい。多孔質層が無機粒子を含むことで熱寸法安定性および異物による短絡の抑制を付与することができる。
具体的に無機粒子としては、酸化アルミニウム、ベーマイト、シリカ、酸化チタン、酸化ジルコニウム、酸化鉄、酸化マグネシウムなどの無機酸化物粒子、窒化アルミニウム、窒化硅素などの無機窒化物粒子、フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶粒子などが挙げられる。これらの粒子を1種類で用いてもよく、2種類以上を混合して用いてもよい。
用いる無機粒子の平均粒径は、0.05μm以上5.0μm以下であることが好ましい。より好ましくは、0.10μm以上3.0μm以下、さらに好ましくは0.20μm以上1.0μm以下である。0.05μm以上であると、多孔質層が緻密になることを防ぎ、透気度を低くすることができる。また、空孔径が大きくなることから電解液の含浸性の低下を防ぎ、生産性を向上させることができる。5.0μm以下であると、十分な寸法安定性が得られ、また多孔質層の膜厚を薄くでき、電池特性を向上させることができる。
用いる粒子の形状としては、球状、板状、針状、棒状、楕円状などが挙げられ、いずれの形状であってもよい。その中でも、表面修飾性、分散性、塗工性の観点から球状であることが好ましい。
なお、粒子の平均粒径は、多孔質層表面の顕微鏡観察により観察された粒子を完全に囲む面積が最も小さい正方形または長方形を描き、すなわち、正方形または長方形の4辺に粒子の端部が接している正方形または長方形を描き、正方形の場合は1辺の長さ、長方形の場合は長辺の長さ(長軸径)として、無作為に抽出した100個の粒子についてそれぞれの粒径を測定し、その平均値を平均粒径とした。
無機粒子を含有する場合、多孔質層A全体に対する含有量が50質量%以上が好ましく、より好ましくは70質量%以上、さらに好ましくは80質量%以上である。無機粒子の孔質層A全体に対する含有量が50質量%以上であると、熱寸法安定性および異物による短絡の抑制を十分なものとすることができる。
(バインダー)
多孔質層Aは多孔質層Aを構成する有機樹脂および無機粒子を結着させるために、バインダー樹脂を含有してもよい。バインダー樹脂としては、電池の電解液に不溶であり、またその電池の使用範囲で電気化学的に安定である樹脂が好ましい。
例えば、ポリアミド、ポリアミドイミド、ポリイミド、ポリエーテルイミド、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、ポリテトラフルオロエチレン、ポリスルホン、ポリケトン、ポリエーテルケトン、ポリカーボネート、ポリアセタール、ポリビニルアルコール、ポリエチレングリコール、セルロースエーテル、アルギン酸ナトリウム、アクリル酸、アクリルアミド、メタクリル酸などの樹脂が挙げられる。これらのバインダー樹脂は、1種または必要に応じ2種以上を混合して用いてもよい。
(多孔質層Aの形成)
本発明の多孔性フィルムは、多孔質基材の少なくとも片面に、多孔質層Aが積層された多孔性フィルムであって、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートの少なくとも1種から構成された溶媒に25℃24時間浸漬した後の透気度が浸漬前の0.95倍以下であり、かつ1000sec/100cm以下である多孔性フィルムにすることで、電極との接着性を有し、かつ優れた電池特性を有する多孔性フィルムであるが、多孔質層Aの製造方法について以下に説明する。

多孔質層Aを構成する有機樹脂を、所定の濃度に分散させることで水系分散塗工液を調整する。水系分散塗工液は、有機樹脂を、溶媒に分散、懸濁、又は乳化することで調製される。水系分散塗工液の溶媒としては、少なくとも水が用いられ、さらに、水以外の溶媒を加えてもよい。水以外の溶媒としては、有機樹脂を溶解せず、固体状態で、分散、懸濁又は乳化し得る溶媒であれば特に限定されるものではない。例えば、メタノール、エタノール、2−プロパノール、アセトン、テトラヒドロフラン、メチルエチルケトン、酢酸エチル、N−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルホルムアミド等の有機溶剤が挙げられる。環境への負荷の低さ、安全性及び経済的な観点からは、水、又は、水とアルコールとの混合液に、有機樹脂を乳化した水系エマルションが好ましい。
また、塗工液には、必要に応じて、造膜助剤、分散剤、増粘剤、安定化剤、消泡剤、レベリング剤等を添加してもよい。造膜助剤は、有機樹脂の造膜性を調整し、多孔質基材との密着性を向上させるために添加され、具体的には、プロピレングリコール、ジエチレングリコール、エチレングリコール、ブチルセロソルブアセテート、ブチルセロソルブ、セロソルブアセテート、テキサノールなどが挙げられる。これらの造膜助剤は、1種または必要に応じ2種以上を混合して用いてもよい。造膜助剤の添加量は、塗工液全量に対して0.1質量%以上10質量%以下が好ましく、より好ましくは1質量%以上8質量%以下、さらに好ましくは2質量%以上6質量%以下である。0.1質量%以上とすることにより、十分な造膜性が得られ、10質量%以下とすることにより、塗工液を多孔質基材に塗工する際に、塗工液の多孔質基材へ含浸を防止し、生産性を高めることができる。0.1質量%未満の場合、十分な造膜性が得られない場合があり、10質量%より多い場合、塗工液を多孔質基材に塗工する際に、塗工液が多孔質基材へ含浸され、生産性が低下する場合がある。
塗工液の分散方法としては、例えば、ボールミル、ビーズミル、サンドミル、ロールミル、ホモジナイザー、超音波ホモジナイザー、高圧ホモジナイザー、超音波装置、ペイントシェーカーなどが挙げられる。これら複数の混合分散機を組み合わせて段階的に分散を行ってもよい。
次に、得られた塗工液を多孔質基材上に塗工し、乾燥を行い、多孔質層を積層する。塗工方法としては、例えば、ディップコーティング、グラビアコーティング、スリットダイコーティング、ナイフコーティング、コンマコーティング、キスコーティング、ロールコーティング、バーコーティング、吹き付け塗装、浸漬コーティング、スピンコーティング、スクリーン印刷、インクジェット印刷、パット印刷、他の種類の印刷などが利用できる。これらに限定されることはなく、用いる有機樹脂、バインダー、分散剤、レベリング剤、使用する溶媒、基材などの好ましい条件に合わせて塗工方法を選択すればよい。また、塗工性を向上させるために、例えば、多孔質基材にコロナ処理、プラズマ処理などの塗工面の表面処理を行ってもよい。
[多孔質層B]
本発明の多孔性フィルムは、多孔質基材と多孔質層Aの間に、無機粒子を含む多孔質層Bが積層されていてもよい。多孔質層Bには、多孔質層Aと同様の無機粒子、バインダーおよびその他の添加剤を用いればよい。また、多孔質層Bは片面でもよく両面でもよい。
多孔質層Bに含まれる無機粒子は50質量%以上、好ましくは60質量%以上、より好ましくは70質量%以上である。多孔質層Bに含まれる無機粒子が50質量以上であると、十分な熱寸法安定性が得られるとともに、異物による短絡の抑制を行うことができる。
上記多孔質層Bの積層方法は、特に限定されず、無機粒子、バインダー樹脂、その他添加剤および溶媒を含む塗工液を多孔質基材の上に直接塗工し溶媒を除去する方法;塗工液中に多孔質基材を浸漬し、ディップコーディングを行った後に溶媒を除去する方法;等が挙げられる。
多孔質基材と多孔質層Aの間に多孔質層Bを積層する場合、多孔質基材の上に多孔質層Bを積層した後に多孔質層Aを積層してもよく、また、多孔質層Bの塗工液を塗工した後に、さらに多孔質層Aの塗工液を塗工して乾燥することで積層してもよく、また、多層ダイコートなどで多孔質基材の上に多孔質層Bと多孔質層Aを同時に塗工して、積層してもよい。
多孔質層Bの膜厚は0.5μm以上、好ましくは1μm以上、より好ましくは2μm以上である。多孔質層Bの膜厚が0.5μmであると、十分な熱寸法安定性が得られるとともに、異物による短絡の抑制を行うことができる。
なお、多孔質層Bの膜厚は、断面を顕微鏡観察し、その観察領域内において多孔質基材と多孔質層Bとの界面から多孔質層Aと多孔質層Bとの界面までの垂直距離として測定した。
[多孔質基材]
本発明において多孔質基材は、内部に空孔を有する基材である。また、本発明において、多孔質基材としては、例えば内部に空孔を有する多孔膜、不織布、または繊維状物からなる多孔膜シートなどが挙げられる。多孔質基材を構成する材料としては、電気絶縁性であり、電気的に安定で、電解液にも安定である樹脂から構成されていることが好ましい。また、シャットダウン機能を付与する観点から用いる樹脂は融点が200℃以下の熱可塑性樹脂が好ましい。ここでのシャットダウン機能とは、リチウムイオン電池が異常発熱した場合に、熱で溶融することで多孔構造を閉鎖し、イオン移動を停止させて、発電を停止させる機能のことである。
熱可塑性樹脂としては、例えばポリオレフィン系樹脂が挙げられ、前記多孔質基材はポリオレフィン系多孔質基材であることが好ましい。また、前記ポリオレフィン系多孔質基材は融点が200℃以下であるポリオレフィン系多孔質基材であることがより好ましい。ポリオレフィン系樹脂としては、具体的にはポリエチレン、ポリプロピレン、その共重合体、およびこれらを組み合わせた混合物などが挙げられ、例えばポリエチレンを90質量%以上含有する単層の多孔質基材、ポリエチレンとポリプロピレンからなる多層の多孔質基材などが挙げられる。
多孔質基材の製造方法としては、ポリオレフィン系樹脂をシートにした後に延伸することで多孔質化する方法やポリオレフィン系樹脂を流動パラフィンなどの溶剤に溶解させてシートにした後に溶剤を抽出することで多孔質化する方法が挙げられる。
多孔質基材の厚みは、3μm以上50μm以下が好ましく、より好ましくは5μm以上、また30μm以下である。多孔質基材の厚みが50μm以下であると多孔質基材の内部抵抗を低くすることができる。また、多孔質基材の厚みが3μm以上とすることにより、製造が容易になり、また十分な力学特性が得られる。
多孔質基材の透気度は、50秒/100cm以上1,000秒/100cm以下であることが好ましい。より好ましくは50秒/100cm以上、また500秒/100cm以下である。透気度が1,000秒/100cm以下であると、十分なイオン移動性が得られ、電池特性を向上させることができる。50秒/100cm以上であると、十分な力学特性が得られる。
[二次電池]
本発明の多孔性フィルムは、リチウムイオン電池等の二次電池用セパレータに好適に用いることができる。リチウムイオン電池は、正極活物質を正極集電体に積層した正極と、負極活物質を負極集電体に積層した負極との間に、二次電池用セパレータと電解質が介在した構成となっている。
正極は、活物質、バインダー樹脂、および導電助剤からなる正極材が集電体上に積層されたものであり、活物質としては、LiCoO、LiNiO、Li(NiCoMn)O、などの層状構造のリチウム含有遷移金属酸化物、LiMnなどのスピネル型マンガン酸化物、およびLiFePOなどの鉄系化合物などが挙げられる。バインダー樹脂としては、耐酸化性が高い樹脂を使用すればよい。具体的にはフッ素樹脂、アクリル樹脂、スチレン−ブタジエン樹脂などが挙げられる。導電助剤としては、カーボンブラック、黒鉛などの炭素材料が用いられている。集電体としては、金属箔が好適であり、特にアルミニウムが用いられることが多い。
負極は、活物質およびバインダー樹脂からなる負極材が集電体上に積層されたものであり、活物質としては、人造黒鉛、天然黒鉛、ハードカーボン、ソフトカーボンなどの炭素材料、スズやシリコンなどのリチウム合金系材料、Liなどの金属材料、およびチタン酸リチウム(LiTi12)などが挙げられる。バインダー樹脂としては、フッ素樹脂、アクリル樹脂、スチレン−ブタジエン樹脂などが用いられる。集電体としては、金属箔が好適であり、特に銅箔が用いられることが多い。
電解液は、二次電池の中で正極と負極との間でイオンを移動させる場となっており、電解質を有機溶媒にて溶解させた構成をしている。電解質としては、LiPF、LiBF、およびLiClOなどが挙げられるが、有機溶媒への溶解性、イオン電導度の観点からLiPFが好適に用いられている。有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、フルオロエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどが挙げられ、これらの有機溶媒を2種類以上混合して使用してもよい。
二次電池の作製方法としては、まず活物質と導電助剤をバインダー溶液中に分散して電極用塗布液を調製し、この塗布液を集電体上に塗工して、溶媒を乾燥させることで正極、負極がそれぞれ得られる。乾燥後の塗工膜の膜厚は50μm以上500μm以下とすることが好ましい。得られた正極と負極の間に二次電池用セパレータを、それぞれの電極の活物質層と接するように配置し、アルミラミネートフィルム等の外装材に封入し、電解液を注入後、負極リードや安全弁を設置し、外装材を封止する。このようにして得られた二次電池は、電極との接着性が高く、かつ優れた電池特性を有し、また、低コストでの製造が可能となる。
以下、本発明を実施例により具体的に説明するが、本発明はこれにより何ら制限されるものではない。本実施例で用いた測定法を以下に示す。
[測定方法]
(1)初期透気度
100mm×100mmサイズの試料3枚からそれぞれ無作為に抽出した一箇所を選び、王研式透気度測定装置(旭精工(株)社製EG01−5−1MR)を用いて、JIS P 8117(2009)に準拠して測定し、その平均値を透気度(秒/100cm)とした。
(2)溶媒浸漬後の透気度変化率
100mm×100mmサイズの試料3枚を、それぞれジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートの少なくとも1種から構成された溶媒2gに25℃24時間浸漬した。その後、試料を取り出し、乾燥させた後に、各サンプルの無作為に抽出した一箇所を選び、王研式透気度測定装置(旭精工(株)社製EG01−5−1MR)を用いて、JIS P 8117(2009)に準拠して測定し、その平均値を透気度(秒/100cm)とした。得られた透気度と熱処理後の透気度を用いて、以下の式から溶媒浸漬後の透気度変化率を算出した。
溶媒浸漬後の透気度変化率=溶媒浸漬後の透気度/初期透気度
(3)二乗平均粗さ(Rq)
ブルカー・エイエックスエス(株)製のAFM(Dimension icon(2006年より製造されているもの))を用いて多孔質層Aの表面粗さを計測した。測定モードをScanAsystとして、測定は5.0μm×5.0μm範囲を一視野として、二乗平均粗さ(Rq)を計測した。100mm×100mmサイズの試料からそれぞれ無作為に抽出した10箇所についてそれぞれ計測し、平均値を採用した。
次に多孔質フィルムを5cm×5cmに切り出し、25℃の雰囲気下において、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートの少なくとも1種から構成された溶媒1gに24時間浸漬した。その後、多孔質フィルムを溶媒から取り出し、溶媒を乾燥させて溶媒浸漬後の多孔質フィルムを得た。
その後、AFMの測定モードをScanAsystとして、測定は5.0μm×5.0μm範囲を一視野として、得られた溶媒浸漬後の多孔質層Aの二乗平均粗さ(Rq)を計測した。100mm×100mmサイズの試料からそれぞれ任意の10箇所についてそれぞれ計測し、平均値を採用した。上記RqおよびRqより、二乗平均粗さ(Rq)変化率={1−(Rq/Rq)}×100(%)を算出した。
(4)多孔質層Aの表面開孔率
多孔性フィルムの表面にイオンコーターを用いてイオンコートを行い、サンプルを作製した。得られたサンプルを、日立ハイテクノロジー社製電界放射型走査電子顕微鏡(FE−SEM)S4800を用いて加速電圧1.5kVにて、撮影倍率2万倍で観察し、画像データを得た(スケールバーなどの表示がない、観察部のみの画像)。得られた画像データから多孔質層のみが残るように画像を切り取り、MVTec社製HALCON Ver.10.0を用いて画像解析を行い、表面開孔率を算出した。画像解析方法としては、まず256階調モノクロ画像に対して、11画素平均画像Aと3画素平均画像Bをそれぞれ生成し、画像B全体の面積(Area_all)を算出した。
次に画像Bから画像Aを差として除去し、画像Cを生成し、輝度≧10となる領域Dを抽出した。抽出した領域Dを塊ごとに分割し、面積≧100となる領域Eを抽出した。その領域Eに対して、半径2.5画素の円形要素でクロージング処理した領域Fを生成し、横1×縦5画素の矩形要素でオープニング処理した領域Gを生成することで、縦サイズ<5の画素部を除去した。そして、領域Gを塊ごとに分割し、面積≧500となる領域Hを抽出することで、フィブリル領域を抽出した。
さらに画像Cにて画像≧5となる領域Iを抽出し、領域Iを塊ごとに分割し、面積≧300となる領域Jを抽出した。領域Jに対して、半径1.5画素の円形要素でオープニング処理した後、半径8.5画素の円形要素でクロージング処理した領域Kを生成し、領域Kに対して、面積≧200となる領域Lを抽出した。領域Lにおいて、面積≧4,000画素の暗部を明部で埋めた領域Mを生成することでフィブリル以外の未開孔部の領域を抽出した。
最後に、領域Hと領域Mの和領域Nを生成し、和領域Nの面積(Area_closed)を算出することで、未開孔部の面積を求めた。なお、表面開孔率の計算は、以下の式により算出した。
表面開孔率(%)=[(Area_all − Area_closed) / Area_all]×100
上記の方法にて、同じ多孔性フィルムにおいて無作為に抽出した10箇所についてそれぞれ測定し、その平均値の値を当該サンプルの表面開孔率(%)とした。
(5)多孔質層Aの膜厚
ミクロトームにてサンプル断面を切り出し、その断面を電解放射型走査電子顕微鏡((株)日立製作所製S−800、加速電圧26kV)にて観察して、多孔質基材との界面から最も高いところを厚みとし、片面の場合は片面のみ、両面の場合は両面ともに計測し、その合計を多孔質層Aの膜厚とした。100mm×100mmサイズのサンプルから無作為に抽出した5箇所についてそれぞれ計測し平均した。
(6)電極との接着性
活物質がLi(Ni5/10Mn2/10Co3/10)O、バインダーがフッ化ビニリデン樹脂、導電助剤がアセチレンブラックとグラファイトの正極15mm×100mmと多孔性フィルムを、活物質と多孔質層が接触するように設置し、熱ロールプレス機にて0.5MPa、80℃、0.2m/分で熱プレスを行い、ピンセットを用いて手動で剥離させ、接着強度を下記4段階にて評価を行った。同様に、活物質が黒鉛、バインダーがフッ化ビニリデン樹脂、導電助剤がカーボンブラックの負極と多孔性フィルムとの接着強度も測定し、正極および負極のそれぞれの評価を行い、接着強度とした。
・接着強度A: 強い力で電極と多孔性フィルム側が剥離した
・接着強度B: やや強い力で電極と多孔性フィルムが剥離した
・接着強度C: 弱い力で電極と多孔性フィルムが剥離した
・接着強度D: 極弱い力で電極と多孔性フィルムが剥離した。
(7)電池作製
正極シートは、正極活物質としてLi(Ni5/10Mn2/10Co3/10)Oを92質量部、正極導電助剤としてアセチレンブラックとグラファイトを2.5質量部ずつ、正極結着剤としてポリフッ化ビニリデン3質量部を、プラネタリーミキサーを用いてN−メチル−2−ピロリドン中に分散させた正極スラリーを、アルミ箔上に塗布、乾燥、圧延して作製した(塗布目付:9.5mg/cm)。
この正極シートを40mm×40mmに切り出した。この時、活物質層の付いていない集電用のタブ接着部が、前記活物質面の外側に5mm×5mmの大きさになるように切り出した。幅5mm、厚み0.1mmのアルミ製のタブをタブ接着部に超音波溶接した。
負極シートは、負極活物質として天然黒鉛98質量部、増粘剤としてカルボキシメチルセルロースを1質量部、負極結着剤としてスチレン−ブタジエン共重合体1質量部を、プラネタリーミキサーを用いて水中に分散させた負極スラリーを、銅箔上に塗布、乾燥、圧延して作製した(塗布目付:5.5mg/cm)。
この負極シートを45mm×45mmに切り出した。この時、活物質層の付いていない集電用のタブ接着部が、前記活物質面の外側に5mm×5mmの大きさになるように切り出した。正極タブと同サイズの銅製のタブをタブ接着部に超音波溶接した。
次に、多孔性フィルムを55mm×55mmに切り出し、多孔性フィルムの両面に上記正極と負極を活物質層が多孔性フィルムを隔てるように重ね、正極塗布部が全て負極塗布部と対向するように配置して電極群を得た。1枚の90mm×200mmのアルミラミネートフィルムに上記正極・負極・多孔性フィルムを挟み込み、アルミラミネートフィルムの長辺を折り、アルミラミネートフィルムの長辺2辺を熱融着し、袋状とした。
エチレンカーボネート:ジエチルカーボネート=1:1(体積比)の混合溶媒に、溶質としてLiPFを濃度1モル/リットルとなるように溶解させ、作製した電解液を用いた。袋状にしたアルミラミネートフィルムに電解液1.5gを注入し、減圧含浸させながらアルミラミネートフィルムの短辺部を熱融着させてラミネート型電池とした。
(8)放電負荷特性
放電負荷特性を下記手順にて試験を行い、放電容量維持率にて評価した。
上記ラミネート型電池を用いて、25℃下、0.5Cで放電したときの放電容量と、10Cで放電したときの放電容量とを測定し、(10Cでの放電容量)/(0.5Cでの放電容量)×100で放電容量維持率を算出した。ここで、充電条件は0.5C、4.3Vの定電流充電とし、放電条件は2.7Vの定電流放電とした。上記ラミネート型電池を5個作製し、放電容量維持率が最大、最小となる結果を除去した3個の測定結果の平均を容量維持率とした。放電容量維持率が50%未満をD、50%以上55%未満をC、55%以上60%未満をB、60%以上の場合をAとした。
(9)充放電サイクル特性
充放電サイクル特性を下記手順にて試験を行い、放電容量維持率にて評価した。
〈1〜300サイクル目〉
充電、放電を1サイクルとし、充電条件を2C、4.3Vの定電流充電、放電条件を2C、2.7Vの定電流放電とし、25℃下で充放電を300回繰り返し行った。
〈放電容量維持率の算出〉
(300サイクル目の放電容量)/(1サイクル目の放電容量)×100で放電容量維持率を算出した。上記ラミネート型電池を5個作製し、放電容量維持率が最大、最小となる結果を除去した3個の測定結果の平均を容量維持率とした。放電容量維持率が50%未満をD、50%以上60%未満をC、60%以上70%未満をB、70%以上の場合をAとした。
(実施例1)
乳化重合により、主成分がメタクリル酸・アクリル酸エステル、最低造膜温度が5℃、ガラス転移温度が20℃、平均粒径が0.15μmである造膜粒子が分散された水系エマルジョン塗工液を調整した。この塗工液を、ワイヤーバーを用いてポリエチレン多孔質基材(厚み7μm、透気度110秒/100cm)上へ両面塗工し、熱風オーブン(乾燥設定温度50℃)内で、含有される溶媒が揮発するまで乾燥し、多孔質層Aを形成し、本発明の多孔性フィルムを得た。多孔性フィルムの製造条件を表1に示す。得られた多孔性フィルムについて、初期透気度、溶媒浸漬後の透気度変化率(溶媒:ジエチルカーボネート)、溶媒浸漬後の二乗平均粗さ(Rq)(溶媒:ジエチルカーボネート)、二乗平均粗さ(Rq)変化率、多孔質層Aの膜厚、多孔質層Aの表面開孔率、電極との接着性、放電負荷特性およびサイクル特性の測定結果を表2に示す。
(実施例2)
最低造膜温度が80℃、ガラス転移温度が100℃である造膜粒子を用いた以外は、実施例1と同様にして、本発明の多孔性フィルムを得た。
(実施例3)
最低造膜温度が30℃、ガラス転移温度が40℃である造膜粒子を用いた以外は、実施例1と同様にして、本発明の多孔性フィルムを得た。
(実施例4)
無機粒子としてアルミナ粒子(平均粒径0.4μm)を95質量%、バインダーとしてアクリル樹脂を5質量%、水中に分散させて塗工液Bを調整した。この塗工液をワイヤーバーを用いてポリエチレン多孔質基材(厚み7μm、透気度110秒/100cm)の片面に塗工し、熱風オーブン(乾燥設定温度50℃)内で、含有される溶媒が揮発するまで乾燥し、多孔質層Bを形成した。その後、実施例1で調整した塗工液を多孔質層B上およびポリエチレン多孔質基材の多孔質層Bが形成されていない側へ塗工し、熱風オーブン(乾燥設定温度50℃)内で、含有される溶媒が揮発するまで乾燥し、多孔質層Aを形成し、本発明の多孔性フィルムを得た。
(実施例5)
浸漬する溶媒にジメチルカーボネートを用いた以外は、実施例1と同様にして、本発明の多孔性フィルムを得た。
(実施例6)
浸漬する溶媒にエチルメチルカーボネートを用いた以外は、実施例1と同様にして、本発明の多孔性フィルムを得た。
(実施例7)
浸漬する溶媒が以下の作製方法によって得られる混合液を用いた以外は、実施例1と同様にして、本発明の多孔性フィルムを得た。
用いた浸漬溶媒の作製方法:本発明のエチレンカーボネートとジエチルカーボネートとの体積比1:1の混合溶媒1kgに、1.0molのヘキサフルオロリン酸リチウム(LiPF)を溶解して混合液を作製した。
(実施例8)
最低造膜温度が40℃、ガラス転移温度が50℃である造膜粒子を用いた以外は、実施例1と同様にして、本発明の多孔性フィルムを得た。
(実施例9)
最低造膜温度が45℃、ガラス転移温度が70℃である造膜粒子を用いた以外は、実施例1と同様にして、本発明の多孔性フィルムを得た。
(実施例10)
最低造膜温度が60℃、ガラス転移温度が85℃である造膜粒子を用いた以外は、実施例1と同様にして、本発明の多孔性フィルムを得た。
(実施例11)
最低造膜温度が15℃、ガラス転移温度が18℃である造膜粒子を用いた以外は、実施例1と同様にして、本発明の多孔性フィルムを得た。
(実施例12)
多孔質層Aの膜厚が5.0μmとなるように塗工した以外は、実施例8と同様にして、本発明の多孔性フィルムを得た。
(実施例13)
多孔質層Aの膜厚が2.0μmとなるように塗工した以外は、実施例8と同様にして、本発明の多孔性フィルムを得た。
(実施例14)
多孔質層Aの膜厚が0.05μmとなるように塗工した以外は、実施例8と同様にして、本発明の多孔性フィルムを得た。
(実施例15)
無機粒子としてアルミナ粒子(平均粒径0.4μm)を95質量%、バインダーとしてアクリル樹脂を5質量%、水中に分散させて塗工液Bを調整した。この塗工液を、ワイヤーバーを用いてポリエチレン多孔質基材(厚み7μm、透気度110秒/100cm)の片面に塗工し、熱風オーブン(乾燥設定温度50℃)内で、含有される溶媒が揮発するまで乾燥し、多孔質層Bを形成した。その後、実施例8で調整した塗工液を多孔質層B上およびポリエチレン多孔質基材の多孔質層Bが形成されていない側へ塗工し、熱風オーブン(乾燥設定温度50℃)内で、含有される溶媒が揮発するまで乾燥し、多孔質層Aを形成し、本発明の多孔性フィルムを得た。
(実施例16)
浸漬する溶媒がジメチルカーボネートを用いた以外は、実施例8と同様にして、本発明の多孔性フィルムを得た。
(実施例17)
浸漬する溶媒がエチルメチルカーボネートを用いた以外は、実施例8と同様にして、本発明の多孔性フィルムを得た。
(実施例18)
浸漬する溶媒が以下の作製方法によって得られる混合液を用いた以外は、実施例8と同様にして、本発明の多孔性フィルムを得た。
用いた浸漬溶媒の作製方法:本発明のエチレンカーボネートとジエチルカーボネートとの体積比1:1の混合溶媒1kgに、1.0molのヘキサフルオロリン酸リチウム(LiPF)を溶解して混合液を作製した。
(実施例19)
無機粒子として硫酸バリウム(平均粒径0.3μm)を用いた以外は、実施例15と同様にして、本発明の多孔性フィルムを得た。
(実施例20)
無機粒子としてベーマイト(平均粒径0.4μm)を用いた以外は、実施例15と同様にして、本発明の多孔性フィルムを得た。
(実施例21)
最低造膜温度が40℃、ガラス転移温度が50℃である造膜粒子と最低造膜温度が60℃、ガラス転移温度が85℃である造膜粒子と最低造膜温度が80℃、ガラス転移温度が75℃である造膜粒子が質量%比で30/45/25で分散された水系エマルジョン塗工液を用いた以外は、実施例1と同様にして、本発明の多孔性フィルムを得た。
(実施例22)
無機粒子としてアルミナ粒子(平均粒径0.4μm)を95質量%、バインダーとしてアクリル樹脂を5質量%、水中に分散させて塗工液Bを調整した。この塗工液を、ワイヤーバーを用いてポリエチレン多孔質基材(厚み7μm、透気度110秒/100cm)の片面に塗工し、熱風オーブン(乾燥設定温度50℃)内で、含有される溶媒が揮発するまで乾燥し、多孔質層Bを形成した。その後、実施例21で調整した塗工液を多孔質層B上およびポリエチレン多孔質基材の多孔質層Bが形成されていない側へ塗工し、熱風オーブン(乾燥設定温度50℃)内で、含有される溶媒が揮発するまで乾燥し、多孔質層Aを形成し、本発明の多孔性フィルムを得た。
(比較例1)
最低造膜温度が35℃、ガラス転移温度が45℃である、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートの少なくとも1種から構成された溶媒に対して膨潤性の高い造膜粒子を用いた以外は、実施例1と同様にして、多孔性フィルムを得た。
(比較例2)
実施例4で用いた塗工液Bをワイヤーバーを用いてポリエチレン多孔質基材(厚み7μm、透気度110秒/100cm)上へ塗工し、熱風オーブン(乾燥設定温度50℃)内で、含有される溶媒が揮発するまで乾燥し、多孔質層Bを形成し、多孔性フィルムを得た。
(比較例3)
最低造膜温度が20℃、ガラス転移温度が30℃である造膜粒子を用いて、多孔質層Aの膜厚が2.0μmになるように塗工した以外は、実施例1と同様にして、本発明の多孔性フィルムを得た。
Figure 2020003805
Figure 2020003805
表2から、実施例1〜22は、いずれも、多孔質基材の少なくとも片面に、電極に対して接着性を有する多孔質層Aを積層された多孔性フィルムであって、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートの少なくとも1種から構成された溶媒に25℃24時間浸漬した後の透気度が浸漬前の0.95倍以下であり、かつ1000sec/100cm以下である、多孔性フィルムであるため、十分な電極接着性、および良好な電池特性が得られた。
一方、比較例1は、溶媒浸漬後の透気度変化率が上昇しており、ジエチルカーボネートを多孔性フィルムが含んで膨潤したと想定される。そのため、多孔性フィルムの透過性が悪化し、良好な電池特性が得られなかった。比較例2は、電池特性は良好であるが、接着成分が含有されていないため、十分な電極との接着性が得られなかった。また、比較例3は、溶媒浸漬後の透気度が高く、良好な電池特性が得られなかった。

Claims (11)

  1. 多孔質基材の少なくとも片面に、電極に対して接着性を有する多孔質層Aが積層された多孔性フィルムであって、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートの少なくとも1種から構成された溶媒に25℃24時間浸漬した後の透気度が浸漬前の0.95倍以下であり、かつ1000sec/100cm以下である、多孔性フィルム。
  2. 前記多孔質層Aが、前記溶媒に25℃24時間浸漬する前後の二乗平均粗さ(Rq)の変化率が10%以上90%以下である、多孔性フィルム。
  3. 前記溶媒に25℃24時間浸漬後の二乗平均粗さ(Rq)が20nm以上80nm以下である、請求項1または2に記載の多孔性フィルム。
  4. 前記多孔質層Aの表面開孔率が50%以下である、請求項1から3のいずれかに記載の多孔性フィルム。
  5. 前記多孔質層Aがアクリル樹脂、スチレン樹脂、フッ素樹脂、およびオレフィン樹脂からなる群より選択される少なくとも1種の樹脂を含有する、請求項1から4のいずれかに記載の多孔性フィルム。
  6. 前記多孔質層Aの膜厚が0.05μm以上5μm以下である、請求項1から5のいずれかに記載の多孔性フィルム。
  7. 前記多孔質層Aが無機粒子を含む、請求項1から6のいずれかに記載の多孔性フィルム。
  8. 前記多孔質基材と前記多孔質層Aの間に、無機粒子を含む多孔質層Bが積層された、請求項1から7のいずれかに記載の多孔性フィルム。
  9. 前記多孔質層Aが前記多孔質基材の両面に積層されている請求項1から8のいずれかに記載の多孔性フィルム。
  10. 請求項1から9のいずれかに記載の多孔性フィルムを用いてなる二次電池用セパレータ。
  11. 請求項10に記載の二次電池用セパレータを用いてなる二次電池。
JP2019527469A 2018-06-27 2019-05-20 多孔性フィルム、二次電池用セパレータおよび二次電池 Active JP7331692B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2018121993 2018-06-27
JP2018121993 2018-06-27
JP2018121992 2018-06-27
JP2018121992 2018-06-27
PCT/JP2019/019847 WO2020003805A1 (ja) 2018-06-27 2019-05-20 多孔性フィルム、二次電池用セパレータおよび二次電池

Publications (3)

Publication Number Publication Date
JPWO2020003805A1 true JPWO2020003805A1 (ja) 2021-05-13
JPWO2020003805A5 JPWO2020003805A5 (ja) 2022-03-02
JP7331692B2 JP7331692B2 (ja) 2023-08-23

Family

ID=68984807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019527469A Active JP7331692B2 (ja) 2018-06-27 2019-05-20 多孔性フィルム、二次電池用セパレータおよび二次電池

Country Status (4)

Country Link
JP (1) JP7331692B2 (ja)
KR (1) KR20210021940A (ja)
CN (1) CN111902965B (ja)
WO (1) WO2020003805A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021200649A1 (ja) * 2020-03-31 2021-10-07

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086162A (ja) * 2001-09-12 2003-03-20 Teijin Ltd 非水系二次電池用セパレータ及び非水系二次電池
JP2013077385A (ja) * 2011-09-29 2013-04-25 Dexerials Corp 電池用セパレータシート、その製造方法及び電池
JP2017084651A (ja) * 2015-10-29 2017-05-18 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池
JP2017117784A (ja) * 2015-12-22 2017-06-29 三星エスディアイ株式会社Samsung SDI Co., Ltd. 多孔性接着層を含む分離膜およびこれを含む電気化学電池
JP2017535642A (ja) * 2014-11-05 2017-11-30 イエン,ウイリアム・ウインチン 微孔性シート製品、ならびに、その製造方法及び使用方法
WO2017221572A1 (ja) * 2016-06-21 2017-12-28 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層及び非水系二次電池
JP2018510472A (ja) * 2015-04-02 2018-04-12 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. リチウム二次電池用融着型複合分離膜およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564378B2 (ja) 1973-09-14 1981-01-29
JPH11213979A (ja) * 1998-01-27 1999-08-06 Sumitomo Bakelite Co Ltd 電池用セパレーター及び電池
KR100573358B1 (ko) * 2002-09-17 2006-04-24 가부시키가이샤 도모에가와 세이시쇼 리튬이온2차전지용 세퍼레이터 및 이를 포함한리튬이온2차전지
JP6191597B2 (ja) 2012-04-05 2017-09-06 日本ゼオン株式会社 二次電池用セパレータ
US10811658B2 (en) * 2012-09-19 2020-10-20 Asahi Kasei Kabushiki Kaisha Separator and method of preparing the same, and lithium ion secondary battery
KR101963013B1 (ko) * 2014-09-26 2019-03-27 아사히 가세이 가부시키가이샤 축전 디바이스용 세퍼레이터
JP6395620B2 (ja) * 2015-01-16 2018-09-26 ユニチカ株式会社 二次電池セパレータ用コーティング材料およびスラリー、二次電池セパレータ、および二次電池
CN107438912B (zh) * 2015-04-02 2022-02-18 Sk新技术株式会社 锂二次电池用复合隔膜及其制造方法
JP6762107B2 (ja) 2016-02-15 2020-09-30 旭化成株式会社 蓄電デバイス用セパレータ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003086162A (ja) * 2001-09-12 2003-03-20 Teijin Ltd 非水系二次電池用セパレータ及び非水系二次電池
JP2013077385A (ja) * 2011-09-29 2013-04-25 Dexerials Corp 電池用セパレータシート、その製造方法及び電池
JP2017535642A (ja) * 2014-11-05 2017-11-30 イエン,ウイリアム・ウインチン 微孔性シート製品、ならびに、その製造方法及び使用方法
JP2018510472A (ja) * 2015-04-02 2018-04-12 エスケー イノベーション カンパニー リミテッドSk Innovation Co.,Ltd. リチウム二次電池用融着型複合分離膜およびその製造方法
JP2017084651A (ja) * 2015-10-29 2017-05-18 日本ゼオン株式会社 非水系二次電池接着層用組成物、非水系二次電池用接着層、及び非水系二次電池
JP2017117784A (ja) * 2015-12-22 2017-06-29 三星エスディアイ株式会社Samsung SDI Co., Ltd. 多孔性接着層を含む分離膜およびこれを含む電気化学電池
WO2017221572A1 (ja) * 2016-06-21 2017-12-28 日本ゼオン株式会社 非水系二次電池機能層用組成物、非水系二次電池用機能層及び非水系二次電池

Also Published As

Publication number Publication date
KR20210021940A (ko) 2021-03-02
WO2020003805A1 (ja) 2020-01-02
CN111902965A (zh) 2020-11-06
JP7331692B2 (ja) 2023-08-23
CN111902965B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
JP6143992B1 (ja) 非水系二次電池用セパレータ及び非水系二次電池
JP5952504B1 (ja) 多孔質層、多孔質層を積層してなるセパレータ、および多孔質層またはセパレータを含む非水電解液二次電池
EP2485295B1 (en) Porous membrane for secondary battery, and secondary battery
JP6193333B2 (ja) セパレータ及びその製造方法
CN113039069B (zh) 多孔性膜、二次电池用隔膜及二次电池
JP6094805B2 (ja) 二次電池
TW201733186A (zh) 非水系二次電池用隔板及非水系二次電池
JP7327044B2 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP7234941B2 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
CN113906597A (zh) 一种电化学装置和电子装置
JP7331692B2 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP7115319B2 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP7052924B1 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP2021184378A (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
WO2021200648A1 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP7176249B2 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP2019091586A (ja) 非水電解質二次電池用正極及び非水電解質二次電池
WO2021200649A1 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
WO2022239547A1 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
WO2022239548A1 (ja) 多孔性フィルム、二次電池用セパレータおよび二次電池
JP2021057338A (ja) 電気化学素子用セパレータの製造方法
JP2019061972A (ja) 非水電解液二次電池用セパレータ
JP2021172043A (ja) 多孔複合フィルム、電気化学素子

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230724

R151 Written notification of patent or utility model registration

Ref document number: 7331692

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151