JPWO2019225433A1 - フッ素濃度測定方法、フッ素濃度測定装置、水処理方法および水処理装置 - Google Patents

フッ素濃度測定方法、フッ素濃度測定装置、水処理方法および水処理装置 Download PDF

Info

Publication number
JPWO2019225433A1
JPWO2019225433A1 JP2020521179A JP2020521179A JPWO2019225433A1 JP WO2019225433 A1 JPWO2019225433 A1 JP WO2019225433A1 JP 2020521179 A JP2020521179 A JP 2020521179A JP 2020521179 A JP2020521179 A JP 2020521179A JP WO2019225433 A1 JPWO2019225433 A1 JP WO2019225433A1
Authority
JP
Japan
Prior art keywords
fluorine
water
sample water
concentration
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020521179A
Other languages
English (en)
Other versions
JP7264888B2 (ja
Inventor
吉崎 耕大
耕大 吉崎
俊一 池田
俊一 池田
麻未 冨田
麻未 冨田
郁 村上
郁 村上
幸男 樋口
幸男 樋口
張本 崇良
崇良 張本
総太 岩谷
総太 岩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Kasui Corp
Kubota Corp
Original Assignee
Kubota Kasui Corp
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Kasui Corp, Kubota Corp filed Critical Kubota Kasui Corp
Publication of JPWO2019225433A1 publication Critical patent/JPWO2019225433A1/ja
Application granted granted Critical
Publication of JP7264888B2 publication Critical patent/JP7264888B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Removal Of Specific Substances (AREA)
  • Water Treatment By Sorption (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

試料水の電位をフッ素イオン電極計により計測し電位値Pを得る工程と、試料水をフッ素吸着剤と接触させてフッ素除去試料水を得る工程と、フッ素除去試料水にフッ素化合物を加えてフッ素濃度C1の第1基準液を調製する工程と、フッ素除去試料水にフッ素化合物を加えてまたは加えないでフッ素濃度C2の第2基準液を調製する工程と、第1基準液の電位をフッ素イオン電極計により計測し電位値P1を得る工程と、第2基準液の電位をフッ素イオン電極計により計測し電位値P2を得る工程と、フッ素濃度C1,C2と電位値P1,P2を用いてフッ素濃度と電位値との相関を表す検量線を作成する工程と、前記検量線に基づき電位値Pに対応する試料水のフッ素濃度を算出する工程とを有するフッ素濃度測定方法。

Description

本発明は、フッ素濃度測定方法と当該方法を用いた水処理方法、およびフッ素濃度測定装置と当該装置を備えた水処理装置に関する。
従来、イオン選択電極を用いて溶液中のフッ素イオン濃度を測定する方法が知られている。例えば、非特許文献1には、イオン電極を用いてイオン濃度を定量する一般的事項が記載され、イオン電極を用いて電位測定することによりフッ素イオン濃度を求めることができること、イオン電極ではイオン活量に応じた膜電位が生じること、活量係数はイオン強度の影響を受けて変動し測定誤差の原因となること、試料水のイオン強度を一定に保つために、イオン強度調整液として高濃度の電解質溶液が加えられる場合があること、イオン電極による測定は共存イオンの影響を受けるため、その影響を避ける対策をとる必要があることなどが記載されている。非特許文献2には、イオン電極法において共存イオンの影響を避けるために、フッ素化合物を前処理して蒸留分離し、緩衝液(イオン強度調整液)を加えてpHを5.2±0.2に調節し、フッ化物イオン選択電極を用いて電位測定し、フッ化物イオンを定量することが記載されている。非特許文献3には、イオン電極法においてフッ化物イオンの共存イオンによる錯形成の影響を防ぐために、クエン酸ナトリウムやシクロヘキサンジアミン四酢酸を加えて、フッ化物イオンがFeやAlと錯形成することを抑えることが記載されている。特許文献1には、試料水中のフッ素濃度をイオン電極法により測定するに当たり、共存するマグネシウムイオンの影響を抑えるために、試料水を水で希釈してイオン電極で測定する方法が開示されている。
特開2011−47768号公報
日本工業規格 JIS K 0122−1997 日本工業規格 JIS K 0102−2016 山田ら、「イオン電極法による廃水中のフッ化物イオンの簡易定量」、分析化学、Vol.37、T61〜T65(1988)
上記に説明したように、従来、フッ素イオン電極計を用いたフッ素濃度測定では、共存イオンの影響によって正確なフッ素濃度の測定が難しかったり、あるいは前処理が煩雑になる場合があった。また、特許文献1に記載されるように試料水を水で希釈する方法では、共存するマグネシウムイオンの量がフッ素イオンの量に比べて過剰に多い場合は、希釈率を高く設定する必要があるため、フッ素濃度の定量下限値が上がってしまうことが避けられず、フッ素濃度が低い試料水に対しては正確なフッ素濃度の測定が困難となり、適用に限界があった。
本発明は前記事情に鑑みてなされたものであり、その目的は、共存イオンを含む試料水であっても、試料水中のフッ素濃度を簡便かつ正確に判定または算出することができるフッ素濃度測定方法とフッ素濃度測定装置を提供することにある。また本発明は、本発明のフッ素濃度測定方法を用いた水処理方法と、本発明のフッ素濃度測定装置を備えた水処理装置も提供する。
前記課題を解決することができた本発明のフッ素濃度測定方法とは、試料水の電位をフッ素イオン電極計により計測し、電位値Pを得る工程と、試料水をフッ素吸着剤と接触させてフッ素除去試料水を得る工程と、フッ素除去試料水にフッ素化合物を加えてフッ素濃度C1の基準液を調製する工程と、基準液の電位をフッ素イオン電極計により計測し、電位値P1を得る工程と、電位値Pと電位値P1を比較して、試料水のフッ素濃度のフッ素濃度C1に対する大小関係を判定する工程とを有するところに特徴を有する。本発明のフッ素濃度測定方法はまた、試料水の電位をフッ素イオン電極計により計測し、電位値Pを得る工程と、試料水をフッ素吸着剤と接触させてフッ素除去試料水を得る工程と、フッ素除去試料水にフッ素化合物を加えてフッ素濃度C1の第1基準液を調製する工程と、フッ素除去試料水にフッ素化合物を加えてまたは加えないでフッ素濃度C2の第2基準液を調製する工程と、第1基準液の電位をフッ素イオン電極計により計測し、電位値P1を得る工程と、第2基準液の電位をフッ素イオン電極計により計測し、電位値P2を得る工程と、フッ素濃度C1,C2と電位値P1,P2を用いて、フッ素濃度と電位値との相関を表す検量線を作成する工程と、前記検量線に基づき、電位値Pに対応する試料水のフッ素濃度を算出する工程とを有するものであってもよい。
本発明のフッ素濃度測定方法によれば、試料水をフッ素吸着剤と接触させてフッ素除去試料水を調製し、これにフッ素化合物を加えて基準液を調製するため、試料水と基準液はフッ素成分を除いてほぼ同一の組成(マトリックス)を有するものとなる。そのため、試料水と基準液とは同じマトリックスを持つ溶液間で対比・測定が行われることとなり、電位測定値は基本的にフッ素濃度のみの関数となる。従って、本発明のフッ素濃度測定方法によれば、試料水中に共存イオンが多量に存在していても、当該試料水に対応した基準液を用いて正確な検量線を作成したりすることができる。また、フッ素イオン電極計を用いて電位測定するため、簡便かつ迅速な測定が可能となる。
基準液を調製する工程では、フッ素除去試料水に加えるフッ素化合物として、フッ素濃度が既知のフッ素標準液を用いることが好ましい。これにより、所望のフッ素濃度の基準液を容易に調製できる。
電位値Pを得る工程では、試料水に、フッ素標準液をフッ素吸着剤と接触させた後のフッ素除去標準液を加え、得られた溶液の電位をフッ素イオン電極計により計測してもよい。
試料水は、イオン強度が0.05mol/L〜3.5mol/Lであることが好ましい。本発明によれば、このようなイオン強度を有する試料水でも正確なフッ素イオン濃度の測定が可能になる。試料水としては、例えば、排煙脱硫設備から排出される排煙脱硫廃水を用いることができる。
本発明は、フッ素濃度測定装置も提供する。本発明のフッ素濃度測定装置は、フッ素イオン電極計を備えた計測部と、計測部に試料水を供給する第1供給手段と、フッ素吸着剤が配置されたフッ素除去部と、フッ素除去部に試料水を供給する第2供給手段と、フッ素除去部から排出されたフッ素除去試料水にフッ素化合物を加え基準液を与えるフッ素化合物供給手段と、フッ素除去試料水または基準液を計測部に供給する第3供給手段と、計測部で計測した試料水と基準液の電位値から、試料水中のフッ素濃度の値または大小関係を算出する演算部とを有するものである。本発明のフッ素濃度測定装置を用いれば、試料水中のフッ素濃度を簡便かつ正確に判定または算出することができる。
フッ素濃度測定装置は、さらに、フッ素除去部から排出されたフッ素除去試料水とフッ素化合物供給手段から供給されたフッ素化合物とを混合して基準液を調製する混合部を有していてもよい。混合部は、フッ素除去部の出側に連通した流路に設けられるものであってもよい。
フッ素濃度測定装置には、計測部として、試料水を分析するための第1計測部と、基準液を分析するための第2計測部が設けられていてもよい。この場合、前記第1供給手段は第1計測部に試料水を供給するものとなり、前記第3供給手段は、第2計測部にフッ素除去試料水または基準液を供給するものとなる。このように試料水を分析するための第1計測部と、基準液を分析するための第2計測部が設けられれば、より迅速に試料水のフッ素濃度を判定または算出することができる。
フッ素濃度測定装置は、さらに、試料水を受け入れる取水部を有し、前記第1供給手段として、取水部と計測部の入側とに連通した第1供給流路が設けられ、前記第2供給手段として、取水部とフッ素除去部の入側とに連通した第2供給流路が設けられていることが好ましい。このように取水部を設けることにより、試料水と基準液を完全に同一由来のものとすることができる。
フッ素化合物としては、フッ素濃度が既知のフッ素標準液を用いることが好ましい。この場合、フッ素濃度測定装置はさらに、フッ素吸着剤が配置され、フッ素標準液が供給される第2フッ素除去部と、第2フッ素除去部から排出されたフッ素除去標準液を計測部に供給する第4供給手段とを有するものであってもよい。
本発明はまた、本発明のフッ素濃度測定方法を組み合わせた水処理方法も提供する。本発明の水処理方法は、例えば、フッ素イオン含有水からフッ素イオンの少なくとも一部を除去し処理水を得る水処理方法であって、本発明のフッ素濃度測定方法により、処理水を試料水として、処理水中のフッ素濃度を測定するものである。本発明の水処理方法は、フッ素イオン含有水に薬剤を添加してフッ素イオンの少なくとも一部を除去する水処理方法であって、本発明のフッ素濃度測定方法により、フッ素イオン含有水を試料水として、フッ素イオン含有水中のフッ素濃度を測定し、この測定結果に基づき、フッ素イオン含有水への薬剤の添加量を決定するものであってもよい。本発明の水処理方法は、フッ素イオン含有水を、フッ素吸着剤が充填されたフッ素吸着塔に導入し、フッ素イオンの少なくとも一部を除去する水処理方法であって、本発明のフッ素濃度測定方法により、フッ素イオン含有水を試料水として、フッ素イオン含有水中のフッ素濃度を測定し、この測定結果に基づき、フッ素イオン含有水を希釈するものであってもよい。
本発明はまた、フッ素イオン含有水からフッ素イオンの少なくとも一部を除去し処理水を得る水処理装置であって、本発明のフッ素濃度測定装置を備えた水処理装置も提供する。
本発明のフッ素濃度測定方法およびフッ素濃度測定装置によれば、試料水中に共存イオンが多量に含まれていても、試料水中のフッ素イオン濃度を簡便かつ正確に判定または算出することができる。
本発明のフッ素濃度測定方法のフロー図を表す。 本発明のフッ素濃度測定方法に従って作成した検量線と、様々なフッ素濃度の試料水の電位値とフッ素濃度の測定結果をプロットしたグラフを表す。 本発明のフッ素濃度測定装置の構成例を表す。 本発明のフッ素濃度測定装置の構成例を表す。 本発明のフッ素濃度測定装置の構成例を表す。 本発明のフッ素濃度測定装置の構成例を表す。 本発明の水処理装置の構成例を表す。
本発明のフッ素濃度測定方法について、図1を参照して説明する。図1には、本発明のフッ素濃度測定方法のフロー図を示した。本発明のフッ素濃度測定方法は、試料水の電位をフッ素イオン電極計により計測し、電位値Pを得る工程(試料水測定工程)と、試料水をフッ素吸着剤と接触させてフッ素除去試料水を得る工程(フッ素除去工程)と、前記フッ素除去試料水にフッ素化合物を加えてフッ素濃度が明らかな基準液を調製する工程(基準液調製工程)と、前記基準液の電位をフッ素イオン電極計により計測し、電位値P1を得る工程(基準液測定工程)と、試料水測定工程と基準液測定工程から得られた電位値の測定値から、試料水のフッ素濃度を判定ないし算出する工程(フッ素濃度判定・算出工程)とを有するものである。本発明のフッ素濃度測定方法によれば、試料水中のフッ素イオン濃度を簡便かつ正確に求めることができる。なお、本明細書において、「フッ素イオン」は「フッ化物イオン」と同義で用いられ、「フッ素濃度」は「フッ素イオン濃度」を意味する。
測定に供する試料水の種類は特に限定されず、フッ素イオンを含有するものであってもよく、フッ素イオンを含有しないものであってもよい。例えば、工業、農業、漁業等の各種産業廃水やプロセス廃水、生活廃水等を試料水とする場合は、試料水中にフッ素イオンが含まれうる。逆に、これらの廃水の処理水を試料水とする場合は、試料水中にフッ素イオンが含まれない場合もある。また、河川水、湖沼水、地下水、海水等の環境水を試料水としてもよい。
試料水はフッ素イオン以外の成分を含むものも許容され、任意の共存イオンが任意の量で含まれていてもよい。フッ素イオン電極計によるフッ素イオン濃度測定では、通常、共存イオンの影響によって電位値が変わったり、共存イオンがフッ素イオンの検出に際して阻害物質として作用しうることから、これらの共存イオンに対する考慮が必要となる。例えば、フッ素イオン電極計で測定される電位値は、試料水中のイオン強度によって影響を受けるため、この影響を抑えるためにイオン強度調整剤(イオン測定に無関係な強電解質の塩)を加えることが必要となったりする。また、マグネシウムイオン、アルミニウムイオン、鉄イオン、カルシウムイオン等の金属成分が試料水中に多量に含まれる場合は、フッ素イオンがこれらの金属成分と錯形成することによりフッ素イオン電極計による測定値が下がるため、フッ素イオンの錯形成を抑えるための薬剤を加えることが必要になったりする。しかし、本発明では、そのような共存イオンが試料水中に含まれていてもよく、フッ素イオン電極計の測定に影響を与える共存イオンが試料水中に存在していても、試料水中のフッ素イオン濃度を正確に求めることができる。
例えば、石炭火力発電所やコークス工場や製鉄工場等では、石炭やコークスを燃焼させることにより硫黄分やフッ素分を含む排ガスが排出されるが、当該排ガスを排煙脱硫設備により脱硫処理を行うと、硫酸イオンとともにフッ素イオンを高濃度に含む排煙脱硫廃水が発生する。排煙脱硫設備における脱硫方法としては、水酸化マグネシウムや水酸化ナトリウムや水酸化カルシウムを用いて湿式処理する方法が知られているが、脱硫剤としてこれらの金属水酸化物を用いると、フッ素イオンと硫酸イオンと金属イオン(マグネシウムイオンやナトリウムイオンやカルシウムイオン)が高濃度に含まれる排煙処理廃水が発生する。通常、このような排煙処理廃水中のフッ素濃度をフッ素イオン電極計により測定することは難しいが、本発明によれば、排煙脱硫設備から排出される排煙脱硫廃水を試料水としても、当該廃水中のフッ素濃度を正確に測定することができる。さらに、フッ素イオンとともに、フッ素イオン電極計による測定値に影響を及ぼす共存イオンを含む廃水としては、光ファイバーの製造施設から排出されるスクラバー排水なども挙げられる。本発明によれば、このようなスクラバー排水を試料水としても、フッ素濃度を正確に求めることができる。
測定対象となる試料水のイオン強度は特に限定されない。従来は、フッ素イオンと錯形成可能な金属成分が多量に含まれているとフッ素イオン電極計によるフッ素濃度測定が難しかったところ、本発明によれば、そのような試料水でもフッ素イオン濃度の測定が可能になる。従って、そのような観点から、試料水のイオン強度は、例えば0.05mol/L〜3.5mol/Lであってもよい。もちろん、本発明では、これよりも低いイオン強度または高いイオン強度の試料水のフッ素濃度を測定することも可能である。
試料水は、試料水測定工程とフッ素除去工程に先立って、必要に応じてpH調整をしてもよい。試料水のpHは2.0以上が好ましく、2.5以上がより好ましく、2.8以上がさらに好ましく、また7.0以下が好ましく、6.0以下がより好ましく、5.0以下がさらに好ましく、4.0以下がさらにより好ましい。試料水のpHがこのような範囲にあれば、試料水中のフッ素イオンが遊離状態で存在しやすくなり、またフッ素除去工程でフッ素イオンが吸着剤によって好適に吸着除去されやすくなる。従って、試料水のpHが上記範囲外にあるときは、酸またはアルカリを添加してpHを当該範囲に調整することが好ましい。
試料水は、試料水測定工程とフッ素除去工程に先立って、必要に応じて水で希釈してもよい。例えば、試料水のpHが極端に高い場合や極端に低い場合、また試料水の共存イオン濃度が極端に高い場合などは、試料水を適宜水で希釈してもよい。例えば試料水の共存イオン濃度が極端に高い場合は、フッ素除去工程で試料水をフッ素吸着剤と接触させた際に、フッ素イオンの吸着除去に時間がかかったり、フッ素イオンが十分に除去されないことが起こりうるため、水で希釈してフッ素除去工程の迅速化を図ってもよい。なお、試料水を水で希釈したとしても希釈率はできるだけ抑えることが好ましく、これにより、より低いフッ素濃度の試料水の定量が可能となる。そのため、試料水を水で希釈する場合、例えば錯形成している金属成分とフッ素イオンとが遊離する程度まで希釈する必要はない。
試料水測定工程では、試料水の電位をフッ素イオン電極計により計測し、電位値Pを得る。フッ素イオン電極計としては、公知のフッ素イオン電極計を用いればよく、溶液中のフッ素イオン濃度(活量)に対応した電位を発生するフッ素イオン電極を備えたものを用いることができる。フッ素イオン選択膜を備えた膜電極と比較電極(参照電極)とを組み合わせ、電池を構成し、その起電力を測定することで、溶液中のフッ素イオン濃度(活量)に応じた電位値が得られる。測定された電位値Pは、例えばフッ素イオン電極計をイオン濃度計に接続し、イオン濃度計に表示させたり、記憶させることができる。
試料水測定工程で得られる電位値Pは、試料水中の共存イオンの影響を受けた値である。従って、この電位値Pを直接、試料水中のフッ素濃度の値に換算することはできない。そこで本発明では、フッ素除去工程と基準液調製工程により別途基準液を調製して、基準液測定工程で基準液の電位値を測定し、フッ素濃度判定・算出工程で試料水の電位値Pと比較することで、試料水のフッ素濃度を求める。
フッ素除去工程では、電位値Pの測定に供したものと同由来の試料水を、フッ素吸着剤と接触させてフッ素除去試料水を得る。フッ素除去工程に供する試料水は、試料水測定工程に供する試料水と同一バッチであってもよく、異なるバッチであってもよい。前者の場合、例えば、1バッチで採取した試料水の一部を試料水測定工程に供し、他部をフッ素除去工程に供する。あるいは、試料水測定工程で電位測定した試料水をフッ素除去工程に供してもよい。後者の場合、例えば、試料水測定工程に供する試料水を採取した後、フッ素除去工程に供する試料水を採取し、またその逆であってもよい。基本的には、試料水測定工程用の試料水とフッ素除去工程用の試料水は、できるだけ近い時間差(例えば30分以内が好ましく、15分以内がより好ましく、10分以内がさらに好ましい)で採取することが望ましいが、試料水の成分組成の経時変動が小さい場合は、当該時間差がある程度開いてもよい。
フッ素吸着剤としては、フッ素イオンを吸着することができる公知の吸着剤を用いればよく、例えば、アルミナ系吸着剤、フェライト鉄系吸着剤、ジルコニウム系吸着剤、セリウム系吸着剤等を用いることができる。なかでも、高度にフッ素イオンを吸着除去できる吸着剤として、ジルコニウム系吸着剤またはセリウム系吸着剤を用いることが好ましい。ジルコニウム系吸着剤としては、酸化ジルコニウム(ZrO2)、特に含水酸化ジルコニウム(ZrO2・nH2O)を含む吸着剤が挙げられる。セリウム系吸着剤としては、酸化セリウム(CeO2)、特に含水酸化セリウム(CeO2・nH2O)を含む吸着剤が挙げられる。これらの吸着剤は樹脂を含有し、酸化ジルコニウムや酸化セリウム等が樹脂によって固定化あるいは補強されていてもよい。
試料水とフッ素吸着剤との接触は、槽中で行ってもよく、吸着カラムに通液することにより行ってもよい。試料水とフッ素吸着剤とを槽中で接触させる場合は、例えば、槽中に保持された試料水にフッ素吸着剤を添加すればよい。この際、フッ素吸着剤はそのままの姿で試料水と接触させてもよいし、フッ素吸着剤を入れた通液可能な袋を試料水に浸したり、フッ素吸着剤を一体的に取り扱えるように所定の形状に成形したものを試料水に浸したりしてもよい。このときのフッ素吸着剤の添加量は、例えば試料水1Lに対して、1g/L〜100g/Lの範囲で適宜設定すればよい。フッ素吸着剤の添加量は、試料水の予想されるフッ素濃度に応じて適宜設定すればよく、試料水中のフッ素イオンが予想される範囲内で変動しても、フッ素イオンの95%以上を3分以内で吸着除去できる添加量とすることが好ましい。もちろん、これよりも短時間で高い吸着率を達成できる吸着剤量としてもよい。試料水とフッ素吸着剤との接触時間は、フッ素濃度測定を速やかに行う観点から15秒〜10分の間(より好ましくは30秒〜5分の間)で適宜設定することが好ましい。
試料水とフッ素吸着剤とを吸着カラム中で接触させる場合は、フッ素吸着剤が充填された吸着カラムに試料水を通液すればよい。試料水は、吸着カラムを上向流で通液させてもよく、下向流で通液させてもよく、また横向流で通液させてもよい。これらの場合、管路に吸着剤を充填し、これを吸着カラムとしてもよい。吸着カラムへのフッ素吸着剤の充填量は、例えば、試料水を20hr-1の空間速度(SV)で通液させたときに、フッ素イオンの95%以上が吸着除去される量とすることが好ましい。もちろん、これよりも速い空間速度で高い吸着率を達成できる吸着剤量としてもよい。試料水の吸着カラムの通液速度は、空間速度(SV)として、例えば6hr-1〜180hr-1の範囲内(より好ましくは12hr-1〜120hr-1の範囲内)で適宜設定することが好ましい。
フッ素除去工程では、試料水をフッ素吸着剤と接触させることにより試料水からフッ素イオンが除去されたフッ素除去試料水が得られる。なお、フッ素除去試料水のフッ素イオン濃度は完全に0mg/Lにならなくてもよい。フッ素除去試料水のフッ素イオン濃度は、例えば3mg/L以下が好ましく、2mg/L以下がより好ましく、1mg/L以下がさらに好ましく、0.5mg/L以下が特に好ましい。あるいは、フッ素除去工程でのフッ素イオン除去率が95%以上となることが好ましく、97%以上がより好ましく、99%以上がさらに好ましい。基本的には、試料水のフッ素濃度を求めるのに当たって、十分な精度(例えば、誤差±5%以内)が得られる程度にフッ素除去試料水のフッ素イオン濃度が低減されればよい。
フッ素除去工程で得られたフッ素除去試料水は、次に基準液調製工程にてフッ素化合物を加えることにより、基準液を調製する。基準液の調製の際に加えるフッ素化合物の種類は特に限定されないが、水への溶解性に優れ、入手が容易な点から、フッ素のアルカリ金属塩が好ましく、フッ化ナトリウムがより好ましい。フッ素化合物は、固体としてフッ素除去試料水に添加してもよく、溶液としてフッ素除去試料水に添加してもよい。なお、フッ素化合物は溶液としてフッ素除去試料水に添加することが好ましく、これにより所定濃度でフッ素イオンが溶解した基準液を容易に調製することができる。この際のフッ素化合物溶液の添加量は、フッ素除去試料水100質量部に対して3質量部以下となることが好ましく、2質量部以下がより好ましく、1質量部以下がさらに好ましい。すなわち、このような添加量となるように、フッ素化合物溶液のフッ素濃度を適宜調整することが好ましい。
基準液調製工程では、予め所定濃度のフッ素化合物溶液を準備しておき、基準液のフッ素濃度に応じてフッ素化合物溶液の添加量を調整することが好ましく、これにより所望のフッ素濃度の基準液を容易に調製できるようになる。このようなフッ素化合物溶液としては、フッ素濃度が既知のフッ素標準液を用いることが簡便である。フッ素化合物溶液またはフッ素標準液には、pH緩衝剤等が含まれていてもよい。
基準液調製工程では、フッ素濃度C1の基準液を調製する。基準液のフッ素濃度C1は、これを試料水のフッ素濃度との大小関係の判定に用いる場合は、例えば、試料水の基準となるフッ素濃度(例えば、環境省の定める排出基準値や、フッ素処理に際して処理設備の仕様上のフッ素濃度上限値や、これらの値に安全率をかけた値)に設定すればよい。基準液のフッ素濃度C1は、添加したフッ素化合物のフッ素濃度、すなわち添加したフッ素化合物のF量(質量またはモル量)を基準液の容量で除することに求まる値とすることが簡便である。
基準液調製工程では、フッ素濃度C1の第1基準液を調製するとともに、フッ素濃度C2の第2基準液を調製してもよい。第1基準液のフッ素濃度C1と第2基準液のフッ素濃度C2は、例えば、試料水の基準となるフッ素濃度に設定してもよく、検量線の作成に適当なフッ素濃度に適宜設定することもできる。第2基準液は、フッ素除去試料水にフッ素化合物を加えることによりフッ素濃度C2に調整したものであってもよく、フッ素除去試料水にフッ素化合物を加えることなくフッ素濃度C2に調整したものであってもよい。後者の場合、第2基準液のフッ素濃度は0mg/Lかそれに近い値(例えば1mg/L)となる。基準液調製工程では、さらに、フッ素濃度C3の第3基準液やフッ素濃度C4の第4基準液などを調製してもよい。
基準液調製工程で得られた基準液は、pHが2.0以上が好ましく、2.5以上がより好ましく、2.8以上がさらに好ましく、また7.0以下が好ましく、6.0以下がより好ましく、5.0以下がさらに好ましく、4.0以下がさらにより好ましい。基準液のpHが当該範囲から外れる場合は、基準液またはフッ素除去試料水に酸またはアルカリを添加してpHを当該範囲に調整することが好ましい。フッ素イオン電極計により電位値を計測する基準液のpHとフッ素イオン電極計により電位値を計測する試料水のpHとの差はあまり大きくないことが好ましく、両者の差は2.0以内が好ましく、1.5以内がより好ましく、1.0以内がさらに好ましい。
なお、基準液調製工程では、フッ素除去試料水にフッ素化合物を加えて基準液を調製しているが、これにより得られた基準液は、フッ素化合物由来のカチオン成分がもとの試料水に追加されている形となる。従って、試料水と基準液のイオン強度や共存イオン成分を厳密に揃える観点から、フッ素除去試料水に加えたフッ素化合物のカチオンの水酸化物を、試料水測定工程に先立って試料水に加えてもよい。このとき加えるカチオンの水酸化物の量は、フッ素除去試料水に加えたフッ素化合物のカチオン相当量となることが好ましい。基準液調製工程でpH緩衝剤を加える場合は、同量のpH緩衝剤を、試料水測定工程に先立って試料水に加えてもよい。フッ素除去試料水にフッ素化合物溶液(例えばフッ素標準液)を加える場合は、フッ素吸着剤と接触させたフッ素化合物溶液(例えばフッ素標準液)を試料水に加え、このようにして得られた溶液の電位をフッ素イオン電極計により計測し、電位値Pを得てもよい。この場合、試料水には、フッ素イオンが除去されたフッ素化合物溶液またはフッ素イオンが除去されたフッ素標準液(例えばフッ素除去標準液)が加えられることとなる。なお通常は、試料水と基準液のイオン強度や共存イオン成分をここまで厳密に揃えなくても、十分に高精度に試料水のフッ素濃度を測定することができる。
基準液調製工程に続いて、基準液測定工程にて、基準液の電位をフッ素イオン電極計により計測する。基準液測定工程では、上記に説明した試料水測定工程と同様にして、基準液の電位をフッ素イオン電極計により計測することができる。基準液の測定に用いるフッ素イオン電極計は、試料水の測定に用いるフッ素イオン電極計と同じであっても異なっていてもよい。基準液測定工程では、フッ素濃度C1の(第1)基準液の電位値として電位値P1を得る。基準液調製工程でフッ素濃度C2の第2基準液を調製した場合は、基準液測定工程で第2基準液の電位値として電位値P2を得る。同様にして、基準液調製工程でフッ素濃度C3の第3基準液やフッ素濃度C4の第4基準液を調製した場合は、基準液測定工程で第3基準液の電位値として電位値P3を得て、第4基準液の電位値として電位値P4を得る。
次に、フッ素濃度判定・算出工程にて、試料水測定工程と基準液測定工程から得られた電位値の測定値から、試料水のフッ素濃度を判定ないし算出する。試料水のフッ素濃度を判定する場合は、試料水の電位値Pとフッ素濃度C1の(第1)基準液の電位値P1を比較して、試料水のフッ素濃度のフッ素濃度C1に対する大小関係を判定する。このとき、電位値Pが電位値P1よりも大きければ、試料水のフッ素濃度がC1よりも小さいと判断され、電位値Pが電位値P1よりも小さければ、試料水のフッ素濃度がC1よりも大きいと判断することができる。試料水のフッ素濃度の大小関係の判定は、第2基準液のフッ素濃度C2に対しても行ってもよく、さらに第3基準液のフッ素濃度C3や第4基準液のフッ素濃度C4に対しても行ってもよい。
試料水のフッ素濃度の具体的な値を算出する場合は、フッ素濃度判定・算出工程に先立って、フッ素濃度C1,C2と電位値P1,P2とから、フッ素濃度と電位値との相関を表す検量線を作成する工程(検量線作成工程)を行う。検量線の作成に当たっては、横軸に電位値をとり、縦軸にフッ素濃度の対数値をとり、第1基準液のフッ素濃度C1と電位値P1、第2基準液のフッ素濃度C2と電位値P2をプロットし、直線近似することにより、検量線を作成することができる。より正確な検量線を作成する観点からは、第3基準液のフッ素濃度C3と電位値P3をさらにプロットすることが好ましく、第4基準液のフッ素濃度C4と電位値P4をさらにプロットすることがより好ましい。
図2には、このようにして作成した検量線と、様々なフッ素濃度の試料水を測定した結果について、電位値とフッ素濃度の関係を表したグラフを示した。まず、MgSO4濃度が60,000mg/L、pH5.4、フッ素濃度が1mg/L、10mg/L、25mg/L、50mg/L、100mg/Lの5種類の基準液を調製し、それぞれ電位値を測定し、電位値とフッ素濃度(対数値)との関係をプロットして検量線を作成した。次に、MgSO4濃度が60,000mg/L、pH5.4であり、任意のフッ素濃度の試料水を作製し、電位値とフッ素濃度の測定値との関係をプロットした。図2に示すように、検量線は電位値とフッ素濃度(対数値)との関係においてよい直線性を示し、任意のフッ素濃度の試料水の測定値もこの検量線上に乗ることが分かる。
本発明のフッ素濃度測定方法によれば、試料水からフッ素イオンを除去してフッ素除去試料水を調製し、これにフッ素化合物を加えて基準液を調製するため、試料水と基準液はフッ素成分を除いてほぼ同一の組成(マトリックス)を有するものとなる。つまり、試料水と基準液は、フッ素イオンの有無以外、含まれる共存イオンの種類と濃度がほぼ同一となり、イオン強度もフッ素成分を除いて同じになる。試料水と基準液中にフッ素イオンと錯形成可能な成分が存在する場合であっても、当該成分の種類と濃度が試料水と基準液中とで同じとなるため、当該成分のフッ素イオンに及ぼす影響度合も同程度となる。そのため、試料水と基準液とは同じマトリックスを持つ溶液間で対比・測定が行われることとなり、電位測定値は基本的にフッ素濃度のみの関数となる。従って、本発明のフッ素濃度測定方法によれば、試料水中に共存イオンが多量に存在していても、当該試料水に対応した基準液を用いて正確な検量線を作成したり、大小関係を判定することができる。また、フッ素イオン電極計を用いて電位測定するため、簡便かつ迅速な測定が可能となる。
共存イオンがフッ素濃度測定値に及ぼす影響について本発明者らが検討したところ、例えば、同じフッ素イオン濃度を有し、一方は硫酸マグネシウムが全く含まれておらず、他方は硫酸マグネシウムが60,000mg/L含まれている2つの溶液について、それぞれフッ素イオン電極計を用いてフッ素濃度を測定したところ、硫酸マグネシウムが含まれている溶液のフッ素濃度は、硫酸マグネシウムが含まれない溶液のフッ素濃度の約1/10の測定値となった。このことは、通常のようにフッ素標準溶液を用いて検量線を作成し、フッ素イオン電極計を用いてフッ素イオン濃度を測定した場合は、硫酸マグネシウムが60,000mg/L含まれている溶液のフッ素濃度測定値は実際よりも約1/10の値になることを意味する。これに対して本発明のフッ素濃度測定方法によれば、検量線の作成に用いる基準液のマトリックスが試料水のマトリックスと同一であるため、共存イオンの影響を加味した検量線が作成され、試料水の正確なフッ素濃度の測定が可能となる。
なお、基準液の調製の際に、試料水をフッ素吸着剤と接触させることによってフッ素イオンと水酸化物イオンのイオン交換反応が起こると、基準液のpHが試料水のpHよりも高くなる場合があるが、pHの違いがフッ素濃度測定値に及ぼす影響は、共存イオンの影響と比べると非常に小さいことが分かった。特に、共存イオンが多く含まれる試料水の場合は、共存イオンのpH緩衝作用によってpH値の変化はより小さくなる傾向を示した。pHの違いの影響をできるだけ抑える観点からは、試料水と基準液のpHの違いは、2.0以内とすることが好ましく、1.5以内がより好ましく、1.0以内がさらに好ましい。
フッ素イオン電極計による電位値の測定は、温度による影響も僅かながら受ける。電位測定の温度による影響をできるだけ排除する観点からは、電位測定の際の試料水と基準液の温度差は30℃以内とすることが好ましく、20℃以内がより好ましく、10℃以内がさらに好ましい。
本発明のフッ素濃度測定方法は、試料水中にフッ素イオン以外の共存イオンが多く存在する場合に、特に優れた効果を示す。また、そのような場合に、より正確なフッ素イオン濃度の測定が可能となる。そのような観点から、本発明では、イオン強度が0.05mol/L以上の試料水を測定対象とすることが好ましい。
以上、本発明のフッ素濃度測定方法について説明したが、本発明のフッ素濃度測定方法を、フッ素吸着剤を用いた水処理方法の被処理水(原水)中のフッ素濃度の測定に適用する場合は、フッ素除去試料水として、被処理水を当該フッ素吸着剤と接触させて得られる処理水を用い、これにフッ素化合物を添加して基準液を調製することも可能である。この場合も、試料水(被処理水)と基準液は同一由来となり、両者でほぼ同じマトリックスを有するものとなる。そのため、本発明のフッ素濃度測定方法により試料水のフッ素濃度を求めることができる。
次に、本発明のフッ素濃度測定装置について、図3〜図6を参照して説明する。なお、下記の説明において、上記の説明と重複する部分は説明を省略する。本発明のフッ素濃度測定装置を用いれば、本発明のフッ素濃度測定法を好適に実施することができる。まず図3に示したフッ素濃度測定装置について説明する。
フッ素濃度測定装置は、フッ素イオン電極計2を備えた計測部1と、計測部1に試料水を供給する第1供給手段4と、フッ素吸着剤が配置されたフッ素除去部5と、フッ素除去部5に試料水を供給する第2供給手段6と、フッ素除去部5から排出されたフッ素除去試料水にフッ素化合物を加え基準液を与えるフッ素化合物供給手段7と、フッ素除去試料水または基準液を計測部1に供給する第3供給手段9と、計測部1で計測した試料水と基準液の電位値から、試料水中のフッ素濃度の値または大小関係を算出する演算部10とを有するものである。
計測部1はフッ素イオン電極計2を備え、フッ素イオン電極計2により電位測定される分析対象液が保持される。フッ素イオン電極計の詳細は、上記の説明が参照される。フッ素イオン電極計2は、演算部10と有線や無線を介して情報伝達できるようになっている。図3では、計測部1は、分析対象液が保持される槽3と、槽3に備えられたフッ素イオン電極計2から構成され、槽3は電位測定後の分析対象液(排出液11)を排出するための排出部を有する。計測部1は、分析対象液(具体的には試料水や基準液)の流路と、当該流路に備えられた電極計から構成されてもよい。
フッ素除去部5にはフッ素吸着剤が配置されている。フッ素吸着剤の詳細は、上記の説明が参照される。図3では、フッ素除去部5は、フッ素吸着剤が充填された吸着カラムとして構成されている。フッ素除去部5は、フッ素吸着剤が配置された吸着槽であったり、フッ素吸着剤が配置された管路であってもよい。
第1供給手段4は、計測部1に分析対象液として試料水を供給するものである。第2供給手段6は、フッ素除去部5に試料水を供給するものである。試料水の詳細は、上記の説明が参照される。第1供給手段4と第2供給手段6は、試料水を計測部1またはフッ素除去部5に供給できるものであれば特に限定されず、例えば試料水が通る流路、当該流路に送液ポンプが備えられたもの、試料水を搬送する容器などが挙げられる。図3では、第1供給手段4は計測部1に連通した流路として示され、第2供給手段6はフッ素除去部5の入側に連通した流路として示されており、これらの流路には送液ポンプが備わっていてもよい。
第3供給手段9は、図3では、フッ素除去部5から排出されたフッ素除去試料水を計測部1に供給するものとして示されている。第3供給手段9は、フッ素除去試料水または基準液を計測部1に供給できるものであれば特に限定されず、例えばフッ素除去試料水または基準液が通る流路、当該流路に送液ポンプが備えられたもの、フッ素除去試料水または基準液を搬送する容器などが挙げられる。図3では、第3供給手段9はフッ素除去部5の出側と計測部1とに連通した流路として示されており、当該流路にはフッ素除去試料水が流れる。
フッ素化合物供給手段7は、フッ素除去試料水にフッ素化合物を供給するものである。フッ素化合物がフッ素除去試料水に加えられることにより、基準液が調製される。フッ素化合物および基準液の詳細は上記の説明が参照される。
フッ素化合物供給手段7は、溶液または固体のフッ素化合物を供給できるものであれば特に限定されず、例えば、フッ素化合物溶液が通る流路、当該流路に送液ポンプが備えられたもの、フッ素化合物のフィーダー、フッ素化合物を搬送する容器などが挙げられる。フッ素化合物は、フッ素化合物供給手段7から、例えばフッ素除去試料水が通る流路、フッ素除去試料水が一時的に貯められる槽、計測部1の槽3などに供給される。図3では、フッ素化合物溶液が貯留槽8に貯められ、貯留槽8からフッ素化合物溶液がフッ素化合物供給手段7により計測部1の槽3に供給されるようになっている。フッ素化合物供給手段7により槽3に供給されたフッ素化合物溶液は、槽3でフッ素除去試料水と混合される。フッ素化合物溶液としては、フッ素濃度が既知のフッ素標準液を用いることが簡便であり、この場合、フッ素化合物供給手段7はフッ素標準液供給手段となる。
図3に示したフッ素濃度測定装置では、まず試料水を第1供給手段4で計測部1の槽3に供給し、試料水の電位をフッ素イオン電極計2により計測し、電位値Pを得る。得られた電位値Pは、演算部10に一旦記憶される。試料水の電位測定が終わったら、試料水を槽3から排出する。一方、試料水は、第2供給手段6によりフッ素除去部5に供給され、試料水中のフッ素イオンが除去される。フッ素除去部5から排出されたフッ素除去試料水は第3供給手段9により計測部1の槽3に移送される。槽3に貯められたフッ素除去試料水には、フッ素化合物供給手段7によってフッ素化合物が加えられ、槽3においてフッ素濃度C1の(第1)基準液が調製される。この(第1)基準液の電位をフッ素イオン電極計2により計測し、電位値P1を得る。得られた電位値P1は、演算部10に記憶される。この際、(第1)基準液のフッ素濃度C1の設定値を演算部10に入力したり、フッ素化合物供給手段7の制御を演算部10により行い、設定量のフッ素化合物がフッ素化合物供給手段7によって供給されるようにしてもよい。このようにして得られた試料水の電位値Pと(第1)基準液の電位値P1を演算部10で対比することにより、試料水のフッ素濃度の(第1)基準液のフッ素濃度C1に対する大小関係を判定することができる。
なお上記の説明では、試料水の電位測定をフッ素イオン電極計2により行い、電位値Pを得た後、試料水を槽3から排出していたが、槽3から排出した試料水をフッ素除去部5に供給してもよい。この場合、第2供給手段6は、例えば、計測部1の出側(槽3の排出部)とフッ素除去部5の入側とに連通した流路として設けられ、当該流路には送液ポンプが備えられていてもよい。
図3に示したフッ素濃度測定装置では、第1基準液の電位測定の後、第1基準液にさらにフッ素化合物供給手段7によってフッ素化合物を加え、第2基準液を調製してもよい。あるいは、第1基準液の電位測定の前に、第1基準液にフッ素化合物を加えることなく、第2基準液を調製してもよい。この場合は、第2基準液の電位をフッ素イオン電極計2により計測し、電位値P2を得る。得られた電位値P2は、演算部10に記憶される。この際、第2基準液のフッ素濃度C2の設定値を演算部10に入力したり、フッ素化合物供給手段7の制御を演算部10により行い、設定量のフッ素化合物がフッ素化合物供給手段7によって供給されるようにしてもよい。演算部10は、このようにして得られた第1基準液の電位値P1と第2基準液の電位値P2とから、フッ素濃度と電位値との関係を表す検量線を作成することで、試料水の電位値Pに対応したフッ素濃度の値を算出することができる。
本発明のフッ素濃度測定装置の他の構成例について、図4〜図6を参照して説明する。なお図4〜図6の説明において、図3と重複する部分は説明を省く。
図4に示したフッ素濃度測定装置は、試料水を受け入れる取水部12を有し、第1供給手段4として、取水部12と計測部1の入側とに連通した第1供給流路が設けられ、第2供給手段6として、取水部12とフッ素除去部5の入側とに連通した第2供給流路が設けられている。第1供給流路および/または第2供給流路には送液ポンプが備えられていてもよい。このように取水部12を設けることにより、基準液測定工程で電位測定の対象となる基準液を、試料水測定工程で電位測定の対象となる試料水と完全に同一由来のものとすることができる。
図4に示したフッ素濃度測定装置はまた、フッ素除去部5から排出されたフッ素除去試料水とフッ素化合物供給手段7から供給されたフッ素化合物とを混合する混合部13が設けられている。図4では、混合部13はフッ素除去部5の出側に連通した流路に設けられており、例えばインラインミキサーなどが設けられることが好ましい。混合部13では、フッ素除去試料水とフッ素化合物とが混合され、基準液が調製される。図4では、第3供給手段9は、混合部13と計測部1とに連通した流路として設けられ、基準液を計測部1に供給するものとなる。なお、図面には示されていないが、混合部13は、混合槽として設けられてもよい。
図5に示したフッ素濃度測定装置は、計測部として、試料水を分析するための第1計測部1Aと、基準液を分析するための第2計測部1Bが設けられている。図5では、第1計測部1Aは、試料水が保持される槽3Aと、槽3Aに備えられたフッ素イオン電極計2Aから構成され、第2計測部1Bは、基準液が保持される槽3Bと、槽3Bに備えられたフッ素イオン電極計2Bから構成されている。槽3Aと槽3Bには、電位測定後の分析対象液(排出液11A、11B)を排出するための排出部が設けられている。この場合、第1供給手段4は、第1計測部1Aに試料水を供給するものとなり、第3供給手段9は、第2計測部1Bにフッ素除去試料水または基準液を供給するものとなる。また、計測部10は、第1計測部1Aで計測した試料水の電位値と第2計測部1Bで計測した基準液の電位値から、試料水中のフッ素濃度の値または大小関係を算出するものとなる。このように試料水を分析するための第1計測部1Aと、基準液を分析するための第2計測部1Bが設けられれば、より迅速に試料水のフッ素濃度の値または大小関係を算出することができる。
図6に示したフッ素濃度測定装置は、基準液に加えるフッ素化合物としてフッ素化合物溶液が用いられるとともに、試料水に、フッ素化合物溶液をフッ素吸着剤と接触させた溶液を加えるように構成されたものである。図6に示したフッ素濃度測定装置は、フッ素吸着剤が配置され、フッ素化合物溶液が供給される第2フッ素除去部14と、第2フッ素除去部14から排出されたフッ素除去フッ素化合物溶液を計測部1に供給する第4供給手段15とを有する。第2フッ素除去部14の詳細は、上記のフッ素除去部5の説明が参照される。第4供給手段15は、第2フッ素除去部14から排出された溶液を計測部1に供給できるものであれば特に限定されず、例えば当該溶液が通る流路、当該流路に送液ポンプが備えられたもの、当該溶液を搬送する容器などが挙げられる。図6では、第4供給手段15は第2フッ素除去部14の出側と計測部1に連通した流路として示されており、当該流路には送液ポンプが備わっていてもよい。第4供給手段15の流路は、試料水を計測部1に供給する第1供給手段4の流路に接続し、当該流路を介して計測部1に連通していてもよい。図6に示したフッ素濃度測定装置では、フッ素化合物溶液としてフッ素標準液を用いることが簡便であり、この場合、第4供給手段15は、第2フッ素除去部14から排出されたフッ素除去標準液を計測部1に供給するものとなる。
以上、本発明のフッ素濃度測定装置の様々な実施態様を図3〜図6を参照して説明したが、図3〜図6に示した実施態様の各構成要素は任意に組み合わせることが可能である。例えば、図4に示した取水部12や混合部13は、他の実施態様においても設置することができ、図5に示したように計測部1を複数設ける構成は、他の実施態様においても適用することができ、図6に示したように第2フッ素除去部14は、他の実施態様においても設置することができる。
本発明のフッ素濃度測定方法は、様々な水処理方法と組み合わせて実施することができる。従って、本発明は、上記に説明したフッ素濃度測定方法を組み合わせた水処理方法も提供する。
本発明の水処理方法は、例えば、フッ素イオン含有水からフッ素イオンの少なくとも一部を除去し処理水を得る水処理方法であって、上記に説明したフッ素濃度測定方法により、処理水を前記試料水として、処理水中のフッ素濃度を測定するものとすることができる。処理水は、例えば、プラント全体の処理水であってもよく、フッ素除去を行う単位操作の処理水であってもよい。本発明のフッ素濃度測定方法により処理水のフッ素濃度を測定することにより、処理水のフッ素濃度を簡便かつ正確に測定することができる。これにより、水処理が適切に行われているか、また処理水質が適正なものとなっているか判断することができる。
フッ素イオン含有水は、フッ素イオンを任意の形態(例えば、遊離形態、塩形態、錯体形態)で含む水であれば特に限定されず、発電所で発生する廃水;製鉄、鉄鋼、非鉄金属、機械、金属加工、めっき、塗装、電子部品、ガラス、セメント等の各種工場で発生する廃水;埋立浸出水;下水、し尿、畜産糞尿等の有機性廃水;各種プラントのプロセス廃水等が挙げられる。また、河川水、湖沼水、地下水、海水等の環境水であってもよい。
フッ素イオン含有水からフッ素イオンの少なくとも一部を除去する処理は、フッ素除去を主目的とするものであってもよく、副次的にフッ素イオンが除去されるものであってもよい。フッ素除去を目的とした処理方法としては、例えば、消石灰や塩化カルシウム等のカルシウム化合物の添加により固液分離処理する方法、硫酸バンドや塩化アルミニウム等のアルミニウム化合物の添加により固液分離処理する方法、硫酸マグネシウムや水酸化マグネシウム等のマグネシウム化合物の添加により固液分離処理する方法、アルミナ系吸着剤、フェライト鉄系吸着剤、ジルコニウム系吸着剤、セリウム系吸着剤等を用いて吸着除去する方法等が挙げられる。
本発明の水処理方法はまた、フッ素イオン含有水からフッ素イオンの少なくとも一部を除去し処理水を得る水処理方法であって、上記に説明したフッ素濃度測定方法により、フッ素イオン含有水中のフッ素濃度を測定するものであってもよい。本発明のフッ素濃度測定方法を用いて、フッ素イオン含有水中のフッ素濃度を測定することにより、適切な条件で水処理を行うことが可能となる。例えば、上記に説明したカルシウム化合物やアルミニウム化合物やマグネシウム化合物等の薬剤をフッ素イオン含有水に添加して、フッ素イオンの少なくとも一部を除去する処理を行う場合は、フッ素イオン含有水を試料水としてフッ素イオン含有水のフッ素濃度測定結果に基づき薬剤の添加量を決定することで、薬剤を適切な量添加して、効率的にフッ素除去処理を行うことができる。あるいは、フッ素イオン含有水をフッ素吸着剤が充填されたフッ素吸着塔に導入して、フッ素イオンの少なくとも一部を除去する処理を行う場合は、フッ素イオン含有水を試料水として、フッ素イオン含有水のフッ素濃度測定結果に基づき、フッ素イオン含有水を希釈するものであってもよい。この場合は、フッ素イオン含有水のフッ素濃度測定結果に基づき希釈率を決定することで、フッ素吸着塔でのフッ素除去処理を好適に行い、フッ素吸着塔から排出される処理水のフッ素濃度を適切に制御することができる。
本発明の水処理方法は、被処理水と処理水の両方を本発明のフッ素濃度測定方法を用いて測定するものであってもよい。この場合、被処理水と処理水のフッ素濃度を本発明のフッ素濃度測定方法により測定することにより、適切な条件で水処理を行うことができるとともに、当該条件によって適切に処理が行われたか検証することができる。本発明の水処理方法は、被処理水から処理水が得られる途中の中間処理水を、本発明のフッ素濃度測定方法を用いて測定するものであってもよい。
本発明はまた、フッ素イオン含有水からフッ素イオンの少なくとも一部を除去し処理水を得る水処理装置であって、本発明のフッ素濃度測定装置を備えた水処理装置も提供する。本発明の水処理装置は、上記に説明した水処理方法を実施できるものであることが好ましく、例えば、フッ素イオン含有水を保持し、薬剤添加手段を備えたフッ素除去槽を有するものが好ましい。添加される薬剤としては、上記に説明したカルシウム化合物やアルミニウム化合物やマグネシウム化合物等が挙げられる。薬剤添加手段としては、薬液ポンプやフィーダー等が挙げられる。本発明の水処理装置は、フッ素吸着剤が配置されたフッ素吸着槽やフッ素吸着塔を有するものであってもよく、フッ素吸着剤としては、アルミナ系吸着剤、フェライト鉄系吸着剤、ジルコニウム系吸着剤、セリウム系吸着剤等を用いることができる。
本発明の水処理装置は、フッ素イオン含有水を試料水として採取するものであってもよく、処理水を試料水として採取するものであってもよく、その両方を採取するものであってもよい。また、被処理水から処理水が得られる途中の中間処理水を試料水として採取するものであってもよい。
図7には、本発明の水処理装置の一例を示した。図7に示した水処理装置は、フッ素吸着塔が複数直列接続された装置例である。フッ素吸着塔として、第1吸着塔21と第2吸着塔22が設けられ、第1吸着塔21の出側と第2吸着塔22の入側に連通して直列接続流路24が設けられ、これにより第1吸着塔21と第2吸着塔22が直列接続されている。フッ素イオン含有水(被処理水)31は、第1吸着塔21の入側に連通して設けられた被処理水流路23を通ってまず第1吸着塔21に導入され、第1吸着塔21からの流出水である中間処理水32が直列接続流路24を通って第2吸着塔22に導入され、第2吸着塔22の出側に連通して設けられた処理水流路25を通って処理水33が得られる。
図7に示した水処理装置では、フッ素イオン含有水31、中間処理水32、処理水33の少なくとも1つを、フッ素濃度測定装置に導入する試料水とすることができる。例えば、フッ素イオン含有水31のフッ素濃度を測定することにより、フッ素イオン含有水31のフッ素濃度を、第1吸着塔21と第2吸着塔22によって好適に処理することができる濃度に調整することができる。すなわち、フッ素イオン含有水31のフッ素濃度が高すぎる場合は、水で希釈することによってフッ素イオン含有水31のフッ素濃度を調整することができる。中間処理水32のフッ素濃度を測定することにより、第1吸着塔21に配されたフッ素吸着剤の交換または再生処理のタイミングを適切に判断することができる。処理水33のフッ素濃度を測定することにより、第1吸着塔21と第2吸着塔22によってフッ素吸着処理が好適に行われていることを確認し、また第2吸着塔22に配されたフッ素吸着剤の交換または再生処理のタイミングを適切に判断することができる。
フッ素イオン含有水31、中間処理水32、処理水33のフッ素濃度の測定の際は、各試料水の測定ごとに基準液を調製してもよいが、フッ素イオン含有水31の性状変動が小さい場合は、フッ素イオン含有水31と中間処理水32と処理水33で基準液を共通化することも可能である。また、処理水33のフッ素濃度が十分に低い場合は、処理水33を基準液として用い、フッ素イオン含有水31と中間処理水32を試料水として用いることも可能である。
本発明は、各種廃水や環境水中のフッ素イオン濃度の測定に用いることができる。
本願は、2018年5月21日に出願された日本国特許出願第2018−097024号に基づく優先権の利益を主張するものである。2018年5月21日に出願された日本国特許出願第2018−097024号の明細書の全内容が、本願に参考のため援用される。
1,1A,1B: 計測部
2,2A,2B: フッ素イオン電極計
4: 第1供給手段
5: フッ素除去部
6: 第2供給手段
7: フッ素化合物供給手段
9: 第3供給手段
10: 演算部
11,11A,11B: 排出液
12: 取水部
13: 混合部
14: 第2フッ素除去部
15: 第4供給手段
21: 第1吸着塔
22: 第2吸着塔
23: 被処理水流路
24: 直列接続流路
25: 処理水流路
31: フッ素イオン含有水
32: 中間処理水
33: 処理水

Claims (17)

  1. 試料水の電位をフッ素イオン電極計により計測し、電位値Pを得る工程と、
    試料水をフッ素吸着剤と接触させてフッ素除去試料水を得る工程と、
    前記フッ素除去試料水にフッ素化合物を加えてフッ素濃度C1の基準液を調製する工程と、
    前記基準液の電位をフッ素イオン電極計により計測し、電位値P1を得る工程と、
    前記電位値Pと前記電位値P1を比較して、前記試料水のフッ素濃度の前記フッ素濃度C1に対する大小関係を判定する工程とを有することを特徴とするフッ素濃度測定方法。
  2. 試料水の電位をフッ素イオン電極計により計測し、電位値Pを得る工程と、
    試料水をフッ素吸着剤と接触させてフッ素除去試料水を得る工程と、
    前記フッ素除去試料水にフッ素化合物を加えてフッ素濃度C1の第1基準液を調製する工程と、
    前記フッ素除去試料水にフッ素化合物を加えてまたは加えないでフッ素濃度C2の第2基準液を調製する工程と、
    前記第1基準液の電位をフッ素イオン電極計により計測し、電位値P1を得る工程と、
    前記第2基準液の電位をフッ素イオン電極計により計測し、電位値P2を得る工程と、
    前記フッ素濃度C1,C2と前記電位値P1,P2を用いて、フッ素濃度と電位値との相関を表す検量線を作成する工程と、
    前記検量線に基づき、前記電位値Pに対応する前記試料水のフッ素濃度を算出する工程とを有することを特徴とするフッ素濃度測定方法。
  3. 前記基準液を調製する工程において、前記フッ素除去試料水に加えるフッ素化合物として、フッ素濃度が既知のフッ素標準液を用いる請求項1または2に記載のフッ素濃度測定方法。
  4. 前記電位値Pを得る工程において、前記試料水に、前記フッ素標準液をフッ素吸着剤と接触させた後のフッ素除去標準液を加え、得られた溶液の電位をフッ素イオン電極計により計測する請求項3に記載のフッ素濃度測定方法。
  5. 前記試料水のイオン強度が0.05mol/L〜3.5mol/Lである請求項1〜4のいずれか一項に記載のフッ素濃度測定方法。
  6. 前記試料水が、排煙脱硫設備から排出される排煙脱硫廃水である請求項1〜5のいずれか一項に記載のフッ素濃度測定方法。
  7. フッ素イオン電極計を備えた計測部と、
    前記計測部に試料水を供給する第1供給手段と、
    フッ素吸着剤が配置されたフッ素除去部と、
    前記フッ素除去部に試料水を供給する第2供給手段と、
    前記フッ素除去部から排出されたフッ素除去試料水にフッ素化合物を加え基準液を与えるフッ素化合物供給手段と、
    前記フッ素除去試料水または前記基準液を前記計測部に供給する第3供給手段と、
    前記計測部で計測した試料水と基準液の電位値から、前記試料水中のフッ素濃度の値または大小関係を算出する演算部とを有することを特徴とするフッ素濃度測定装置。
  8. さらに、前記フッ素除去部から排出された前記フッ素除去試料水と前記フッ素化合物供給手段から供給された前記フッ素化合物とを混合して基準液を調製する混合部を有する請求項7に記載のフッ素濃度測定装置。
  9. 前記混合部は、前記フッ素除去部の出側に連通した流路に設けられている請求項8に記載のフッ素濃度測定装置。
  10. 前記計測部として、前記試料水を分析するための第1計測部と、前記基準液を分析するための第2計測部が設けられ、
    前記第1供給手段は、前記第1計測部に前記試料水を供給するものであり、
    前記第3供給手段は、前記第2計測部に前記フッ素除去試料水または前記基準液を供給するものである請求項7〜9のいずれか一項に記載のフッ素濃度測定装置。
  11. 前記フッ素濃度測定装置は、さらに、前記試料水を受け入れる取水部を有し、
    前記第1供給手段として、前記取水部と前記計測部の入側とに連通した第1供給流路が設けられ、
    前記第2供給手段として、前記取水部と前記フッ素除去部の入側とに連通した第2供給流路が設けられている請求項7〜10のいずれか一項に記載のフッ素濃度測定装置。
  12. 前記フッ素化合物として、フッ素濃度が既知のフッ素標準液が用いられる請求項7〜11のいずれか一項に記載のフッ素濃度測定装置。
  13. 前記フッ素濃度測定装置は、さらに、フッ素吸着剤が配置され、前記フッ素標準液が供給される第2フッ素除去部と、
    前記第2フッ素除去部から排出されたフッ素除去標準液を前記計測部に供給する第4供給手段とを有する請求項12に記載のフッ素濃度測定装置。
  14. フッ素イオン含有水からフッ素イオンの少なくとも一部を除去し処理水を得る水処理方法であって、
    請求項1〜6のいずれか一項に記載のフッ素濃度測定方法により、処理水を前記試料水として、処理水中のフッ素濃度を測定することを特徴とする水処理方法。
  15. フッ素イオン含有水に薬剤を添加してフッ素イオンの少なくとも一部を除去する水処理方法であって、
    請求項1〜6のいずれか一項に記載のフッ素濃度測定方法により、フッ素イオン含有水を前記試料水として、フッ素イオン含有水中のフッ素濃度を測定し、この測定結果に基づき、前記フッ素イオン含有水への前記薬剤の添加量を決定することを特徴とする水処理方法。
  16. フッ素イオン含有水を、フッ素吸着剤が充填されたフッ素吸着塔に導入し、フッ素イオンの少なくとも一部を除去する水処理方法であって、
    請求項1〜6のいずれか一項に記載のフッ素濃度測定方法により、フッ素イオン含有水を前記試料水として、フッ素イオン含有水中のフッ素濃度を測定し、この測定結果に基づき、前記フッ素イオン含有水を希釈することを特徴とする水処理方法。
  17. フッ素イオン含有水からフッ素イオンの少なくとも一部を除去し処理水を得る水処理装置であって、
    請求項7〜13のいずれか一項に記載のフッ素濃度測定装置を備えることを特徴とする水処理装置。
JP2020521179A 2018-05-21 2019-05-15 フッ素濃度測定方法、フッ素濃度測定装置、水処理方法および水処理装置 Active JP7264888B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018097024 2018-05-21
JP2018097024 2018-05-21
PCT/JP2019/019289 WO2019225433A1 (ja) 2018-05-21 2019-05-15 フッ素濃度測定方法、フッ素濃度測定装置、水処理方法および水処理装置

Publications (2)

Publication Number Publication Date
JPWO2019225433A1 true JPWO2019225433A1 (ja) 2021-07-08
JP7264888B2 JP7264888B2 (ja) 2023-04-25

Family

ID=68616496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020521179A Active JP7264888B2 (ja) 2018-05-21 2019-05-15 フッ素濃度測定方法、フッ素濃度測定装置、水処理方法および水処理装置

Country Status (3)

Country Link
JP (1) JP7264888B2 (ja)
TW (1) TWI811365B (ja)
WO (1) WO2019225433A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112267023B (zh) * 2020-09-25 2022-07-08 衢州华友钴新材料有限公司 一种含氟物料两段除氟的方法
CN117509810B (zh) * 2024-01-05 2024-03-22 深圳市盘古环保科技有限公司 一种高效反应的工业废水除氟处理方法及设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027722A (ja) * 2009-06-24 2011-02-10 Central Res Inst Of Electric Power Ind Bf4−及びf−の同時計測方法及びシステム
JP2017064569A (ja) * 2015-09-28 2017-04-06 水ing株式会社 フッ素含有排水の処理方法およびその処理装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201120440A (en) * 2009-12-09 2011-06-16 Eumed Biotechnology Co Ltd Detection method, specimen and detector for redox substance involved in food.

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027722A (ja) * 2009-06-24 2011-02-10 Central Res Inst Of Electric Power Ind Bf4−及びf−の同時計測方法及びシステム
JP2017064569A (ja) * 2015-09-28 2017-04-06 水ing株式会社 フッ素含有排水の処理方法およびその処理装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RAVANCIC, M. E. ET AL.: "Equilibrium and Kinetics Studies for the Adsorption of Fluoride onto Commercial Activated Carbons Us", INT. J. ELECTROCHEM. SCI., vol. 10, JPN6019029566, 2015, pages 8137 - 8149, XP055656221, ISSN: 0004965460 *
YUCHI, A. ET AL.: "Separation and preconcentration of fluoride at the ng ml-1 level with a polymer complex of zirconium", ANALYTICA CHIMICA ACTA, vol. 388, JPN6019029564, 1999, pages 201 - 208, XP055656219, ISSN: 0004965459, DOI: 10.1016/S0003-2670(99)00116-6 *

Also Published As

Publication number Publication date
TWI811365B (zh) 2023-08-11
JP7264888B2 (ja) 2023-04-25
WO2019225433A1 (ja) 2019-11-28
TW202006352A (zh) 2020-02-01

Similar Documents

Publication Publication Date Title
Štrok et al. Development of pre-concentration procedure for the determination of Hg isotope ratios in seawater samples
Verschoor et al. A comparison of three colorimetric methods of ferrous and total reactive iron measurement in freshwaters
Genç-Fuhrman et al. Removal of As, Cd, Cr, Cu, Ni and Zn from polluted water using an iron based sorbent
US20180149627A1 (en) Low pressure anion exchange chromatography-turbidimetric method for simultaneous online analysis of trace sulfide and chloride in water samples
JP7264888B2 (ja) フッ素濃度測定方法、フッ素濃度測定装置、水処理方法および水処理装置
CN104515769B (zh) 一种快速测定高氯废水cod的方法
CN106568816A (zh) 一种电极法快速测定炼油污水中氨氮含量的试剂及方法
JP6513540B2 (ja) フッ素含有排水の処理方法およびその処理装置
JP2016057162A (ja) 臭素酸イオン濃度の測定方法および測定システム
US8513022B2 (en) Analytical method and apparatus
Sabri et al. Mercury migration and speciation study during monoethylene glycol regeneration processes
JP7251556B2 (ja) 水質分析計及び水質分析方法
Muravyeva et al. Determination of fluorine in aluminum production waste
JP5260446B2 (ja) ふっ素濃度自動測定方法、およびふっ素濃度自動測定装置
JP2003010893A (ja) メタン発酵槽の制御方法及び装置
CN107621449B (zh) 一种气体净化胺液中co2含量的连续流动分析方法
JP3172745B2 (ja) 排水中のペルオキソ二硫酸の測定方法
JP2010194479A (ja) 純水製造装置
JP4793314B2 (ja) 重金属固定化効果の判定方法
Deviney et al. Ammonium ion selective electrode response in swine urine solutions
WO2022039125A1 (ja) アンモニウムイオン化学発光測定用増感剤、並びに、アンモニウムイオン分析方法、及びアンモニウムイオン分析装置
Alberti et al. Determination of the total concentration and speciation of metal ions in river, estuarine and seawater samples
JP4424117B2 (ja) 水系処理剤濃度の測定又は決定方法及び測定装置
JP2003090836A (ja) 窒素化合物測定方法および窒素化合物測定装置
Majam et al. Development of analytical, methods for organic polymer determination used in water treatment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230413

R150 Certificate of patent or registration of utility model

Ref document number: 7264888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150